WO2018003746A1 - 補機駆動ベルトシステムに備わるオートテンショナ - Google Patents

補機駆動ベルトシステムに備わるオートテンショナ Download PDF

Info

Publication number
WO2018003746A1
WO2018003746A1 PCT/JP2017/023412 JP2017023412W WO2018003746A1 WO 2018003746 A1 WO2018003746 A1 WO 2018003746A1 JP 2017023412 W JP2017023412 W JP 2017023412W WO 2018003746 A1 WO2018003746 A1 WO 2018003746A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
friction member
belt
inner peripheral
base
Prior art date
Application number
PCT/JP2017/023412
Other languages
English (en)
French (fr)
Inventor
大石 哲史
Original Assignee
三ツ星ベルト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017113115A external-priority patent/JP6527550B2/ja
Application filed by 三ツ星ベルト株式会社 filed Critical 三ツ星ベルト株式会社
Priority to CA3023428A priority Critical patent/CA3023428C/en
Priority to US16/312,525 priority patent/US10968987B2/en
Priority to EP17820101.8A priority patent/EP3477153B1/en
Priority to KR1020187037119A priority patent/KR20190007062A/ko
Priority to KR1020207034596A priority patent/KR102297159B1/ko
Priority to CN201780039779.XA priority patent/CN109416110B/zh
Priority to BR112018077174-0A priority patent/BR112018077174B1/pt
Publication of WO2018003746A1 publication Critical patent/WO2018003746A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/02Vibration-dampers; Shock-absorbers with relatively-rotatable friction surfaces that are pressed together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/10Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley
    • F16H7/12Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of an idle pulley

