WO2017213085A1 - 多層配線板の製造方法 - Google Patents

多層配線板の製造方法 Download PDF

Info

Publication number
WO2017213085A1
WO2017213085A1 PCT/JP2017/020830 JP2017020830W WO2017213085A1 WO 2017213085 A1 WO2017213085 A1 WO 2017213085A1 JP 2017020830 W JP2017020830 W JP 2017020830W WO 2017213085 A1 WO2017213085 A1 WO 2017213085A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring board
printed wiring
insulating film
electrical connection
hole
Prior art date
Application number
PCT/JP2017/020830
Other languages
English (en)
French (fr)
Inventor
勇人 田辺
詠逸 品田
雅広 加藤
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR1020187033290A priority Critical patent/KR102346221B1/ko
Priority to US16/307,505 priority patent/US11291124B2/en
Priority to SG11201810482XA priority patent/SG11201810482XA/en
Priority to JP2018522478A priority patent/JP6819682B2/ja
Publication of WO2017213085A1 publication Critical patent/WO2017213085A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4623Manufacturing multilayer circuits by laminating two or more circuit boards the circuit boards having internal via connections between two or more circuit layers before lamination, e.g. double-sided circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/429Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • H05K3/462Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination characterized by laminating only or mainly similar double-sided circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0047Drilling of holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/107Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by filling grooves in the support with conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/0959Plated through-holes or plated blind vias filled with insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1105Heating or thermal processing not related to soldering, firing, curing or laminating, e.g. for shaping the substrate or during finish plating

