WO2018008058A1 - 電動機および空気調和装置 - Google Patents

電動機および空気調和装置 Download PDF

Info

Publication number
WO2018008058A1
WO2018008058A1 PCT/JP2016/069768 JP2016069768W WO2018008058A1 WO 2018008058 A1 WO2018008058 A1 WO 2018008058A1 JP 2016069768 W JP2016069768 W JP 2016069768W WO 2018008058 A1 WO2018008058 A1 WO 2018008058A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
bearing
bracket
stator
mold resin
Prior art date
Application number
PCT/JP2016/069768
Other languages
English (en)
French (fr)
Inventor
石井 博幸
及川 智明
山本 峰雄
洋樹 麻生
隼一郎 尾屋
優人 浦邊
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680087281.6A priority Critical patent/CN109417329B/zh
Priority to US16/090,856 priority patent/US10855134B2/en
Priority to PCT/JP2016/069768 priority patent/WO2018008058A1/ja
Priority to JP2018525834A priority patent/JP6556354B2/ja
Publication of WO2018008058A1 publication Critical patent/WO2018008058A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/15Mounting arrangements for bearing-shields or end plates
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations

Definitions

  • the present invention relates to an electric motor and an air conditioner including the electric motor.
  • the carrier frequency is set to a high frequency in order to reduce noise caused by switching.
  • the inverter it is known that a voltage (axial voltage) due to high frequency induction is generated in the shaft of the electric motor, and this axial voltage increases as the carrier frequency increases. Therefore, the potential difference between the outer ring and the inner ring of the bearing that supports the shaft becomes large, and current easily flows through the bearing. This causes damage (electric corrosion) to the raceway surfaces of the inner ring and the outer ring of the bearing and the rolling surface of the rolling element, leading to a decrease in the durability of the bearing.
  • Patent Document 1 two bearings for supporting the rotor shaft, two conductive brackets for fixing the two bearings to the stator, and the two brackets are electrically connected.
  • An electric motor having a conduction pin is disclosed.
  • the rotor is divided into an outer iron core and an inner iron core, and a dielectric layer is provided between them.
  • Patent Document 2 discloses two bearings that support a rotor shaft, two conductive brackets that fix the two bearings to the stator, and a conductive plate that electrically connects the two brackets.
  • An electric motor (molded motor) including the above is disclosed.
  • JP 2010-158152 A Japanese Patent Laying-Open No. 2012-210064 (see FIG. 3)
  • the present invention has been made to solve the above-described problems, and provides an electric motor capable of suppressing the occurrence of electrolytic corrosion, suppressing the generation of noise and vibration, and suppressing an increase in manufacturing cost.
  • the purpose is to do.
  • An electric motor includes a rotor having a shaft, a stator provided so as to surround the rotor, a first bearing that rotatably supports the shaft and is disposed at a distance in the axial direction of the shaft. And a second resin bearing and a mold resin part covering the stator, the mold resin part having a bearing support part for supporting the first bearing, the mold resin part attached to and supporting the second bearing, And the bracket which has electroconductivity, and the electrically-conductive member provided so that it may contact
  • the first bearing is supported by the bearing support portion of the mold resin portion and the second bearing is supported by the bracket, the coaxiality between the stator and the shaft (that is, the stator and the rotor) The degree of concentricity) can be improved, and the occurrence of noise and vibration can be suppressed.
  • the conductive member is in contact with the bearing support portion and the bracket, it is difficult for the axial current to flow through the first bearing and the second bearing, and the occurrence of electrolytic corrosion can be suppressed. Further, the manufacturing cost can be reduced as compared with the case where two brackets are attached to the stator.
  • FIG. 3 is a cross-sectional view showing a configuration of a mold stator of the electric motor according to Embodiment 1.
  • FIG. FIG. 3 is a perspective view showing a configuration of a stator assembly in the first embodiment.
  • 3 is a cross-sectional view showing a configuration of a rotor in the first embodiment.
  • FIG. It is a front view which shows the structure of the rotor of FIG.
  • It is sectional drawing (A) and a perspective view (B) which show the structure of the bracket of the electric motor in Embodiment 1.
  • FIG. FIG. 3 is a diagram showing a relationship among a mold stator, a rotor, and a bracket in the first embodiment.
  • FIG. 4 is a diagram schematically showing the shape of a conductive member in Embodiment 1.
  • FIG. It is a schematic diagram for demonstrating the electric current path
  • FIG. 6 is a cross-sectional view showing a configuration of an electric motor in a second embodiment. It is a figure which shows the structural example of the air conditioning apparatus to which the electric motor in Embodiment 1, 2 is applied.
  • FIG. 1 is a cross-sectional view showing a configuration of an electric motor 100 according to Embodiment 1 of the present invention.
  • the electric motor 100 is, for example, a brushless DC motor or a stepping motor.
  • the electric motor 100 includes a rotor 20 having a shaft 27, a stator 42 provided so as to surround the rotor 20, a mold resin portion 41 covering the stator 42, and a conductive bracket attached to the mold resin portion 41. 30.
  • the stator 42 and the mold resin part 41 constitute a mold stator 40.
  • the direction of the central axis C1 that is the rotation axis of the shaft 27 is simply referred to as “axial direction”.
  • the circumferential direction around the central axis C1 of the shaft 27 is simply referred to as “circumferential direction”, and is indicated by an arrow R1 in the drawings (FIGS. 3, 5, and 6B).
  • the radial direction of the stator 42 and the rotor 20 with respect to the central axis C1 of the shaft 27 is simply referred to as “radial direction”.
  • the shaft 27 protrudes from the mold stator 40 to the left side in FIG. 1, and an impeller (FIG. 11) of a blower, for example, is attached to an attachment portion 27b formed on the protrusion. Therefore, in the following description, the protruding side (left side in FIG. 1) of the shaft 27 is referred to as “load side”, and the opposite side (right side in FIG. 1) is referred to as “anti-load side”.
  • FIG. 2 is a cross-sectional view showing the configuration of the mold stator 40.
  • the mold stator 40 includes the stator 42 and the mold resin portion 41 as described above.
  • the stator 42 includes a stator core 43, an insulating part (insulator) 44 attached to the stator core 43, and a coil 45 wound around the stator core 43 via the insulating part 44.
  • the stator core 43 extends in a ring shape in the circumferential direction around the central axis C1 (see FIG. 3), and extends radially inward (toward the central axis C1) from the yoke portion 43a. It has a plurality of teeth portions 43b (see FIG. 3).
  • the stator core 43 is configured by laminating a plurality of electromagnetic steel plates in the axial direction.
  • the insulating portion 44 is made of a thermoplastic resin such as polybutylene terephthalate (PBT).
  • PBT polybutylene terephthalate
  • the insulating portion 44 is formed integrally with the stator core 43 or is formed by assembling a thermoplastic resin molded body to the stator core 43.
  • the coil 45 is wound around the teeth portion 43 b of the stator core 43 via the insulating portion 44.
  • stator 42 is configured by attaching (or integrally forming) the insulating portion 44 to the stator core 43 and winding the coil 45 thereon.
  • a structure in which a substrate 46 described below is attached to the stator 42 is referred to as a stator assembly 50.
  • FIG. 3 is a perspective view showing the configuration of the stator assembly 50.
  • the substrate 46 is disposed on one side in the axial direction with respect to the stator core 43, here on the load side (upper side in FIG. 3).
  • a plurality of holes 53 are formed along the outer periphery of the substrate 46.
  • the insulating portion 44 is formed with a plurality of protrusions 52 that engage with the holes 53 of the substrate 46.
  • substrate 46 is fixed to the insulating part 44 by engaging the protrusion 52 of the insulating part 44 with the hole 53 of the board
  • a power supply lead wire for supplying electric power to the coil 45 and a sensor lead wire for transmitting a signal from a magnetic sensor 47 described later are wired on the substrate 46.
  • a driving element 49 for driving the electric motor 100 and a lead wire lead-out component 48 for drawing out each lead wire to the outside are assembled on the substrate 46.
  • a plurality of terminals 54 electrically connected to the coil 45 are attached to the insulating portion 44.
  • a plurality of terminal insertion holes 55 that engage with the terminals 54 are formed in the substrate 46.
  • the terminal 54 provided in the insulating portion 44 is electrically connected to the substrate 46 by being inserted into the terminal insertion hole 55 of the substrate 46 and soldered.
  • a magnetic sensor 47 (FIG. 1) is installed on the back side of the substrate 46.
  • the magnetic sensor 47 constitutes a part of a sensor circuit that detects the rotational position of the rotor 20.