Definitions

  • the present invention relates to an auto tensioner provided in an accessory drive belt system for driving an accessory of an automobile engine.
  • an auto tensioner In the belt that drives the auxiliary equipment of an automobile engine, the belt tension fluctuates due to rotational fluctuation caused by engine combustion. Belt slip occurs due to fluctuations in belt tension, causing problems such as slip noise and wear. In order to solve this problem, an auto tensioner has been conventionally employed as a mechanism for automatically maintaining an appropriate belt tension even when the belt tension fluctuates and suppressing the occurrence of belt slip.
  • An auto tensioner provided in an auxiliary drive belt system for an automobile engine has a movable member (hereinafter referred to as an arm) that is rotatably supported with respect to a fixed member (hereinafter referred to as a base) particularly when the belt tension increases.
  • a damping mechanism (damping mechanism) is provided in order to sufficiently dampen the swinging motion.
  • the damping mechanism for example, many so-called dry damping mechanisms disclosed in Patent Documents 1 and 2 are employed.
  • the dry damping mechanism has a structure in which a friction member as a damping generating member is provided between the base and the arm and is locked to the arm, and the frictional action is exerted on the sliding surface between the friction member and the base. As a result, the swing of the arm is attenuated.
  • the friction member of Patent Document 1 is locked to the arm and sandwiched in the radial direction between the base and the arm.
  • the friction member is formed in a substantially fan shape when viewed in the direction of the swing axis of the arm.
  • the sliding surface of the friction member of Patent Document 1 is an arc surface that can be slidably contacted with the inner peripheral surface of the outer cylindrical portion of the base.
  • the friction member disclosed in Patent Document 2 is pressed against a base (specifically, a friction member mounting plate fixed to the base) by a coil spring that is locked to the arm and compressed in the direction of the swing axis of the arm.
  • the friction member is formed in an annular shape when viewed in the axial direction.
  • the sliding surface of the friction member of Patent Document 2 is an annular surface that can slide in contact with the base (friction member mounting plate).
  • the arm swings violently as the belt tension changes.
  • the friction member which is a damping generating member, is gradually worn and worn by the frictional action that repeatedly occurs on the sliding surface. If at least a part of the sliding surface of the friction member is worn at an early stage, it becomes difficult to ensure the effect of damping the swinging of the arm, and the auto tensioner may reach the end of its life early.
  • the bearing of the swinging shaft also receives uneven load on the sliding surface (wear surface) side of the friction member when viewed in the axial direction, causing uneven wear.
  • the arm tilts in that direction.
  • misalignment that occurs in the accessory drive belt system becomes significant.
  • the belt receives a large lateral pressure from the tensioner pulley, and in the worst case, the belt is detached from the tensioner pulley, and there is a possibility that the auto tensioner may reach the end of its life early.
  • an aqueous medium such as muddy water may be applied to the auto tensioner provided in the auxiliary drive belt system of the automobile engine.
  • an aqueous medium such as muddy water may infiltrate from an annular gap formed between the front end portion) and the arm. For this reason, in some cases, foreign matter contained in an aqueous medium such as muddy water is interposed between the sliding surface of the friction member and the base.
  • the auto tensioners disclosed in Patent Documents 3 and 4 can solve the problem that foreign matter is interposed between the sliding surface of the friction member and the base, while the arm swinging while ensuring durability against the seal member.
  • a dedicated design for materials and shapes that give sufficient consideration not to give as much resistance as possible to the dynamic motion is required, which increases the manufacturing cost of the auto tensioner.
  • an object of the present invention is to prevent foreign matter from intervening on the sliding surface between the friction member and the mating surface even without a seal member.
  • An object of the present invention is to provide an auto tensioner provided in an accessory drive belt system that can prevent the sliding surface of a friction member from being worn at an early stage and can ensure the durability of the auto tensioner.
  • the auto tensioner provided in the accessory drive belt system of the present invention has the following characteristics. That is, the auto tensioner provided in the accessory drive belt system of the present invention includes a base having a cylindrical portion, and an arm supported to be rotatable about the central axis of the inner peripheral surface of the cylindrical portion with respect to the base.
  • the arm is rotatably provided on the arm and is sandwiched in the radial direction of the cylindrical portion between the tensioner pulley around which the belt is wound, the inner peripheral surface of the cylindrical portion and the arm, and is locked to the arm.
  • a friction member having an arc surface slidable with respect to the inner peripheral surface of the cylindrical portion, and a coil spring that urges the arm to rotate in one direction with respect to the base.
  • the arm swings by generating a frictional force between the arc surface and the inner peripheral surface of the cylindrical portion.
  • the arc surface passes through the central axis. It is provided so that it may remain at the above height.
  • the friction member which is a damping generating member locked to the arm, is a friction member when sliding with respect to the mating surface (the inner peripheral surface of the cylindrical portion of the base) as the arm swings.
  • the arc surface (sliding surface) is provided so as to remain at a height equal to or higher than a horizontal plane passing through the central axis of the inner peripheral surface of the cylindrical portion of the base.
  • the arcuate surface (sliding surface) of the friction member is provided so as to remain at a height higher than the horizontal plane passing through the central axis of the inner peripheral surface of the cylindrical portion of the base. is there.
  • the base of the auto tensioner is fixed to a surface along the substantially vertical direction such as an engine block.
  • the foreign matter contained in the muddy water or other aqueous medium that has entered from the gap between the cylindrical portion of the base and the arm It is not deposited in a portion above the horizontal plane passing through the central axis, but is deposited in a portion below the horizontal plane passing through the central axis. Therefore, foreign matter can be prevented from intervening between the arc surface (sliding surface) of the friction member and the inner peripheral surface of the cylindrical portion of the base. As a result, even if no seal member is provided, the arc surface (sliding surface) of the friction member can be prevented from being worn at an early stage, and the durability of the auto tensioner can be ensured.
  • the friction member has a center angle of the arc surface of less than 150 ° when viewed in the central axis direction, and a predetermined initial tension is applied to the belt.
  • the position of the uppermost portion on the inner peripheral surface of the cylindrical portion is provided so as to be in contact with the central portion of the circular arc surface and a central angle of 10 °. It is preferable.
  • the belt tension decreases from the moment when the initial tension is applied, and then stabilizes.
  • the initial tension is set on the assumption that the belt has a reference dimension.
  • the belt length varies within an allowable value when the belt is manufactured. The shorter the belt length is than the reference dimension, the higher the initial tension and the higher the subsequent stable tension.
  • the position of the friction member in a state where the belt tension is stable even when there is a decrease in belt tension and variations in belt length after the initial tension is applied, is the point when the predetermined initial tension is applied to the belt of the reference dimension.
  • the friction member remains within a range of approximately ⁇ 5 ° around the central axis from the position of the friction member. Further, the swinging width of the arm is approximately 10 ° or less.
  • the friction member according to the present invention has a base cylinder with a center angle of an arc surface of less than 150 ° when viewed in the central axis direction, and when viewed in the central axis direction when a predetermined initial tension is applied to the belt.
  • the uppermost position on the inner peripheral surface of the portion is provided so as to be in contact with a region having a central angle of 10 ° at the center of the arc surface.
  • the arc surface of the friction member stays at a height equal to or higher than a horizontal plane passing through the central axis when the arm swings. Even if the belt tension decreases and the belt length varies after the initial tension is applied, when the arm swings, the middle position of the arc surface of the friction member as viewed in the central axis direction is The position can be close to the top of the inner peripheral surface. Compared with the case where the arc lengths of the arc surfaces are the same, the lower end of the arc surface is higher as the intermediate position of the arc surface is closer to the uppermost position of the inner peripheral surface of the cylindrical portion.
  • FIG. 1 is a configuration diagram of an accessory drive belt system according to an embodiment of the present invention.
  • 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a diagram in which the sectional view taken along the line BB of FIG. 2 is combined with FIG. 1 and shows a state in which the belt tension is stable.
  • FIG. 4 is a diagram in which the sectional view taken along the line BB of FIG. 2 is combined with FIG. 1 and shows a state where an initial tension is applied.
  • FIG. 5A shows the force acting on the friction member when the belt tension increases
  • FIG. 5B shows the force acting on the friction member when the belt tension decreases.
  • FIG. FIG. 6 is a configuration diagram of the test belt system.
  • FIG. 6 is a configuration diagram of the test belt system.
  • FIG. 7A is a diagram showing a state in which the belt tension is increased and the friction member is slid in the first belt system
  • FIG. 7B is a diagram in which the belt tension is decreased and friction is caused in the first belt system
  • FIG. 7C is a diagram showing a state in which the friction member is slid due to an increase in belt tension in the second belt system
  • FIG. It is a figure which shows the state which the belt tension decreased and the friction member slid in the 2nd belt system.
  • FIG. 8 is a diagram for explaining a method of calculating the arm inclination amount.
  • FIG. 9 is a graph showing the relationship between the amount of arm inclination and the test time in Example 2 and Comparative Example 1.
  • FIG. 1 is an example of an auxiliary drive belt system for an automobile engine to which the present invention is applied.
  • the accessory drive belt system 100 includes a crank pulley 101 fixed to a crankshaft, an ALT pulley 102 connected to an alternator (ALT), a WP pulley 103 connected to a water pump (WP), an air conditioner compressor ( AC pulley 104 connected to AC) and the auto tensioner 1.
  • the engine output is transmitted from the crank pulley 101 to the ALT pulley 102, the WP pulley 103, and the AC pulley 104 via a single belt 105, respectively, and each auxiliary machine (alternator, water pump, air conditioner) is transmitted. ⁇
  • the compressor is driven.
  • the auto tensioner 1 is provided between the belt spans of the crank pulley 101 and the ALT pulley 102 so that the tensioner pulley 4 of the auto tensioner 1 contacts.
  • the belt 105 is a transmission belt such as a V-ribbed belt, a V-belt, a toothed belt, or a flat belt.
  • the auto tensioner 1 is provided with a base 2, an arm 3 supported so as to be rotatable about an axis R (center axis) with respect to the base 2, and a rotatable structure on the arm 3.
  • the tensioner pulley 4, the coil spring 5, and the friction member 6 are provided.
  • the auto tensioner 1 has a dry damping mechanism that attenuates the swing of the arm 3, and the damping mechanism includes a friction member 6 as a damping generation member that attenuates the swing of the arm 3.
  • the right direction in FIG. 2 is defined as the forward direction, and the left direction in FIG. 2 is defined as the rear direction.
  • a radial direction centered on the axis R is simply defined as a radial direction
  • a circumferential direction centered on the axis R is simply defined as a circumferential direction.
  • the base 2 includes an annular pedestal portion 20 fixed to the engine block 106, an outer cylindrical portion (cylindrical portion) 21 extending forward from the outer edge portion of the pedestal portion 20, and an inner cylinder extending forward from the center portion of the pedestal portion 20. Part 22.
  • the base 2 is made of a metal such as an aluminum alloy casting.
  • the pedestal portion 20 is fixed to the engine block 106 via bolts and pins.
  • the surface to which the pedestal portion 20 of the engine block 106 is fixed is a substantially vertical surface.
  • a swing shaft 8 extending in the front-rear direction is inserted through the bearing 7 through the inner cylinder portion 22 so as to be rotatable.
  • the axis R is the central axis of the swing shaft 8. The axis R passes through the center of the inner peripheral surface of the outer cylinder portion 21.
  • a spring accommodating chamber 9 is formed between the inner cylinder part 22 and a projecting part 31 to be described later of the arm 3 and the outer cylinder part 21.
  • a coil spring 5 is disposed in the spring accommodating chamber 9. The coil spring 5 is spirally wound in the X direction from the rear end portion toward the front end portion. The rear end portion of the coil spring 5 is held by the base 2.
  • the arm 3 is formed to protrude from a disk part 30 disposed in front of the outer cylinder part 21 of the base 2, a protruding part 31 extending rearward from the center part of the disk part 30, and a part of the outer edge of the disk part 30.
  • Pulley support portion 32 The arm 3 is also formed of a metal such as an aluminum alloy casting, as with the base 2 described above.
  • a hole extending in the front-rear direction is formed in the center part of the disk part 30 and the protruding part 31, and the swing shaft 8 is inserted in this hole so as not to be relatively rotatable. Therefore, the arm 3 is rotatably supported by the base 2 via the swing shaft 8.
  • the tensioner pulley 4 is rotatably attached to the pulley support portion 32.
  • a belt 105 is wound around the tensioner pulley 4. As the tension of the belt 105 increases or decreases, the tensioner pulley 4 (and the arm 3) swings about the axis R. In FIG. 2, the internal structure of the tensioner pulley 4 is not shown.
  • An annular gap 30 a is formed between the vicinity of the outer edge of the rear surface of the disk part 30 and the front end part of the outer cylinder part 21 of the base 2.
  • the annular gap 30 a is formed by accommodating the front end portion of the outer cylindrical portion 21 of the base 2 in an annular groove formed in the vicinity of the outer edge of the rear surface of the disk portion 30.
  • a part of the annular gap 30a is along a direction orthogonal to the axis R.
  • a portion radially outside the protrusion 31 and radially inside the annular gap 30 a is formed in a flat shape perpendicular to the axis R.
  • the protrusion 31 is formed in a substantially cylindrical shape. As shown in FIG. 3, a fan-shaped notch is formed in the front portion of the protrusion 31. Both sides in the circumferential direction of the notch are constituted by a locking surface 31a and a contact surface 31b.
  • FIG. 3 is a combination of FIG. 1 and the cross-sectional view taken along the line BB shown in FIG. When viewed in the direction of the axis R, the locking surface 31a intersects a straight line passing through an arbitrary point on the locking surface 31a and the axis R. That is, the locking surface 31a is inclined with respect to the radial direction.
  • the locking surface 31a is inclined with respect to the radial direction so as to go in the X direction as it goes outward in the radial direction.
  • the contact surface 31b is inclined with respect to the radial direction so as to go in the opposite direction to the X direction as going outward in the radial direction.
  • the friction member 6 is sandwiched in the radial direction between the inner peripheral surface of the outer cylindrical portion 21 of the base 2 and the protruding portion 31 of the arm 3.