Definitions

  • the present invention relates to a method for manufacturing a multilayer wiring board.
  • a multilayer wiring board manufacturing method a plurality of double-sided copper-clad laminates formed with a circuit are alternately laminated with an insulating adhesive and integrated to form a multilayer wiring board, and the multilayer wiring board is penetrated to a necessary portion. It is common to provide a structure (through-through hole) for electrically connecting the circuits of each layer by making a hole and plating the inner wall.
  • a plurality of printed wiring boards each provided with through-holes are laminated and integrated into a multilayer wiring board, and then a plurality of printed wiring boards
  • IH interstitial via holes
  • through holes are formed through the entire thickness of the multilayer wiring board to provide electrical connection between them.
  • the multilayer wiring board with IVH can be drilled with a small diameter and can cope with a narrow pitch compared to the multilayer wiring board in which the entire thickness is electrically connected through through-holes.
  • interlayer connection using non-through holes that connect only adjacent layers was proposed.
  • a build-up layer with wiring formed on the surface is formed on an insulating substrate on which a circuit is formed, a non-through hole (a hole penetrating only the build-up layer) is provided by a laser or the like, and the inner wall is plated,
  • a so-called build-up method in which build-up layers are sequentially stacked according to the required number of layers.
  • each company has proposed a manufacturing technology for a multilayer wiring board with a through-through-hole structure using a conductive paste or anisotropic conductive material as an interlayer connection material without using plating. For example, the following are well known.
  • Patent Document 1 a thin prepreg made of a non-woven fabric impregnated with a thermosetting resin is punched, and a hole filled with a conductive paste is sandwiched between two double-sided circuit boards. Are laminated, heated and pressurized, and bonded so that the circuits of the two double-sided circuit boards are electrically connected by the conductive paste filled in the holes of the prepreg to produce one multilayer wiring board A method is disclosed.
  • Patent Document 2 a conductive bump having a mountain shape or a substantially conical shape is formed on a conductive plate, and then the conductive bump is pressed through a heat-softened insulating prepreg base material to form the conductive bump.
  • a method of forming an interlayer connection is disclosed.
  • Patent Document 3 an adhesive resin sheet having a deformed via hole drilled with an opening area corresponding to a conductor area ratio is arranged between circuit boards having a plurality of regions having different conductor area ratios, and the conductive material is electrically conductive in the deformed via hole.
  • a method of manufacturing a single multilayer wiring board by filling a paste and performing hot pressing is disclosed.
  • the components mounted on the multilayer wiring board are mainly by surface mounting, and the connection terminals for connecting the component and the multilayer wiring board are becoming narrower year by year. Furthermore, the number of components to be mounted has been increasing year by year, and there has been a demand for narrowing the hole pitch and increasing the number of signal lines for electrical connection of multilayer wiring boards.
  • interlayer connection is performed using a conductive paste filled in a hole in a prepreg containing a nonwoven fabric. Therefore, due to the difference in thickness due to the density of the nonwoven fabric, the height between the layers to be connected ( Distance) may vary, and the connection resistance value may become unstable. Therefore, it is considered that it is difficult to perform processing with high positional accuracy in a multilayer wiring board on which mounting components having a minute joint terminal pitch are mounted with high density.
  • the bump may not properly penetrate due to the influence of the bump height or the warp of the substrate, and due to the difference in thickness due to the density of the nonwoven fabric, Variations in ease of use. For this reason, there is a risk of problems in terms of yield and reliability.
  • the present invention has been made in view of the above situation, and has a hole for electrical connection that is excellent in connection reliability, has a high plate thickness, has a small diameter and a narrow pitch, and has a small junction terminal pitch. It is an object of the present invention to provide a production method capable of easily producing a high-density multilayer wiring board.
  • the manufacturing method of the multilayer wiring board of the present invention relates to the following.
  • Printed wiring board manufacturing that prepares a plurality of printed wiring boards having both electrical connection pads that electrically connect printed wiring boards and non-connected pads that do not electrically connect printed wiring boards in the same plane Step (I) and the conductive material in which the plurality of printed wiring boards are stacked so that the electrical connection pads face each other, and the plurality of printed wiring boards are arranged between the opposing electrical connection pads
  • the method of manufacturing a multilayer wiring board having the lamination step (II) of laminating so as to be bonded together in the printed wiring board manufacturing step (I), the plurality of printed wiring boards are stacked in the lamination step (II).
  • An insulating film in which a through hole is formed at a position corresponding to the electrical connection pad on the surface is attached to at least one of the surfaces opposed to each other (Ia).
  • a method for manufacturing a multilayer wiring board Disposing the conductive material in the through hole formed in Irumu (Ib), a method for manufacturing a multilayer wiring board.
  • the insulating film includes a thermosetting resin composition having a glass transition temperature of 180 ° C. or higher. 3.
  • 3. 3 The method for producing a multilayer wiring board according to 1 or 2 above, wherein in the printed wiring board production step (I), the insulating film contains particles such as a filler as a reinforcing material. 4).
  • the temperature 70 6 After placing the conductive material in the through hole formed in the insulating film (Ib), and before the step (II) of laminating a plurality of printed wiring boards, the temperature 70 6.
  • an insulating film is pasted on both surfaces facing each other when the plurality of printed wiring boards are stacked in the laminating process (II).
  • the insulating film having a through hole provided only at a position corresponding to the above, and the insulating film having a through hole provided at a position corresponding to both the electrical connection pad and the non-connection pad on the other surface is used. 7.
  • a plurality of alignment holes are arranged at the same location on the plane of a plurality of printed wiring boards, and the printed wiring boards are aligned by inserting pins into the arranged alignment holes.
  • the stacking step (II) is characterized in that a portion where the electrical connection pads are not disposed on the surface where the electrical connection pads are disposed is filled with an insulating material.
  • a method of manufacturing a multilayer wiring board 10.
  • the thickness of the insulating film attached to the printed wiring board is from the through hole formed in the insulating film. 10.
  • At least two or more printed wiring boards are integrated and laminated, and the printed wiring boards are electrically connected to each other, so that the connection reliability is excellent, the high thickness, the small diameter, and the narrow pitch. It is possible to provide a manufacturing method for easily manufacturing a high-density multilayer wiring board having holes for electrical connection and having a small junction terminal pitch.
  • FIG. D It is a schematic cross section which shows the state (Ib) which has arrange
  • A Schematic cross section showing a state (IIa) in which the first, second, and third printed wiring boards are arranged so that the surface on which the conductive material is disposed and the surface on which the conductive material is not disposed are opposed to each other.
  • FIG. (B) It is a schematic cross section which shows the state (IIb) after performing heating and pressurization lamination.
  • the method for manufacturing a multilayer wiring board according to the present embodiment includes both electrical connection pads that electrically connect printed wiring boards and non-connection pads that do not electrically connect printed wiring boards in the same plane.
  • a printed wiring board manufacturing step (I) for preparing a plurality of printed wiring boards of the first, second and third, and a plurality of printed wiring boards are stacked so that the electrical connection pads face each other.
  • a method for manufacturing a multilayer wiring board including a lamination step (II) in which a plurality of printed wiring boards are laminated so as to be bonded by a conductive material disposed between the opposing electrical connection pads, a printed wiring board manufacturing step ( In I), an insulating material in which a through hole is formed in at least one of the surfaces facing each other when the plurality of printed wiring boards are stacked in the stacking step (II) at a position corresponding to the electrical connection pad on the surface.
  • Paste Irumu (Ia) arranging the conductive material in the through hole formed in the insulating film (Ib), a method for manufacturing a multilayer wiring board.
  • an “electrical connection pad” is a pad for electrically connecting printed wiring boards, which are stacked so as to face each other through a conductive material described later, and bonded by a conductive material. It is a pad that is electrically connected between printed wiring boards by being laminated. Further, the “non-connected pad” refers to a pad that is not used for electrically connecting the printed wiring boards.
  • the “first, second, and third printed wiring boards having both electrical connection pads and non-connection pads in the same plane” are the first, second, and third plurality. Each printed wiring board of a single printed wiring board is said to have both electrical connection pads and non-connection pads on at least one of its front and back surfaces.
  • the electric connection pad and the non-connection pad may be provided on a different one of the front and back surfaces.
  • the first printed wiring board has both electrical connection pads and non-connection pads on the front surface
  • the second printed wiring board and the third printed wiring board have electrical connection pads and non-connection pads on the back surface. And both.
  • Each process of the manufacturing method of the multilayer wiring board of this embodiment is demonstrated with reference to FIGS. First, the first printed wiring board 8, the second printed wiring board 9, and the third printed wiring board 10 are manufactured.
  • Each printed wiring board may be a double-sided circuit board, a multilayer wiring board, or a multi-wire wiring board in which a necessary wiring pattern is formed with an insulating coated wire.
  • the type of the supporting substrate 1 used for the printed wiring board is not limited, but an insulating substrate containing a reinforcing material such as a glass cloth is preferable in order to control deformation (dimensional change) due to pressure heating during lamination, Further, a substrate having a high glass transition temperature, such as a FR (Frame Retrantant) -5 grade substrate of NEMA (National Electrical Manufacturers Association) standard or a polyimide resin type, is preferable.
  • FR Framework Retrantant
  • NEMA National Electrical Manufacturers Association
  • the first printed wiring board 8, the second printed wiring board 9, and the third printed wiring board 10 are electrically connected in holes formed so as to penetrate the printed wiring board.
  • Through-hole plating is applied by copper plating or electroless copper plating, and the inside of the hole is filled with a non-conductive material (hole filling resin 3), and a metal layer is formed so as to cover and connect with the plating layer in the through-through hole
  • the printed wiring board has a so-called hole filling and lid plating.
  • the surface finish of the first printed wiring board 8, the second printed wiring board 9, and the third printed wiring board 10 is preferably gold plating.
  • copper plating is often used when securing the connectivity of through holes and performing lid plating.
  • a copper oxide film may be formed on the surface, and the connectivity with the conductive material 6 may be reduced.
  • a protective film such as gold is preferably on the surface.
  • the broken line shown by the pad 2 in FIG. 2A shows a case having such a protective film, but this broken line is omitted for other pads.
  • a pad 2 is formed on the surface to which the first printed wiring board 8, the second printed wiring board 9, and the third printed wiring board 10 are electrically connected.
  • the surfaces to be electrically connected may have non-connection pads or lands, and wiring as necessary.
  • an insulating film 4 to be attached to at least one of the opposing surfaces between the printed wiring boards is produced.
  • the insulating film 4 is provided with through holes 7 at the same positions as the electrical connection pads of the first printed wiring board 8, the second printed wiring board 9, and the third printed wiring board 10.
  • the through hole 7 provided in the insulating film 4 may be opened by any method, and can be formed by, for example, drilling or laser drilling. In the drilling process, it is preferable that release films 5 (for example, PET films) are pasted on both surfaces of the insulating film 4 in order to suppress foreign matter adhesion to the insulating film 4.
  • the release film 5 includes a single-sided release PET film manufactured by Teijin DuPont, trade name: A-53.
  • the insulating film 4 When the insulating film 4 is drilled, it may be drilled in the same location as the electrical connection pad. However, in order to produce a printed wiring board with better positional accuracy and excellent connection reliability, Drilling is preferably performed with an opening diameter of 0 to 200 ⁇ m larger than the diameter, and more preferably with an opening diameter of 25 to 75 ⁇ m larger than the electrical connection pad. In the printed wiring board having both the electrical connection pads and the non-connection pads in the same plane, the first printed wiring board 8 and the third printed wiring board are provided in order to ensure a sufficient insulation distance of the non-connection pads. It is preferable that the insulating film 4 to be attached to at least one of the 10 opposing surfaces is drilled only at the same location as the electrical connection pads on the surface to be attached.
  • an insulating film 4 having through holes 7 formed in the same locations as the electrical connection pads is attached to the surface of the first printed wiring board 8 provided with the electrical connection pads. wear.
  • the insulating film 4 is preferably affixed to at least one surface of the first printed wiring board 8 and the third printed wiring board 10 facing each other.
  • the first printed wiring board 8 and the third printed wiring board 10 It is more preferable to affix on both sides of the surface to be opposed.
  • the second printed wiring board 9 and the third printed wiring board 10 are also used in the second printed wiring board 9 and the third printed wiring board 10. It is preferable to affix the insulating film 4 to at least one surface of the facing surface of the wiring board 10, and the insulating film 4 is disposed on both surfaces of the facing surfaces of the second printed wiring board 9 and the third printed wiring board 10. It is more preferable to paste.
  • the insulating film 4 on the side where the conductive material 6 is arranged is insulated with the same locations as the electrical connection pads.
  • the insulating film 4 to which the conductive material 6 is not attached is preferably attached to the insulating film 4 in which both the electrical connection pads and the non-connection pads are perforated.
  • the actual positions are such that the non-connection pads face each other and the electrical connection pads face each other. Since the interlayer distance is different (FIG. 4B), connection failure may occur when bonded.
  • the insulating film shown in FIG. 4A is used, the pad is secured while ensuring insulation. There is no lateral gap, and sufficient connection reliability can be ensured.
  • the thickness of the insulating film 4 is preferably thicker than the pad thickness of the pad exposed from the through hole 7 formed by drilling.
  • the insulating film thickness is preferably 100 to 500 when the pad thickness is defined as 100.
  • the insulating film 4 may be anything as long as it has insulating properties, but is preferably a resin composition containing a polymer component capable of controlling fluidity, and more preferably a thermosetting resin. Furthermore, since it is necessary to withstand the reflow conditions during component mounting, the glass transition temperature of the cured product is preferably 150 ° C. or higher, and more preferably 180 ° C. or higher. Moreover, in order to suppress the thermal expansion coefficient of the hardened
  • the insulating film is a film made of a resin composition or a film made of a resin composition and a filler.
  • the insulating film 4 may further contain fibers.
  • the length of the fiber is preferably 200 ⁇ m or less from the viewpoint of preventing adverse effects on the processing of small diameter / narrow pitch holes.
  • the insulating film 4 preferably does not contain a nonwoven fabric made of glass fiber or carbon fiber, or glass cloth / carbon cloth.