  • the magnetic sensor 47 is disposed so as to face a sensor magnet 23 (described later) of the rotor 20.
  • the magnetic sensor 47 detects a position (rotational position) in the circumferential direction of the rotor 20 based on a change in magnetic flux (N / S) from the sensor magnet 23 and outputs a detection signal.
  • the detection signal of the magnetic sensor 47 is input to a drive circuit provided outside the substrate 46 or the electric motor 100 via a sensor lead wire provided on the substrate 46.
  • the drive circuit controls the current flowing through the coil 45 according to the relative rotational position of the rotor 20 with respect to the stator 42 based on the detection signal from the magnetic sensor 47. Thereby, the electric motor 100 can be driven with high efficiency and low noise.
  • the mold resin portion 41 is formed so as to cover the entire stator 42 (stator core 43, insulating portion 44 and coil 45) and the substrate 46.
  • the mold resin portion 41 is made of, for example, a thermosetting resin such as unsaturated polyester.
  • the mold resin portion 41 includes a cylindrical outer peripheral surface 41h located on the radially outer side of the stator 42, a load side end surface 41f that is an end surface on the load side (left side in the drawing) of the stator 42, and an anti-load side (see FIG. And an anti-load side end face 41g which is an end face on the middle right side).
  • a bearing support portion 41a as a first bearing support portion protruding in the axial direction is formed.
  • a cylindrical inner peripheral surface 41i centered on the central axis C1 is formed inside the bearing support portion 41a, and a cylindrical outer peripheral surface 41b centered on the central axis C1 is formed outside the bearing support portion 41a. Is formed.
  • a hole 41j through which the shaft 27 is inserted is formed at the radial center of the distal end portion of the bearing support portion 41a.
  • a contact surface 41k orthogonal to the axial direction is formed around the hole 41j in the bearing support portion 41a.
  • the mold resin portion 41 has an insertion hole 41c that opens to the side opposite to the load 41g.
  • the insertion hole 41 c is a part that accommodates the rotor 20, and has a cylindrical inner peripheral surface 41 d that faces the outer peripheral surface of the rotor 20.
  • the space inside the insertion hole 41c and the space inside the bearing support portion 41a are continuous in the axial direction.
  • An annular step portion 41e is formed on the non-load side end surface 41g so as to surround the periphery of the insertion hole 41c.
  • the stator assembly 50 (FIG. 3) in which the substrate 46 is attached to the stator 42 (stator core 43, insulating portion 44 and coil 45) is installed in the mold. To do. Then, a constituent material of the mold resin portion 41 (for example, a thermosetting resin such as unsaturated polyester resin) is injected into the mold and heated to mold the mold resin portion 41 integrally with the stator assembly 50.
  • a constituent material of the mold resin portion 41 for example, a thermosetting resin such as unsaturated polyester resin
  • Unsaturated polyester resin is particularly desirable as a constituent material of the mold resin portion 41 because low-pressure molding is possible. Further, since the unsaturated polyester has a small shrinkage rate (and therefore has a small dimensional change), it is easy to obtain high dimensional accuracy and is suitable for forming the bearing support portion 41a.
  • the mold mold is provided with a protrusion that contacts a part of the substrate 46 when the stator assembly 50 is placed on the mold mold and clamped. In this way, deformation of the substrate 46 due to the molding pressure can be suppressed, and peeling at the solder joint portion of the substrate 46 can be prevented.
  • FIG. 4 is a cross-sectional view showing the configuration of the rotor 20.
  • the rotor 20 includes a shaft 27 that is a rotating shaft, a magnet 22 that is disposed radially outside the shaft 27, a sensor magnet 23 that is disposed adjacent to the magnet 22 in the axial direction, and a magnet 22. And a resin portion 21 that supports the sensor magnet 23.
  • the shaft 27 is rotatably supported by a first bearing 28 and a second bearing 29.
  • the first bearing 28 and the second bearing 29 are both rolling bearings and are arranged at a distance in the axial direction.
  • the magnet 22 is an annular magnet centered on the central axis C1, and is formed of a thermoplastic resin molded body containing magnet powder.
  • the magnet 22 is magnetized so that different magnetic poles (N pole and S pole) are alternately arranged in the circumferential direction.
  • the number of magnetic poles of the magnet 22 is eight. That is, the rotor 20 has 8 magnetic poles.
  • the number of magnetic poles is not limited to eight.
  • the magnet 22 is not limited to a thermoplastic resin molded body containing magnet powder, and may be, for example, a sintered magnet.
  • a pedestal 24 for holding the sensor magnet 23 is provided at one end of the magnet 22 in the axial direction, here the end on the load side (left side in the figure).
  • Eight concave portions 22a are formed at equal intervals in the circumferential direction at the other end portion of the magnet 22 in the axial direction, here the end portion on the anti-load side (right side in the figure).
  • a gate (not shown) for injecting a thermoplastic resin constituting the magnet 22 is formed in the recess 22a.
  • the depth of the recess 22a from the end face of the magnet 22 on the non-load side is set to a depth at which a gate processing unit (not shown) does not protrude.
  • the recess 22a is disposed between the magnetic poles in the circumferential direction, but may be disposed at the center of the magnetic pole.
  • the sensor magnet 23 is an annular magnet composed of a molded body of thermoplastic resin containing magnet powder.
  • the sensor magnet 23 is magnetized so that different magnetic poles (N pole and S pole) are alternately arranged in the circumferential direction.
  • the sensor magnet 23 has the same number of magnetic poles, polarity, and circumferential phase as the magnet 22.
  • the sensor magnet 23 abuts on the base 24 and is held by the resin portion 21.
  • the sensor magnet 23 is not limited to a thermoplastic resin molded body containing magnet powder, and may be, for example, a sintered magnet.
  • the resin part 21 includes a sleeve-like inner cylinder part 21a attached to the outer peripheral surface of the shaft 27, an annular outer cylinder part 21b disposed on the radially outer side of the inner cylinder part 21a, an inner cylinder part 21a and an outer cylinder. And a plurality of (for example, eight) ribs 21c that connect the portion 21b.
  • the resin part 21 is comprised with the molded object of a thermoplastic resin (for example, polybutylene terephthalate).
  • FIG. 5 is a front view of the rotor 20 as viewed from the load side.
  • a shaft 27 passes through the inner cylinder portion 21 a of the resin portion 21.
  • the ribs 21c are arranged at equal intervals in the circumferential direction around the central axis C1 of the shaft 27, and extend radially outward from the inner cylindrical portion 21a.
  • a hollow portion 21e is formed between the ribs 21c adjacent in the circumferential direction.
  • the number of ribs 21c is not limited to eight.
  • the outer cylinder portion 21b is formed so as to cover both end surfaces of the magnet 22 in the axial direction, and holds the magnet 22 so as not to drop off.
  • the resin constituting the outer cylinder portion 21 b also enters the periphery of the recess 22 a and the pedestal 24 of the magnet 22. Thereby, the inclination of the magnet 22 with respect to the surface orthogonal to the central axis C1 is suppressed.
  • a knurling 27 a is formed on the outer peripheral surface of the shaft 27.
  • the knurled 27 a comes into contact with the inner peripheral surface of the inner cylindrical portion 21 a of the resin portion 21, and prevents the shaft 27 from slipping with respect to the resin portion 21.
  • an attachment portion 27b to which an impeller of a blower is attached is formed.
  • the first bearing 28 is disposed on one side (load side) of the rotor 20 in the axial direction, and is supported by a bearing support portion 41 a of the mold resin portion 41.
  • the second bearing 29 is arranged on the other side (the opposite load side) of the rotor 20 in the axial direction, and is supported by a bracket 30 described below.
  • the bracket 30 is provided so as to block the insertion hole 41c of the mold resin portion 41 as shown in FIG. More specifically, the bracket 30 is press-fitted so as to fit into the insertion hole 41 c of the mold resin portion 41.
  • FIG. 6A is a cross-sectional view showing the configuration of the bracket 30 in the first embodiment.
  • FIG. 6B is a perspective view showing the configuration of the bracket 30.
  • the bracket 30 is made of a conductive material such as metal.
  • An example of the metal is, for example, a galvanized steel sheet, but is not limited to a galvanized steel sheet.
  • the bracket 30 has a rotating body shape centered on the central axis C1.
  • the bracket 30 includes a cylindrical portion 31 as a second bearing support portion disposed at the center in the radial direction, and a disc portion 32 extending around the cylindrical portion 31.