  • the longitudinal length of the friction member 6 is substantially the same as the longitudinal length of the locking surface 31a and the contact surface 31b.
  • the longitudinal length of the friction member 6 is preferably about 1.2 to 3 times the wire diameter of the coil spring 5.
  • the front surface of the friction member 6 is flat, and the entire surface or a part thereof contacts the rear surface of the disk portion 30 of the arm 3.
  • the friction member 6 is made of, for example, a material having high lubricity obtained by blending fibers, fillers, solid lubricants, and the like with synthetic resin.
  • the synthetic resin constituting the friction member 6 include thermoplastic resins such as polyamide resin, polyacetal resin, polytetrafluoroethylene resin, polyphenylene sulfide resin, and ultrahigh molecular weight polyethylene resin, or thermosetting resins such as phenol resin. Resin is used.
  • the friction member 6 may include a material other than the above as long as the front surface and a circular arc surface 60 described later are formed of the above-described materials.
  • the friction member 6 has a substantially fan-shaped cross section perpendicular to the axis R, and includes an arcuate surface 60, an engaging surface 61 that opposes the arcuate surface 60, and two side surfaces 62 and 63 that oppose each other in the circumferential direction.
  • the locking surface 61 contacts the locking surface 31 a of the protruding portion 31 of the arm 3.
  • the radially inner end portion of the side surface 63 opposite to the X direction contacts the contact surface 31 b of the protruding portion 31 of the arm 3.
  • the friction member 6 is locked to the arm 3 by a locking surface 61 and a side surface 63.
  • the center of the arc of the arc surface 60 coincides with the axis R, and the arc surface 60 is formed with substantially the same curvature as the inner peripheral surface of the outer cylinder portion 21.
  • the arc surface 60 is slidable along the inner peripheral surface of the outer cylinder part 21.
  • the arm 3 rotates in the arrow X direction shown in FIG.
  • the angle obtained by combining the angle that swings when the tension of the belt 105 increases and the angle that swings when the tension of the belt 105 decreases is referred to as the swing width of the arm 3.
  • the angle at which the friction member 6 slides about the axis R (hereinafter referred to as the sliding width) is equal to the swinging width of the arm 3.
  • the swing width of the arm 3 is approximately 10 ° or less. Note that even in an auto tensioner of an auxiliary drive belt system for a general automobile engine, the swinging width of the arm is approximately 10 ° or less.
  • the friction member 6 attenuates the swing of the arm 3 by generating a frictional action on the sliding surface between the arc surface 60 and the inner peripheral surface of the outer cylinder portion 21.
  • the central angle ⁇ of the arc surface 60 when viewed in the direction of the axis R is preferably less than 170 °.
  • the central angle ⁇ of the arc surface 60 when viewed in the direction of the axis R is more preferably less than 150 °.
  • a lower limit value regarding the central angle ⁇ of the arc surface 60 viewed in the direction of the axis R can be considered.
  • a preferable lower limit value regarding the central angle ⁇ of the arc surface 60 viewed in the direction of the axis R varies depending on the material of the portion constituting the arc surface 60 of the friction member 6.
  • the lower limit value of the central angle ⁇ of the arc surface 60 viewed in the direction of the axis R may be set to about 30 °. .
  • the central angle ⁇ of the arcuate surface 60 is 43 °.
  • the belt 105 When the belt 105 is a V-ribbed belt, the belt 105 further sinks slightly toward the bottom of the circumferential grooves of the pulleys 101, 102, and 104 with which the rib crests are engaged from the moment when a predetermined initial tension (for example, 330 N) is applied. It will be deformed. In this process, the belt tension slightly decreases. Thereafter, at a stage where the engagement state between the belt 105 and each pulley is familiar (for example, at the end of running-in), the belt 105 is stabilized with a substantially constant tension. Similarly, when the belt 105 is a transmission belt other than a flat belt such as a V-belt and a toothed belt, the belt tension is lowered after a predetermined initial tension is applied, and then stabilized.
  • a predetermined initial tension for example, 330 N
  • FIG. 4 shows a state in which a predetermined initial tension is applied to the belt 105.
  • FIG. 3 shows a state in which the running-in after the initial tension is applied ends and the belt tension is stabilized. After the initial tension is applied, when the belt tension decreases, the arm 3 and the friction member 6 rotate in the arrow X direction.
  • This embodiment is an example in which the belt length of the belt 105 is a reference dimension.
  • the belt length varies within the allowable range at the manufacturing stage.
  • the allowable value is the reference dimension ⁇ 8 mm.
  • the predetermined initial tension is set on the assumption that the belt length is the reference dimension. Therefore, when the belt length is longer than the reference dimension, the initial tension is lower than that when the belt length is the reference dimension, and the stable tension after running-in is also reduced. On the other hand, when the belt length is shorter than the reference dimension, the initial tension is higher and the stable tension after running-in is higher than when the belt length is the reference dimension.
  • the positions of the arm 3 and the friction member 6 when the belt tension is stabilized are the positions of the arm 3 and the friction member 6 when the belt tension is stable when the belt length is the reference dimension.
  • the position is shifted in the arrow X direction with respect to the position.
  • the position of the arm 3 and the friction member 6 when the belt tension is stabilized when the belt length is the maximum within the allowable value is the position of the arm 3 and the friction when the initial tension is applied when the belt length is the reference dimension.
  • the position of the member 6 is shifted within 5 ° in the arrow X direction.
  • the positions of the arm 3 and the friction member 6 when the belt tension is stabilized are the positions of the arm 3 and the friction member 6 when the belt tension is stabilized when the belt length is the reference dimension.
  • the position is shifted in the direction opposite to the arrow X direction with respect to the position.
  • the position of the arm 3 and the friction member 6 when the belt tension is stabilized when the belt length is the maximum within the allowable value is the position of the arm 3 and the friction when the initial tension is applied when the belt length is the reference dimension.
  • the position of the member 6 may be shifted in the direction opposite to the arrow X direction. This angle is less than 5 ° at the maximum.
  • a region that is the central portion of the arc surface 60 and has a central angle of 10 ° when viewed in the direction of the axis R is defined as a central region 60c.
  • the friction member 6 is seen in the direction of the axis R when the predetermined initial tension is applied to the belt 105, so
  • the uppermost position 21t on the circumferential surface is preferably provided so as to contact the central region 60c of the circular arc surface 60.
  • the friction member 6 is provided so that the uppermost position 21 t on the inner peripheral surface of the outer cylinder portion 21 is in contact with the middle position of the arc surface 60 when viewed in the axis R direction.
  • the position of 6 is not limited to this.
  • an accessory driving belt There are the following two specific operations performed when determining the layout of the system 100.
  • the positions of the locking surface 31a and the contact surface 31b of the protrusion 31 and the position of the front end portion of the coil spring 5 are adjusted, and the above-described configuration
  • the friction member 6 is arranged so that When the fixed position of the base 2 is not determined, the base 2 is moved so that the friction member 6 has the above-described configuration by moving the position of the axis R in the circumferential direction around the axis of the rotation shaft of the tensioner pulley 4. Is fixed to the engine block 106.
  • the locking surface 61 of the friction member 6 is located on the X direction side with respect to the circumferential direction from the arc surface 60. Further, the locking surface 61 is inclined with respect to the radial direction so as to go to the X direction side as going outward in the radial direction.
  • the two side surfaces 62 and 63 are inclined with respect to the radial direction so as to go to the opposite side to the X direction as going outward in the radial direction. Of the side surfaces 62 and 63, the side surface 62 on the X direction side is substantially orthogonal to the locking surface 61.
  • the length in the direction perpendicular to the locking surface 61 from the locking surface 61 to the circular arc surface 60 is from the locking surface 31 a of the arm 3 to the outer cylinder portion of the base 2. It is slightly larger than the interval in the direction orthogonal to the locking surface 31a up to the inner peripheral surface of 21. Therefore, the friction member 6 is disposed between the protruding portion 31 of the arm 3 and the outer cylinder portion 21 of the base 2 in a state where the friction member 6 is slightly compressed in a direction substantially orthogonal to the locking surface 61.
  • a holding groove 64 that holds the front end of the coil spring 5 is formed on the rear surface of the friction member 6.
  • the front end portion of the coil spring 5 is bent in the vicinity of the distal end, like the rear end portion, and the portion on the distal end side extends linearly from the bent portion. This linear portion is held in the holding groove 64.
  • the holding groove 64 is located on the outer side in the radial direction from the locking surface 61 and is positioned on the opposite side to the X direction from the locking surface 61 in the circumferential direction.
  • the coil spring 5 is arranged in a compressed state in the direction of the axis R. Therefore, the coil spring 5 presses the friction member 6 against the rear surface of the disk portion 30 of the arm 3 by an elastic restoring force in the axis R direction.
  • the coil spring 5 is arranged in a state twisted in the diameter increasing direction. Therefore, the coil spring 5 is rotated by the elastic restoring force in the circumferential direction in the direction of increasing the tension of the belt 105 by pressing the arm 3 in the X direction via the friction member 6, that is, pressing the tensioner pulley 4 against the belt 105. It is fast.
  • the operation of the auto tensioner 1 will be described.
  • the arm 3 rotates in the arrow A direction (opposite to the X direction) shown in FIG. 5A against the circumferential biasing force of the coil spring 5.
  • the friction member 6 receives a force Fa from the locking surface 31 a of the arm 3 and rotates in the direction of arrow A, and the arc surface 60 of the friction member 6 slides with the inner peripheral surface of the outer cylinder portion 21 of the base 2.
  • the circular arc surface 60 of the friction member 6 is located on the opposite side (arrow A direction side) to the X direction with respect to the circumferential direction with respect to the locking surface 61 of the friction member 6. Furthermore, in the present embodiment, the tangential direction of the circumference around the axis R at an arbitrary point of the locking surface 61 (hereinafter simply referred to as “tangential direction”) and the circular arc surface 60 intersect. Since the force Fa received by the locking surface 61 of the friction member 6 from the arm 3 is a tangential force on the locking surface 61, the arc surface 60 exists on a straight line in the direction of the force Fa from the locking surface 61. become. Therefore, the force Fa received by the locking surface 61 of the friction member 6 from the arm 3 can be used as a force for pressing the arc surface 60 of the friction member 6 against the inner peripheral surface of the outer cylinder portion 21 of the base 2.
  • the friction member 6 receives an elastic restoring force (hereinafter referred to as “torsion restoring force”) Fs caused by torsionally deforming the coil spring 5 in the diameter expansion direction.
  • the torsional restoring force Fs is a resultant force of the component force Fs1 in the X direction and the component force Fs2 in the reduced diameter direction.
  • the resultant force Fr of the force Fa received from the arm 3 and the torsional restoring force Fs of the coil spring 5 acts on the friction member 6. Since the force Fa is greater than the torsional restoring force Fs, the resultant force Fr is a radially outward force, and the arc surface 60 of the friction member 6 is pressed against the inner peripheral surface of the outer cylindrical portion 21 of the base 2 by the resultant force Fr. Therefore, a large frictional force can be generated between the arcuate surface 60 of the friction member 6 and the inner peripheral surface of the outer cylindrical portion 21 of the base 2, and a large damping force that sufficiently attenuates the swing of the arm 3. Can be generated.
  • the arm 3 rotates in the arrow B direction (the same direction as the X direction) shown in FIG. 5B by the torsional restoring force of the coil spring 5, and the tensioner The pulley 4 swings so as to recover the belt tension.
  • the friction member 6 receives the torsional restoring force Fs from the coil spring 5 and rotates in the direction of arrow B, so that the arc surface 60 of the friction member 6 slides with the inner peripheral surface of the outer cylinder portion 21 of the base 2.
  • the friction member 6 Since the friction member 6 is biased radially inward by the component force Fs2 in the diameter reduction direction of the torsional restoring force Fs, the friction member 6 is interposed between the arc surface 60 of the friction member 6 and the inner peripheral surface of the outer cylindrical portion 21 of the base 2. The resulting frictional force is small.
  • the arc surface 60 of the friction member 6 is generated by the circumferential component force Fs1 of the torsional restoring force Fs of the coil spring 5.
  • the arc surface 60 of the friction member 6 is opposite to the locking surface 61 of the friction member 6 in the direction opposite to the X direction. Therefore, the arc surface 60 of the friction member 6 is not pressed against the inner peripheral surface of the outer cylinder portion 21 by the circumferential component force Fs1 of the torsional restoring force Fs of the coil spring 5. An increase in frictional force between the arc surface 60 and the inner peripheral surface of the outer cylinder portion 21 can be prevented.
  • the friction member 6, which is a damping generating member locked to the arm 3, slides on the mating surface (the inner peripheral surface of the outer cylindrical portion 21 of the base 2) as the arm 3 swings.
  • the arc surface 60 (sliding surface) of the friction member 6 is provided so as to remain at a height equal to or higher than the horizontal plane HP passing through the central axis (axis R) of the inner peripheral surface of the outer cylindrical portion 21 of the base 2.
  • the arm swings violently, but the swinging width of the arm itself is relatively small (approximately 10 ° at the maximum).
  • the arc surface 60 (sliding surface) of the friction member 6 has a height equal to or higher than the horizontal plane HP passing through the central axis (axis R) of the inner peripheral surface of the outer cylindrical portion 21 of the base 2. It is feasible to be provided so as to remain at Generally, the base of the auto tensioner is fixed to a surface along the substantially vertical direction such as an engine block. Therefore, in an environment where an aqueous medium such as muddy water is applied to the auto tensioner 1, the foreign matter M contained in the aqueous medium such as muddy water that has entered from the annular gap 30 a formed between the outer cylindrical portion 21 of the base 2 and the arm 3.
  • an aqueous medium such as muddy water
  • the remaining foreign matter M is accumulated on the inner peripheral surface of the outer cylinder portion 21 of the base 2 (see FIG. 3).
  • the foreign matter M is not deposited on the inner peripheral surface of the outer cylindrical portion 21 of the base 2 in a portion above the horizontal plane HP passing through the axis R, but is deposited in a portion below the horizontal plane HP passing through the axis R. Therefore, the arcuate surface 60 (sliding surface) of the friction member 6 does not come into contact with the portion where the foreign matter M is deposited on the inner peripheral surface of the outer cylinder portion 21 of the base 2.
  • the belt tension decreases from the moment when the initial tension is applied and then becomes stable.
  • the initial tension is set on the assumption that the belt 105 has a reference dimension.