  • the connection resistance value is unstable because the height between the electrical connection pads varies due to the difference in thickness due to the density of the non-woven cloth / cloth. It may become.
  • the glass transition temperature can be measured by the following method.
  • Sample preparation method The thermosetting resin composition was applied onto release PET (manufactured by Teijin DuPont Films, trade name: A-53) using an applicator so that the film thickness after drying was 100 ⁇ m, and the temperature was 130 ° C. And drying for 30 minutes to produce a semi-cured film. Thereafter, the semi-cured film is peeled off from the release PET and fixed by sandwiching the semi-cured film between two metal frames, and dried at a temperature of 185 ° C. for 60 minutes for curing. A film made of the curable resin composition is prepared.
  • the conductive material 6 is disposed on the electrical connection pads exposed from the through holes 7 formed in the insulating film 4 attached to at least one surface of the wiring board 10.
  • the conductive material 6 may be any material as long as it has conductivity. However, the conductive material 6 is melted at a lamination temperature (200 ° C. or less) in a general printed wiring board and is electrically connected to an electrical connection pad. A bond is formed, and the remelting temperature after formation is preferably 250 ° C. or higher. Examples of the conductive material 6 include ORMET, trade name: HT-710, TATSUTA ELECTRIC CO., LTD, trade name: MPA500, and the like.
  • the conductive material 6 can be disposed in the through hole 7 formed in the insulating film 4 by a screen printing method, a dispenser method, or the like. Some of the conductive materials 6 maintain viscosity and facilitate screen printing and dispenser processing by mixing a metal material with a binder resin. When such a conductive material 6 is used, in order to maintain the shape of the conductive material 6, it is preferable to perform heat treatment after the conductive material 6 is arranged, to pre-cure the binder resin, and to increase the viscosity. Heat treatment can be performed at a temperature of 70 to 150 ° C. for a time of 10 to 120 minutes to increase the viscosity and maintain the shape. When the temperature is lower than 70 ° C.
  • the viscosity cannot be sufficiently increased, and the shape may collapse.
  • the temperature is higher than 150 ° C. and the time is longer than 120 minutes, the viscosity becomes too high, or the binder resin is hardened, and a sufficient intermetallic compound cannot be formed even when the conductive material 6 is melted. In some cases, it cannot be deformed during lamination, and sufficient connectivity cannot be ensured.
  • one first printed wiring board 8, at least one third printed wiring board 10 and one second printed wiring board 9 are sequentially conductive.
  • the surface on which the conductive material 6 is disposed and the surface on which the conductive material 6 is not disposed are disposed so as to face each other (IIa), and heating and pressure lamination is performed as shown in FIG. IIb).
  • the electrical connection pads between the respective printed wiring boards are electrically connected by being bonded via the conductive material 6.
  • a protective film is peeled before superimposing substrates.
  • a plurality of alignment holes are arranged at the same place on the plane of the first printed wiring board 8, the second printed wiring board 9, and the third printed wiring board 10, and the first printed wiring board
  • a pin shorter than the thickness of the multilayer wiring board after lamination and longer than the total thickness of the first printed wiring board 8 and the third printed wiring board 10 to be laminated is inserted into the alignment hole arranged in the board 8. Then, by inserting the pins into the alignment holes arranged in the third printed wiring board 10 and further into the alignment holes arranged in the second printed wiring board 9, the printed wiring boards are aligned with each other. It is preferable to stack the layers while performing the process because the printed wiring boards can be accurately aligned with each other.
  • the size and shape of the printed wiring board and the number of conductor layers are not particularly limited, and the multilayer wiring board 11 may be manufactured by combining printed wiring boards having different sizes and different shapes.
  • At least two or more printed wiring boards are integrated and laminated, and the printed wiring boards are electrically connected to each other, so that the connection reliability is excellent, the high thickness, the small diameter, and the narrow pitch. It is possible to provide a manufacturing method for easily manufacturing a high-density printed wiring board having a hole for electrical connection and having a small junction terminal pitch.
  • FIG. 1 shows the flow of the manufacturing process of Example 1 of the present invention.
  • the positions of the substrates were aligned by a pin lamination method, an electrolytic copper foil having a thickness of 18 ⁇ m and a size of 540 mm ⁇ 540 mm (manufactured by Nippon Electrolytic Co., Ltd., trade name: YGP-18) as the outermost layer, and the above-mentioned as the inner layer.
  • Two prepregs (product name: GEA-679, manufactured by Hitachi Chemical Co., Ltd.) having a nominal thickness of 0.03 mm and a size of 510 mm ⁇ 510 mm of the inner layer substrate and the resin layer are alternately laminated, and then heated with a vacuum press.
  • the substrate was cut into a substrate size of 500 mm ⁇ 500 mm to form a multilayer wiring board having a thickness of 3.0 mm.
  • a hole with a depth of 1.8 mm is drilled from one surface of the substrate to the inner layer position with a drill having a diameter of 0.15 mm and a blade length of 4.0 mm, and from the other surface to the hole position on one surface.
  • a hole having a depth of 1.8 mm was drilled to obtain a through hole.
  • the minimum pitch of the through holes was 0.40 mm.
  • the hole filling resin (trade name: THP-100DX1 manufactured by Taiyo Ink Mfg. Co., Ltd.) was filled in the through hole by screen printing using a vacuum printing machine, and then thick electroless copper plating was used. 30 ⁇ m lid plating was performed.
  • the copper foil was etched by a tenting method to form a surface layer circuit, and a first printed wiring board was obtained. At this time, electrical connection pads and non-connection pads between the printed wiring boards were arranged on the surface layer.
  • a second printed wiring board and a third printed wiring board were produced using the same material structure and process as the first printed wiring board. At this time, electrical connection pads and non-connection pads between the printed wiring boards were arranged on the surface layer.
  • thermosetting resin-based insulating film (trade name: AS-401HS, manufactured by Hitachi Chemical Co., Ltd.) having a nominal thickness of 0.065 mm and having a size of 510 mm ⁇ 510 mm and a PET film having a thickness of 0.025 mm bonded on one side. Drilling was performed with a drill using an NC control drilling machine with a hole diameter of 0.30 mm.
  • the insulating film which has been drilled with a drill, is exposed on the surface on which the electrical connection pads between the printed wiring boards of the first printed wiring board and the third printed wiring board are arranged. Then, using a vacuum laminator, pasting was performed under the conditions of a temperature of 85 ° C., a pressure of 0.5 MPa, and a pressurization time of 30 seconds (evacuation 30 seconds).
  • a hole opened in the insulating film by a screen printing method was filled with Tatsuta Electric Co., Ltd. product name: MPA500 as a conductive material.
  • the number of filled holes was 20000.
  • the screen plate was a metal mask having a thickness of 0.1 mm, and an opening was provided at 490 mm ⁇ 490 mm as a printing region.
  • the PET film adhering to the insulating film surface was used as a protective mask for the surface of the substrate where the MPA 500 is not disposed.
  • the 1st printed wiring board, the 2nd printed wiring board, and the 3rd printed wiring board are piled up, and it heats and presses on the press conditions of temperature 180 degreeC, time 90 minutes, and pressure 3MPa with a vacuum press machine. Lamination was performed by pressing and bonding was performed.
  • the third printed wiring board is placed so that the surface on which the electrical connection pads of the third printed wiring board on which the MPA 500 is not disposed is opposed to the surface on which the MPA 500 of the first substrate is disposed.
  • the second printed wiring is arranged so that the surface on which the electrical connection pads of the second printed wiring board on which the MPA 500 is not disposed is opposed to the surface on which the MPA 500 is disposed on the third substrate.
  • the plates were placed one on top of the other.
  • Example 2 Multilayer wiring board as in Example 1 except that polyimide multilayer material MCL-I-671 (trade name, manufactured by Hitachi Chemical Co., Ltd.) and prepreg GIA-671 (trade name, manufactured by Hitachi Chemical Co., Ltd.) are used as the inner layer substrate. Was manufactured.
  • Example 3 A multilayer wiring board was produced in the same manner as in Example 1 except that AS-9500 manufactured by Hitachi Chemical Co., Ltd. was used as the insulating film.
  • Example 4 A multilayer wiring board was produced in the same manner as in Example 1 except that a CO 2 laser processing machine was used for drilling the insulating film.
  • Example 5 A multilayer wiring board was produced in the same manner as in Example 1 except that a temperature of 70 ° C. and a time of 10 minutes were added as preliminary drying conditions after printing the conductive material.
  • Example 6 A multilayer wiring board was produced in the same manner as in Example 1 except that the pre-drying conditions for the conductive material were changed to a temperature of 150 ° C. and a time of 120 minutes.
  • Example 7 A multilayer wiring board was produced in the same manner as in Example 1 except that a heating / pressing press using a positioning pin (length 4.5 mm) was performed during the heating / pressing press.
  • Example 8 A multilayer wiring board was manufactured in the same manner as in Example 1 except that a metal mask was not used as a protective mask when printing the conductive material.
  • Example 9 A multilayer wiring board was produced in the same manner as in Example 1 except that a multi-wire wiring board was used for the produced first printed wiring board and second printed wiring board.
  • Example 10 In the heating / pressing press, a heating / pressing press using a positioning pin (length: 4.5 mm), the surface where the electrical connection pads are arranged, where the electrical connection pads are not arranged.
  • a heating / pressing press using a positioning pin (length: 4.5 mm)
  • undercoat ink (trade name: UC-3000) manufactured by Eikai Co., Ltd.
  • metal mask as a protective mask when printing conductive materials
  • Example 11 instead of the first printed wiring board and the second printed wiring board of Example 1, the first printed wiring board, the second printed wiring board, and at least one or more third printed wiring boards are used.
  • a multilayer wiring board was produced in the same manner as in Example 1 except that at least three printed wiring boards were used.
  • an electrical connection pad between printed wiring boards having a diameter of 0.30 mm was disposed at the position of the through hole. Further, a hole having a diameter of 5.0 mm was provided at a position of 490 mm ⁇ 490 mm at the four corners of the substrate. This substrate was used as the first printed wiring board.
  • a 26-layer wiring board having a thickness of 3.0 mm was formed using the same material and process as those of the first printed wiring board to obtain a second printed wiring board.
  • an electrical connection pad between the printed wiring boards having a diameter of 0.30 mm was disposed at the position of the through hole of 20000 holes.
  • a hole having a diameter of 5.0 mm was provided at a position of 490 mm ⁇ 490 mm at the four corners of the substrate.
  • a glass cloth base material prepreg manufactured by Hitachi Chemical Co., Ltd., trade name: GEA-679F
  • GEA-679F glass cloth base material prepreg having a nominal thickness of 0.06 mm
  • the finished hole diameter was 0.25 mm using a CO 2 laser processing machine. Made a hole.
  • the hole provided in the prepreg using a metal mask was filled with a conductive material (trade name: MPA500, manufactured by Tatsuta Electric Cable Co., Ltd.).
  • the first printed wiring board, the prepreg filled with a conductive material in the hole, and the second printed wiring board are overlapped, and the press conditions are a temperature of 180 ° C., a time of 90 minutes, and a pressure of 3 MPa in a vacuum press machine. Then, heating and pressure pressing was carried out and bonding was performed. At this time, the first printed wiring board and the second printed wiring board are arranged so that the surfaces on which the electrical connection pads are arranged are opposed to each other, and the prepreg is interposed between the first printed wiring board and the second printed wiring board. They were stacked so that they could be pinched.
  • the first printed wiring board, the prepreg, and the second printed wiring board are aligned at the positions of the four corners of the 490 mm ⁇ 490 mm substrate on the plane of the first printed wiring board, the prepreg, and the second printed wiring board.
  • a pin having a length of 5 mm and a diameter of 5.0 mm was inserted into an alignment hole previously opened by a drill having a diameter of 5.0 mm.
  • an electrical connection pad between printed wiring boards having a diameter of 0.25 mm was disposed at the position of the through hole. Further, a hole having a diameter of 5.0 mm was provided at a position of 490 mm ⁇ 490 mm at the four corners of the substrate. This substrate was used as the first printed wiring board.
  • a 26-layer wiring board having a thickness of 3.0 mm was formed using the same material and process as those of the first printed wiring board to obtain a second printed wiring board.
  • an electrical connection pad between the printed wiring boards having a diameter of 0.30 mm was disposed at the position of the through hole of 20000 holes.
  • a hole having a diameter of 5.0 mm was provided at a position of 490 mm ⁇ 490 mm at the four corners of the substrate.
  • eutectic solder paste manufactured by Senju Metal Industry Co., Ltd., trade name: M705-WSG36-T5K
  • the peak A reflow process was performed under the conditions of a temperature of 235 ° C. and a time of 5 seconds to form a chevron-shaped solder bump having a height of 0.13 mm.
  • the first printed wiring board, an insulating film having a nominal thickness of 0.060 mm (trade name: AS-401HS, manufactured by Hitachi Chemical Co., Ltd.) and the second printed wiring board are overlaid on each other with a vacuum press. Heating and pressing were performed under the pressing conditions of a temperature of 180 ° C., a time of 90 minutes, and a pressure of 3 MPa, and bonded.
  • the printed wiring board is overlaid so that the solder bumps formed on the first printed wiring board and the electrical connection pads of the second printed wiring board face each other, and the first printed wiring board and the second printed wiring board
  • an insulating film having a nominal thickness of 0.075 mm manufactured by Hitachi Chemical Co., Ltd., trade name: AS-401HS
  • AS-401HS trade name: AS-401HS
  • the alignment between the printed wiring boards was previously opened with a drill having a diameter of 5.0 mm at the positions of four corners of 490 mm ⁇ 490 mm on the plane of the first printed wiring board and the second printed wiring board. This was done by inserting a pin having a length of 5 mm and a diameter of 5.0 mm into the hole.
  • Example 3 Using a glass cloth base material prepreg (manufactured by Hitachi Chemical Co., Ltd., trade name: GEA-679F) having a nominal thickness of 0.06 mm, on the surface where the electrical connection pads between the printed wiring boards of the first printed wiring board are arranged, The prepreg was placed in contact with the electrical connection pad, and pasting was performed using a vacuum press machine at a temperature of 150 ° C., a pressure of 1.0 MPa, a pressurization time of 30 minutes, and with vacuuming. Further, in the printing of the conductive material, a metal mask in which only the position of the hole where the conductive material is disposed is opened with the same diameter as the hole diameter of the insulating film was used. A multilayer wiring board was manufactured under the same conditions as in Example 1 except for this.
  • connection resistance value measure the resistance value using a milliohm meter at the beginning and end of one daisy chain pattern, and then divide the measured resistance value by 400 holes to obtain the connection resistance value per point. It was. This operation was performed for the entire 50 blocks, and the average was obtained.
  • connection resistance value was measured using a milliohm meter.
  • a high-density multilayer wiring board having a high board thickness, a small diameter, a narrow pitch, and a hole for electrical connection, which has excellent connection reliability, and a minute junction terminal pitch is provided. It was confirmed that it can be easily manufactured.
  • the cause is a variation in height between the electrical connection pads due to the difference in thickness due to the density of the nonwoven fabric, and some of the conductive materials were not in contact.
  • the cause is that the conductive bumps are damaged due to the pressure applied to the conductive bumps, or the bumps are not properly penetrated due to variations in bump height and warping of the printed wiring board.
  • the cause is that, as in Comparative Example 1, due to the difference in the thickness of the nonwoven fabric, variations in height between the electrical connection pads occurred, and some of the conductive materials were not in contact.
  • the use of the metal mask caused a partial misalignment of the conductive material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