  • a cylindrical inner peripheral surface 31a centering on the central axis C1 is formed inside the cylindrical portion 31, and a cylindrical outer peripheral surface centering on the central axis C1 is formed outside the cylindrical portion 31. Yes.
  • a wall portion 31c is formed so as to close the distal end portion (right end portion in FIG. 6A) of the cylindrical portion 31, and a hole 31b is formed in the center of the wall portion 31c.
  • the disc part 32 extends in a plane orthogonal to the central axis C1.
  • the disk portion 32 is formed with a groove portion 33 as an engaged portion.
  • the groove portion 33 is formed in an annular shape in the circumferential direction around the central axis C1.
  • the groove portion 33 protrudes from the disc portion 32 toward the insertion hole 41c side of the mold resin portion 41 (left side in FIG. 6A).
  • the groove part 33 has, for example, a rectangular cross section.
  • the outer peripheral portion 33 a of the groove portion 33 is press-fitted into the insertion hole 41 c of the mold resin portion 41. Therefore, the outer diameter of the outer peripheral part 33a of the groove part 33 is larger than the inner diameter of the insertion hole 41c by the press-fitting allowance (elastic deformation amount by press-fitting).
  • An annular extending portion 34 is formed on the outer side in the radial direction than the groove portion 33 of the disc portion 32.
  • the outwardly extending portion 34 is a portion that abuts on a stepped portion 41e (FIG. 2) formed around the insertion hole 41c of the mold resin portion 41.
  • FIG. 7 is a view showing the relationship among the mold stator 40, the rotor 20, and the bracket 30.
  • the rotor 20 is inserted into the insertion hole 41c of the mold resin portion 41 from one axial side (the right side in FIG. 7).
  • the tip of the shaft 27 of the rotor 20 passes through the hole 41j of the mold resin portion 41.
  • the first bearing 28 contacts the contact surface 41k of the bearing support portion 41a and is supported in the bearing support portion 41a.
  • the outer peripheral surface of the outer ring of the first bearing 28 abuts on the inner peripheral surface 41i of the bearing support portion 41a.
  • the outer peripheral surface of the magnet 22 faces the inner peripheral surface of the stator core 43 in the radial direction. Further, the sensor magnet 23 faces the magnetic sensor 47 in the axial direction.
  • the second bearing 29 protrudes in the axial direction from the insertion hole 41 c of the mold resin portion 41.
  • the bracket 30 is attached to the mold stator 40 by press-fitting the outer peripheral portion 33 a of the groove portion 33 into the insertion hole 41 c of the mold resin portion 41. At this time, due to the elastic force of the metal bracket 30, the outer peripheral portion 33a of the groove portion 33 is pressed against the inner peripheral surface 41d of the mold resin portion 41, and the bracket 30 is securely held. At this time, the second bearing 29 is supported in the cylindrical portion 31 of the bracket 30. That is, the outer peripheral surface of the outer ring of the second bearing 29 abuts on the inner peripheral surface 31 a of the cylindrical portion 31.
  • the mold resin part 41 having the bearing support part 41a is molded integrally with the stator 42 (stator core 43, insulating part 44 and coil 45). Therefore, high coaxiality (concentricity) between the stator 42 and the bearing support portion 41a is obtained. As a result, high coaxiality between the stator 42 and the rotor 20 is obtained, and noise and vibration are suppressed. Moreover, compared with the case where a bearing support part is comprised with a member different from the mold resin part 41, the number of parts is reduced and manufacturing cost is reduced.
  • the conductive member 60 that connects the bearing support portion 41a of the mold stator 40 and the bracket 30 will be described.
  • the conductive member 60 is made of an elastically deformable member having conductivity, such as a metal.
  • FIG. 8 is a perspective view schematically showing the shape of the conductive member 60.
  • the conductive member 60 includes an annular first conductive ring (first annular portion) 61 that contacts the outer peripheral surface 41 b (FIG. 2) of the bearing support portion 41 a of the mold stator 40 and the outer periphery of the cylindrical portion 31 of the bracket 30. It has the 2nd conductive ring (2nd cyclic
  • the conductive member 60 has a configuration in which a first conductive ring 61 and a second conductive ring 62 are formed at both ends of a connecting portion 68 obtained by bending a band-shaped member.
  • the first conductive ring 61 is formed in an annular shape centered on the central axis C1.
  • the axial length of the first conductive ring 61 is the same as or slightly shorter than the axial length of the bearing support portion 41 a of the mold stator 40.
  • the second conductive ring 62 is also formed in an annular shape centered on the central axis C1.
  • the axial length of the second conductive ring 62 is the same as or slightly shorter than the axial length of the cylindrical portion 31 of the bracket 30.
  • the connecting portion 68 extends from the first conductive ring 61 to the second conductive ring 62 along both end surfaces 41f and 41g and the outer peripheral surface 41h of the mold resin portion 41. More specifically, the connecting portion 68 includes a first connecting portion 63 that extends from the first conductive ring 61 along the load-side end surface 41 f (FIG. 2) of the mold resin portion 41, and the outer periphery of the mold resin portion 41. A second connecting portion 64 extending along the surface 41h (FIG. 2) and a third connecting portion extending to the second conductive ring 62 along the anti-load side end surface 41g (FIG. 2) of the mold resin portion 41. 65. An engagement portion 66 that engages with the groove portion 33 of the bracket 30 is formed in the third connection portion 65.
  • the engaging portion 66 is, for example, a bent portion obtained by bending a part of the third connecting portion 65, but is not limited to the bent portion.
  • the bracket 30 when attaching the conductive member 60 to the mold stator 40, the bracket 30 is first press-fitted into the insertion hole 41 c of the mold resin portion 41, and then the first conductive ring is elastically deformed while the connecting portion 68 is elastically deformed. 61 is fitted to the outer periphery of the bearing support portion 41 a, and then the second conductive ring 62 is fitted to the outer periphery of the cylindrical portion 31 of the bracket 30.
  • the connecting portion 68 is the outer periphery of the mold resin portion 41. It is pressed against the surface 41h. Further, the engaging portion 66 of the conductive member 60 engages with the groove portion 33 of the bracket 30. Furthermore, the outwardly extending portion 34 of the bracket 30 is pressed against the stepped portion 41 e of the mold resin portion 41 by the elastic force of the conductive member 60.
  • the connecting portion 68 can be attached so as not to float from the mold stator 40, and the appearance can be improved. Further, variations in the length of the connecting portion 68 can be absorbed by the depth of engagement between the engaging portion 66 of the conductive member 60 and the groove portion 33 of the bracket 30.
  • the bracket 30, the second conductive ring 62, and the second bearing 29 have conductivity, the second conductive ring 62 is brought into contact with the bracket 30 by contacting the second conductive ring 62 and the bracket 30. And the second bearing 29 are electrically connected. Since the first conductive ring 61 and the second conductive ring 62 are electrically connected by the connecting portion 68, the first bearing 28 and the second bearing 29 support the conductive member 60 against high-frequency current. Are electrically connected to each other.
  • the carrier frequency of the inverter is often set higher than the audible frequency for the purpose of suppressing noise accompanying switching.
  • the carrier frequency increases, the voltage (axial voltage) generated by the high frequency induction increases and a high frequency current (axial current) is generated.
  • FIG. 9 is a schematic diagram for explaining a path of the shaft current in the electric motor 100.
  • substrate 46 which is a current supply source to the coil 45 is demonstrated as a starting point of an axial current.
  • the conductive member 60 is not provided in the mold stator 40, the axial current is generated from the substrate 46 to the coil 45, the stator core 43, the coil 45, the bracket 30, and the second as shown by the black arrow in FIG. 9.
  • the bearing 29, the shaft 27, and the first bearing 28 flow in this order and return to the substrate 46. In this manner, since electric current flows through the first bearing 28 and the second bearing 29, there is a possibility that electric corrosion occurs.
  • the conductive member 60 is provided in the mold stator 40, the axial current is generated from the substrate 46 to the coil 45, the stator core 43, the coil 45, and the bracket as shown by white arrows in FIG. 30 and the conductive member 60 in this order and return to the substrate 46. Therefore, it becomes difficult for current to flow through the first bearing 28 and the second bearing 29, and the occurrence of electrolytic corrosion is suppressed.
  • the conductive member 60 is in contact with the outer peripheral surface 41b of the bearing support portion 41a of the mold resin portion 41, the first bearing 28 and the second bearing 29 are electrically conductive with respect to the axial current (high-frequency current).