  • the belt length varies within an allowable value. The shorter the belt length is than the reference dimension, the higher the initial tension and the higher the subsequent stable tension. Even if the belt tension decreases and the belt length varies after the initial tension is applied, the position of the friction member 6 in a state where the belt tension is stable applies the predetermined initial tension to the belt 105 having the reference dimension.
  • the friction member 6 has a central angle of the arc surface 60 less than 150 ° when viewed in the direction of the axis R, and when the belt 105 is applied with a predetermined initial tension, The uppermost position 21t on the inner peripheral surface of the cylindrical portion 21 is provided so as to be in contact with the region 60c that is the central portion of the circular arc surface 60 and has a central angle of 10 °.
  • the base 2 is positioned in the middle of the arc surface 60 of the friction member 6 when the arm 3 is swung. It can be set as the position close
  • the lower end of the arc surface 60 is higher as the intermediate position of the arc surface 60 is closer to the uppermost position 21t of the inner peripheral surface of the outer cylinder portion 21. In position. As the lowermost end of the arc surface 60 is higher, the foreign matter M is less likely to enter between the arc surface 60 and the inner peripheral surface of the outer cylindrical portion 21 of the base 2, and even if it enters, it is easily swept down. Therefore, it is possible to more reliably prevent the foreign matter M from being interposed between the arc surface 60 (sliding surface) of the friction member 6 and the inner peripheral surface of the outer cylinder portion 21 of the base 2.
  • the arc surface of the friction member of the present invention is not limited to one surface that is slidably in contact with the inner peripheral surface of the cylindrical portion of the base continuously in the arc direction.
  • the arc surface of the friction member may be formed of a plurality of arc surfaces that are discontinuously slid in the circumferential direction of the inner peripheral surface of the cylindrical portion of the base. Further, the friction member may be a single unit or may be a coupling body divided into a plurality of parts in the arc direction.
  • the friction member may not be pressed against the arm in the axial direction.
  • the auto tensioner provided in the accessory drive belt system of the present invention may be an auto tensioner having a symmetric damping characteristic.
  • the target to which the base part of the auto tensioner provided in the accessory drive belt system of the present invention is fixed may not be the engine block.
  • the auto tensioner of Example 1 used for this test had the same configuration as the auto tensioner 1 of the above embodiment.
  • the material of the friction member (6) is polyamide resin (PA6T).
  • the central angle ( ⁇ ) of the circular arc surface (60) viewed in the direction of the axis (R) of the swing shaft (8) is 43 °.
  • the longitudinal length of the friction member 6 is about 1.4 times the wire diameter of the coil spring 5.
  • the bearing (7) is a cylindrical metal bearing (so-called metal bearing).
  • the inner peripheral surface of the bearing (7) in contact with the swing shaft (8) is made of a resin composition (low friction material) containing a polytetrafluoroethylene lubricant.
  • the belt (105) is a V-ribbed belt (manufactured by Mitsuboshi Belting Co., Ltd.) with a belt designation of 6PK1555 (K-shaped rib, number of rib crests in the belt width direction, belt length (POC) of 1555mm, belt width of 21.4mm). A thing was used.
  • the core wire embedded in the belt (105) is a twisted rope using a polyester cord.
  • the auto tensioner of Example 1 was assembled to an auxiliary machine driving belt system having the same configuration as the auxiliary machine driving belt system 100 of FIG. 1, and a belt (105) was wound thereon.
  • the initial tension of the belt (105) was 330N.
  • the position of the friction member (6) in the state where the initial tension was applied was the position shown in FIG. That is, when viewed in the direction of the central axis (R) of the swing shaft (8), the intermediate position of the arc surface (60) of the friction member (6) is the inner circumference of the outer cylinder portion (21) of the base (2). It touches the top position on the surface.
  • the position of the friction member (6) after running-in after the initial tension was applied was the position shown in FIG. Specifically, when viewed in the direction of the central axis (R) of the swing shaft (8), the intermediate position of the arc surface (60) of the friction member (6) is the outer cylinder portion (21) of the base (2). It was the position which shifted
  • the swing width of the arm (3) is maximized when the engine is started. Therefore, an engine start test in which the engine is started and stopped alternately was performed, and the swinging width of the arm (3) during the engine start test was measured. After the running-in described above, the engine was started and stopped alternately under an atmospheric temperature of 95 ° C., and the test was terminated when the number of engine starts reached 50 times.
  • the engine operating time time from start to stop was set to 10 seconds.
  • the ambient temperature is a temperature that assumes the temperature in the thermostatic chamber surrounding the belt system in an actual vehicle.
  • the number of rotations of the crankshaft at each engine start varied between 0 and 1800 rpm.
  • the swing width of the arm (3) is determined by the amount of displacement by which the axis of the rotation shaft of the tensioner pulley (4) rotates about the axis (axis R) of the swing shaft (8) using a laser displacement meter. was obtained by measuring in time series.
  • the swing width of the arm (3) during 50 engine start tests was approximately 10 ° (minimum 8.5 °, maximum 10 °, average value of 50 9.5 °).
  • test belt system 200 is fixed to a single frame 220 extending vertically upward, and this frame 220 is fixed to a base 221 that is fixed to a floor or the like and extends in a substantially horizontal direction.
  • the test belt system 200 has two belt systems (a first belt system 201 and a second belt system 202) that are simultaneously driven by one drive pulley 203.
  • the two belt systems 201 and 202 share one drive motor having the drive shaft 204 and one drive pulley 203 connected to the drive shaft.
  • the first belt system 201 includes an auto tensioner 205, a driven pulley 206, and a belt 207 according to the second embodiment.
  • the second belt system 202 includes the auto tensioner 208 of the first comparative example, a driven pulley 209, and a belt 210.
  • the positions of the three pulleys of the first belt system 201 and the positions of the three pulleys of the second belt system 202 are point-symmetric about the axis of the drive shaft 204.
  • the drive shaft 204 was disposed in a direction orthogonal to the frame 220. No auxiliary machinery was connected to the driven pulleys 206 and 209. On the outer peripheral surface of the drive pulley 203, two circumferential grooves around which the belts 207 and 210 are wound in parallel are provided apart in the axial direction.
  • the drive pulley 203 has a predetermined axis from the center of the drive pulley 203 as viewed in the axial direction of the drive shaft 204 so that the arms 3 of the auto tensioners 205 and 208 can be forcibly swung.
  • a so-called eccentric pulley is formed at a position separated by an eccentric amount d.
  • the eccentricity d was 4 mm so that the swinging width of the arm 3 (sliding width of the friction member) was 10 °.
  • Belts 207 and 210 are V-ribbed belts (manufactured by Mitsuboshi Belting Co., Ltd.) and have a belt name of 6PK730 (K-shaped ribs, number of rib crests in belt width direction, belt length (POC) 730 mm, belt width 21.4 mm) A thing was used.
  • the core wire embedded in the belts 207 and 210 is a twisted rope using a polyester cord.
  • the auto tensioner 205 of Example 2 and the auto tensioner 208 of Comparative Example 1 those having the same structure as the auto tensioner of Example 1 were used.
  • the same reference numerals as those in the above embodiment are used for the components of the auto tensioners 205 and 208.
  • the auto tensioners 205 and 208 of Example 2 and Comparative Example 1 were attached to the frame 220 so that the positions of the arcuate surfaces 60 of the friction member 6 with respect to the horizontal plane HP passing through the axis R are different from each other.
  • a position away from the horizontal plane HP by an angle X ° around the axis R is referred to as a horizontal plane HP + X ° position, and a position away from the horizontal plane HP around the axis R by an angle X °. This is referred to as the position of the horizontal plane HP-X °.
  • the height of the arc surface 60 is equal to or higher than the horizontal plane HP passing through the axis R.
  • the lowermost end of the arc surface 60 is kept between the horizontal plane HP and the position of the horizontal plane HP + 10 °. That is, as shown in FIG.
  • the arcuate surface 60 has the axis R as viewed in the direction of the axis R. It was made to stay at the height below the horizontal plane HP which passes. Specifically, as shown in FIGS. 7 (c) and 7 (d), the uppermost end of the circular arc surface 60 is kept between the horizontal plane HP and the position of the horizontal plane HP-10 °. . That is, as shown in FIG.
  • the muddy water dropping device has two muddy water dropping nozzles 211 and 212. Two muddy water dripping nozzles 211 and 212 are arranged above the annular gap 30a formed between the outer cylinder portion 21 and the arm 3 of the base 2 of the auto tensioners 205 and 208 of the second embodiment and the first comparative example, respectively. Thus, a substantially constant volume of muddy water per unit time can be infiltrated into the auto tensioners 205 and 208 (inside the outer cylinder portion 21).
  • the method of dripping muddy water was a gravity drop type as in the drip device.
  • As the muddy water a suspension in which a powder for testing (JIS 8 type: Kanto Loam baked product) defined in JIS Z 8901: 2006 was dispersed in water at a concentration of 5% by weight was used.
  • the test was conducted at an ambient temperature of 95 ° C.
  • the initial tension of the belts 207 and 210 was 330N.
  • running-in about 10 seconds was performed to stop the drive pulley 203, and 500 cc of muddy water was dropped over 5 minutes.
  • the drive pulley 203 was driven clockwise at a rotational speed of 1200 rpm for 25 minutes.
  • the dripping of muddy water (5 minutes) and driving of the drive pulley 203 (25 minutes) were set as 1 cycle, and the cycle was repeated for a total of 7 cycles.
  • the drive pulley 203 was continuously driven at a rotation speed of 1200 rpm for 12 hours. During this time, the aqueous medium contained in the muddy water gradually evaporates, and only foreign matter (solid content) accumulates in the outer cylinder portion 21 of the base 2.
  • the auto tensioners 205 and 208 of Example 2 and Comparative Example 1 were removed from the frame 220, and three evaluation items described later were determined.
  • the evaluation was performed without disassembling the auto tensioners 205 and 208.
  • the time required for the evaluation was about 0.5 hours. That is, the total time from the first muddy water dripping to the evaluation is 16 hours.
  • the above operation operation for a total of 16 hours
  • the friction member 6 is calculated to slide back and forth about 20 million times.
  • measurements on three evaluation items were performed, and initial values before the test were measured.
  • the first evaluation item is the amount of arm inclination.
  • the degree of wear of the arc surface 60 of the friction member 6 cannot be evaluated without disassembling the auto tensioner. Therefore, the amount of inclination of the arm 3 toward the arc surface 60 was measured as a substitute characteristic of the degree of wear of the arc surface 60 of the friction member 6.
  • the inclination amount [°] of the arm 3 was calculated by measuring the following A dimension and B dimension. As shown in FIG. 8, the central axis of the swing shaft 8 before the arm 3 is tilted is referred to as an axis R0, and the central axis of the swing shaft 8 after the arm is tilted is referred to as an axis R1.
  • the dimension A is the dimension of the base 2 along the axis R0 direction from the front outer edge of the arm 3 at a circumferential position that bisects the arc surface 60 of the friction member 6 in the arc direction when viewed in the axis R0 (or axis R1) direction.
  • the height to the rear outer edge of the pedestal portion 20 was used.
  • the B dimension is the rear surface of the base portion 20 of the base 2 along the axis R0 direction from the front outer edge of the arm 3 at a circumferential position 180 ° away from the measurement position of the A dimension when viewed in the axis R0 (or axis R1) direction.
  • the height to the outer edge was taken.
  • the “center axis of the cylindrical portion of the base” in the present invention is not limited to the axis R0, and may be the axis R1.
  • the evaluation is A (pass), and when the arm tilt amount exceeds 1 °, the evaluation is C (fail).
  • the evaluation is B (caution).
  • the second evaluation item is damping torque.
  • torque measurement was performed using a torque measuring device to obtain a torque curve (a diagram showing the relationship between arm rotation angle and damping torque). From the torque curve, the width [N ⁇ m] of the damping torque at the angle at which the arm 3 is rotated when the coil spring 5 is assembled (hereinafter referred to as the arm rotation angle, for example, 60 °) was read.
  • the width [N ⁇ m] of the damping torque means the damping torque in the direction of tensioning the belt from the damping torque [N ⁇ m] in the direction of loosening the belt at an arbitrary arm rotation angle (for example, 60 °). The value obtained by subtracting [N ⁇ m].
  • the evaluation is A (passed).
  • the evaluation was C (failed).
  • the evaluation is B (caution).
  • the third evaluation item is spring torque.
  • the arm rotation angle when the coil spring 5 is assembled (the twist angle of the coil spring 5)
  • the torsional torque [N ⁇ m] of the coil spring 5 at 60 ° was calculated.
  • the evaluation is A (pass), and when it is less than 20 N ⁇ m or more than 28 N ⁇ m, the evaluation is C (fail).
  • FIG. 9 is a graph showing the relationship between the arm tilt amount [°] and the test time in Example 2 and Comparative Example 1.
  • the test was continued not only for the target test time of 300 hours but also for 390 hours, but the arm inclination amount was approximately 0.4 ° to 0.5 ° with respect to the initial value before the test (over 0.3 °). It was stable throughout the range of °, and the evaluation result of evaluation A (pass) was obtained with a margin.
  • the auto tensioner 205 is disassembled, and the state of wear of the arc surface 60 of the friction member 6 and the state of the inner peripheral surface of the outer cylindrical portion 21 of the base 2 facing the arc surface 60 are visually confirmed.
  • the wear depth (maximum) of the arcuate surface 60 was only 0.15 mm, which was a satisfactory level. Further, no foreign matter was accumulated on the inner peripheral surface of the outer cylindrical portion 21 of the base 2 facing the arc surface 60.
  • the arm inclination amount reached 0.6 ° in only 32 hours (sliding of the friction member 6: about 2 million reciprocations), from the initial value before testing (0.4 ° slightly more). Increase was recognized (evaluation B). Therefore, the test was terminated at this point.
  • the auto tensioner 208 is disassembled, and the wear state of the arc surface 60 of the friction member 6 and the state of the inner peripheral surface of the outer cylinder portion 21 of the base 2 facing the arc surface 60 are visually observed.
  • the wear depth (maximum) of the arc surface 60 reached 0.25 mm.
  • the wear was conspicuous as compared with Example 2, and the level should be regarded as a problem.
  • the level should be regarded as a problem.
  • a considerable amount of foreign matter was found on the portion facing the arc surface 60.
  • the test time for the arm inclination amount to reach 1 ° is estimated to be only 70 hours, and the wear depth (maximum) of the arc surface 60 of the friction member 6 at this time is estimated.
  • the wear suppression effect on the arc surface 60 of the friction member 6 is more remarkable in Example 2 than in Comparative Example 1.
  • the width of the damping torque of Example 2 is a stable value (approximately 5 to 7 N ⁇ m) during the test with respect to the initial value (10 N ⁇ m) before the test, and a torque curve measured during the test. No disturbance was observed (Evaluation A). On the other hand, in Comparative Example 1, there was no problem with the width of the damping torque as in Example 2, but disturbance was observed in the torque curve measured during the test (Evaluation B). This is presumably because foreign matter is present between the arc surface 60 of the friction member 6 and the inner peripheral surface of the outer cylindrical portion 21 of the base 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

