WO2017208945A1 - 樹脂組成物、樹脂組成物の製造方法及び成形体 - Google Patents

樹脂組成物、樹脂組成物の製造方法及び成形体 Download PDF

Info

Publication number
WO2017208945A1
WO2017208945A1 PCT/JP2017/019438 JP2017019438W WO2017208945A1 WO 2017208945 A1 WO2017208945 A1 WO 2017208945A1 JP 2017019438 W JP2017019438 W JP 2017019438W WO 2017208945 A1 WO2017208945 A1 WO 2017208945A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
resin composition
block copolymer
ion
block
Prior art date
Application number
PCT/JP2017/019438
Other languages
English (en)
French (fr)
Inventor
希 稲垣
和之 緒方
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN201780018442.0A priority Critical patent/CN108884313B/zh
Priority to JP2018520845A priority patent/JPWO2017208945A1/ja
Priority to EP17806502.5A priority patent/EP3467034B1/en
Priority to US16/099,690 priority patent/US10738189B2/en
Publication of WO2017208945A1 publication Critical patent/WO2017208945A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the present invention relates to a resin composition, a method for producing the resin composition, and a molded body.
  • Polyphenylene ether (hereinafter sometimes referred to simply as “PPE”) has advantages such as heat resistance, low specific gravity and flame retardancy, and is used in various applications including OA and automotive applications. .
  • PPE Polyphenylene ether
  • advantages such as heat resistance, low specific gravity and flame retardancy, and is used in various applications including OA and automotive applications.
  • polyphenylene ether is an amorphous resin, there is a problem that resistance to oils and fats and organic solvents is insufficient, and there are some restrictions on usage and environment.
  • the component (c) has an average minor axis diameter of 2 ⁇ m or less and an average major axis diameter / average minor axis diameter of 1 to 10, and is dispersed in the resin composition, [1] to [4] The resin composition as described.
  • the (f) component is a phosphinic acid salt represented by the following general formula (1)
  • R 11 and R 12 are each independently a linear or branched aryl group an alkyl group and / or C 6 -C 10 carbon atoms 1 ⁇ 6
  • M 1 is At least one selected from the group consisting of calcium ion, magnesium ion, aluminum ion, zinc ion, bismuth ion, manganese ion, sodium ion, potassium ion and protonated nitrogen base
  • M is an integer of 1 to 3
  • a m]
  • R 21 and R 22 are each independently a linear or branched aryl group an alkyl group and / or C 6 -C 10 carbon atoms 1 ⁇ 6
  • R 23 is A linear or branched alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 10 carbon
  • the component (d) is at least one block copolymer containing at least one polymer block I mainly composed of a vinyl aromatic compound and at least one polymer block II mainly composed of a conjugated diene compound.
  • the total of 1,2-vinyl bond and 3,4-vinyl bond with respect to the double bond in the conjugated diene compound unit contained in the component (d) is more than 50% and 90% or less
  • the content of the vinyl aromatic compound unit in the component (d) is 30 to 50% by mass
  • the glass transition temperature of the polymer block II in the component (d) is more than ⁇ 50 ° C.
  • the resin composition according to any one of [1] to [10], wherein a hydrogenation rate with respect to a double bond in the conjugated diene compound unit contained in the component (d) is 80 to 100%.
  • [12] The method for producing a resin composition according to any one of [1] to [11], comprising the following steps (1-1) and (1-2): (1-1): A step of obtaining a kneaded product by melt-kneading the component (a) and, if necessary, the component (d). (1-2): The component (b-1) and the component (b-2) and / or the component (c) are added to the kneaded product obtained in the step (1-1). And melt-kneading.
  • the resin composition of the present embodiment includes (a) a polyphenylene ether resin, (B-1) At least a part of a block copolymer containing at least one polymer block A mainly composed of a vinyl aromatic compound and at least one polymer block B mainly composed of a conjugated diene compound Hydrogenated block copolymer that has been hydrogenated and has a molecular weight peak in terms of standard polystyrene as measured by GPC at 80,000 to 200,000 and / or a modified product of the hydrogenated block copolymer, and (b-2) vinyl At least a part of a block copolymer containing at least one polymer block A mainly composed of an aromatic compound and at least one polymer block B mainly composed of a conjugated diene compound is hydrogenated, Hydrogenated block copolymer having a molecular weight peak in terms of standard polystyrene as measured by GPC from 10,000 to less than 80,000 and / or the hydrogen Modified products of pressurized block cop
  • the resin composition of the present embodiment comprises a combination of the component (a), the component (b-1), and the component (b-2): a combination of the component (a) and a component (c): It includes at least any one of (a) component, (b-1) component, (b-2) component, and (c) component combination.