  • the members 60 are electrically connected to each other, and a potential difference between the first bearing 28 and the second bearing 29 is hardly generated. As a result, the current is less likely to flow through the first bearing 28 and the second bearing 29, and the occurrence of electrolytic corrosion is suppressed.
  • the bearing support portion 41 a that supports the first bearing 28 is provided on the mold resin portion 41 that covers the stator 42, and the second bearing 29 is supported. Since the bracket 30 is attached to the mold stator 40 and the conductive member 60 that abuts the bearing support 41a and the bracket 30 is provided, the current flowing through the first bearing 28 and the second bearing 29 can be reduced. As a result, the occurrence of electrolytic corrosion due to the current flowing through the first bearing 28 and the second bearing 29 can be suppressed.
  • the bearing support portion 41 a is formed in the mold resin portion 41, high coaxiality between the stator 42 and the shaft 27 can be obtained. As a result, high coaxiality between the stator 42 and the rotor 20 can be obtained, the rotation accuracy of the electric motor 100 can be improved, and generation of noise and vibration can be suppressed. In addition, the number of components can be reduced and the manufacturing cost can be reduced as compared with the case where the bearing support portion 41a is formed of a member different from the mold resin portion 41.
  • the mold resin part 41 has the insertion hole 41c for the rotor 20, and the bracket 30 is attached to the insertion hole 41c, the rotor 20 is inserted into the insertion hole 41c, and then the bracket 30 is attached.
  • the assembly of the electric motor 100 can be easily performed.
  • the conductive member 60 includes the first conductive ring 61 that contacts the outer peripheral surface 41b of the bearing support portion 41a, the bearing support portion 41a and the first conductive ring 61 are sufficiently brought into contact with each other. Can do. Thereby, the axial current flowing through the bearing support portion 41a can be supplied to the conductive member 60 instead of the first bearing 28.
  • the conductive member 60 includes the second conductive ring 62 that contacts the outer peripheral surface of the cylindrical portion 31 of the bracket 30, the cylindrical portion 31 and the second conductive ring 62 can sufficiently contact each other. Can do. As a result, the axial current flowing through the bracket 30 can flow through the conductive member 60 instead of the second bearing 29.
  • the conductive member 60 has the connecting portion 68 that connects the first conductive ring 61 and the second conductive ring 62, the first conductive ring 61 and the second conductive ring 61 can be configured with a simple configuration.
  • the ring 62 can be electrically connected.
  • the connecting portion 68 of the conductive member 60 is provided so as to extend along the outer peripheral surface 41 h of the mold resin portion 41, the conductive member 60 can be attached from the outside of the mold resin portion 41, and conductive The member 60 can be easily attached.
  • the conductive member 60 can be held so as not to fall off from the mold stator 40.
  • the groove portion 33 of the bracket 30 is formed so as to protrude toward the inside of the insertion hole 41 c of the mold resin portion 41, it can also serve as a fixing member to the insertion hole 41 c of the bracket 30.
  • the configuration can be simplified.
  • both the conductive member 60 and the bracket 30 are made of metal, the current flowing through the first bearing 28 and the second bearing 29 can be effectively reduced.
  • the mold resin portion 41 is made of a thermosetting resin, the mold resin portion 41 is molded integrally with the stator assembly 50 (including the relatively low strength substrate 46) with a relatively low molding pressure. can do.
  • the rotor 20 since the rotor 20 has the resin part 21 attached to the shaft 27, and the magnet 22 supported by the resin part 21, compared with the case where the rotor core which consists of an electromagnetic steel plate is used. The axial current via the rotor 20 can be suppressed.
  • the bearing support part 41a of the mold resin part 41 is arranged on the load side and the bracket 30 is arranged on the anti-load side here, the arrangement is not limited to this. That is, the bearing support portion 41a of the mold resin portion 41 may be disposed on the anti-load side, and the bracket 30 may be disposed on the load side.
  • the rotor 20 is not limited to the one in which the magnet 22 and the sensor magnet 23 are attached to the resin portion 21, and a rotor core formed of an electromagnetic steel plate may be used instead of the resin portion 21.
  • the use of the resin portion 21 is advantageous in suppressing the axial current because there are fewer paths of the axial current.
  • FIG. 10 is a cross-sectional view showing the configuration of the electric motor 101 of the second embodiment.
  • the electric motor 101 of the second embodiment is different from the electric motor 100 (FIG. 1) of the first embodiment in the configuration of the conductive member 60A.
  • the same components as those in the first embodiment are denoted by the same reference numerals.
  • the conductive member 60A includes the first conductive ring 61 and the connecting portion 68 (the first connecting portion 63, the second connecting portion 64, and the third connecting portion 65).
  • the second conductive ring 62 (FIG. 8) described in the above is not provided.
  • the third connecting portion 65 of the conductive member 60 ⁇ / b> A has the same engaging portion 66 as in the first embodiment, but this engaging portion 66 is the terminal end of the third connecting portion 65.
  • the conductive member 60A and the bracket 30 are both conductive. Therefore, even if the conductive member 60A does not reach the cylindrical portion 31 of the bracket 30, the conductive member 60A and the second bearing 29 are electrically connected as long as they are in contact with at least a part of the bracket 30. .
  • the conductive member 60A of the second embodiment is used, the axial current flows from the substrate 46 in the order of the coil 45, the stator core 43, the coil 45, the bracket 30, and the conductive member 60 and returns to the substrate 46.
  • the current flowing through the first bearing 28 and the second bearing 29 can be reduced, and the occurrence of electrolytic corrosion can be suppressed.
  • the conductive member 60 ⁇ / b> A has the engaging portion 66 that engages with the groove portion 33 of the bracket 30, the conductive member 60 ⁇ / b> A can be fixed so as not to drop off from the mold stator 40.
  • Other configurations are as described in the first embodiment.
  • the conductive member 60A includes the first conductive ring 61 that contacts the bearing support portion 41a of the mold resin portion 41, the first conductive ring 61, and the bracket. Therefore, the current flowing through the first bearing 28 and the second bearing 29 can be reduced, and the occurrence of electrolytic corrosion can be suppressed. Further, since the conductive member 60A does not have the second conductive ring 62, the configuration of the conductive member 60A can be simplified.
  • the mold resin part 41 has the bearing support part 41a similarly to Embodiment 1, the high coaxiality of the stator 42 and the shaft 27 is obtained, the rotational accuracy of the electric motor 100 is improved, and noise is improved. Moreover, generation
  • the conductive member 60 ⁇ / b> A has the engaging portion 66 that engages with the groove portion 33 of the bracket 30, the conductive member 60 ⁇ / b> A can be reliably attached to the mold stator 40.
  • the shape of the conductive member 60 (60A) is not limited to the shape shown in FIGS. 1, 8, and 10, and may be any shape that contacts the bearing support portion 41a of the mold resin portion 41 and the bracket 30.
  • FIG. 11 is a diagram illustrating a configuration example 300 of an air conditioner to which the electric motors 100 and 101 according to the first and second embodiments are applicable.
  • the air conditioner 300 includes an outdoor unit 301, an indoor unit 302, and a refrigerant pipe 303 that connects them.
  • the outdoor unit 301 includes a first fan (blower) 305 and a first electric motor 306 that rotates an impeller of the first fan 305.
  • the indoor unit 302 includes a second fan 307 and a second electric motor 308 that rotates the impeller of the second fan 307.
  • FIG. 11 also shows a compressor 309 that compresses the refrigerant in the outdoor unit 301.
  • At least one of the first electric motor 306 and the second electric motor 308 is configured by the electric motor 100 described in the first embodiment or the electric motor 101 described in the second embodiment.
  • the electric motors 100 and 101 can suppress the occurrence of electrolytic corrosion, suppress the generation of noise and vibration, and suppress the increase in manufacturing cost, the performance and quality of the air conditioner 300 can be improved. In addition, an increase in manufacturing cost can be suppressed.
  • the electric motors 100 and 101 described in the first embodiment and the second embodiment can be mounted on an electric device other than the air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Motor Or Generator Frames (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