本発明は、ベース(2)の外筒部(21)の内周面とアーム(3)との間に外筒部(21)の径方向に挟まれるとともに、アーム(2)に係止されて、外筒部(21)の内周面に対して摺動可能な円弧面(60)を有する摩擦部材(6)を有する。摩擦部材(6)は、アーム(3)の揺動に伴い外筒部(21)の内周面に対して摺動する際に、円弧面(61)が中心軸(R)を通る水平面(HP)以上の高さに留まるように設けられていることを特徴とする補機駆動ベルトシステムに備わるオートテンショナ(1)に関する。

Description

補機駆動ベルトシステムに備わるオートテンショナ
 本発明は、自動車エンジンの補機を駆動する補機駆動ベルトシステムに備わるオートテンショナに関する。
 自動車エンジンの補機を駆動するベルトにおいては、エンジン燃焼に起因する回転変動によりベルト張力が変動する。ベルト張力の変動に起因してベルトスリップが発生し、そのスリップ音や摩耗などの問題が生じている。これを解決するために、従来、ベルト張力が変動してもベルト張力を自動的に適度に保ち、ベルトスリップの発生を抑える機構として、オートテンショナが採用されている。
 自動車エンジンの補機駆動ベルトシステムに備わるオートテンショナには、特にベルト張力が増加した場合に、固定部材(以下、ベースという)に対して回動自在に支持された可動部材(以下、アームという)の揺動を十分に減衰させるために、減衰機構(ダンピング機構)が備えられている。減衰機構としては、例えば、特許文献1、2に開示されている、いわゆる乾式の減衰機構が多く採用されている。乾式の減衰機構は、ダンピング発生部材としての摩擦部材が、ベースとアームとの間に設けられるとともに、アームに係止された構成であって、摩擦部材とベースとの摺動面に摩擦作用を生じさせることによってアームの揺動を減衰させる。
 特許文献1の摩擦部材は、アームに係止されて、ベースとアームとの間に径方向に挟まれている。この摩擦部材は、アームの揺動軸方向に見て、略扇形状に形成されている。特許文献1の摩擦部材の摺動面は、ベースの外筒部の内周面に対して摺接可能な円弧面である。
 特許文献2の摩擦部材は、アームに係止されて、アームの揺動軸方向に圧縮されたコイルばねによってベース(詳細にはベースに固定された摩擦部材取付板)に押し付けられている。この摩擦部材は、軸方向に見て、環状に形成されている。特許文献2の摩擦部材の摺動面は、ベース(摩擦部材取付板)に対して摺接可能な環状面である。
 自動車エンジンの補機駆動ベルトシステムに備わる上述のオートテンショナにおいて、ベルトの張力変化に伴いアームは激しく揺動する。このアームの揺動に伴い、摩擦部材はベースに対して激しく摺動する。ダンピング発生部材である摩擦部材は、この摺動面に繰り返し生じる摩擦作用により、次第に摩耗し擦り減っていく。摩擦部材の摺動面の少なくとも一部が早期に摩耗してしまうと、アームの揺動を減衰させる効果を確保し難くなり、オートテンショナが早期に寿命に至るおそれがあった。また、摩擦部材の摺動面の摩耗に起因して、揺動軸の軸受についても、軸方向に見て摩擦部材の摺動面(摩耗面)側に偏荷重を受けて偏摩耗が発生し、その方向にアームが傾く。アームの傾きが顕著になると(例えば1°を超えると)、補機駆動ベルトシステムに発生するミスアライメントが顕著になる。そのため、ベルトは、テンショナプーリから大きな側圧を受けて、最悪の場合、テンショナプーリから外れてしまい、オートテンショナが早期に寿命に至るおそれがあった。
 また、自動車エンジンの補機駆動ベルトシステムに備わるオートテンショナには、泥水等水媒体がかかることがあり、例えば特許文献1、2に開示の実施形態のように、ベースの円筒部(開口側の前端部)とアームとの間に形成された環状隙間から、泥水等水媒体が浸入してしまうことがあった。このため、場合によっては、摩擦部材の摺動面とベースとの間に泥水等水媒体に含まれる異物が介在することになる。この異物の介在により、ダンピング発生部材として耐摩耗性に優れる摩擦部材が採用されていても、異物が介在しない場合と比べて、摩擦部材の摺動面が早期に摩耗してしまい、前述の問題を引き起こす結果、オートテンショナが早期に寿命に至るおそれがあった。
 この課題に対処するための手段として、泥水等水媒体が浸入してくる経路(前述の環状隙間)にシール部材を配置することによって、外部からオートテンショナ本体内部に異物が浸入するのを防止できることが知られている(例えば、特許文献3、4)。
国際公開第2015-125691号公報 日本国特開2003-083405号公報 日本国特開2006-162006号公報 日本国特開2006-057743号公報
 しかし、特許文献3、4のオートテンショナは、摩擦部材の摺動面とベースとの間に異物が介在する問題を解決できる一方で、シール部材に対して、耐久性を確保しつつアームの揺動運動に極力抵抗を与えないよう十分に配慮した材料や形状に関する専用設計が必要となるため、その分、オートテンショナの製造コストが増加してしまう。
 そこで、本発明は前述の問題点に鑑みてなされたものであり、本発明の目的は、シール部材を備えなくても、摩擦部材と相手面との摺動面に異物が介在するのを防止して、摩擦部材の摺動面が早期に摩耗するのを抑制し、オートテンショナの耐久性を確保することができる、補機駆動ベルトシステムに備わるオートテンショナを提供することである。
 本発明の補機駆動ベルトシステムに備わるオートテンショナは、以下の特徴を有する。
 すなわち、本発明の補機駆動ベルトシステムに備わるオートテンショナは、円筒部を有するベースと、前記ベースに対して前記円筒部の内周面の中心軸を中心に回動自在に支持されたアームと、前記アームに回転自在に設けられるとともに、ベルトが巻き掛けられるテンショナプーリと、前記円筒部の内周面と前記アームとの間に前記円筒部の径方向に挟まれるとともに、前記アームに係止されて、前記円筒部の内周面に対して摺動可能な円弧面を有する摩擦部材と、前記アームを前記ベースに対して一方向に回動付勢するコイルばねと、を備え、前記テンショナプーリに巻き掛けられた前記ベルトの張力が変化して前記アームが揺動する際に、前記円弧面と前記円筒部の内周面との間に摩擦力を生じさせることで前記アームの揺動を減衰させる。
 この補機駆動ベルトシステムに備わるオートテンショナにおいて、前記摩擦部材は、前記アームの揺動に伴い前記円筒部の内周面に対して摺動する際に、前記円弧面が前記中心軸を通る水平面以上の高さに留まるように、設けられている。
 この構成によれば、アームに係止されたダンピング発生部材である摩擦部材は、アームの揺動に伴い相手面(ベースの円筒部の内周面)に対して摺動する際に、摩擦部材の円弧面(摺動面)がベースの円筒部の内周面の中心軸を通る水平面以上の高さに留まるように、設けられている。
 通常、補機駆動ベルトシステムに備わるオートテンショナにおいて、アームは激しく揺動するが、アームの揺動幅自体は比較的小さい(最大で概ね10°)。そのため、アームが揺動する際に、摩擦部材の円弧面(摺動面)がベースの円筒部の内周面の中心軸を通る水平面以上の高さに留まるように設けられることは実現可能である。
 一般に、オートテンショナのベースは、エンジンブロック等の略鉛直方向に沿う面に固定されている。そのため、オートテンショナに泥水等の水媒体がかかる環境下で、ベースの円筒部とアームとの間の隙間から浸入した泥水等の水媒体に含まれる異物は、ベースの円筒部の内周面において、中心軸を通る水平面より上方の部分には堆積されず、中心軸を通る水平面より下方の部分に堆積される。
 したがって、摩擦部材の円弧面(摺動面)とベースの円筒部の内周面との間に、異物が介在するのを防止できる。その結果、シール部材を備えていなくても、摩擦部材の円弧面(摺動面)が早期に摩耗するのを抑制して、オートテンショナの耐久性を確保することができる。
 本発明の補機駆動ベルトシステムに備わるオートテンショナにおいて、前記摩擦部材は、前記中心軸方向に見て前記円弧面の中心角が150°未満であり、かつ、前記ベルトに所定の初期張力が付与された時点で前記中心軸方向に見て、前記円筒部の内周面における最上部の位置が、前記円弧面の中央部であって中心角が10°の領域に接するように設けられていることが好ましい。
 ベルトが、Vリブドベルトや歯付ベルトなどのプーリの溝に係合する突起を有するタイプの場合、初期張力が付与された瞬間からベルト張力は低下して、その後安定する。また、初期張力は、ベルトが基準寸法であるという前提で設定される。しかし、ベルトの製造時にベルト長さは許容値内でばらつく。ベルト長さが基準寸法よりも短いほど、初期張力は高くなり、その後の安定した張力も高くなる。
 このような初期張力付与後のベルト張力の低下とベルト長さのばらつきがあっても、ベルト張力が安定した状態での摩擦部材の位置は、基準寸法のベルトに所定の初期張力を付与した時点の摩擦部材の位置から中心軸回りに概ね±5°の範囲内に留まる。さらに、アームの揺動幅は概ね10°以下である。
 本発明の摩擦部材は、中心軸方向に見て円弧面の中心角が150°未満であって、かつ、ベルトに所定の初期張力が付与された時点で中心軸方向に見て、ベースの円筒部の内周面における最上部の位置が、円弧面の中央部であって中心角が10°の領域に接するように設けられている。そのため、アームの揺動時に、摩擦部材の円弧面が中心軸を通る水平面以上の高さに留まる構成を確実に実現できる。また、初期張力付与後のベルト張力の低下とベルト長さのばらつきがあっても、アームの揺動時に、中心軸方向に見て摩擦部材の円弧面の中間の位置を、ベースの円筒部の内周面の最上部に近い位置とすることができる。円弧面の円弧の長さが同じ場合で比べると、円弧面の中間の位置が円筒部の内周面の最上部の位置に近いほど、円弧面の最下端がより高い位置にある。円弧面の最下端がより高いほど、円弧面とベースの円筒部の内周面との間に異物が入り込みにくく、たとえ入り込んでも下方に掃き出されやすい。したがって、摩擦部材の円弧面(摺動面)とベースの円筒部の内周面との間に、異物が介在するのをより確実に防止できる。
 上記構成によれば、シール部材を備えなくても、摩擦部材と相手面との摺動面に異物が介在するのを防止して、摩擦部材の摺動面が早期に摩耗するのを抑制し、オートテンショナの耐久性を確保することができる、補機駆動ベルトシステムに備わるオートテンショナを提供することができる。
図1は、本発明の実施形態に係る補機駆動ベルトシステムの構成図である。 図2は、図1のA-A線断面図である。 図3は、図1に図2のB-B線断面図を組み合わせた図であって、ベルト張力が安定している状態を示す図である。 図4は、図1に図2のB-B線断面図を組み合わせた図であって、初期張力を付与した状態を示す図である。 図5の(a)はベルト張力が増加したときに摩擦部材に作用する力を示した図であり、図5の(b)はベルト張力が減少したときに摩擦部材に作用する力を示した図である。 図6は、試験用ベルトシステムの構成図である。 図7の(a)は第1ベルトシステムにおいてベルト張力が増加して摩擦部材が摺動した状態を示す図であり、図7の(b)は第1ベルトシステムにおいてベルト張力が減少して摩擦部材が摺動した状態を示す図であり、図7の(c)は第2ベルトシステムにおいてベルト張力が増加して摩擦部材が摺動した状態を示す図であり、図7の(d)は第2ベルトシステムにおいてベルト張力が減少して摩擦部材が摺動した状態を示す図である。 図8は、アーム傾き量の算出方法を説明するための図である。 図9は、実施例2と比較例1のアームの傾き量と試験時間との関係を示すグラフである。
 次に、本発明の実施の形態について説明する。図1は、本発明が適用された自動車エンジンの補機駆動ベルトシステムの一例である。補機駆動ベルトシステム100は、クランク軸に固定されたクランクプーリ101と、オルタネータ(ALT)に接続されたALTプーリ102と、ウォーターポンプ(WP)に接続されたWPプーリ103と、エアコン・コンプレッサ(AC)に接続されたACプーリ104と、オートテンショナ1とを備える。エンジンの出力は、1本のベルト105を介して、クランクプーリ101から時計回りに、ALTプーリ102、WPプーリ103、ACプーリ104に対してそれぞれ伝達され、各補機(オルタネータ、ウォーターポンプ、エアコン・コンプレッサ)が駆動される。オートテンショナ1は、クランクプーリ101とALTプーリ102とのベルトスパン間に、オートテンショナ1のテンショナプーリ4が接触するように設けられる。ベルト105は、例えばVリブドベルト、Vベルト、歯付ベルト、平ベルト等の伝動ベルトである。
 図2に示すように、オートテンショナ1は、ベース2と、このベース2に対して軸R(中心軸)を中心に回動自在に支持されたアーム3と、このアーム3に回転自在に設けられたテンショナプーリ4と、コイルばね5と、摩擦部材6とを備える。オートテンショナ1は、アーム3の揺動を減衰させる乾式の減衰機構を有しており、減衰機構は、アーム3の揺動を減衰させるダンピング発生部材として、摩擦部材6を有する。なお、図2の右方向を前方向、図2の左方向を後方向と定義する。また、軸Rを中心とした径方向を単に径方向、軸Rを中心とした周方向を単に周方向と定義する。
 ベース2は、エンジンブロック106に固定される環状の台座部20と、台座部20の外縁部から前方に延びる外筒部(円筒部)21と、台座部20の中央部から前方に延びる内筒部22とを備えている。ベース2は、例えばアルミニウム合金鋳物等の金属で形成されている。台座部20は、エンジンブロック106にボルトやピンを介して固定される。エンジンブロック106の台座部20が固定される面は、略鉛直面である。内筒部22の内側には軸受7を介して、前後方向に延びる揺動軸8が回動自在に挿通されている。軸Rは、揺動軸8の中心軸である。軸Rは、外筒部21の内周面の中心を通る。
 内筒部22およびアーム3の後述する突出部31と、外筒部21との間には、ばね収容室9が形成されている。このばね収容室9にコイルばね5が配置されている。コイルばね5は、後端部から前端部に向かってX方向に螺旋状に巻かれている。コイルばね5の後端部は、ベース2に保持されている。
 アーム3は、ベース2の外筒部21の前方に配置される円盤部30と、円盤部30の中央部から後方に延びる突出部31と、円盤部30の外縁の一部から張り出して形成されたプーリ支持部32とを備えている。このアーム3も前述のベース2と同様に、例えばアルミニウム合金鋳物等の金属で形成されている。
 円盤部30と突出部31の中央部には、前後方向に延びる孔が形成されており、この孔に揺動軸8が相対回転不能に挿入されている。したがって、アーム3は、揺動軸8を介して、ベース2に回動自在に支持されている。
 プーリ支持部32には、テンショナプーリ4が回転自在に取り付けられている。テンショナプーリ4には、ベルト105が巻き掛けられる。ベルト105の張力の増減に伴って、テンショナプーリ4(およびアーム3)は、軸Rを中心として揺動する。なお、図2中、テンショナプーリ4の内部構造は省略して表示している。
 円盤部30の後面の外縁近傍と、ベース2の外筒部21の前端部との間には、環状隙間30aが形成されている。環状隙間30aは、円盤部30の後面の外縁近傍に形成された環状の溝に、ベース2の外筒部21の前端部が収容されることで形成されている。環状隙間30aの一部は、軸Rに直交する方向に沿っている。また、円盤部30の後面において、突出部31より径方向外側で環状隙間30aより径方向内側の部分は、軸Rに垂直な平坦状に形成されている。
 突出部31は、略円筒状に形成されている。図3に示すように、突出部31の前側部分には、扇形状の切欠きが形成されている。この切欠きの周方向両側は、係止面31aと接触面31bで構成されている。なお、図3は、図1に、図2に示すB-B線断面図を組み合わせた図である。軸R方向に見て、係止面31aは、係止面31aの任意の点と軸Rとを通る直線に対して交差する。つまり、係止面31aは、径方向に対して傾斜している。より詳細には、係止面31aは、径方向外側に向かうほどX方向に向かうように径方向に対して傾斜している。また、接触面31bは、径方向外側に向かうほどX方向と逆方向に向かうように径方向に対して傾斜している。
 摩擦部材6は、ベース2の外筒部21の内周面とアーム3の突出部31との間に径方向に挟まれている。摩擦部材6の前後方向長さは、係止面31aおよび接触面31bの前後方向長さとほぼ同じである。摩擦部材6の前後方向長さは、コイルばね5の線径の1.2倍~3倍程度が好ましい。摩擦部材6の前面は、平坦状であって、その全面又は一部がアーム3の円盤部30の後面に接触する。