  • a block copolymer including at least one polymer block mainly composed of a vinyl aromatic compound and at least one polymer block mainly composed of a conjugated diene compound is used.
  • a hydrogenated block copolymer obtained by hydrogenation and / or a modified product of the hydrogenated block copolymer may be simply referred to as a “hydrogenated block copolymer”.
  • the unmodified hydrogenated block copolymer is referred to as “unmodified hydrogenated block copolymer”
  • the modified hydrogenated block copolymer is referred to as “modified hydrogenated block copolymer”. It may be referred to as “copolymer”.
  • the 1,2-vinyl bond and 3,4-vinyl bond in the conjugated diene compound unit may be referred to as “all vinyl bonds”.
  • the (a) polyphenylene ether-based resin used in the present embodiment is not particularly limited, and examples thereof include polyphenylene ether, modified polyphenylene ether, and a mixture of both.
  • a component may be used individually by 1 type and may be used together in combination of 2 or more type.
  • the reduced viscosity of the component (a) is preferably 0.25 dL / g or more, more preferably 0.28 dL / g or more, It is preferably 0.60 dL / g or less, more preferably 0.57 dL / g or less, and particularly preferably 0.55 dL / g or less.
  • the reduced viscosity can be controlled by the polymerization time and the amount of catalyst.
  • the reduced viscosity can be measured with an Ubbelohde type viscosity tube using a chloroform solution of ⁇ sp / c: 0.5 g / dL at a temperature of 30 ° C.
  • the polyphenylene ether is not particularly limited, and examples thereof include a homopolymer having a repeating unit structure represented by the following formula (3) and / or a copolymer having a repeating unit structure represented by the following formula (3).
  • a polymer is mentioned. [Wherein R 31 , R 32 , R 33 and R 34 are each independently a hydrogen atom, a halogen atom, a primary alkyl group having 1 to 7 carbon atoms, or a group having 1 to 7 carbon atoms.
  • Such polyphenylene ether is not particularly limited, and known ones can be used.
  • Specific examples of the polyphenylene ether include poly (2,6-dimethyl-1,4-phenylene ether), poly (2-methyl-6-ethyl-1,4-phenylene ether), poly (2-methyl- Homopolymers such as 6-phenyl-1,4-phenylene ether) and poly (2,6-dichloro-1,4-phenylene ether); 2,6-dimethylphenol and 2,3,6-trimethylphenol and 2 -Copolymers such as copolymers with other phenols such as methyl-6-butylphenol; and the like, poly (2,6-dimethyl-1,4-phenylene ether), 2,6-dimethylphenol And 2,3,6-trimethylphenol are preferable, and poly (2,6-dimethyl-1,4-phenylene ether) is more preferable.
  • the method for producing polyphenylene ether is not particularly limited, and a conventionally known method can be used.
  • a specific example of the production method of polyphenylene ether for example, it is produced by oxidative polymerization of 2,6-xylenol using, for example, a complex of cuprous salt and amine as a catalyst.
  • the modified polyphenylene ether is not particularly limited, and examples thereof include those obtained by grafting and / or adding a styrene polymer and / or a derivative thereof to the polyphenylene ether.
  • the rate of mass increase due to grafting and / or addition is not particularly limited and is preferably 0.01% by mass or more and 10% by mass or less with respect to 100% by mass of the modified polyphenylene ether. It is preferably 7% by mass or less, more preferably 5% by mass or less.
  • the method for producing the modified polyphenylene ether is not particularly limited.
  • a radical generator in the molten state, in the solution state or in the slurry state, the above-described conditions can be obtained at 80 to 350 ° C.
  • examples include a method of reacting polyphenylene ether with a styrene polymer and / or a derivative thereof.
  • the mixing ratio of the polyphenylene ether and the modified polyphenylene ether is not particularly limited and may be any ratio.
  • the hydrogenated block copolymer as the component (b-1) and the component (b-2) is a polymer block A mainly composed of a vinyl aromatic compound and a heavy polymer composed mainly of a conjugated diene compound.
  • the molecular weight peak in terms of standard polystyrene as measured by GPC has the component (b-1) at 80,000 to 200,000 and the component (b-2) at 10,000 or more and less than 80,000. When the molecular weight peak satisfies the above conditions, the low temperature impact property of the composition is improved.