 電動機は、シャフトを有する回転子と、回転子を囲むように設けられた固定子と、シャフトを回転可能に支持し、シャフトの軸方向に距離をあけて配置された第1の軸受および第2の軸受と、固定子を覆うモールド樹脂部であって、第1の軸受を支持する軸受支持部を有するモールド樹脂部と、モールド樹脂部に取り付けられ、第2の軸受を支持し、且つ導電性を有するブラケットと、軸受支持部およびブラケットの両方に当接するように設けられた導電部材とを備える。

Description

電動機および空気調和装置
 本発明は、電動機および電動機を備えた空気調和装置に関する。
 電動機をインバータによって制御する場合、一般に、スイッチングに伴う騒音を低減するため、キャリア周波数を高い周波数に設定する。一方、インバータによる制御では、電動機のシャフトに高周波誘導による電圧(軸電圧)が発生することが知られており、この軸電圧は、キャリア周波数が高くなるほど増加する。そのため、シャフトを支持する軸受の外輪と内輪との電位差が大きくなり、軸受に電流が流れやすくなる。これは、軸受の内輪および外輪の軌道面、並びに転動体の転動面の損傷(電食)の原因となり、軸受の耐久性の低下を招く。
 そこで、特許文献1には、回転子のシャフトを支持する2つの軸受と、これら2つの軸受を固定子に対して固定する2つの導電性のブラケットと、これら2つのブラケットを電気的に接続する導通ピンとを備えた電動機が開示されている。また、回転子は、外側鉄心と内側鉄心とに分割され、両者の間には誘電体層が設けられている。
 また、特許文献2には、ロータのシャフトを支持する2つのベアリングと、これら2つのベアリングをステータに対して固定する2つの導電性のブラケットと、これら2つのブラケットを電気的に接続する導通板とを備えた電動機(モールドモータ)が開示されている。
特開2010-158152号公報(図2参照) 特開2012-210064号公報(図3参照)
 しかしながら、上述した従来の電動機では、2つのブラケットを固定子に取り付ける構成のため、各ブラケットの取り付け位置精度が低いと、固定子と回転子との同軸度が低下し、騒音および振動を発生させる可能性がある。また、2つのブラケットが必要であるため、部品数が増加し、製造コストの上昇の原因となる。
 本発明は、上記の課題を解決するためになされたものであり、電食の発生を抑制すると共に、騒音および振動の発生を抑制し、製造コストの上昇を抑制することが可能な電動機を提供することを目的とする。
 本発明の電動機は、シャフトを有する回転子と、回転子を囲むように設けられた固定子と、シャフトを回転可能に支持し、シャフトの軸方向に距離をあけて配置された第1の軸受および第2の軸受と、固定子を覆うモールド樹脂部であって、第1の軸受を支持する軸受支持部を有するモールド樹脂部と、モールド樹脂部に取り付けられ、第2の軸受を支持し、且つ導電性を有するブラケットと、軸受支持部およびブラケットの両方に当接するように設けられた導電部材とを備える。
 本発明によれば、第1の軸受がモールド樹脂部の軸受支持部に支持され、第2の軸受がブラケットに支持されるため、固定子とシャフトとの同軸度(すなわち固定子と回転子との同軸度)を向上することができ、騒音および振動の発生を抑制することができる。また、導電部材が軸受支持部とブラケットとに当接しているため、第1の軸受および第2の軸受に軸電流が流れにくくなり、電食の発生を抑制することができる。また、固定子に2つのブラケットを取り付けた場合よりも、製造コストを少なく抑えることができる。
本発明の実施の形態1における電動機の構成を示す断面図である。 実施の形態1における電動機のモールド固定子の構成を示す断面図である。 実施の形態1における固定子組立体の構成を示す斜視図である。 実施の形態1における回転子の構成を示す断面図である。 図4の回転子の構成を示す正面図である。 実施の形態1における電動機のブラケットの構成を示す断面図(A)および斜視図(B)である。 実施の形態1におけるモールド固定子、回転子およびブラケットの関係を示す図である。 実施の形態1における導電部材の形状を模式的に示す図である。 電動機における電流経路を説明するための模式図である。 実施の形態2における電動機の構成を示す断面図である。 実施の形態1,2における電動機が適用される空気調和装置の構成例を示す図である。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1における電動機100の構成を示す断面図である。電動機100は、例えばブラシレスDCモータまたはステッピングモータである。電動機100は、シャフト27を有する回転子20と、回転子20を囲むように設けられた固定子42と、固定子42を覆うモールド樹脂部41と、モールド樹脂部41に取り付けられる導電性のブラケット30とを備える。固定子42およびモールド樹脂部41は、モールド固定子40を構成する。
 以下の説明では、シャフト27の回転軸である中心軸線C1の方向を、単に「軸方向」と称する。また、シャフト27の中心軸線C1を中心とする周方向を、単に「周方向」と称し、図面(図3、図5および図6(B))に矢印R1で示す。また、シャフト27の中心軸線C1に対する固定子42および回転子20の半径方向を、単に「径方向」と称する。
 シャフト27は、モールド固定子40から図1における左側に突出しており、その突出部に形成された取付け部27bには、例えば送風機の羽根車(図11)が取り付けられる。そのため、以下の説明では、シャフト27の突出側(図1における左側)を「負荷側」と称し、反対側(図1における右側)を「反負荷側」と称する。
 図2は、モールド固定子40の構成を示す断面図である。モールド固定子40は、上記の通り、固定子42とモールド樹脂部41とを有している。固定子42は、固定子鉄心43と、固定子鉄心43に取り付けられた絶縁部(インシュレータ)44と、絶縁部44を介して固定子鉄心43に巻き付けられたコイル45とを有する。
 固定子鉄心43は、中心軸線C1を中心とする周方向に環状に延在するヨーク部43a(図3参照)と、ヨーク部43aから径方向内側に(中心軸線C1に向かって)延在する複数のティース部43b(図3参照)とを有している。この固定子鉄心43は、複数枚の電磁鋼板を軸方向に積層して構成される。
 絶縁部44は、例えば、ポリブチレンテレフタレート(PBT)等の熱可塑性樹脂で構成されている。絶縁部44は、固定子鉄心43と一体成形されるか、あるいは熱可塑性樹脂の成形体を固定子鉄心43に組み付けることによって形成される。コイル45は、絶縁部44を介して、固定子鉄心43のティース部43bの周囲に巻き付けられている。
 固定子鉄心43に絶縁部44を取り付け(または一体成形し)、さらにコイル45を巻き付けることにより、上述した固定子42が構成される。この固定子42に、次に説明する基板46を取り付けたものを、固定子組立体50と称する。
 図3は、固定子組立体50の構成を示す斜視図である。基板46は、固定子鉄心43に対して軸方向の一方の側、ここでは負荷側(図3における上方)に配置されている。基板46の外周に沿って、複数の穴53が形成されている。絶縁部44には、基板46の穴53に係合する複数の突起52が形成されている。絶縁部44の突起52を基板46の穴53に係合させ、突起52の先端を熱溶着で変形させることにより、基板46が絶縁部44に固定される。
 基板46には、コイル45に電力を供給するための電源リード線と、後述する磁気センサ47からの信号を伝達するためのセンサリード線とが配線されている。また、基板46には、電動機100を駆動するための駆動素子49と、各リード線を外部に引き出すためのリード線口出し部品48が組み付けられている。
 絶縁部44には、コイル45に電気的に接続された複数の端子54が取り付けられている。基板46には、端子54に係合する複数の端子挿入穴55が形成されている。絶縁部44に設けられた端子54は、基板46の端子挿入穴55に挿入されて半田付けされることにより、基板46と電気的に接続される。
 基板46の裏面側には、磁気センサ47(図1)が設置されている。磁気センサ47は、回転子20の回転位置を検出するセンサ回路の一部を構成している。磁気センサ47は、回転子20のセンサマグネット23(後述)に対向するように配置されている。磁気センサ47は、センサマグネット23からの磁束(N/S)の変化に基づき、回転子20の周方向における位置(回転位置)を検出し、検出信号を出力する。
 磁気センサ47の検出信号は、基板46に設けられたセンサリード線を介して、基板46または電動機100の外部に設けられた駆動回路に入力される。電動機100がブラシレスDCモータの場合には、駆動回路は、磁気センサ47からの検出信号に基づき、固定子42に対する回転子20の相対的な回転位置に応じてコイル45に流す電流を制御する。これにより電動機100を高効率且つ低騒音で駆動することができる。
 図2に戻り、モールド樹脂部41は、固定子42(固定子鉄心43、絶縁部44およびコイル45)および基板46の全体を覆うように形成されている。モールド樹脂部41は、例えば、不飽和ポリエステル等の熱硬化性樹脂で構成されている。モールド樹脂部41は、固定子42の径方向外側に位置する円筒状の外周面41hと、固定子42の負荷側(図中左側)の端面である負荷側端面41fと、反負荷側(図中右側)の端面である反負荷側端面41gとを有している。
 モールド樹脂部41の負荷側端面41fの径方向中央には、軸方向に突出する第1の軸受支持部としての軸受支持部41aが形成されている。軸受支持部41aの内側には、中心軸線C1を中心とする円筒状の内周面41iが形成され、軸受支持部41aの外側には、中心軸線C1を中心とする円筒状の外周面41bが形成されている。軸受支持部41aの先端部の径方向中央には、シャフト27を挿通する穴41jが形成されている。軸受支持部41a内において穴41jの周囲には、軸方向に直交する当接面41kが形成されている。
 モールド樹脂部41は、反負荷側端面41g側に開口する挿入穴41cを有している。挿入穴41cは、回転子20を収容する部分であり、回転子20の外周面に対向する円筒状の内周面41dを有している。挿入穴41cの内側の空間と、軸受支持部41aの内側の空間とは、軸方向に連続している。反負荷側端面41gには、挿入穴41cの周囲を囲むように、環状の段差部41eが形成されている。
 モールド樹脂部41を形成する際には、固定子42(固定子鉄心43、絶縁部44およびコイル45)に基板46を取り付けた固定子組立体50(図3)を、モールド金型内に設置する。そして、モールド樹脂部41の構成材料(例えば不飽和ポリエステル樹脂などの熱硬化性樹脂)をモールド金型内に注入して加熱し、モールド樹脂部41を固定子組立体50と一体に成形する。
 なお、基板46の強度は比較的低いため、低圧成形が望ましい。不飽和ポリエステル樹脂は低圧成形が可能であるため、モールド樹脂部41の構成材料として特に望ましい。また、不飽和ポリエステルは収縮率が小さい(従って寸法変化が小さい)ため、高い寸法精度を得やすく、軸受支持部41aの形成に適している。
 モールド金型には、固定子組立体50をモールド金型に設置して型締めする際に、基板46の一部に当接する突起を設けることが望ましい。このようにすれば、成形圧力による基板46の変形を抑制し、基板46の半田接合部における剥離を防止することができる。