 摩擦部材6は、例えば合成樹脂に繊維、充填剤、固体潤滑材等を配合させた潤滑性の高い材料で形成されている。摩擦部材6を構成する合成樹脂としては、例えば、ポリアミド樹脂、ポリアセタール樹脂、ポリテトラフルオロエチレン樹脂、ポロフェニレンサルファイド樹脂、超高分子量ポリエチレン樹脂等の熱可塑性樹脂、または、フェノール樹脂等の熱硬化性樹脂が用いられる。なお、摩擦部材6は、前面と後述する円弧面60が上述の材料で構成されていれば、上記以外の材料を含んでいてもよい。
 摩擦部材6は、軸Rに直交する断面形状が略扇形状であって、円弧面60と、この円弧面60に対向する係止面61と、周方向に対向する2つの側面62、63を有する。係止面61は、アーム3の突出部31の係止面31aに接触する。2つの側面62、63のうちX方向と逆方向側の側面63の径方向内側端部は、アーム3の突出部31の接触面31bに接触する。摩擦部材6は、係止面61と側面63によって、アーム3に係止されている。軸R方向に見て円弧面60の円弧の中心は軸Rと一致し、円弧面60は外筒部21の内周面とほぼ同じ曲率に形成されている。円弧面60は外筒部21の内周面に沿って摺動可能である。ベルト105の張力が変化してアーム3が軸Rを中心として揺動するとき、同じ角度だけ、摩擦部材6が軸Rを中心として外筒部21の内周面に対して摺動する。ベルト105の張力が増加した場合には、アーム3は図3に示す矢印X方向と逆方向に回動する。ベルト105の張力が減少した場合には、アーム3は図3に示す矢印X方向に回動する。本明細書において、ベルト105の張力が増加した場合に揺動する角度と、ベルト105の張力が減少した場合に揺動する角度とを合わせた角度を、アーム3の揺動幅という。摩擦部材6が軸Rを中心に摺動する角度(以下、摺動幅という)は、アーム3の揺動幅と等しい。アーム3の揺動幅は、概ね10°以下である。なお、一般的な自動車エンジンの補機駆動ベルトシステムのオートテンショナにおいても、アームの揺動幅は概ね10°以下である。摩擦部材6は、円弧面60と外筒部21の内周面との摺動面に摩擦作用を生じさせることでアーム3の揺動を減衰させる。
 摩擦部材6は、摩擦部材6がアーム3の揺動に伴い外筒部21の内周面に対して摺動する際に、円弧面60が軸Rを通る水平面HP以上の高さに留まるように設けられている。軸R方向に見て円弧面60の中心角θは、170°未満であることが好ましい。軸R方向に見て円弧面60の中心角θは、150°未満がより好ましい。また、摩擦部材6の円弧面60と外筒部21の内周面との間に異物が介在しない場合でも、摩擦部材6の円弧面60(摺動面)が早期に摩耗するのを抑制するために、軸R方向に見た円弧面60の中心角θに関する下限値が考慮され得る。軸R方向に見た円弧面60の中心角θに関する下限値の好ましい値は、特には摩擦部材6の円弧面60を構成する部分の材質によって異なる。摩擦部材6の円弧面60を構成する部分の材質が例えばポリアミド樹脂(PA6T)である場合、軸R方向に見た円弧面60の中心角θの下限値は、30°程度に設けられてよい。図3において円弧面60の中心角θは、43°である。
 ベルト105がVリブドベルト場合、所定の初期張力(例えば330N)が付与された瞬間から、ベルト105は、リブ山が係合する各プーリ101、102、および104の周溝の底方向へさらに若干沈み込み変形してゆく。この過程で若干ベルト張力が低下する。その後、ベルト105と各プーリとの係合状態がなじんだ段階(例えば慣らし走行終了時点)で、ほぼ一定の張力で安定する。なお、ベルト105が、Vベルトおよび歯付ベルト等の平ベルト以外の伝動ベルトの場合にも同様に、所定の初期張力が付与された後、ベルト張力が低下して、その後安定する。
 図4は、ベルト105に所定の初期張力が付与された状態を示している。図3は、初期張力付与後の慣らし走行が終了して、ベルト張力が安定した状態を示している。初期張力付与後、ベルト張力が低下する際、アーム3および摩擦部材6は、矢印X方向に回動する。
 本実施形態(図3および図4)は、ベルト105のベルト長さが基準寸法の場合の例である。製造段階でベルト長さは許容値内でばらつく。例えば、ベルト長さ1555mmのVリブドベルトの場合、許容値は基準寸法±8mmである。所定の初期張力は、ベルト長さが基準寸法という前提で設定される。そのため、ベルト長さが基準寸法より長いと、ベルト長さが基準寸法の場合に比べて、初期張力が低くなり、慣らし走行後の安定した張力も低くなる。逆に、ベルト長さが基準寸法より短い場合、ベルト長さが基準寸法の場合に比べて、初期張力が高くなり、慣らし走行後の安定した張力も高くなる。
 ベルト長さが基準寸法より長い場合、ベルト張力が安定した時点のアーム3および摩擦部材6の位置は、ベルト長さが基準寸法の場合におけるベルト張力が安定した時点のアーム3および摩擦部材6の位置に対して、矢印X方向にずれた位置となる。ベルト長さが許容値内で最大の場合におけるベルト張力が安定した時点のアーム3および摩擦部材6の位置は、ベルト長さが基準寸法の場合における初期張力が付与された時点のアーム3および摩擦部材6の位置に対して、矢印X方向に5°以内ずれた位置となる。
 ベルト長さが基準寸法より短い場合、ベルト張力が安定した時点のアーム3および摩擦部材6の位置は、ベルト長さが基準寸法の場合におけるベルト張力が安定した時点のアーム3および摩擦部材6の位置に対して、矢印X方向と反対方向にずれた位置となる。ベルト長さが許容値内で最大の場合におけるベルト張力が安定した時点のアーム3および摩擦部材6の位置は、ベルト長さが基準寸法の場合における初期張力が付与された時点のアーム3および摩擦部材6の位置に対して、矢印X方向と反対方向にずれる場合がある。この角度は、最大でも5°に満たない。
 ここで、図4に示すように、軸R方向に見て円弧面60の中央部であって中心角が10°の領域を、中央領域60cとする。初期張力付与後のベルト張力の低下とベルト長さのばらつきを考慮すると、摩擦部材6は、ベルト105に所定の初期張力が付与された時点で軸R方向に見て、外筒部21の内周面における最上部の位置21tが、円弧面60の中央領域60cに接するように設けられていることが好ましい。図4では、摩擦部材6は、外筒部21の内周面における最上部の位置21tが、軸R方向に見て円弧面60の中間の位置と接するように設けられているが、摩擦部材6の位置はこれに限らない。
 ベルト105に所定の初期張力が付与された状態で、外筒部21の最上部の位置21tが摩擦部材6の円弧面60の中央領域60cに接するという構成を実現するために、補機駆動ベルトシステム100のレイアウトを決定する際に行う具体的な動作としては、以下の2通りがある。ベース2のエンジンブロック106への固定位置が決定している場合は、突出部31の係止面31a及び接触面31bの位置と、コイルばね5の前端部の位置を調整して、上述した構成となるように摩擦部材6を配置する。ベース2の固定位置が決定していない場合は、テンショナプーリ4の回転軸の軸心を中心として周方向に軸Rの位置を動かして、摩擦部材6が上述した構成となるように、ベース2をエンジンブロック106に固定する。
 摩擦部材6の係止面61は、円弧面60より周方向に関してX方向側に位置する。また、係止面61は、径方向外側に向かうほどX方向側に向かうように、径方向に対して傾斜している。2つの側面62、63は、径方向外側に向かうほどX方向と逆方向側に向かうように、径方向に対して傾斜している。側面62、63のうちX方向側の側面62は、係止面61に略直交している。
 摩擦部材6に外力が作用していない状態において、係止面61から円弧面60までの係止面61に直交する方向の長さは、アーム3の係止面31aからベース2の外筒部21の内周面までの係止面31aに直交する方向の間隔よりも若干大きい。したがって、摩擦部材6は、係止面61に略直交する方向に若干圧縮した状態で、アーム3の突出部31とベース2の外筒部21との間に配置されている。
 摩擦部材6の後面には、コイルばね5の前端部を保持する保持溝64が形成されている。コイルばね5の前端部は、後端部と同様に、先端近傍において屈曲して、屈曲部より先端側の部分が直線状に延びている。この直線状の部分が保持溝64に保持されている。保持溝64は、係止面61より径方向外側に位置すると共に、周方向に関して係止面61よりX方向と逆方向側に位置する。
 コイルばね5は、軸R方向に圧縮された状態で配置されている。そのため、コイルばね5は、軸R方向の弾性復元力によって、摩擦部材6をアーム3の円盤部30の後面に押し付けている。
 また、コイルばね5は、拡径方向にねじられた状態で配置されている。そのため、コイルばね5は、周方向の弾性復元力によって、摩擦部材6を介してアーム3をX方向、即ち、テンショナプーリ4をベルト105に押し付けてベルト105の張力を増加させる方向に回動付勢している。
 次に、オートテンショナ1の動作について説明する。
 ベルト105の張力が増加した場合には、アーム3はコイルばね5の周方向の付勢力に抗して、図5の(a)に示す矢印A方向(X方向と逆方向)に回動する。摩擦部材6はアーム3の係止面31aから力Faを受けて矢印A方向に回動し、摩擦部材6の円弧面60がベース2の外筒部21の内周面と摺動する。
 摩擦部材6の円弧面60は、摩擦部材6の係止面61よりも周方向に関してX方向と逆方向側(矢印A方向側)に位置している。さらに、本実施形態では、係止面61の任意の点における軸Rを中心とした周の接線方向(以下、単に「接線方向」という)と円弧面60とが交差している。摩擦部材6の係止面61がアーム3から受ける力Faは、係止面61における接線方向の力であるため、係止面61から力Faの方向の直線上に円弧面60が存在することになる。そのため、摩擦部材6の係止面61がアーム3から受ける力Faを、摩擦部材6の円弧面60をベース2の外筒部21の内周面に押し付ける力に使うことができる。
 また、摩擦部材6は、コイルばね5を拡径方向にねじり変形させたことによる弾性復元力(以下、「ねじり復元力」という。)Fsを受けている。ねじり復元力Fsは、X方向の分力Fs1と、縮径方向の分力Fs2との合力である。
 したがって、摩擦部材6には、アーム3から受けた力Faと、コイルばね5のねじり復元力Fsとの合力Frが作用する。力Faはねじり復元力Fsよりも大きいため、合力Frは径方向外向きの力となり、摩擦部材6の円弧面60は合力Frによってベース2の外筒部21の内周面に押し付けられる。そのため、摩擦部材6の円弧面60とベース2の外筒部21の内周面との間に大きい摩擦力を生じさせることができ、アーム3の揺動を十分に減衰させるような大きな減衰力を発生させることができる。
 逆に、ベルト105の張力が減少した場合には、コイルばね5のねじり復元力により、アーム3が図5の(b)に示す矢印B方向(X方向と同じ方向)に回動し、テンショナプーリ4がベルト張力を回復させるように揺動する。摩擦部材6はコイルばね5からねじり復元力Fsを受けて矢印B方向に回動し、摩擦部材6の円弧面60がベース2の外筒部21の内周面と摺動する。摩擦部材6はねじり復元力Fsの縮径方向の分力Fs2によって径方向内側に付勢されるため、摩擦部材6の円弧面60とベース2の外筒部21の内周面との間に生じる摩擦力は小さい。
 仮に、円弧面60のX方向側端部が係止面61の周方向範囲まで延びている場合、コイルばね5のねじり復元力Fsの周方向の分力Fs1によって、摩擦部材6の円弧面60が外筒部21の内周面に押し付けられることになるが、本実施形態では、摩擦部材6の円弧面60が、摩擦部材6の係止面61よりも周方向に関してX方向と逆方向側に位置しているため、コイルばね5のねじり復元力Fsの周方向の分力Fs1によって摩擦部材6の円弧面60が外筒部21の内周面に押し付けられることがなく、摩擦部材6の円弧面60と外筒部21の内周面との間の摩擦力の増加を防止できる。
 したがって、摩擦部材6の円弧面60とベース2の外筒部21の内周面との間には、アーム3が矢印A方向に回動した場合に比べて小さい摩擦力が発生するため、アーム3はコイルばね5のねじり復元力を十分に受けることができ、アーム3の揺動をベルト張力の減少に対して十分に追従させることができる。このようにベルト張力が増加した場合と減少した場合では生じる摩擦力の大きさが異なっており、オートテンショナ1は、非対称な減衰特性(非対称ダンピング特性)を持つ。
 上述したように、アーム3に係止されたダンピング発生部材である摩擦部材6は、アーム3の揺動に伴い相手面(ベース2の外筒部21の内周面)に対して摺動する際に、摩擦部材6の円弧面60(摺動面)がベース2の外筒部21の内周面の中心軸(軸R)を通る水平面HP以上の高さに留まるように、設けられている。
 通常、補機駆動ベルトシステムに備わるオートテンショナにおいて、アームは激しく揺動するが、アームの揺動幅自体は比較的小さい(最大で概ね10°)。そのため、アーム3が揺動する際に、摩擦部材6の円弧面60(摺動面)がベース2の外筒部21の内周面の中心軸(軸R)を通る水平面HP以上の高さに留まるように設けられることは実現可能である。
 一般に、オートテンショナのベースは、エンジンブロック等の略鉛直方向に沿う面に固定されている。そのため、オートテンショナ1に泥水等の水媒体がかかる環境下で、ベース2の外筒部21とアーム3との間に形成された環状隙間30aから浸入した泥水等の水媒体に含まれる異物Mは、その一部は下方の環状隙間30aから外部に抜けるものの、残りの異物Mは、ベース2の外筒部21の内周面に堆積されていく(図3参照)。異物Mは、ベース2の外筒部21の内周面において軸Rを通る水平面HPより上方の部分には堆積されず、軸Rを通る水平面HPより下方の部分に堆積される。
 したがって、摩擦部材6の円弧面60(摺動面)は、ベース2の外筒部21の内周面において異物Mが堆積した部分と接触しない。また、たとえ摩擦部材6の円弧面60(摺動面)と相手面(ベース2の外筒部21の内周面)との間に異物Mが入り込んでも、異物Mは下方に掃き出されやすい。よって、摩擦部材6の円弧面60(摺動面)とベース2の外筒部21の内周面との間に、異物Mが介在するのを防止できる。その結果、シール部材を備えていなくても、摩擦部材6の円弧面60(摺動面)が早期に摩耗するのを抑制して、オートテンショナ1の耐久性を確保することができる。
 ベルト105が、Vリブドベルトや歯付ベルトなどのプーリの溝に係合する突起を有するタイプの場合、初期張力が付与された瞬間からベルト張力は低下して、その後安定する。また、初期張力は、ベルト105が基準寸法であるという前提で設定される。しかし、ベルト105の製造時にベルト長さは許容値内でばらつく。ベルト長さが基準寸法よりも短いほど、初期張力は高くなり、その後の安定した張力も高くなる。
 このような初期張力付与後のベルト張力の低下とベルト長さのばらつきがあっても、ベルト張力が安定した状態での摩擦部材6の位置は、基準寸法のベルト105に所定の初期張力を付与した時点の摩擦部材6の位置から軸R回りに概ね±5°の範囲内に留まる。さらに、アーム3の揺動幅は概ね10°以下である。
 摩擦部材6は、軸R方向に見て円弧面60の中心角が150°未満であり、かつ、ベルト105に所定の初期張力が付与された時点で軸R方向に見て、ベース2の外筒部21の内周面における最上部の位置21tが、円弧面60の中央部であって中心角が10°の領域60cに接するように設けられている。そのため、アーム3の揺動時に、摩擦部材6の円弧面60が軸Rを通る水平面HP以上の高さに留まる構成を確実に実現できる。また、初期張力付与後のベルト張力の低下とベルト長さのばらつきがあっても、アーム3の揺動時に、軸R方向に見て摩擦部材6の円弧面60の中間の位置を、ベース2の外筒部21の内周面の最上部に近い位置とすることができる。円弧面60の円弧の長さが同じ場合で比べると、円弧面60の中間の位置が外筒部21の内周面の最上部の位置21tに近いほど、円弧面60の最下端がより高い位置にある。円弧面60の最下端がより高いほど、円弧面60とベース2の外筒部21の内周面との間に異物Mが入り込みにくく、たとえ入り込んでも下方に掃き出されやすい。したがって、摩擦部材6の円弧面60(摺動面)とベース2の外筒部21の内周面との間に、異物Mが介在するのをより確実に防止できる。