プリント配線板間を電気的に接続する電気的接続パッドとプリント配線板間を電気的に接続しない非接続パッドとの両方を同一面内に備える複数枚のプリント配線板を準備する工程(I)と、前記複数枚のプリント配線板を前記電気的接続パッド同士が対向するように重ね、前記複数枚のプリント配線板を前記対向する電気的接続パッド同士の間に配置した導電性材料により接合するように積層する積層工程(II)とを有する多層配線板の製造方法において、前記プリント配線板製造工程(I)では、前記積層工程(II)で前記複数枚のプリント配線板を重ねる際に対向させる面の少なくとも一方の面に、該面上の前記電気的接続パッドに対応する位置に貫通穴が形成された絶縁フィルムを貼り付け(Ia)、前記絶縁フィルムに形成された貫通穴に導電性材料を配置する(Ib)、多層配線板の製造方法。

Description

多層配線板の製造方法
 本発明は、多層配線板の製造方法に関する。
 従来の多層配線板の製造方法では、回路形成された両面銅張積層板を絶縁性接着剤と交互に複数枚重ねて積層一体化して多層配線板とし、必要な箇所に多層配線板を貫通する穴を明けてその内壁をめっきすることにより各層の回路を電気的に接続する構造(貫通スルーホール)を設けることが一般的である。
 また、多層配線板に実装される部品の高密度化に対応するものとして、各個に貫通スルーホールを設けた複数のプリント配線板を積層一体化して多層配線板とした後、複数のプリント配線板間を電気的に接続させるため、必要な箇所に多層配線板の全板厚を貫通する穴を明けて貫通スルーホールを設けた、インタースティシャルバイアホール(IVH:特定の層間のみを接続する非貫通穴)付き多層配線板がある。IVH付き多層配線板は、全板厚を貫通スルーホールで電気的接続を行う多層配線板に比べ、小径の穴明けが可能であり、狭ピッチ化への対応も可能となる。
 更なる高密度化に対応するため、隣接する各層のみを接続する非貫通穴による層間接続が提案された。一例として、回路形成された絶縁基板上に、表面に配線を形成したビルドアップ層を形成し、レーザ等により非貫通穴(ビルドアップ層のみを貫通する穴)を設けてその内壁をめっきし、接続するもので、必要層数に応じて逐次ビルドアップ層を積み重ねて行く、いわゆるビルドアップ工法がある。さらに、ビルドアップ工法以外の層間接続技術として、めっきを用いずに層間接続材料として導電性ペーストや異方導電材料等を用いた貫通スルーホールレス構造の多層配線板の製造技術が各社から提案され、例えば、下記に示すようなものがよく知られている。
 特許文献1には、不織布に熱硬化性樹脂を含浸させて半硬化状態とした薄型のプリプレグに穴明けを行い、その穴に導電性ペーストを充填したものを2枚の両面回路基板で挟むように重ね合わせ、加熱・加圧し、前記2枚の両面回路基板の回路が前記プリプレグの穴に充填された導電ペーストにより電気的に接続されるように接着して1枚の多層配線板を製造する方法が開示されている。
 特許文献2には、導体板上に山形または略円錐状の導電性バンプを形成してから、加熱軟化させた絶縁性プリプレグ基材に前記導電性バンプをプレス貫挿させ、導電性バンプからなる層間接続部を形成する方法が開示されている。
 特許文献3には、導体面積率の異なる複数の領域を有する回路基板間に、導体面積率に応じた開口面積で穴明けされた異形ビアホールを有する接着樹脂シートを配置し、異形ビアホールに導電性ペーストを充填し、熱プレスを行い1枚の多層配線板を製造する方法が開示されている。
特開平11-87870号公報 特開平9-162553号公報 特許第5874343号公報
 多層配線板に実装される部品は、表面実装によるものが主流となっており、部品と多層配線板を接続するための接続端子は年々狭小化されてきている。さらに、実装される部品の点数も年々増加してきており、多層配線板の電気的接続のための穴ピッチの狭小化や信号線数の増加が求められてきている。
 半導体検査用治具用基板やマザーボード等に代表される板厚が5mmを超える大型高多層配線板分野においても、検査部品や実装部品の小型化、狭ピッチ化に伴い、多層配線板の電気的接続のための穴ピッチの狭小化、信号線数の増大等が求められてきている。
 高板厚の基板に小径の貫通穴を形成するのは、ドリル折れの危険があり、貫通穴を表裏から形成するにも位置合わせ精度の問題もある。まためっきをする際にも貫通穴入口付近と貫通穴中央部のめっき厚の比であるスローイングパワーの良好なめっきをつけるのが困難であり、アスペクト比(板厚を貫通穴の径で割った値)が25を超える基板の製造は非常に困難であった。このようなことから、全板厚を貫通する穴での貫通スルーホール構造のみにより層間接続を行う多層配線板では、アスペクト比の増加により、狭ピッチ化に対応した多層配線板を提供することが困難であるため、特許文献1~3等に記載の多層配線板の製造方法が提案された。
 特許文献1に開示される多層配線板の製造方法では、不織布を含むプリプレグの穴に充填した導電ペーストにより層間接続を行うため、不織布の疎密による厚みの違いにより、接続される層間の高さ(距離)がばらつき、接続抵抗値が不安定となる場合がある。よって、微小な接合端子ピッチを持つ実装部品が高密度に実装される多層配線板において位置精度良く加工を行うことは困難であると考えられる。
 特許文献2に開示される多層配線板の製造方法では、バンプ高さや基板の反りの影響によりバンプが適切に貫通しなかったりすることがあり、また、不織布の疎密による厚みの違いにより、貫通のしやすさにバラつきが発生する。そのため、歩留まりや信頼性の面で問題が発生する恐れがある。
 特許文献3に開示される多層配線板の製造方法では、導電性材料を充填するための異なる開口面積比を有する異形ビアホールを設けた接着樹脂シートを用いており、導電性材料充填時に異形ビアホール横に空隙が形成されやすく、その空隙が導電性材料の流動を招き、短絡不良を発生させる可能性がある。
 本発明は上記状況に鑑みてなされたもので、接続信頼性に優れた、高板厚で、小径かつ狭ピッチ化された電気的接続のための穴を備え、微小な接合端子ピッチを備えた高密度多層配線板を、容易に作製することができる製造方法を提供することを目的とする。
 本発明の多層配線板の製造方法は、以下に関する。
1. プリント配線板間を電気的に接続する電気的接続パッドとプリント配線板間を電気的に接続しない非接続パッドとの両方を同一面内に備える複数枚のプリント配線板を準備するプリント配線板製造工程(I)と、前記複数枚のプリント配線板を前記電気的接続パッド同士が対向するように重ね、前記複数枚のプリント配線板を前記対向する電気接続パッド同士の間に配置した導電性材料により接合するように積層する積層工程(II)とを有する多層配線板の製造方法において、前記プリント配線板製造工程(I)では、前記積層工程(II)で前記複数枚のプリント配線板を重ねる際に対向させる面の少なくとも一方の面に、該面上の前記電気的接続パッドに対応する位置に貫通穴が形成された絶縁フィルムを貼り付け(Ia)、前記絶縁フィルムに形成された貫通穴に前記導電性材料を配置する(Ib)、多層配線板の製造方法。
2. プリント配線板製造工程(I)では、絶縁フィルムが、ガラス転移温度が180℃以上である熱硬化性樹脂組成物を含むことを特徴とする上記1に記載の多層配線板の製造方法。
3. プリント配線板製造工程(I)では、絶縁フィルムが、強化材としてフィラー等の粒子を含むことを特徴とする上記1または2に記載の多層配線板の製造方法。
4. プリント配線板製造工程(I)では、絶縁フィルムのプリント配線板間を電気的に接続するためのパッドに対応する箇所に形成された貫通穴が、レーザ穴明け加工またはドリル穴明け加工によって形成されることを特徴とする上記1~3のいずれか一に記載の多層配線板の製造方法。
5. プリント配線板製造工程(I)では、絶縁フィルムに形成された貫通孔に導電性材料を配置する際(Ib)に、保護マスクとしてPETフィルムを用いることを特徴とする上記1~4のいずれか一に記載の多層配線板の製造方法。
6. プリント配線板製造工程(I)では、絶縁フィルムに形成された貫通孔に導電性材料を配置(Ib)した後、複数枚のプリント配線板を積層する工程(II)よりも前に、温度70~150℃、時間10~120分にてプリント配線板の熱処理を行うことを特徴とする上記1~5のいずれか一に記載の多層配線板の製造方法。
7. プリント配線板製造工程(I)では、前記積層工程(II)で複数枚のプリント配線板を重ねる際に対向させる面の両方の面に絶縁フィルムを貼り付け、一方の面には電気的接続パッドに対応する位置にのみ貫通穴が設けられた絶縁フィルムを用い、他方の面には電気的接続パッドと非接続パッドの両方に対応する位置に貫通穴が設けられた絶縁フィルムを用いる、上記1~6のいずれか一に記載の多層配線板の製造方法。
8.積層工程(II)では、複数枚のプリント配線板の平面上の同一箇所に複数の位置合わせ穴を配置し、配置した位置合わせ穴にピンを挿入することでプリント配線板同士の位置合わせを行いながら積層することを特徴とする上記1~7のいずれか一に記載の多層配線板の製造方法。
9. 積層工程(II)では、電気的接続パッドの配置された面の前記電気的接続パッドが配置されていない部分を絶縁材料により充填することを特徴とする上記1~8のいずれか一に記載の多層配線板の製造方法。
10. プリント配線板製造工程(I)では、貫通穴が形成された絶縁フィルムを貼り付ける際(Ia)に、プリント配線板に貼り付けた絶縁フィルムの厚みが、前記絶縁フィルムに形成された貫通穴から露出した電気的接続パッドのパッド厚みよりも厚いことを特徴とする上記1~9のいずれか一に記載の多層配線板の製造方法。
11. プリント配線板製造工程(I)では、貫通穴に前記導電性材料を配置する際(Ib)に、電気的接続パッドに対応する箇所に形成された絶縁フィルムの貫通穴が、導電性材料を配置することによって全て充填されることを特徴とする上記1~10のいずれか一に記載の多層配線板の製造方法。