  • Polymer block A-- Examples of the polymer block A mainly composed of a vinyl aromatic compound include a homopolymer block of a vinyl aromatic compound and a copolymer block of a vinyl aromatic compound and a conjugated diene compound. Among them, a homopolymer block of a vinyl aromatic compound, a copolymer block of a vinyl aromatic compound and a conjugated diene compound containing more than 50% by mass (preferably 70% by mass or more) of a vinyl aromatic compound unit, and the like are preferable. .
  • “mainly composed of a vinyl aromatic compound” means that the polymer block A before hydrogenation contains more than 50% by mass of a vinyl aromatic compound unit. It is preferable to contain 70% by mass or more of compound units.
  • the vinyl aromatic compound is not particularly limited, and examples thereof include styrene, ⁇ -methylstyrene, vinyltoluene, p-tert-butylstyrene, and diphenylethylene. Of these, styrene is preferred.
  • the conjugated diene compound include the following conjugated diene compounds, and butadiene, isoprene and combinations thereof are preferable. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • polymer block A the distribution of vinyl aromatic compound, conjugated diene compound, etc. in the molecular chain in the polymer block is random, tapered (in which the monomer component increases or decreases along the molecular chain), and partially in block form Or you may comprise by these arbitrary combinations.
  • each polymer block A may have the same structure or a different structure. May be.
  • the polymer block A in the component (b-1) and the polymer block A in the component (b-2) may be the same or different.
  • the number average molecular weight (Mn) of the polymer block A is preferably 5,000 to 25,000, more preferably from the viewpoint of obtaining further excellent rigidity, chemical resistance, low temperature impact resistance, and tracking resistance. Is 10,000 to 25,000.
  • Polymer block B-- Examples of the polymer block B mainly composed of a conjugated diene compound include a homopolymer block of a conjugated diene compound, a random copolymer block of a conjugated diene compound and a vinyl aromatic compound, and the like. Among these, a homopolymer block of a conjugated diene compound, a copolymer block of a conjugated diene compound and a vinyl aromatic compound containing more than 50% by mass (preferably 70% by mass or more) of a conjugated diene compound unit are preferable.
  • the polymer block B “consisting mainly of a conjugated diene compound” means that the polymer block B contains more than 50 mass% of the conjugated diene compound unit, and the conjugated diene compound unit is 70 mass% or more. It is preferable to contain.
  • the conjugated diene compound is not particularly limited, and examples thereof include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like. Of these, butadiene, isoprene, and combinations thereof are preferable.
  • vinyl aromatic compound the above-mentioned vinyl aromatic compound is mentioned, Styrene is preferable. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • polymer block B the distribution of the conjugated diene compound, vinyl aromatic compound, etc. in the molecular chain in the polymer block is random, tapered (in which the monomer component increases or decreases along the molecular chain), partly in block form Or you may comprise by these arbitrary combinations.
  • the hydrogenation rate with respect to the ethylenic double bond in the conjugated diene compound unit in the polymer block B is 20% or more and 80% from the viewpoint of obtaining further excellent rigidity, chemical resistance, low temperature impact resistance, and tracking resistance.
  • the total ratio of 1,2-vinyl bond and 3,4-vinyl bond to ethylenic double bond in the conjugated diene compound unit in the polymer block B is more excellent in rigidity, chemical resistance, and low temperature impact resistance. From the viewpoint of obtaining tracking resistance, it is preferably 25% or more and less than 60%, more preferably 25 to 55%, and further preferably 25 to 50%.
  • the total amount of 1,2-vinyl bonds and 3,4-vinyl bonds is the conjugated diene compound unit in the conjugated diene compound-containing polymer block before hydrogenation.
  • the number average molecular weight (Mn) of the polymer block B is preferably 20,000 to 100,000, more preferably from the viewpoint of obtaining further excellent rigidity, chemical resistance, low temperature impact resistance, and tracking resistance. Is from 20,000 to 80,000.
  • the glass transition temperature of the polymer block B after hydrogenation is ⁇ 50 ° C. or lower, and ⁇ 60 ° C. or lower from the viewpoint of obtaining further excellent rigidity, chemical resistance, low temperature impact resistance, and tracking resistance. Is preferable, and it is more preferably ⁇ 70 ° C. or lower.
  • the glass transition temperature of the block copolymer and the glass transition temperature of the polymer block in the block copolymer are, for example, a sample in a film state using a dynamic viscoelasticity measuring device. Used, tensile mode, temperature scan rate 3 ° C./min, frequency 1 Hz, nitrogen atmosphere.