 以上、本発明の好適な実施の形態について説明したが、本発明は上述の実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能である。
 本発明の摩擦部材の円弧面は、円弧方向に連続してベースの円筒部の内周面に摺接する1つの面に限定されない。摩擦部材の円弧面は、ベースの円筒部の内周面の周方向に不連続に摺接する複数に分割された円弧面で形成されていてもよい。また、摩擦部材は1個の単体であってもよく、円弧方向に複数に分割された連結体であってもよい。
 本発明の補機駆動ベルトシステムに備わるオートテンショナにおいて、摩擦部材は、軸方向にアームに押し付けられていなくてもよい。
 本発明の補機駆動ベルトシステムに備わるオートテンショナは、対称な減衰特性を有するオートテンショナであってもよい。
 本発明の補機駆動ベルトシステムに備わるオートテンショナのベース部が固定される対象は、エンジンブロックでなくてもよい。
 [アームの揺動幅の確認試験]
 本発明の補機駆動ベルトシステムに備わるオートテンショナのアームの揺動幅の最大値を確認するための試験を行った。この試験に用いた実施例1のオートテンショナは、上記実施形態のオートテンショナ1と同じ構成とした。摩擦部材(6)の材質は、ポリアミド樹脂(PA6T)である。揺動軸(8)の軸心(R)方向に見た円弧面(60)の中心角(θ)は43°である。摩擦部材6の前後方向長さは、コイルばね5の線径の約1.4倍である。軸受(7)は、円筒状の金属製軸受(所謂メタル軸受)である。軸受(7)の揺動軸(8)と接触する内周面は、ポリ四フッ化エチレンの潤滑材を含有する樹脂組成物(低摩擦材)で構成される。ベルト(105)は、Vリブドベルト(三ツ星ベルト社製)で、ベルト呼称が6PK1555(K形リブ、ベルト幅方向のリブ山の数6、ベルト長さ(POC)1555mm、ベルト幅21.4mm)のものを用いた。ベルト(105)に埋設されている心線は、ポリエステルコードを用いた撚糸ロープである。
 実施例1のオートテンショナを、図1の補機駆動ベルトシステム100と同じ構成の補機駆動ベルトシステムに組み付けて、ベルト(105)を巻き掛けた。ベルト(105)の初期張力は330Nであった。初期張力が付与された状態における摩擦部材(6)の位置は、図4に示す位置とした。つまり、揺動軸(8)の中心軸(R)方向に見て、摩擦部材(6)の円弧面(60)の中間の位置が、ベース(2)の外筒部(21)の内周面における最上部の位置に接するようにした。また、初期張力付与後の慣らし走行(クランクプーリの回転数500~800rpmで約5分)後の摩擦部材(6)の位置は、図3に示す位置であった。具体的には、揺動軸(8)の中心軸(R)方向に見て、摩擦部材(6)の円弧面(60)の中間の位置は、ベース(2)の外筒部(21)の内周面における最上部の位置から、中心軸(R)を中心に2°ずれた位置であった。
 アーム(3)の揺動幅は、エンジン始動時に最大になる。そこで、エンジンの始動と停止を交互に繰り返すエンジン始動試験を行い、エンジン始動試験中のアーム(3)の揺動幅を測定した。上述の慣らし走行後、雰囲気温度95℃のもと、エンジンの始動と停止を交互に繰り返し、エンジン始動回数が、50回に達した時点で、試験を終了した。エンジンの1回当りの運転時間(始動から停止まで時間)は、10秒とした。なお、雰囲気温度は、実車において、当ベルトシステムを囲む恒温槽内の温度を想定した温度である。また、毎回のエンジン始動の際のクランク軸の回転数は0~1800rpmの間で変動していた。アーム(3)の揺動幅は、レーザー変位計を用いて、テンショナプーリ(4)の回転軸の軸心が、揺動軸(8)の軸心(軸R)回りに回動する変位量を時系列に測定することにより得た。エンジン始動試験50回中のアーム(3)の揺動幅は、概ね10°(最低で8.5°、最高で10°、50個の平均値9.5°)であった。
 [泥水滴下耐久試験]
 本発明の効果検証として、オ-トテンショナに泥水がかかる環境下でアームを強制的に揺動させる試験を行い、摩擦部材の摩耗に対する評価を実施した。この試験は、図6に示す試験用ベルトシステム200と泥水滴下装置(不図示)とを用いて行った。試験用ベルトシステム200は、鉛直上方に延びる1枚のフレーム220に固定されており、このフレーム220は、床等に固定されて略水平方向に延在する架台221に固定されている。試験用ベルトシステム200は、1つの駆動プーリ203によって同時に駆動される2つのベルトシステム(第1ベルトシステム201と第2ベルトシステム202)を有する。2つのベルトシステム201、202は、駆動軸204を有する1つの駆動モータと、駆動軸に接続された1つの駆動プーリ203とを共有する。第1ベルトシステム201は、実施例2のオートテンショナ205と、従動プーリ206と、ベルト207とを有する。第2ベルトシステム202は、比較例1のオートテンショナ208と、従動プーリ209と、ベルト210とを有する。第1ベルトシステム201の3つのプーリの位置と、第2ベルトシステム202の3つのプーリの位置は、駆動軸204の軸心を中心として点対称である。
 駆動軸204は、フレーム220と直交する方向に配置した。従動プーリ206、209には補機を接続しなかった。駆動プーリ203の外周面には、ベルト207、210が並列に巻き掛けられる2つの周溝を、軸方向に離して設けた。駆動プーリ203は、オートテンショナ205、208のアーム3を強制的に揺動させることができるよう、駆動軸204の軸心方向に見て駆動軸204の軸心が駆動プーリ203の中心から所定の偏心量dだけ離れた位置に形成されている、いわゆる偏心プーリとした。アーム3の揺動幅(摩擦部材の摺動幅)が10°となるように、偏心量dは4mmとした。ベルト207、210は、Vリブドベルト(三ツ星ベルト社製)で、ベルト呼称が6PK730(K形リブ、ベルト幅方向のリブ山の数6、ベルト長さ(POC)730mm、ベルト幅21.4mm)のものを用いた。ベルト207、210に埋設されている心線は、ポリエステルコードを用いた撚糸ロープである。
 実施例2のオートテンショナ205および比較例1のオートテンショナ208は、実施例1のオートテンショナと同じ構造を有するものを用いた。以下の説明において、オートテンショナ205、208の各構成要素に、上記実施形態と同じ符号を用いる。実施例2および比較例1のオートテンショナ205、208は、軸Rを通る水平面HPに対する摩擦部材6の円弧面60の位置が互いに異なるようフレーム220に取り付けた。以下の説明において、水平面HPより軸Rを中心として上方に角度X°だけ離れた位置を、水平面HP+X°の位置と称し、水平面HPより軸Rを中心として下方に角度X°だけ離れた位置を、水平面HP-X°の位置と称する。
 実施例2のオートテンショナ205は、アーム3の揺動に伴いベース2の外筒部21の内周面に対して摺動する際に、円弧面60が軸Rを通る水平面HP以上の高さに留まるようにした。具体的には、図7の(a)および図7の(b)に示すように、円弧面60の最下端が、水平面HPと、水平面HP+10°の位置との間に留まるようにした。つまり、図7の(b)に示すように、ベルト207の張力が減少して摩擦部材6の円弧面60がX方向に最大に摺動したとき、摩擦部材6の円弧面60の最下端が水平面HP上に位置し、図7の(a)に示すように、ベルト207の張力が増加して摩擦部材6の円弧面60がX方向と逆方向に最大に摺動したとき、摩擦部材6の円弧面60の最下端が水平面HP+10°の位置にあるように、オートテンショナ205をフレーム220に取り付けた。
 比較例1のオートテンショナ208は、アーム3の揺動に伴いベース2の外筒部21の内周面に対して摺動する際に、軸R方向に見て、円弧面60が軸Rを通る水平面HP以下の高さに留まるようにした。具体的には、図7の(c)および図7の(d)に示すように、円弧面60の最上端が、水平面HPと、水平面HP-10°の位置との間に留まるようにした。つまり、図7の(d)に示すように、ベルト207の張力が減少して摩擦部材6の円弧面60がX方向に最大に摺動したとき、摩擦部材6の円弧面60の最上端が水平面HP上に位置し、図7の(c)に示すように、ベルト207の張力が増加して摩擦部材6の円弧面60がX方向と逆方向に最大に摺動したとき、摩擦部材6の円弧面60の最上端が水平面HP-10°の位置にあるように、オートテンショナ208をフレーム220に取り付けた。
 泥水滴下装置は2つの泥水滴下ノズル211、212を有する。実施例2および比較例1のオートテンショナ205、208のベース2の外筒部21とアーム3との間に形成されている環状隙間30aの上方に2つの泥水滴下ノズル211、212をそれぞれ配置して、単位時間当たりに略一定容量の泥水を、オートテンショナ205、208の内部(外筒部21の内側)に浸入させることができるようにした。泥水の滴下の方式は、点滴装置のごとく、重力落下式とした。泥水としては、JIS Z8901:2006に定める試験用粉体(JIS8種:関東ローム焼成品)を5重量%濃度で水に分散させた懸濁液を用いた。
 試験は、雰囲気温度95℃で行った。ベルト207、210の初期張力は330Nであった。初期張力を付与してから、慣らし走行(10秒程度)を行い、駆動プーリ203を停止させた後、泥水を5分間で500cc滴下した。泥水滴下を停止した後、駆動プーリ203を時計回りに回転数1200rpmで25分間駆動させた。泥水の滴下(5分間)と駆動プーリ203の駆動(25分間)を1サイクルとして、合計7サイクル繰り返した。その後、駆動プーリ203を回転数1200rpmで12時間連続して駆動させた。この間、次第に泥水に含まれる水媒体は蒸発し、異物(固形分)だけがベース2の外筒部21内に堆積することになる。
 駆動プーリ203を停止させた直後、実施例2および比較例1のオートテンショナ205、208をフレーム220から取外して、後述する3つの評価項目について判定した。評価はオートテンショナ205、208を分解せずに行った。評価に要した時間は約0.5時間であった。つまり、最初の泥水滴下から評価までの合計時間は16時間である。評価A(合格)である限り、以降、目標試験時間300時間(実車寿命に相当)に至るまで、上述の操作(計16時間の操作)を繰り返すものとした。300時間に達した場合、摩擦部材6は、約2000万回往復して摺動する計算になる。また、実施例2および比較例1のオートテンショナ205、208をフレーム220に固定する前に、3つの評価項目に関する測定を行い、試験前の初期値を測定しておいた。
 <評価方法:アーム傾き量>
 1つ目の評価項目は、アームの傾き量である。摩擦部材6の円弧面60の摩耗度合いは、オートテンショナを分解しないと評価できない。そこで、摩擦部材6の円弧面60の摩耗度合いの代用特性として、アーム3の円弧面60側への傾き量を測定した。具体的には、以下のA寸法およびB寸法を測定することにより、アーム3の傾き量[°]を算出した。図8に示すように、アーム3が傾く前の揺動軸8の中心軸を軸R0とし、アームが傾いた後の揺動軸8の中心軸を軸R1とする。A寸法は、軸R0(または軸R1)方向に見て摩擦部材6の円弧面60を円弧方向に二等分する周方向位置における、アーム3の前面外縁から軸R0方向に沿ったベース2の台座部20の後面外縁までの高さ寸法とした。B寸法は、軸R0(または軸R1)方向に見てA寸法の測定位置から180°離れた周方向位置における、アーム3の前面外縁から軸R0方向に沿ったベース2の台座部20の後面外縁までの高さ寸法とした。なお、本発明における「ベースの円筒部の中心軸」は、軸R0に限らず、軸R1であってもよい。
 アームの傾き量が1°以下で、且つ、アーム傾き量の増加が緩やかである場合に、評価A(合格)とし、アームの傾き量が1°を超える場合に、評価C(不合格)とし、アームの傾き量が1°以下で、且つ、アーム傾き量の増加が顕著である場合に、評価B(要注意)とした。
 <評価方法:減衰トルク>
 2つ目の評価項目は、減衰トルクである。実施例2および比較例1のオートテンショナ205、208について、トルク測定装置を用いてトルク測定を行って、トルクカーブ(アーム回動角度と減衰トルクとの関係を示す線図)を得て、このトルクカーブから、コイルばね5の組み付け時にアーム3を回動させる角度(以下、アーム回動角度という、例えば60°)における減衰トルクの幅[N・m]を読み取った。ここで、減衰トルクの幅[N・m]とは、任意のアーム回動角度(例えば60°)における、ベルトを緩ませる方向の減衰トルク[N・m]から、ベルトを張る方向の減衰トルク[N・m]を差し引いた値を指す。
 減衰トルクの幅が4N・m以上で、且つ、トルクカーブに乱れが無い場合は、評価A(合格)とした。上記幅が4N・m未満の場合に、評価C(不合格)とした。上記幅が4N・m以上であるが、トルクカーブに乱れが認められる場合は、評価B(要注意)とした。
 <評価方法:スプリングトルク>
 3つ目の評価項目は、スプリングトルクである。実施例2および比較例1のオートテンショナ205、208について、上記減衰トルクに関する評価で得られたトルクカーブを基に、コイルばね5の組み付け時のアーム回動角度(コイルばね5の捩じり角度、例えば60°)におけるコイルばね5の捩じりトルク[N・m]を演算で算出した。
 捩じりトルク[N・m]が、20N・m以上28N・m以下の場合、評価A(合格)とし、20N・m未満または28N・m超の場合、評価C(不合格)とした。
 <評価結果:アーム傾き量>
 図9は、実施例2と比較例1のアームの傾き量[°]と試験時間との関係を示すグラフである。実施例2は、目標試験時間300時間のみならず390時間まで試験を続行したが、アーム傾き量は、試験前の初期値(0.3°強)に対し概ね0.4°~0.5°の範囲内で終始安定しており、余裕をもって評価A(合格)の評価結果となった。
 390時間での試験終了後、オートテンショナ205を分解し、摩擦部材6の円弧面60の摩耗状態、円弧面60と対向するベース2の外筒部21の内周面の状態等を目視で確認した。その結果、円弧面60の摩耗深さ(最大)は、僅か0.15mmと問題ないレベルであった。また、ベース2の外筒部21の内周面において円弧面60と対向する部分には、異物の堆積は認められなかった。
 一方、比較例1は、僅か32時間(摩擦部材6の摺動:約200万回往復)で、アーム傾き量は0.6°に達し、試験前の初期値(0.4°強)からの増加が顕著と認められた(評価B)。そのため、この時点で試験を打ち切った。
 32時間で試験を終了した後、オートテンショナ208を分解し、摩擦部材6の円弧面60の摩耗状態、円弧面60と対向するベース2の外筒部21の内周面の状態等を目視で確認した結果、円弧面60の摩耗深さ(最大)は、0.25mmに達し、試験時間を考慮すると実施例2に比べ摩耗が顕著で、問題視すべきレベルとなった。また、ベース2の外筒部21の内周面において円弧面60と対向する部分には、異物の堆積が相当量認められた。
 なお、試験を打ち切らずにそのまま試験を続行した場合、アームの傾き量が1°に達する試験時間は僅か70時間と推定され、このときの摩擦部材6の円弧面60の摩耗深さ(最大)は0.40mmにも達すると推定された。
 このように、実施例2は、比較例1に比べ、摩擦部材6の円弧面60に対する摩耗抑制効果が顕著であることが分かった。
 <評価結果:減衰トルク>
 実施例2の減衰トルクの幅は、試験前の初期値(10N・m)に対し、試験中は安定した値(概ね5~7N・m)で推移し、且つ、試験途中で測定したトルクカーブにも乱れが認められなかった(評価A)。
 一方、比較例1では、減衰トルクの幅は、実施例2と同様に問題なかったが、試験途中で測定したトルクカーブに乱れが認められた(評価B)。これは、摩擦部材6の円弧面60とベース2の外筒部21の内周面との間に異物が介在したためと考えられる。
 <評価結果:スプリングトルク>
 実施例2および比較例1ともに、スプリングトルクの値は、試験前の初期値(25N・m)に対し、試験中は安定した値(概ね22~23N・m)で推移していた(評価A)。
 本出願は、2016年6月27日付出願の日本特許出願2016-126315、及び2017年6月8日付出願の日本特許出願2017-113115に基づくものであり、その内容はここに参照として取り込まれる。
 1 オートテンショナ
 2 ベース
 3 アーム
 4 テンショナプーリ
 5 コイルばね
 6 摩擦部材
 21 外筒部(円筒部)
 60 円弧面
 100 補機駆動ベルトシステム
 105 ベルト
 R 軸(中心軸)
 HP 水平面