 図4は、回転子20の構成を示す断面図である。回転子20は、回転軸であるシャフト27と、シャフト27に対して径方向外側に配置されたマグネット22と、マグネット22に対して軸方向に隣接して配置されたセンサマグネット23と、マグネット22およびセンサマグネット23を支持する樹脂部21とを有する。シャフト27は、第1の軸受28および第2の軸受29によって回転可能に支持されている。第1の軸受28および第2の軸受29は、いずれも転がり軸受であり、軸方向に距離を開けて配置されている。
 マグネット22は、中心軸線C1を中心とする環状のマグネットであり、磁石粉末を含有する熱可塑性樹脂の成形体で構成されている。マグネット22は、異なる磁極(N極とS極)が周方向に交互に並ぶように着磁されている。ここでは、マグネット22の磁極数は8個である。すなわち、回転子20の磁極数は8極である。但し、磁極数は8極に限定されるものではない。また、マグネット22は、磁石粉末を含有する熱可塑性樹脂の成形体に限らず、例えば焼結磁石であってもよい。
 マグネット22の軸方向の一端部、ここでは負荷側(図中左側)の端部には、センサマグネット23を保持する台座24が設けられている。マグネット22の軸方向の他端部、ここでは反負荷側(図中右側)の端部には、周方向に等間隔に8個の凹部22aが形成されている。凹部22aには、マグネット22を構成する熱可塑性樹脂を注入するための図示しないゲートが形成されている。マグネット22の反負荷側の端面からの凹部22aの深さは、図示しないゲート処理部が突出しない深さに設定される。凹部22aは、周方向において磁極間に配置しているが、磁極中心に配置してもよい。
 センサマグネット23は、磁石粉末を含有する熱可塑性樹脂の成形体で構成された環状のマグネットである。センサマグネット23は、異なる磁極(N極とS極)が周方向に交互に並ぶように着磁されている。センサマグネット23の磁極数、極性、および周方向の位相は、マグネット22と同様である。センサマグネット23は、台座24に当接し、樹脂部21によって保持される。なお、センサマグネット23は、磁石粉末を含有する熱可塑性樹脂の成形体に限らず、例えば焼結磁石であってもよい。
 樹脂部21は、シャフト27の外周面に取り付けられたスリーブ状の内筒部21aと、内筒部21aの径方向外側に配置された環状の外筒部21bと、内筒部21aと外筒部21bとを連結する複数(例えば8個)のリブ21cとを備えている。樹脂部21は、熱可塑性樹脂(例えばポリブチレンテレフタレート)の成形体で構成される。
 図5は、回転子20を負荷側から見た正面図である。樹脂部21の内筒部21aには、シャフト27が貫通している。リブ21cは、シャフト27の中心軸線C1を中心とする周方向に等間隔で配置され、内筒部21aから径方向外側に放射状に延在している。周方向に隣り合うリブ21c間には、中空部21eが形成されている。なお、リブ21cの数は8個に限定されない。
 図4に戻り、外筒部21bは、マグネット22の軸方向両端面を覆うように形成されており、マグネット22を脱落しないように保持している。外筒部21bを構成する樹脂は、マグネット22の凹部22aおよび台座24の周囲にも入り込む。これにより、中心軸線C1に直交する面に対するマグネット22の傾きが抑制される。
 シャフト27の外周面には、ローレット27aが形成されている。ローレット27aは、樹脂部21の内筒部21aの内周面と接触し、樹脂部21に対するシャフト27の滑りを防止する。シャフト27の負荷側の端部には、例えば送風機の羽根車が取り付けられる取付け部27bが形成されている。
 第1の軸受28は、回転子20の軸方向の一方の側(負荷側)に配置され、モールド樹脂部41の軸受支持部41aによって支持されている。また、第2の軸受29は、回転子20の軸方向の他方の側(反負荷側)に配置され、次に説明するブラケット30によって支持されている。
 ブラケット30は、図1に示すように、モールド樹脂部41の挿入穴41cを塞ぐように設けられている。より具体的には、ブラケット30は、モールド樹脂部41の挿入穴41cに嵌合するように圧入されている。
 図6(A)は、実施の形態1におけるブラケット30の構成を示す断面図である。図6(B)は、ブラケット30の構成を示す斜視図である。ブラケット30は、導電性を有する材料、例えば金属で構成されている。金属の一例としては、例えば亜鉛メッキ鋼板があるが、亜鉛メッキ鋼板に限定されるものではない。
 ブラケット30は、中心軸線C1を中心とする回転体形状を有している。ブラケット30は、径方向中央に配置された第2の軸受支持部としての円筒部31と、この円筒部31の周囲に延在する円板部32とを有している。
 円筒部31の内側には、中心軸線C1を中心とする円筒状の内周面31aが形成され、円筒部31の外側には、中心軸線C1を中心とする円筒状の外周面が形成されている。円筒部31の先端部(図6(A)では右端部)を塞ぐように壁部31cが形成されており、この壁部31cの中央には、穴31bが形成されている。
 円板部32は、中心軸線C1に直交する面内に延在している。この円板部32には、被係合部としての溝部33が形成されている。溝部33は、中心軸線C1を中心とする周方向に環状に形成されている。溝部33は、円板部32からモールド樹脂部41の挿入穴41c側(図6(A)では左側)に突出している。溝部33は、例えば矩形状の断面を有している。溝部33の外周部33aは、モールド樹脂部41の挿入穴41cに圧入される。そのため、溝部33の外周部33aの外径は、挿入穴41cの内径よりも圧入代(圧入による弾性変形量)の分だけ大きい。
 円板部32の溝部33よりも径方向外側には、環状の外延部34が形成されている。この外延部34は、モールド樹脂部41の挿入穴41cの周囲に形成された段差部41e(図2)に当接する部分である。
 図7は、モールド固定子40と、回転子20と、ブラケット30との関係を示す図である。回転子20は、軸方向の一方の側(図7の右側)から、モールド樹脂部41の挿入穴41c内に挿入される。回転子20のシャフト27の先端は、モールド樹脂部41の穴41jを貫通する。第1の軸受28は、軸受支持部41aの当接面41kに当接し、軸受支持部41a内で支持される。また、第1の軸受28の外輪の外周面は、軸受支持部41aの内周面41iに当接する。
 回転子20がモールド樹脂部41の挿入穴41cに挿入された状態で、マグネット22の外周面は、固定子鉄心43の内周面に径方向に対向する。また、センサマグネット23は、磁気センサ47に軸方向に対向する。第2の軸受29は、モールド樹脂部41の挿入穴41cから軸方向に突出する。
 ブラケット30は、溝部33の外周部33aをモールド樹脂部41の挿入穴41cに圧入することによって、モールド固定子40に取り付けられる。このとき、金属製のブラケット30の弾性力によって、溝部33の外周部33aがモールド樹脂部41の内周面41dに押し当てられ、ブラケット30が確実に保持される。このとき、第2の軸受29は、ブラケット30の円筒部31内で支持される。すなわち、第2の軸受29の外輪の外周面は、円筒部31の内周面31aに当接する。
 軸受支持部41aを有するモールド樹脂部41は、固定子42(固定子鉄心43、絶縁部44およびコイル45)と一体に成形される。そのため、固定子42と軸受支持部41aとの高い同軸度(同芯度)が得られる。その結果、固定子42と回転子20との高い同軸度が得られ、騒音および振動の発生が抑制される。また、軸受支持部をモールド樹脂部41とは別部材で構成した場合と比較して、部品数が低減され、製造コストが低減される。
 次に、モールド固定子40の軸受支持部41aとブラケット30とを接続する導電部材60について説明する。導電部材60は、弾性変形可能で導電性を有する部材、例えば金属で構成されている。図8は、導電部材60の形状を模式的に示す斜視図である。
 導電部材60は、モールド固定子40の軸受支持部41aの外周面41b(図2)に当接する環状の第1の導電リング(第1の環状部分)61と、ブラケット30の円筒部31の外周面(図6)に当接する第2の導電リング(第2の環状部分)62と、これらを電気的に接続する連結部68とを有している。図8に示すように、第1の導電リング61、第2の導電リング62および連結部68は、一体に形成されている。ここでは、導電部材60は、帯状の部材を折り曲げた連結部68の両端に、第1の導電リング61と第2の導電リング62とが形成された構成を有している。
 第1の導電リング61は、中心軸線C1を中心とする環状に形成されている。第1の導電リング61の軸方向長さは、モールド固定子40の軸受支持部41aの軸方向長さと同じか、または僅かに短い。第2の導電リング62も、中心軸線C1を中心とする環状に形成されている。第2の導電リング62の軸方向長さは、ブラケット30の円筒部31の軸方向長さと同じか、または僅かに短い。
 連結部68は、第1の導電リング61から第2の導電リング62まで、モールド樹脂部41の両端面41f,41gおよび外周面41hに沿って延在している。より具体的には、連結部68は、第1の導電リング61からモールド樹脂部41の負荷側端面41f(図2)に沿って延在する第1連結部63と、モールド樹脂部41の外周面41h(図2)に沿って延在する第2連結部64と、モールド樹脂部41の反負荷側端面41g(図2)に沿って第2の導電リング62まで延在する第3連結部65とを有する。第3連結部65には、ブラケット30の溝部33に係合する係合部66が形成されている。係合部66は、例えば、第3連結部65の一部を折り曲げた折り曲げ部であるが、折り曲げ部に限定されるものではない。
 図1において、導電部材60をモールド固定子40に取り付ける際には、まずブラケット30をモールド樹脂部41の挿入穴41cに圧入し、その後、連結部68を弾性変形させながら、第1の導電リング61を軸受支持部41aの外周に嵌合させ、次いで、第2の導電リング62をブラケット30の円筒部31の外周に嵌合させる。
 第1の導電リング61をモールド樹脂部41の軸受支持部41aに嵌合させ、第2の導電リング62をブラケット30の円筒部31に嵌合させると、連結部68はモールド樹脂部41の外周面41hに押し当てられる。また、導電部材60の係合部66がブラケット30の溝部33に係合する。さらに、導電部材60の弾性力により、ブラケット30の外延部34がモールド樹脂部41の段差部41eに押圧される。
 導電部材60の係合部66がブラケット30の溝部33に係合するため、連結部68をモールド固定子40から浮き上がらないように取り付けることができ、外観を向上することができる。また、導電部材60の係合部66とブラケット30の溝部33との係合の深さによって、連結部68の長さのばらつきを吸収することができる。
 次に、この実施の形態1における電食(軸受損傷)の防止効果について説明する。モールド固定子40の軸受支持部41aの外周面41bに第1の導電リング61が当接することにより、軸受支持部41aを流れる高周波電流が第1の導電リング61に流れる。また、第2の導電リング62とブラケット30とが当接することにより、連結部68を介して、第1の導電リング61とブラケット30とが電気的に接続される。
 さらに、ブラケット30、第2の導電リング62および第2の軸受29はそれぞれ導電性を有しているため、第2の導電リング62とブラケット30とが当接することにより、第2の導電リング62と第2の軸受29とが電気的に接続される。第1の導電リング61と第2の導電リング62とは連結部68によって電気的に接続されているため、高周波電流に対し、第1の軸受28と第2の軸受29とは導電部材60を介して互いに電気的に接続される。