 本発明によれば、少なくとも2枚以上のプリント配線板を一体化積層し、プリント配線板間を電気的に接続することで、接続信頼性に優れた、高板厚で、小径かつ狭ピッチ化された電気的接続のための穴を備え、微小な接合端子ピッチを備えた高密度化多層配線板を容易に製造するための製造方法を提供することができる。
本発明の多層配線板の製造方法の一実施形態の流れを示すフローチャートである。 本発明の多層配線板の製造方法の一実施形態におけるプリント配線板製造工程(I)を示す。(A)準備した第一、第二、第三のプリント配線板の模式断面図である。(B)保護マスクを貼り付けた絶縁フィルムに貫通穴を形成した状態を示す模式断面図である。(C)貫通穴を有する絶縁フィルムをプリント配線板に貼り付けた状態(Ia)を示す模式断面図である。(D)絶縁フィルムに形成した貫通穴に導電性材料を配置した状態(Ib)を示す模式断面図である。 本発明の多層配線板の製造方法の一実施形態における積層工程(II)を示す。(A)第一、第二、第三の3枚のプリント配線板を導電性材料が配置された面と配置されていない面が対向するように重ねて配置した状態(IIa)を示す模式断面図である。(B)加熱・加圧積層を行った後の状態(IIb)を示す模式断面図である。 (A)プリント配線板同士を対向させる面の両面に絶縁フィルムを貼り付ける場合に、電気的接続パッドに対応する箇所のみを穴明けした絶縁フィルムと、電気的接続パッドと非接続パッドの両方に対応する個所を穴明けした絶縁フィルムを貼り付けた場合の模式断面図である。(B)プリント配線板同士を対向させる面の両面に絶縁フィルムを貼り付ける場合に、電気的接続パッドに対応する箇所のみを穴明けした絶縁フィルムを貼り付けた場合の模式断面図である。
 以下、各図を用いて、本発明の多層配線板の製造方法の実施形態について説明するが、本発明はこれらに限定されるものではない。以下では、3枚のプリント配線板を一体化積層する多層配線板の製造方法の例を示し、一体化積層前のプリント配線板を第一のプリント配線板8、第二のプリント配線板9、第三のプリント配線板10で示す。
 本実施の形態の多層配線板の製造方法は、プリント配線板間を電気的に接続する電気的接続パッドとプリント配線板間を電気的に接続しない非接続パッドとの両方を同一面内に備える、第一、第二、第三の複数枚のプリント配線板を準備するプリント配線板製造工程(I)と、複数枚のプリント配線板を前記電気的接続パッド同士が対向するように重ね、複数枚のプリント配線板を前記対向する電気接続パッド同士の間に配置した導電性材料により接合するように積層する積層工程(II)とを有する多層配線板の製造方法において、プリント配線板製造工程(I)では、積層工程(II)で複数枚のプリント配線板を重ねる際に対向させる面の少なくとも一方の面に、該面上の電気的接続パッドに対応する位置に貫通穴が形成された絶縁フィルムを貼り付け(Ia)、絶縁フィルムに形成された貫通穴に前記導電性材料を配置する(Ib)、多層配線板の製造方法である。
 本実施の形態において、「電気的接続パッド」とは、プリント配線板間を電気的に接続するパッドであって、後述する導電性材料を介して対向するように重ねられ、導電性材料によって接合するように積層されることにより、プリント配線板間を電気的に接続するパッドをいう。また、「非接続パッド」とは、プリント配線板間を電気的に接続するためには用いられないパッドをいう。また、「電気的接続パッドと非接続パッドとの両方を同一面内に備える、第一、第二、第三の複数枚のプリント配線板」とは、第一、第二、第三の複数枚のプリント配線板のそれぞれのプリント配線板が、その表裏面のうちの少なくとも何れか一方の面に、電気的接続パッドと非接続パッドとの両方を備えることをいい、それぞれのプリント配線板が、その表裏面のうちの異なる一つの面に電気的接続パッドと非接続パッドとの両方を備えてもよい。例えば、第一のプリント配線板が、表面に電気的接続パッドと非接続パッドとの両方を備え、第二のプリント配線板及び第三のプリント配線板が裏面に電気的接続パッドと非接続パッドとの両方を備えてもよい。
<プリント配線板製造工程(I)>
(プリント配線板の準備)
 本実施形態の多層配線板の製造方法の各工程を図1~3により説明する。
まず、第一のプリント配線板8、第二のプリント配線板9および第三のプリント配線板10を製造する。それぞれのプリント配線板は、両面回路基板でも、多層配線板でも、必要な配線パターンを絶縁被覆ワイヤで形成するマルチワイヤ配線板でも構わない。プリント配線板に用いる支持基材1の種類は問わないが、積層時の加圧加熱による変形(寸法変化)を制御するためには、ガラスクロス等の強化材を含有した絶縁基材が好ましく、さらにはNEMA(National Electrical Manufacturers Association)規格のFR(Flame Retardant)-5グレードの基材やポリイミド樹脂系等のガラス転移温度が高い基材が好ましい。
 第一のプリント配線板8、第二のプリント配線板9、第三のプリント配線板10は、図2(A)に示すように、プリント配線板を貫通するように穴明けした穴内に、電気銅めっきもしくは無電解銅めっきによってスルーホールめっきが施され、非導電性材料(穴埋め樹脂3)で穴内を埋めて、それを覆って貫通スルーホール内のめっき層と接続するように金属層を形成した、いわゆる穴埋め、蓋めっきを施したプリント配線板であることが好ましい。蓋めっきを施さず、プリント配線板を貫通するように穴明けした穴が穴埋め樹脂3で穴埋めされたままの状態の場合、パッド2の中央部が非導電性材料となり、プリント配線板間を接続するために必要な導電性材料とプリント配線板の接続部の接触面積が低下する恐れがあるためである。
 第一のプリント配線板8、第二のプリント配線板9、第三のプリント配線板10の表面仕上げは、金めっきであることが好ましい。通常貫通穴の接続性を確保し、蓋めっきする場合、銅めっきが用いられることが多い。しかし、銅めっきを大気中に放置しておくと、表面に酸化銅皮膜が形成される場合があり、導電性材料6との接続性が低下する場合がある。酸化劣化による接続性不良を抑制するためには、金等の保護皮膜が表面にあることが好ましい。図2(A)のパッド2が示す破線は、このような保護皮膜を有する場合を示すが、他のパッドでは、この破線を省略する。
 第一のプリント配線板8、第二のプリント配線板9、第三のプリント配線板10が電気的に接続する面にはパッド2が形成されている。電気的に接続する面には、電気的接続パッドの他、非接続パッドやランド、必要に応じて配線を有していてもよい。
(絶縁フィルムの製造)
 次に、図2(B)に示すように、プリント配線板間の対向させる面の少なくとも一方の面に貼り付けるための絶縁フィルム4を作製する。絶縁フィルム4には、第一のプリント配線板8、第二のプリント配線板9、第三のプリント配線板10の電気的接続パッドと同一箇所に貫通穴7を設ける。絶縁フィルム4に設ける貫通穴7は、どのような方法で開口してもよく、例えばドリル穴明け加工やレーザ穴明け加工により形成することができる。穴明け加工の際、絶縁フィルム4への異物付着を抑制するため、絶縁フィルム4の両面に離型フィルム5(例えばPETフィルム)を貼り付けてあることが好ましい。各工程内での絶縁フィルム4表面への異物の付着を防止でき、その後の導電性材料6配置の際に、製品パターンごとの導電性材料6配置位置に合わせて開口した1品1様の保護マスクを用意しなくとも、穴明けされた離型フィルム5を、保護マスクの代わりとして用いることができるため、製造コストの低減を図ることができる。離型フィルム5としては、例えば帝人デュポン株式会社製片面離型処理PETフィルム、商品名:A-53が挙げられる。
 絶縁フィルム4を穴明けする際は、電気的接続パッドと同一箇所への穴明けでよいが、さらに位置精度良く、接続信頼性に優れたプリント配線板を作製するため、電気的接続パッドよりも直径が0~200μm大きい開口径で穴明けすることが好ましく、電気的接続パッドよりも直径が25~75μm大きい開口径で穴明けすることがより好ましい。また、電気的接続パッドと非接続パッドの両方を同一面内に備えるプリント配線板において、非接続パッドの絶縁距離を十分に確保するために第一のプリント配線板8と第三のプリント配線板10の対向させる面の少なくとも一方の面に貼り付ける絶縁フィルム4は貼り付ける面の電気的接続パッドと同一箇所のみ穴明けすることが好ましい。
(絶縁フィルムの貼り付け(1a))
 次に、図2(C)に示すように第一のプリント配線板8の電気的接続パッドが備えられた面に、電気的接続パッドと同一箇所に貫通穴7を形成した絶縁フィルム4を貼り付ける。絶縁フィルム4は第一のプリント配線板8と第三のプリント配線板10の対向させる面の少なくとも一方の面に貼り付けることが好ましく、第一のプリント配線板8と第三のプリント配線板10の対向させる面の両面に貼り付けることがより好ましい。
 また、第一のプリント配線板8と第三のプリント配線板10同様に、第二のプリント配線板9と第三のプリント配線板10においても、第二のプリント配線板9と第三のプリント配線板10の対向させる面の少なくとも一方の面に、絶縁フィルム4を貼り付けることが好ましく、第二のプリント配線板9と第三のプリント配線板10の対向させる面の両面に絶縁フィルム4を貼り付けることがより好ましい。
 対向させる面の両面に絶縁フィルム4を貼り付ける場合には図4(A)に示すように、導電性材料6を配置する側の絶縁フィルム4は電気的接続パッドと同一箇所のみ穴明けした絶縁フィルム4を貼り付け、導電性材料6を配置しない側の絶縁フィルム4は電気的接続パッドと非接続パッドの両方を穴明けした絶縁フィルム4を貼り付けることが好ましい。電気的接続パッドと同一箇所のみ貫通穴7を設けた絶縁フィルム4を対向させる面の両面に貼り付けた場合、非接続パッド同士が対向する箇所と電気的接続パッド同士が対向する箇所では実際の層間距離が異なるため(図4(B))、接合した際に接続不良を発生させてしまう場合があるが、図4(A)に示す絶縁フィルムを用いる場合、絶縁性を確保しつつ、パッド横の空隙もなく、十分な接続信頼性を確保することができる。