Claims (2)

  1.  円筒部を有するベースと、
     前記ベースに対して前記円筒部の内周面の中心軸を中心に回動自在に支持されたアームと、
     前記アームに回転自在に設けられるとともに、ベルトが巻き掛けられるテンショナプーリと、
     前記円筒部の内周面と前記アームとの間に前記円筒部の径方向に挟まれるとともに、前記アームに係止されて、前記円筒部の内周面に対して摺動可能な円弧面を有する摩擦部材と、
     前記アームを前記ベースに対して一方向に回動付勢するコイルばねと、を備え、
     前記テンショナプーリに巻き掛けられた前記ベルトの張力が変化して前記アームが揺動する際に、前記円弧面と前記円筒部の内周面との間に摩擦力を生じさせることで前記アームの揺動を減衰させる、補機駆動ベルトシステムに備わるオートテンショナにおいて、
     前記摩擦部材は、前記アームの揺動に伴い前記円筒部の内周面に対して摺動する際に、前記円弧面が前記中心軸を通る水平面以上の高さに留まるように、設けられている、補機駆動ベルトシステムに備わるオートテンショナ。
  2.  前記摩擦部材は、前記中心軸方向に見て前記円弧面の中心角が150°未満であり、かつ、前記ベルトに所定の初期張力が付与された時点で前記中心軸方向に見て、前記円筒部の内周面における最上部の位置が、前記円弧面の中央部であって中心角が10°の領域に接するように設けられている、請求項1に記載の補機駆動ベルトシステムに備わるオートテンショナ。
     
PCT/JP2017/023412 2016-06-27 2017-06-26 補機駆動ベルトシステムに備わるオートテンショナ WO2018003746A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA3023428A CA3023428C (en) 2016-06-27 2017-06-26 Auto tensioner provided in auxiliary device drive belt system
US16/312,525 US10968987B2 (en) 2016-06-27 2017-06-26 Auto tensioner provided in auxiliary device drive belt system
EP17820101.8A EP3477153B1 (en) 2016-06-27 2017-06-26 Auto tensioner provided in auxiliary device drive belt system
KR1020187037119A KR20190007062A (ko) 2016-06-27 2017-06-26 보기 구동 벨트 시스템에 구비되는 오토텐셔너
KR1020207034596A KR102297159B1 (ko) 2016-06-27 2017-06-26 보기 구동 벨트 시스템에 구비되는 오토텐셔너
CN201780039779.XA CN109416110B (zh) 2016-06-27 2017-06-26 辅机驱动带***具备的自动张紧器
BR112018077174-0A BR112018077174B1 (pt) 2016-06-27 2017-06-26 Auto tensor a ser fornecido em um sistema de correia de acionamento de auxiliar

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016126315 2016-06-27
JP2016-126315 2016-06-27
JP2017113115A JP6527550B2 (ja) 2016-06-27 2017-06-08 補機駆動ベルトシステムに備わるオートテンショナ
JP2017-113115 2017-06-08

Publications (1)

Publication Number Publication Date
WO2018003746A1 true WO2018003746A1 (ja) 2018-01-04

Family

ID=60786734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023412 WO2018003746A1 (ja) 2016-06-27 2017-06-26 補機駆動ベルトシステムに備わるオートテンショナ

Country Status (1)

Country Link
WO (1) WO2018003746A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180363742A1 (en) 2017-06-16 2018-12-20 Gates Corporation Tensioner
AU2018274947B2 (en) * 2018-12-03 2020-05-14 Gates Corporation, a Delaware Corporation Tensioner
US10989280B2 (en) 2017-06-16 2021-04-27 Gates Corporation Tensioner
US10995829B2 (en) 2017-06-16 2021-05-04 Gates Corporation Tensioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10274296A (ja) * 1997-03-21 1998-10-13 Gates Corp:The ベルトテンショナ
JP2011007273A (ja) * 2009-06-26 2011-01-13 Shigeru Kawamoto オートテンショナ
JP5276520B2 (ja) * 2008-10-10 2013-08-28 智和 石田 オートテンショナ
WO2015125691A1 (ja) * 2014-02-18 2015-08-27 三ツ星ベルト株式会社 オートテンショナ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10274296A (ja) * 1997-03-21 1998-10-13 Gates Corp:The ベルトテンショナ
JP5276520B2 (ja) * 2008-10-10 2013-08-28 智和 石田 オートテンショナ
JP2011007273A (ja) * 2009-06-26 2011-01-13 Shigeru Kawamoto オートテンショナ
WO2015125691A1 (ja) * 2014-02-18 2015-08-27 三ツ星ベルト株式会社 オートテンショナ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3477153A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180363742A1 (en) 2017-06-16 2018-12-20 Gates Corporation Tensioner
US10968988B2 (en) 2017-06-16 2021-04-06 Gates Corporation Tensioner
US10989280B2 (en) 2017-06-16 2021-04-27 Gates Corporation Tensioner
US10995829B2 (en) 2017-06-16 2021-05-04 Gates Corporation Tensioner
AU2018274947B2 (en) * 2018-12-03 2020-05-14 Gates Corporation, a Delaware Corporation Tensioner

Similar Documents

Publication Publication Date Title
JP6527550B2 (ja) 補機駆動ベルトシステムに備わるオートテンショナ
WO2018003746A1 (ja) 補機駆動ベルトシステムに備わるオートテンショナ
JP4914747B2 (ja) ベルトテンショナ用摺動材の製造方法およびベルトテンショナ
CN107835907B (zh) 具有二次阻尼的张紧器
CA2358770C (en) Thin autotensioner
US6767303B2 (en) Autotensioner
JP6162162B2 (ja) オートテンショナ
US8267821B2 (en) Mechanical tensioner with damping mechanism
JP7300549B1 (ja) オートテンショナ
KR20240099502A (ko) 오토 텐셔너
JP5071561B2 (ja) 一方向クラッチ内蔵型プーリ装置
JP2024088617A (ja) オートテンショナ
JP3455193B2 (ja) オートテンショナ
JP5948110B2 (ja) オートテンショナ
BR112018077174B1 (pt) Auto tensor a ser fornecido em um sistema de correia de acionamento de auxiliar
JPH0842649A (ja) テンショナ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3023428

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820101

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187037119

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018077174

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017820101

Country of ref document: EP

Effective date: 20190128

ENP Entry into the national phase

Ref document number: 112018077174

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181227