 電動機100をインバータによって駆動する場合、スイッチングに伴う騒音を抑制する目的で、インバータのキャリア周波数を可聴周波数よりも高い周波数に設定することが多い。しかしながら、キャリア周波数が高くなると、高周波誘導によって発生する電圧(軸電圧)が増加し、高周波電流(軸電流)が発生する。
 図9は、電動機100における軸電流の経路を説明するための模式図である。ここでは、コイル45への電流供給源である基板46を、軸電流の起点として説明する。モールド固定子40に導電部材60を設けない場合には、軸電流は、図9に黒色の矢印で示すように、基板46から、コイル45、固定子鉄心43、コイル45、ブラケット30、第2の軸受29、シャフト27および第1の軸受28の順に流れて基板46に戻る。このように、第1の軸受28および第2の軸受29に電流が流れるため、電食が発生する可能性がある。
 これに対し、モールド固定子40に導電部材60を設けた場合には、軸電流は、図9に白色の矢印で示すように、基板46から、コイル45、固定子鉄心43、コイル45、ブラケット30および導電部材60の順に流れて基板46に戻る。そのため、第1の軸受28および第2の軸受29には電流が流れにくくなり、電食の発生が抑制される。
 特に、導電部材60がモールド樹脂部41の軸受支持部41aの外周面41bに当接しているため、軸電流(高周波電流)に対して、第1の軸受28と第2の軸受29とが導電部材60によって電気的に接続された状態となり、第1の軸受28と第2の軸受29との電位差が生じにくくなる。その結果、第1の軸受28および第2の軸受29にさらに電流が流れにくくなり、電食の発生が抑制される。
 以上説明したように、本発明の実施の形態1によれば、固定子42を覆うモールド樹脂部41に第1の軸受28を支持する軸受支持部41aを設け、第2の軸受29を支持するブラケット30をモールド固定子40に取り付け、さらに軸受支持部41aおよびブラケット30に当接する導電部材60を設けたため、第1の軸受28および第2の軸受29に流れる電流を少なくすることができる。その結果、第1の軸受28および第2の軸受29に流れる電流に起因する電食の発生を抑制することができる。
 また、モールド樹脂部41に軸受支持部41aが形成されるため、固定子42とシャフト27との高い同軸度が得られる。その結果、固定子42と回転子20との高い同軸度が得られ、電動機100の回転精度を向上し、騒音および振動の発生を抑制することができる。加えて、軸受支持部41aをモールド樹脂部41と別の部材で構成した場合と比較して、部品数を低減し、製造コストを低減することができる。
 また、モールド樹脂部41が回転子20のための挿入穴41cを有し、挿入穴41cにブラケット30が取り付けられるため、挿入穴41cに回転子20を挿入し、続いてブラケット30を取り付けることにより、電動機100の組立を簡単に行うことができる。
 また、導電部材60が、軸受支持部41aの外周面41bに当接する第1の導電リング61を有しているため、軸受支持部41aと第1の導電リング61とを十分に当接させることができる。これにより、軸受支持部41aを流れる軸電流を、第1の軸受28ではなく、導電部材60に流すことができる。
 また、導電部材60は、ブラケット30の円筒部31の外周面に当接する第2の導電リング62を有しているため、円筒部31と第2の導電リング62とを十分に当接させることができる。これにより、ブラケット30を流れる軸電流を、第2の軸受29ではなく、導電部材60に流すことができる。
 また、導電部材60が、第1の導電リング61と第2の導電リング62とを連結する連結部68を有しているため、簡単な構成で、第1の導電リング61と第2の導電リング62とを電気的に接続することができる。
 また、導電部材60の連結部68が、モールド樹脂部41の外周面41hに沿って延在するように設けられているため、導電部材60をモールド樹脂部41の外側から取り付けることができ、導電部材60の取り付けを容易に行うことができる。
 また、導電部材60の係合部66と、ブラケット30の溝部33(被係合部)とが係合するため、導電部材60をモールド固定子40から脱落しないように保持することができる。
 また、ブラケット30の溝部33は、モールド樹脂部41の挿入穴41cの内部に向かって突出するように形成されているため、ブラケット30の挿入穴41cへの固定部材も兼ねることができ、ブラケット30の構成を簡単にすることができる。
 また、導電部材60およびブラケット30がいずれも金属で構成されているため、第1の軸受28と第2の軸受29に流れる電流を効果的に低減することができる。
 また、モールド樹脂部41が熱硬化性樹脂で構成されているため、比較的低い成形圧力で、モールド樹脂部41を固定子組立体50(比較的強度の低い基板46を含む)と一体に成形することができる。
 また、回転子20が、シャフト27に取り付けられた樹脂部21と、樹脂部21に支持されたマグネット22とを有しているため、電磁鋼板からなる回転子鉄心を用いた場合と比較して、回転子20を経由した軸電流を抑制することができる。
 なお、ここでは、モールド樹脂部41の軸受支持部41aを負荷側に配置し、ブラケット30を反負荷側に配置したが、このような配置に限定されるものではない。すなわち、モールド樹脂部41の軸受支持部41aを反負荷側に配置し、ブラケット30を負荷側に配置してもよい。
 また、回転子20は、樹脂部21にマグネット22およびセンサマグネット23を取り付けたものに限らず、樹脂部21の代わりに、電磁鋼板で形成された回転子鉄心を用いてもよい。但し、樹脂部21を用いた方が軸電流の経路が少ないため、軸電流の抑制には有利である。
実施の形態2.
 次に、本発明の実施の形態2について説明する。図10は、実施の形態2の電動機101の構成を示す断面図である。実施の形態2の電動機101は、導電部材60Aの構成において、実施の形態1の電動機100(図1)と異なっている。図10において、実施の形態1と同一の構成要素には、同一の符号を付す。
 実施の形態2の導電部材60Aは、第1の導電リング61および連結部68(第1連結部63、第2連結部64および第3連結部65)を有しているが、実施の形態1で説明した第2の導電リング62(図8)を有していない。導電部材60Aの第3連結部65は、実施の形態1と同様の係合部66を有しているが、この係合部66が第3連結部65の終端となっている。
 導電部材60Aおよびブラケット30は、いずれも導電性を有している。そのため、導電部材60Aがブラケット30の円筒部31まで到達していなくても、ブラケット30の少なくとも一部に当接していれば、導電部材60Aと第2の軸受29とは電気的に接続される。
 そのため、この実施の形態2の導電部材60Aを用いても、軸電流は、基板46から、コイル45、固定子鉄心43、コイル45、ブラケット30および導電部材60の順に流れて基板46に戻る。その結果、第1の軸受28および第2の軸受29に流れる電流を少なくすることができ、電食の発生を抑制することができる。また、導電部材60Aが、ブラケット30の溝部33に係合する係合部66を有しているため、導電部材60Aをモールド固定子40から脱落しないように固定することができる。他の構成は、実施の形態1で説明したとおりである。
 以上説明したように、本発明の実施の形態2によれば、導電部材60Aが、モールド樹脂部41の軸受支持部41aに当接する第1の導電リング61と、第1の導電リング61とブラケット30とを接続する連結部68とを有しているため、第1の軸受28および第2の軸受29に流れる電流を少なくすることができ、電食の発生を抑制することができる。また、導電部材60Aが第2の導電リング62を有さないため、導電部材60Aの構成を簡単にすることができる。
 また、実施の形態1と同様、モールド樹脂部41が軸受支持部41aを有しているため、固定子42とシャフト27との高い同軸度が得られ、電動機100の回転精度を向上し、騒音および振動の発生を抑制することができる。加えて、導電部材60Aが、ブラケット30の溝部33に係合する係合部66を有しているため、導電部材60Aをモールド固定子40に確実に取り付けることができる。
 なお、導電部材60(60A)の形状は、図1,8,10に示した形状に限らず、モールド樹脂部41の軸受支持部41aおよびブラケット30に当接する形状であればよい。
<空気調和装置>
 次に、本発明の実施の形態1および2の電動機100,101が適用可能な空気調和装置の構成例について説明する。図11は、実施の形態1および2の電動機100,101が適用可能な空気調和装置の構成例300を示す図である。
 空気調和装置300は、室外機301と、室内機302と、これらを接続する冷媒配管303とを備える。室外機301は、第1のファン(送風機)305と、第1のファン305の羽根車を回転させる第1の電動機306とを備える。室内機302は、第2のファン307と、第2のファン307の羽根車を回転させる第2の電動機308とを備える。なお、図11には、室外機301において冷媒を圧縮する圧縮機309も示されている。
 第1の電動機306および第2の電動機308の少なくとも一方は、実施の形態1で説明した電動機100または実施の形態2で説明した電動機101で構成されている。上記の通り、電動機100,101は、電食の発生を抑制すると共に、騒音および振動の発生を抑制し、製造コストの上昇を抑制することができるため、空気調和装置300の性能および品質を向上し、製造コストの上昇を抑制することができる。
 実施の形態1および実施の形態2で説明した電動機100,101は、空気調和装置以外の電気機器に搭載することもできる。
 以上、本発明の望ましい実施の形態について具体的に説明したが、本発明は上記の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、各種の改良または変形を行なうことができる。
 20 回転子、 21 樹脂部、 21a 内筒部、 21b 外筒部、 21c リブ、 21e 中空部、 22 マグネット、 22a 凹部、 23 センサマグネット、 24 台座、 27 シャフト、 27a ローレット、 28 第1の軸受、 29 第2の軸受、 30 ブラケット、 31 円筒部、 31a 内周面、 31b 穴、 31c 壁部、 32 円板部、 33 溝部(被係合部)、 33a 外周部、 34 外延部、 40 モールド固定子、 41 モールド樹脂部、 41a 軸受支持部、 41b 外周面、 41c 挿入穴、 41d 内周面、 41e 段差部、 41f 負荷側端面、 41g 反負荷側端面、 41h 外周面、 41i 内周面、 41j 穴、 41k 当接面、 42 固定子、 43 固定子鉄心、 43a ヨーク部、 43b ティース部、 44 絶縁部、 45 コイル、 46 基板、 47 磁気センサ、 48 リード線口出し部品、 49 駆動素子、 50 固定子組立体、 52 突起、 53 穴、 54 端子、 55 端子挿入穴、 60,60A 導電部材、 61 第1の導電リング(第1の環状部分)、 62 第2の導電リング(第2の環状部分)、 63 第1連結部、 64 第2連結部、 65 第3連結部、 66 係合部、 68 連結部、 100,101 電動機、 300 空気調和装置、 301 室外機、 302 室内機、 305 第1のファン(送風機)、 306 第1の電動機、 307 第2のファン(送風機)、 308 第2の電動機、 309 圧縮機。