 絶縁フィルム4の厚みは、穴明けによって形成された貫通穴7から露出したパッドのパッド厚みよりも絶縁フィルム4の厚みの方が厚い方が好ましい。絶縁フィルムの厚みは、パッドのパッド厚みを100と規定した時に、100~500の絶縁フィルム厚みが好ましい。パッド厚みよりも薄い絶縁フィルム4を使用する場合、層間の絶縁距離を保つのに十分な絶縁フィルム厚みがないため、層間密着不足を発生させる場合や電気的接続を確保する導電性材料の流動を招く場合がある。
 また、絶縁フィルム4は、絶縁性を有するフィルムであれば何でもよいが、流動性を制御できるポリマ成分を含有する樹脂組成物であることが好ましく、熱硬化性樹脂であることがより好ましい。さらに、部品実装時のリフロー条件に耐える必要があるため、硬化物のガラス転移温度は150℃以上であることが好ましく、180℃以上であればさらに好ましい。また、絶縁フィルム4の硬化物の熱膨張率を抑えるため、強化材としてフィラー等の粒子を含有することが好ましい。このような絶縁フィルム4としては、例えば日立化成株式会社製、商品名:AS-9500、商品名:AS-401HS等が挙げられる。
 なお、本実施形態において、絶縁フィルムとは、樹脂組成物からなるフィルム又は樹脂組成物およびフィラーからなるフィルムである。
 絶縁フィルム4は、繊維をさらに含有してもよい。ただし、繊維を含有する場合は、小径・狭ピッチ穴加工に悪影響を及ぼすことを防止する観点で、繊維の長さが200μm以下であることが好ましい。
 絶縁フィルム4は、ガラス繊維やカーボン繊維からなる不織布や、ガラスクロス・カーボンクロスを含まないことが好ましい。ガラス繊維やカーボン繊維からなる不織布、ガラスクロス・カーボンクロスを含む絶縁フィルム4の場合は、不織布・クロスの疎密による厚みの違いにより電気的接続パッド間の高さがばらつくため接続抵抗値が不安定となる場合がある。
<ガラス転移点の測定>
 ガラス転移温度は、次の方法で測定することができる。
(サンプル作製方法)
 熱硬化性樹脂組成物を離型PET(帝人デュポンフィルム株式会社製、商品名:A-53)上にアプリケータを用いて、乾燥後の膜厚が100μmになるように塗布し、温度130℃、時間30分の条件で乾燥し、半硬化のフィルムを作製する。その後、離型PETから半硬化のフィルムを剥がし、2枚の金属製の枠に半硬化のフィルムを挟むことで固定させ、温度185℃、時間60分の条件で乾燥することで、硬化した熱硬化性樹脂組成物からなるフィルムを作製する。
(測定方法)
 TAインスツルメント社製、装置名:TMA-2940を用い、治具:引っ張り、チャック間距離:15mm、測定温度:室温~350℃、昇温速度:10℃/分、引っ張り荷重:0.05N、サンプルサイズ:幅5mm×長さ25mmで測定し、得られた温度-変位曲線から接線法によりガラス転移温度を求める。
(導電性材料の配置(1b))
 次に、図2(D)に示すように第一のプリント配線板8と第三のプリント配線板10の対向させる面の少なくとも一方の面と、第二のプリント配線板9と第三のプリント配線板10の少なくとも一方の面に貼り付けた絶縁フィルム4に形成した貫通穴7から露出した電気的接続パッド上に導電性材料6を配置する。導電性材料6は、導電性を有していればどのようなものでもよいが、一般的なプリント配線板における積層温度(200℃以下)で溶融して電気的接続パッドとの間に金属間結合を形成し、形成後の再溶融温度が250℃以上であることが好ましい。導電性材料6としては、例えば、ORMET社製、商品名:HT-710、タツタ電線株式会社製、商品名:MPA500等が挙げられる。
(積層工程の前の熱処理)
 導電性材料6は、スクリーン印刷法、ディスペンサ法等により絶縁フィルム4に形成された貫通穴7に配置することができる。導電性材料6の中には金属材料をバインダ樹脂に混合することで粘性を保ちスクリーン印刷やディスペンサ加工を容易にするものもある。そのような導電性材料6を用いる場合、導電性材料6の形状を保持するため、導電性材料6配置後に熱処理を行い、バインダ樹脂の予備硬化を行い、粘性を高めることが好ましい。温度70~150℃、時間10~120分の範囲で熱処理を行い、粘性を高め形状を保持することもできる。温度が70℃より低く、時間が10分より短い場合、充分に粘性を高めることができず、形状が崩れる場合がある。また、温度が150℃より高く、時間が120分より長い場合、粘性が高くなりすぎたり、バインダ樹脂の硬化が進み、導電性材料6が溶融しても充分な金属間化合物を形成できなかったり、積層時に変形できず、充分な接続性を確保できない場合がある。
<積層工程(II)>
 次に、図3(A)に示すように第一のプリント配線板8を1枚、第三のプリント配線板10を少なくとも1枚以上、第二のプリント配線板9を1枚の順に、導電性材料6が配置された面と、導電性材料6が配置されていない面が対向するように重ねて配置し(IIa)、図3(B)に示すように加熱・加圧積層を行う(IIb)。これによりそれぞれのプリント配線板間の電気的接続パッド同士が、導電性材料6を介して接合されることによって電気的に接続される。なお、絶縁フィルム4の表面に離型フィルム5のような保護フィルムを備えるものを使用した場合は、基板同士を重ね合わせる前に、保護フィルムを剥離する。
 積層の際には、第一のプリント配線板8と第二のプリント配線板9と第三のプリント配線板10の平面上の同一箇所に複数の位置合わせ穴を配置し、第一のプリント配線板8に配置した位置合わせ穴に、積層後の多層配線板の板厚よりも短く、積層する第一のプリント配線板8と第三のプリント配線板10の総板厚よりも長いピンを挿入し、そのピンを、第三のプリント配線板10に配置した位置合わせ穴、さらには、第二のプリント配線板9に配置した位置合わせ穴に挿入することで、プリント配線板同士の位置合わせを行いながら積層を行うのが、各プリント配線板同士を精度良く位置合わせすることができるため、好ましい。
 プリント配線板のサイズや形状、導体の層数は特に限定されず、異なるサイズ、異なる形状のプリント配線板同士を組み合わせて多層配線板11を製造してもよい。
 本実施形態によれば、少なくとも2枚以上のプリント配線板を一体化積層し、プリント配線板間を電気的に接続することで、接続信頼性に優れた、高板厚で、小径かつ狭ピッチ化された電気的接続のための穴を備え、微小な接合端子ピッチを備えた高密度化プリント配線板を容易に製造するための製造方法を提供することができる。
(実施例1)
 図1は、本発明の実施例1の製造工程の流れを示す。
 樹脂層厚み0.1mm、銅箔厚み18μm、サイズ510mm×510mmのエポキシ樹脂系銅張積層板(日立化成株式会社製、商品名:MCL-E-679(「MCL」は登録商標)の両面に配線回路を形成した内層基板(図示しない。))を11枚作製した。
 次に、ピンラミネーション方式にて基板間の構成位置合わせをし、最外層に厚み18μm、サイズ540mm×540mmの電解銅箔(日本電解株式会社製、商品名:YGP-18)、内層に前記の複数の内層基板および樹脂層の公称厚み0.03mm、サイズ510mm×510mmのプリプレグ(日立化成株式会社製、商品名:GEA-679)2枚を交互に積層した後、真空プレス機にて加熱・加圧プレスを行って一体化し、端面にはみ出したプリプレグ樹脂を除去するため基板サイズ500mm×500mmに切断し、板厚3.0mmの多層配線板を形成した。
 次に、直径0.15mm、刃長4.0mmのドリルで基板の一方の面から内層位置に合わせて深さ1.8mmの穴を明け、また、他方の面から一方の面の穴位置に合わせて深さ1.8mmの穴明けを行い、貫通穴を得た。この際、貫通穴の最小ピッチは、0.40mmとした。
 次に、過マンガン酸処理で穴内のスミアを除去した後、厚付け無電解銅めっきを用いて、厚み30μmのスルーホールめっきを形成した。
 次に、穴埋め樹脂(太陽インキ製造株式会社製、商品名:THP-100DX1)を真空印刷機を用いて、スクリーン印刷法にて貫通穴内の樹脂埋めを行った後、厚付け無電解銅めっきによる30μmの蓋めっきを行った。
 次に、テンティング法にて銅箔をエッチングして表面層回路を形成し、第一のプリント配線板とした。この際、表面層の面には、プリント配線板間の電気的接続パッドと非接続パッドを配置した。
 次に、第一のプリント配線板と同じ材料構成とプロセスを用いて、第二のプリント配線板、第三のプリント配線板を作製した。この際、表面層の面には、プリント配線板間の電気的接続パッドと非接続パッドを配置した。
 次に、サイズ510mm×510mmで、片面に厚み0.025mmのPETフィルムを貼り付けた公称厚み0.065mmの熱硬化樹脂系絶縁フィルム(日立化成株式会社製、商品名:AS-401HS)に、NC制御穴明け機を用いドリルにて、0.30mmの穴径で穴明けを行った。
 次に、ドリルにて穴明けを行った絶縁フィルムを、第一のプリント配線板、第三のプリント配線板のプリント配線板間の電気的接続パッドを配置した面に、電気的接続パッドが露出するように載せ、真空ラミネータを用いて、温度85℃、圧力0.5MPa、加圧時間30秒(真空引き30秒)の条件で、貼り付けを行った。
 次に、スクリーン印刷機を用いて、スクリーン印刷法にて前記の絶縁フィルムに明けた穴に導電性材料としてタツタ電線株式会社製、商品名:MPA500を充填した。充填した穴数は20000穴であった。この際、スクリーン版は、厚み0.1mmのメタルマスクとし、印刷領域として490mm×490mmに開口を設けたものとした。また、MPA500を配置しない部分の基板表面の保護マスクとして、絶縁フィルム表面に付着しているPETフィルムを使用した。
 次に、絶縁フィルム表面に付着している0.025mmのPETフィルムを絶縁材から剥離した。
 次に、第一のプリント配線板、第二のプリント配線板、第三のプリント配線板を重ね合わせ、真空プレス機にて温度180℃、時間90分、圧力3MPaのプレス条件で加熱・加圧プレスにより積層を行い、接着した。この際、第一の基板のMPA500が配置された面に、MPA500が配置されていない第三のプリント配線板の電気的接続パッドが配置された面が対向するように第三のプリント配線板を重ねて配置し、第三の基板のMPA500が配置された面に、MPA500が配置されていない第二のプリント配線板の電気的接続パッドが配置された面が対向するように第二のプリント配線板を重ねて配置した。