Claims (15)

  1.  シャフトを有する回転子と、
     前記回転子を囲むように設けられた固定子と、
     前記シャフトを回転可能に支持し、前記シャフトの軸方向に距離をあけて配置された第1の軸受および第2の軸受と、
     前記固定子を覆うモールド樹脂部であって、前記第1の軸受を支持する軸受支持部を有するモールド樹脂部と、
     前記モールド樹脂部に取り付けられ、前記第2の軸受を支持し、且つ導電性を有するブラケットと、
     前記軸受支持部および前記ブラケットの両方に当接するように設けられた導電部材と
     を備えた電動機。
  2.  前記モールド樹脂部は、前記回転子が挿入される挿入穴を有し、
     前記ブラケットは、前記回転子が挿入された前記挿入穴に取り付けられる、
     請求項1に記載の電動機。
  3.  前記モールド樹脂部の前記軸受支持部は、前記シャフトの中心軸線を中心とする環状の外周面を有し、
     前記導電部材は、前記軸受支持部の前記外周面に当接する第1の環状部分を有する、
     請求項2に記載の電動機。
  4.  前記ブラケットは、前記第2の軸受を支持する円筒部を有し、前記円筒部は、前記シャフトの中心軸線を中心とする環状の外周面を有する、
     請求項3に記載の電動機。
  5.  前記導電部材は、前記円筒部の前記外周面に当接する第2の環状部分を有し、
     前記導電部材は、前記第1の環状部分と前記第2の環状部分とを連結する連結部を有する、
     請求項4に記載の電動機。
  6.  前記導電部材の連結部は、前記モールド樹脂部の外周面に沿って延在する、
     請求項5に記載の電動機。
  7.  前記導電部材は、前記第1の環状部分から前記ブラケットまで延在し、前記ブラケットの前記円筒部には到達しない、
     請求項4に記載の電動機。
  8.  前記導電部材は、前記ブラケットに係合する係合部を有し、
     前記ブラケットは、前記導電部材の前記係合部に係合する被係合部を有する、
     請求項2から7までの何れか1項に記載の電動機。
  9.  前記ブラケットは、前記モールド樹脂部の前記挿入穴を塞ぐ円板部を有し、
     前記ブラケットの前記被係合部は、前記円板部に形成された溝部である、
     請求項8に記載の電動機。
  10.  前記固定子に取り付けられた基板をさらに備え、
     前記モールド樹脂部は、前記固定子および前記基板を覆うように配置されている
     請求項1から9までの何れか1項に記載の電動機。
  11.  前記導電部材は、金属で構成されている、
     請求項1から10までの何れか1項に記載の電動機。
  12.  前記ブラケットは、金属で構成されている、
     請求項1から11までの何れか1項に記載の電動機。
  13.  前記モールド樹脂部は、熱硬化性樹脂で構成されている、
     請求項1から12までの何れか1項に記載の電動機。
  14.  前記回転子は、前記シャフトに取り付けられた樹脂部と、前記樹脂部に支持されたマグネットとを有し、
     前記固定子は、前記回転子を囲むように設けられた固定子鉄心と、前記固定子鉄心に巻き付けられたコイルとを有する、
     請求項1から13までの何れか1項に記載の電動機。
  15.  第1のファンと、前記第1のファンを駆動する第1の電動機とを備えた室外機と、
     第2のファンと、前記第2のファンを駆動する第2の電動機とを備えた室内機と、
     前記室外機と前記室内機とを連結する冷媒配管と
     を備え、
     前記第1の電動機および前記第2の電動機の少なくとも一方は、
     シャフトを有する回転子と、
     前記回転子を囲むように設けられた固定子と、
     前記シャフトを回転可能に支持し、前記シャフトの軸方向に距離をあけて配置された第1の軸受および第2の軸受と、
     前記固定子を覆うモールド樹脂部であって、前記第1の軸受を支持する軸受支持部を有するモールド樹脂部と、
     前記モールド樹脂部に取り付けられ、前記第2の軸受を支持し、且つ導電性を有するブラケットと、
     前記軸受支持部および前記ブラケットの両方に当接するように設けられた導電部材と
     を備える、
     空気調和装置。
PCT/JP2016/069768 2016-07-04 2016-07-04 電動機および空気調和装置 WO2018008058A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680087281.6A CN109417329B (zh) 2016-07-04 2016-07-04 电动机以及空调装置
US16/090,856 US10855134B2 (en) 2016-07-04 2016-07-04 Motor and air conditioning apparatus
PCT/JP2016/069768 WO2018008058A1 (ja) 2016-07-04 2016-07-04 電動機および空気調和装置
JP2018525834A JP6556354B2 (ja) 2016-07-04 2016-07-04 電動機および空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069768 WO2018008058A1 (ja) 2016-07-04 2016-07-04 電動機および空気調和装置

Publications (1)

Publication Number Publication Date
WO2018008058A1 true WO2018008058A1 (ja) 2018-01-11

Family

ID=60912036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069768 WO2018008058A1 (ja) 2016-07-04 2016-07-04 電動機および空気調和装置

Country Status (4)

Country Link
US (1) US10855134B2 (ja)
JP (1) JP6556354B2 (ja)
CN (1) CN109417329B (ja)
WO (1) WO2018008058A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019165620A (ja) * 2018-02-16 2019-09-26 ジョンソン エレクトリック インターナショナル アクチェンゲゼルシャフト 電気モータのためのクロージャーシステム及び対応する密閉方法
EP4113789A4 (en) * 2020-02-26 2023-04-19 Mitsubishi Electric Corporation ELECTRIC MOTOR, BLOWER AND AIR CONDITIONER

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6690857B2 (ja) * 2016-07-29 2020-04-28 ミネベアミツミ株式会社 回転装置
US10840771B2 (en) * 2016-09-28 2020-11-17 Mitsubishi Electric Corporation Motor, blower, air conditioner, and method of producing motor
JP7122516B2 (ja) * 2017-02-28 2022-08-22 パナソニックIpマネジメント株式会社 モールドモータ
CN113169631A (zh) * 2018-12-19 2021-07-23 三菱电机株式会社 交通工具用控制装置一体型旋转电机
CN112366877A (zh) * 2019-07-26 2021-02-12 广东威灵电机制造有限公司 一种电机及包括该电机的电器设备
US20230035739A1 (en) * 2020-02-27 2023-02-02 Mitsubishi Electric Corporation Outdoor unit and air conditioner
JP7128428B1 (ja) * 2021-04-28 2022-08-31 ダイキン工業株式会社 送風装置及び空気調和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012210064A (ja) * 2011-03-30 2012-10-25 Fujitsu General Ltd モールドモーター
JP2014107998A (ja) * 2012-11-29 2014-06-09 Panasonic Corp 電動機
JP2015204692A (ja) * 2014-04-14 2015-11-16 三菱電機株式会社 電動機の回転子、電動機、空気調和機、および電動機の回転子の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047661Y2 (ja) * 1986-08-20 1992-02-27
US6987338B1 (en) * 2003-12-29 2006-01-17 Lavasser Leonard J Ground strap for a motor having a plastic housing
JP4718260B2 (ja) 2005-07-08 2011-07-06 日本電産テクノモータホールディングス株式会社 モールドモータ
CN101325351A (zh) * 2007-06-15 2008-12-17 日本电产芝浦株式会社 模压电机
JP5338641B2 (ja) 2008-12-03 2013-11-13 パナソニック株式会社 電動機およびそれを備えた電気機器
JP5110172B2 (ja) * 2008-12-11 2012-12-26 パナソニック株式会社 ブラシレスモータおよびそれを備えた電気機器
EP2477314B1 (en) * 2009-09-10 2017-06-21 Panasonic Corporation Electric motor and electric device provided therewith
JP5408423B2 (ja) * 2009-09-18 2014-02-05 株式会社富士通ゼネラル モールドモータ
EP2506406B1 (en) 2011-03-30 2019-09-25 Fujitsu General Limited Molded motor
JP5310816B2 (ja) * 2011-09-30 2013-10-09 株式会社富士通ゼネラル モールドモータ
CN203135653U (zh) * 2012-12-28 2013-08-14 中山大洋电机制造有限公司 一种塑封电机
JP6239393B2 (ja) * 2014-01-27 2017-11-29 愛三工業株式会社 燃料ポンプ
CN105048692B (zh) * 2015-08-25 2017-12-01 广东威灵电机制造有限公司 塑封电机的防轴承电蚀结构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012210064A (ja) * 2011-03-30 2012-10-25 Fujitsu General Ltd モールドモーター
JP2014107998A (ja) * 2012-11-29 2014-06-09 Panasonic Corp 電動機
JP2015204692A (ja) * 2014-04-14 2015-11-16 三菱電機株式会社 電動機の回転子、電動機、空気調和機、および電動機の回転子の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019165620A (ja) * 2018-02-16 2019-09-26 ジョンソン エレクトリック インターナショナル アクチェンゲゼルシャフト 電気モータのためのクロージャーシステム及び対応する密閉方法
JP7346038B2 (ja) 2018-02-16 2023-09-19 ジョンソン エレクトリック インターナショナル アクチェンゲゼルシャフト 電気モータのためのクロージャーシステム及び対応する密閉方法
EP4113789A4 (en) * 2020-02-26 2023-04-19 Mitsubishi Electric Corporation ELECTRIC MOTOR, BLOWER AND AIR CONDITIONER

Also Published As

Publication number Publication date
JPWO2018008058A1 (ja) 2018-09-27
US10855134B2 (en) 2020-12-01
US20190115798A1 (en) 2019-04-18
CN109417329B (zh) 2021-02-05
CN109417329A (zh) 2019-03-01
JP6556354B2 (ja) 2019-08-07

Similar Documents

Publication Publication Date Title
JP6556354B2 (ja) 電動機および空気調和装置
US7969060B2 (en) Electric motor
EP2357719B1 (en) Brushless motor and electric apparatus provided with same
JP4946276B2 (ja) モータ
US11101708B2 (en) Rotor, motor, air conditioning apparatus, and manufacturing method of rotor
WO2019026273A1 (ja) 回転子、電動機、送風機、空気調和装置および回転子の製造方法
JP4879249B2 (ja) 電動機及び空気調和機
WO2011111187A1 (ja) 電動機の回転子及び電動機及び空気調和機及び電動機の回転子の製造方法
JP5490200B2 (ja) 電動機、この電動機を搭載した空気調和機、およびこの電動機の製造方法
JP2004534497A (ja) 電気機械
JP5225329B2 (ja) 電動機の回転子及び電動機及び空気調和機
JP5005063B2 (ja) 電動機の回転子及び電動機及び電動機の回転子の製造方法及び空気調和機
JP2023100759A (ja) 気体動圧軸受、モータおよびファンモータ
JP2013150505A (ja) 電動機、空気調和機、および電動機の製造方法
CN108370192B (zh) 马达
JP5042246B2 (ja) 電動機の回転子及び電動機及び電動機の回転子の製造方法及び空気調和機
JP2015015804A (ja) モールドモータ
JP2018093575A (ja) ステータユニットおよびモータ
JP7301972B2 (ja) 電動機、送風機、空気調和装置および電動機の製造方法
JP5490182B2 (ja) 電動機、この電動機を内蔵した空気調和機、およびこの電動機の製造方法
CN113169598B (zh) 转子、电动机、送风机、空调装置及转子的制造方法
JP7400249B2 (ja) 気体動圧軸受、モータ、ファンモータおよび直列式ファンモータ
JP5295297B2 (ja) 電動機の回転子及び電動機
JP5490201B2 (ja) 電動機、この電動機を内蔵した空気調和機、およびこの電動機の製造方法
WO2020129207A1 (ja) 回転子、電動機、送風機、空気調和装置および回転子の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018525834

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908102

Country of ref document: EP

Kind code of ref document: A1