(実施例2)
 内層基板としてポリイミド系多層材料MCL-I-671(日立化成株式会社製、商品名)とプリプレグGIA-671(日立化成株式会社製、商品名)を用いる以外は実施例1と同様に多層配線板の製造を行った。
(実施例3)
 絶縁フィルムとして日立化成株式会社製AS-9500を用いる以外は実施例1と同様に多層配線板の製造を行った。
(実施例4)
 絶縁フィルム穴明けの際にCOレーザ加工機を用いる以外は実施例1と同様に多層配線板の製造を行った。
(実施例5)
 導電性材料印刷後に予備乾燥条件として温度70℃、時間10分の条件を追加する以外は実施例1と同様に多層配線板の製造を行った。
(実施例6)
 導電性材料の予備乾燥条件として温度150℃、時間120分の条件に変更する以外は実施例1と同様に多層配線板の製造を行った。
(実施例7)
 加熱・加圧プレスの際に、位置合わせ用のピン(長さ4.5mm)を用いる加熱・加圧プレスを行う以外は実施例1と同様に多層配線板の製造を行った。
(実施例8)
 導電性材料を印刷する際の保護マスクとしてメタルマスクを用いない以外は実施例1と同様に多層配線板の製造を行った。
(実施例9)
 作製した第一のプリント配線板と第二のプリント配線板にマルチワイヤ配線板を用いる以外は実施例1と同様に多層配線板の製造を行った。
(実施例10)
 加熱・加圧プレスの際に、位置合わせ用のピン(長さ4.5mm)を用いる加熱・加圧プレス、電気的接続パッドを配置した面の電気的接続パッドが配置されていない箇所を山栄化学株式会社製アンダーコートインク(商品名:UC-3000)で充填した第一のプリント配線板と第二のプリント配線板を用い、導電性材料を印刷する際の保護マスクとしてメタルマスクを用いない以外は実施例1と同様に多層配線板の製造を行った。
(実施例11)
 実施例1の第一のプリント配線板、第二のプリント配線板に代えて、第一のプリント配線板、第二のプリント配線板、少なくとも1枚以上の第三のプリント配線板を用いる、合計で少なくとも3枚以上のプリント配線板を用いる以外は実施例1と同様に多層配線板の製造を行った。
(比較例1)
 ガラスエポキシ多層材料(日立化成株式会社製、商品名:E-679)を用いて、基板サイズ500mm×500mm、板厚3.0mmの26層配線板を形成した。直径0.15mmのドリルにて、貫通穴間の最小ピッチ0.40mmのパターンで20000穴の穴明けを行い、穴の内壁を銅めっきして電気的に接続し、全ての穴内を穴埋め樹脂(太陽インキ製造株式会社製、商品名:THP-100DX1)を用いて樹脂埋めを行った後、厚付け無電解銅めっきによる40μmの蓋めっきを行った。また、基板の表面層の片方の面には、貫通穴の位置に直径0.30mmのプリント配線板間の電気的接続パッドを配置した。また、基板4隅の490mm×490mmの位置に、直径5.0mmの穴を設けた。この基板を、第一のプリント配線板とした。
 次に、第一のプリント配線板と同じ材料とプロセスを用いて、板厚3.0mmの26層配線板を形成し、第二のプリント配線板とした。この際、第二のプリント配線板の表面層の片方の面には、20000穴の貫通穴の位置に直径0.30mmのプリント配線板間の電気的接続パッドを配置した。また、基板4隅の490mm×490mmの位置に、直径5.0mmの穴を設けた。
 次に、公称厚み0.06mmのガラス布基材プリプレグ(日立化成株式会社製、商品名:GEA-679F)を用い、このプリプレグに、COレーザ加工機を用いて、仕上り穴径0.25mmの穴明けを行った。
 次に、メタルマスクを用いてプリプレグに設けた穴に導電性材料(タツタ電線株式会社製、商品名:MPA500)を充填した。
 次に、第一のプリント配線板と、導電性材料を穴内に充填したプリプレグと、第二のプリント配線板を重ね合わせ、真空プレス機にて温度180℃、時間90分、圧力3MPaのプレス条件にて加熱・加圧プレスを行い、接着した。この際、第一のプリント配線板と第二のプリント配線板の電気的接続パッドが配置された面が対向するように配置し、第一のプリント配線板と第二のプリント配線板の間にプリプレグが挟まるように重ね合わせた。
第一のプリント配線板と、プリプレグ、第二のプリント配線板の位置合せは、第一のプリント配線板と、プリプレグ、第二のプリント配線板の平面上の490mm×490mmの基板4隅の位置に直径5.0mmのドリルにてあらかじめ明けておいた位置合わせ穴に、長さ5mm、直径5.0mmのピンを挿入することで行った。
(比較例2)
 ガラスエポキシ多層材料(日立化成株式会社製、商品名:E-679)を用いて、基板サイズ500mm×500mm、板厚3.0mmの26層配線板を形成した。直径0.15mmのドリルにて、貫通穴間の最小ピッチ0.40mmのパターンで20000穴の穴明けを行い、穴の内壁を銅めっきして電気的に接続し、全ての穴内を穴埋め樹脂(太陽インキ製造株式会社製、商品名:THP-100DX1)を用いて樹脂埋めを行った後、厚付け無電解銅めっきによる40μmの蓋めっきを行った。また、基板の表面層の片方の面には、貫通穴の位置に直径0.25mmのプリント配線板間の電気的接続パッドを配置した。また、基板4隅の490mm×490mmの位置に、直径5.0mmの穴を設けた。この基板を、第一のプリント配線板とした。
 次に、第一のプリント配線板と同じ材料とプロセスを用いて、板厚3.0mmの26層配線板を形成し、第二のプリント配線板とした。この際、第二のプリント配線板の表面層の片方の面には、20000穴の貫通穴の位置に直径0.30mmのプリント配線板間の電気的接続パッドを配置した。また、基板4隅の490mm×490mmの位置に、直径5.0mmの穴を設けた。
 次に、第一のプリント配線板の電気的接続パッド上に、共晶はんだペースト(千住金属工業株式会社製、商品名:M705-WSG36-T5K)を、メタルマスクを用いてスクリーン印刷し、ピーク温度235℃、時間5秒の条件にてリフロー処理を行い、高さ0.13mmの山形のはんだバンプを形成した。
 次に、第一のプリント配線板と、公称厚み0.060mmの絶縁フィルム(日立化成株式会社製、商品名:AS-401HS)と、第二のプリント配線板を重ね合わせ、真空プレス機にて温度180℃、時間90分、圧力3MPaのプレス条件にて加熱・加圧プレスを行い、接着した。この際、第一のプリント配線板に形成したはんだバンプと、第二のプリント配線板の電気的接続パッドが対向するようにプリント配線板を重ね合わせ、第一のプリント配線板と、第二のプリント配線板の間には、公称厚み0.075mmの絶縁フィルム(日立化成株式会社製、商品名:AS-401HS)が挟まるように配置し、山形のはんだバンプに絶縁材料を貫通させて接続を行った。また、プリント配線板同士の位置合せは、第一のプリント配線板と第二のプリント配線板の平面上の490mm×490mmの4隅の位置に直径5.0mmのドリルにてあらかじめ明けておいた穴に、長さ5mm、直径5.0mmのピンを挿入することで行った。
(比較例3)
 公称厚み0.06mmのガラス布基材プリプレグ(日立化成株式会社製、商品名:GEA-679F)を用い、第一のプリント配線板のプリント配線板間の電気的接続パッドを配置した面に、プリプレグが電気的接続パッドに接するように載せ、真空プレス機を用いて、温度150℃、圧力1.0MPa、加圧時間30分、真空引き有りの条件で、貼り付けを行った。また、導電性材料の印刷において、導電性材料を配置する穴の位置のみを絶縁フィルムの穴径と同径で開口したメタルマスクを用いた。これ以外は、実施例1と同様の条件で多層配線板の製造を行った。
 実施例、比較例にて製造した基板の特性を、下記にて評価した。
 評価パターンとして、400穴の接合点と、接合した第一のプリント配線板、第二のプリント配線板、第三のプリント配線板の内層接続とを含むディジーチェーンパターンを50箇所配置した基板を用いた。接続抵抗値は、1つのディジーチェーンパターンの始端と終端にて、ミリオームメータを用いて抵抗値の測定を行い、その後、測定した抵抗値を400穴で割り、1点あたりの接続抵抗値を求めた。この操作を50ブロック全体について行い、平均を求めた。
 リフロー耐熱は、ディジーチェーンパターンのブロックを1つ切り出し、リフロー装置を用いて、ピーク温度235℃、時間5秒の条件にて3回処理を行った。リフロー処理後に、ミリオームメータを用いて接続抵抗値の測定を行った。
 実施例における評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例の製造方法により、接続信頼性に優れた、高板厚で、小径かつ狭ピッチ化された電気的接続のための穴を備え、微小な接合端子ピッチを備えた高密度多層配線板が容易に製造できることが確認された。
 比較例における評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 比較例1にて得られた基板から接続箇所20000点中50点で接続不良が発生した。
原因は、不織布の疎密による厚みの違いにより電気的接続パッド間の高さのばらつきが発生しており、一部の導電性材料が接触していなかったことである。
 比較例2にて得られた基板から接続箇所20000点中200点で接続不良が発生した。原因は、導電性バンプに圧力が加わることで導電性バンプの破損が生じたり、バンプ高さのばらつきやプリント配線板のそりの影響によりバンプが適切に貫通しなかったりしたことである。
 比較例3にて得られた基板から接続箇所20000点中100点で接続不良が発生した。原因は、比較例1同様、不織布の厚みの違いにより、電気的接続パッド間の高さのばらつきが発生しており、一部の導電性材料が接触していなかったこと。メタルマスクの使用によって、導電性材料の配置箇所が一部位置ズレを起こしていたことである。
1 支持基材
2 パッド
 2a 電気的接続パッド
 2b 非接続パッド
3 穴埋め樹脂
4 絶縁フィルム
5 離型フィルム
6 導電性材料
7 貫通穴
8 第一のプリント配線板
9 第二のプリント配線板
10 第三のプリント配線板
11 多層配線板

Claims (11)

  1.  プリント配線板間を電気的に接続する電気的接続パッドとプリント配線板間を電気的に接続しない非接続パッドとの両方を同一面内に備える複数枚のプリント配線板を準備するプリント配線板製造工程(I)と、前記複数枚のプリント配線板を前記電気的接続パッド同士が対向するように重ね、前記複数枚のプリント配線板を前記対向する電気接続パッド同士の間に配置した導電性材料により接合するように積層する積層工程(II)とを有する多層配線板の製造方法において、
     前記プリント配線板製造工程(I)では、前記積層工程(II)で前記複数枚のプリント配線板を重ねる際に対向させる面の少なくとも一方の面に、該面上の前記電気的接続パッドに対応する位置に貫通穴が形成された絶縁フィルムを貼り付け(Ia)、前記絶縁フィルムに形成された貫通穴に前記導電性材料を配置する(Ib)、多層配線板の製造方法。
  2.  プリント配線板製造工程(I)では、絶縁フィルムが、ガラス転移温度が180℃以上である熱硬化性樹脂組成物を含むことを特徴とする請求項1に記載の多層配線板の製造方法。
  3.  プリント配線板製造工程(I)では、絶縁フィルムが、強化材としてフィラー等の粒子を含むことを特徴とする請求項1または2に記載の多層配線板の製造方法。
  4.  プリント配線板製造工程(I)では、絶縁フィルムのプリント配線板間を電気的に接続するためのパッドに対応する箇所に形成された貫通穴が、レーザ穴明け加工またはドリル穴明け加工によって形成されることを特徴とする請求項1~3のいずれか一項に記載の多層配線板の製造方法。
  5.  プリント配線板製造工程(I)では、絶縁フィルムに形成された貫通孔に導電性材料を配置する際(Ib)に、保護マスクとしてPETフィルムを用いることを特徴とする請求項1~4のいずれか一項に記載の多層配線板の製造方法。
  6.  プリント配線板製造工程(I)では、絶縁フィルムに形成された貫通孔に導電性材料を配置(Ib)した後、複数枚のプリント配線板を積層する工程(II)よりも前に、温度70~150℃、時間10~120分にてプリント配線板の熱処理を行うことを特徴とする請求項1~5のいずれか一項に記載の多層配線板の製造方法。
  7.  プリント配線板製造工程(I)では、前記積層工程(II)で複数枚のプリント配線板を重ねる際に対向させる面の両方の面に絶縁フィルムを貼り付け、一方の面には電気的接続パッドに対応する位置にのみ貫通穴が設けられた絶縁フィルムを用い、他方の面には電気的接続パッドと非接続パッドの両方に対応する位置に貫通穴が設けられた絶縁フィルムを用いる、請求項1~6のいずれか一項に記載の多層配線板の製造方法。
  8.  積層工程(II)では、複数枚のプリント配線板の平面上の同一箇所に複数の位置合わせ穴を配置し、配置した位置合わせ穴にピンを挿入することでプリント配線板同士の位置合わせを行いながら積層することを特徴とする請求項1~7のいずれか一項に記載の多層配線板の製造方法。
  9.  積層工程(II)では、電気的接続パッドの配置された面の前記電気的接続パッドが配置されていない部分を絶縁材料により充填することを特徴とする請求項1~8のいずれか一項に記載の多層配線板の製造方法。
  10.  プリント配線板製造工程(I)では、貫通穴が形成された絶縁フィルムを貼り付ける際(Ia)に、プリント配線板に貼り付けた絶縁フィルムの厚みが、前記絶縁フィルムに形成された貫通穴から露出した電気的接続パッドのパッド厚みよりも厚いことを特徴とする請求項1~9のいずれか一項に記載の多層配線板の製造方法。
  11.  プリント配線板製造工程(I)では、貫通穴に前記導電性材料を配置する際(Ib)に、電気的接続パッドに対応する箇所に形成された絶縁フィルムの貫通穴が、導電性材料を配置することによって全て充填されることを特徴とする請求項1~10のいずれか一項に記載の多層配線板の製造方法。
PCT/JP2017/020830 2016-06-06 2017-06-05 多層配線板の製造方法 WO2017213085A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187033290A KR102346221B1 (ko) 2016-06-06 2017-06-05 다층 배선판의 제조 방법
US16/307,505 US11291124B2 (en) 2016-06-06 2017-06-05 Method for manufacturing multilayer wiring board
SG11201810482XA SG11201810482XA (en) 2016-06-06 2017-06-05 Method for manufacturing multilayer wiring board
JP2018522478A JP6819682B2 (ja) 2016-06-06 2017-06-05 多層配線板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-112673 2016-06-06
JP2016112673 2016-06-06

Publications (1)

Publication Number Publication Date
WO2017213085A1 true WO2017213085A1 (ja) 2017-12-14

Family

ID=60578635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020830 WO2017213085A1 (ja) 2016-06-06 2017-06-05 多層配線板の製造方法

Country Status (6)

Country Link
US (1) US11291124B2 (ja)
JP (2) JP6819682B2 (ja)
KR (1) KR102346221B1 (ja)
SG (2) SG11201810482XA (ja)
TW (1) TWI777958B (ja)
WO (1) WO2017213085A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10349520B2 (en) * 2017-06-28 2019-07-09 Catlam, Llc Multi-layer circuit board using interposer layer and conductive paste
WO2020133421A1 (zh) * 2018-12-29 2020-07-02 深南电路股份有限公司 多样化装配印刷线路板及制造方法
CN114007332B (zh) * 2021-10-28 2024-05-24 高德(江苏)电子科技股份有限公司 多次压合层间高对准度印刷线路板的加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160686A (ja) * 1999-12-02 2001-06-12 Ibiden Co Ltd 多層プリント配線板及びその製造方法
JP2002198656A (ja) * 2000-12-25 2002-07-12 Sony Corp 高密度実装用基板の製法
JP2003334886A (ja) * 2002-05-21 2003-11-25 Matsushita Electric Works Ltd 積層板
JP2004288989A (ja) * 2003-03-24 2004-10-14 Fujitsu Ltd 多層プリント配線板及びその製造方法
JP2007335701A (ja) * 2006-06-16 2007-12-27 Fujitsu Ltd 積層基板の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198652A (ja) * 1995-05-15 2002-07-12 Ibiden Co Ltd 多層プリント配線板用片面回路基板、および多層プリント配線板とその製造方法
JP3654982B2 (ja) 1995-12-13 2005-06-02 株式会社東芝 多層印刷配線板の製造方法
JP3014365B2 (ja) 1997-07-16 2000-02-28 松下電器産業株式会社 配線板、中間接続体、配線板の製造方法および中間接続体の製造方法
US6613986B1 (en) * 1998-09-17 2003-09-02 Ibiden Co., Ltd. Multilayer build-up wiring board
US6326555B1 (en) * 1999-02-26 2001-12-04 Fujitsu Limited Method and structure of z-connected laminated substrate for high density electronic packaging
JP2002329967A (ja) * 2001-05-01 2002-11-15 Mitsubishi Electric Corp 多層プリント配線板の製造方法
KR100632560B1 (ko) * 2004-08-05 2006-10-09 삼성전기주식회사 병렬적 인쇄회로기판 제조 방법
US20060272850A1 (en) * 2005-06-06 2006-12-07 Matsushita Electric Industrial Co., Ltd. Interlayer connection conductor and manufacturing method thereof
US8101868B2 (en) * 2005-10-14 2012-01-24 Ibiden Co., Ltd. Multilayered printed circuit board and method for manufacturing the same
JP2012104557A (ja) * 2010-11-08 2012-05-31 Ngk Spark Plug Co Ltd 電子部品付き配線基板及びその製造方法
TWI407875B (zh) 2011-09-30 2013-09-01 Zhen Ding Technology Co Ltd 多層電路板之製作方法
JP5874343B2 (ja) 2011-11-18 2016-03-02 富士通株式会社 積層回路基板の製造方法、積層回路基板、および電子機器
KR102346222B1 (ko) * 2016-06-06 2021-12-31 쇼와덴코머티리얼즈가부시끼가이샤 다층 배선판의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160686A (ja) * 1999-12-02 2001-06-12 Ibiden Co Ltd 多層プリント配線板及びその製造方法
JP2002198656A (ja) * 2000-12-25 2002-07-12 Sony Corp 高密度実装用基板の製法
JP2003334886A (ja) * 2002-05-21 2003-11-25 Matsushita Electric Works Ltd 積層板
JP2004288989A (ja) * 2003-03-24 2004-10-14 Fujitsu Ltd 多層プリント配線板及びその製造方法
JP2007335701A (ja) * 2006-06-16 2007-12-27 Fujitsu Ltd 積層基板の製造方法

Also Published As

Publication number Publication date
JPWO2017213085A1 (ja) 2019-03-28
US11291124B2 (en) 2022-03-29
TWI777958B (zh) 2022-09-21
US20190313536A1 (en) 2019-10-10
JP6819682B2 (ja) 2021-01-27
SG10202011919XA (en) 2021-01-28
KR102346221B1 (ko) 2021-12-31
KR20190015229A (ko) 2019-02-13
JP2020182007A (ja) 2020-11-05
TW201802954A (zh) 2018-01-16
SG11201810482XA (en) 2018-12-28

Similar Documents

Publication Publication Date Title
US8419884B2 (en) Method for manufacturing multilayer wiring substrate
JP3906225B2 (ja) 回路基板、多層配線板、回路基板の製造方法および多層配線板の製造方法
WO2017213086A1 (ja) 多層配線板の製造方法
JP2020182007A (ja) 多層配線板の製造方法
KR20090068227A (ko) 다층 프린트 배선판 및 그 제조 방법
JP2008124398A (ja) 半導体パッケージおよびその製造方法
US6851599B2 (en) Method for producing multilayer wiring circuit board
JP2002246536A (ja) 三次元実装パッケージの製造方法、及びその製造用のパッケージモジュール
JP5581828B2 (ja) 積層回路基板および基板製造方法
JP2007335631A (ja) 積層配線板の製造方法
JP4892924B2 (ja) 多層プリント配線基板及びその製造方法
JP2003229665A (ja) 多層フレキシブル配線板及びその製造方法
JP2005039136A (ja) 回路基板および回路基板の接続方法
TWI820073B (zh) 積層體及其製造方法
JP4691850B2 (ja) 多層配線板製造用配線基板および多層配線板、並びにそれらの製造方法
JP4816442B2 (ja) 半導体装置実装パッケージ用多層配線板の製造方法
JP4292905B2 (ja) 回路基板、多層基板、回路基板の製造方法および多層基板の製造方法
JP4277723B2 (ja) 多層回路基板及び多層回路基板の製造方法
TW202339570A (zh) 多層基板、多層基板的製造方法及電子機器
JP2017220518A (ja) 貫通スルーホールレス構造の高密度多層配線板
JP2011082428A (ja) 配線板、多層配線板及び多層配線板の製造方法
JP2012074519A (ja) 多層プリント配線板及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187033290

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2018522478

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810261

Country of ref document: EP

Kind code of ref document: A1