  • the ratio of the total of 1,2-vinyl bonds and 3,4-vinyl bonds to ethylenic double bonds in the conjugated diene compound unit contained in the polymer block B is 25% or more and 60%.
  • Mainly composed of conjugated diene compound having both B1 and polymer block B2 mainly composed of conjugated diene compound in which the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is 45% or more and less than 70% It may be a polymer block.
  • -Structure of hydrogenated block copolymer- The structure of the hydrogenated block copolymer in the component (b-1) and the component (b-2) is, for example, when the polymer block A is “A” and the polymer block B is “B”.
  • -B type, ABA type, BABA type, (AB-) nX type (where n is an integer of 1 or more, X is silicon tetrachloride, tin tetrachloride, etc.)
  • the reaction residue of the polyfunctional coupling agent or the residue of the initiator such as the polyfunctional organolithium compound.
  • the molecular structure of the hydrogenated block copolymer in the component (b-1) and the component (b-2) is not particularly limited, and may be, for example, linear, branched, radial, or any combination thereof. There may be.
  • the total proportion of 1,2-vinyl bond and 3,4-vinyl bond to ethylenic double bond in the conjugated diene compound unit contained in component (b-1) and component (b-2) is 25% It is preferably less than 60%, more preferably 25% or more and 55% or less, and further preferably 25% or more and 50% or less.
  • the total proportion of 1,2-vinyl bond and 3,4-vinyl bond is less than 60%, the impact resistance at low temperature of the resin composition is improved. When it is 50% or less, impact resistance at low temperatures is further improved.
  • the total ratio of 1,2-vinyl bond and 3,4-vinyl bond is preferably 25% or more from the viewpoint of improving the compatibility with the component (d).
  • the method for controlling the total ratio of 1,2-vinyl bond and 3,4-vinyl bond within the above range is not particularly limited.
  • production of component (b-1) and component (b-2) In the method, a method of adding a 1,2-vinyl bond level regulator and a method of adjusting the polymerization temperature can be mentioned.
  • Total of 1,2-vinyl bond and 3,4-vinyl bond with respect to double bond in conjugated diene compound unit means conjugated diene compound in block copolymer before hydrogenation of hydrogenated block copolymer
  • the total of 1,2-vinyl bond and 3,4-vinyl bond to double bond (ethylenic double bond) in the unit For example, the block copolymer before hydrogenation can be measured with an infrared spectrophotometer and calculated by the Hampton method. Moreover, it can also calculate using NMR from the block copolymer after hydrogenation.
  • the hydrogenation rate with respect to the ethylenic double bond (double bond in the conjugated diene compound unit) in the block copolymer is more than 0% and less than 80%. Preferably, it is 10% or more and less than 80%, more preferably 20% or more and less than 80%, still more preferably 20 to 70%, and particularly preferably 20% or more and less than 70%. It is preferable for the hydrogenation rate to be within the above range since the impact properties of the resin composition are improved.
  • the components (b-1) and (b-2) having such a hydrogenation rate are, for example, the amount of hydrogen consumed in the hydrogenation reaction of the ethylenic double bond of the block copolymer. It can be easily obtained by controlling in the range of (for example, 10% or more and less than 80%).
  • the hydrogenation rate can be determined, for example, by quantifying the amount of remaining double bonds in the polymer block B by NMR measurement.
  • (B-1) component, (b-2) component is a 1,2-vinyl bond to the ethylenic double bond in the conjugated diene compound unit contained in component (b-1) or component (b-2)
  • the ratio of the total of 3,4-vinyl bonds is less than 60%, and / or the hydrogenation ratio to the ethylenic double bonds in component (b) is less than 80%, It is more preferable because impact properties are improved.
  • the molecular weight peak after hydrogenation in terms of standard polystyrene by GPC measurement of the component (b-1) is 80,000 to 200,000 from the viewpoint of low temperature impact resistance, chemical resistance, tracking resistance, and rigidity, and is 100,000 It is preferable to be ⁇ 200,000.
  • the molecular weight peak after hydrogenation in terms of standard polystyrene by GPC measurement of component (b-2) is 10,000 or more and less than 80,000 from the viewpoint of low temperature impact resistance, chemical resistance, tracking resistance, and rigidity. It is preferable that it is 30,000 or more and less than 80,000.
  • the method for controlling the molecular weight peaks of the components (b-1) and (b-2) is not particularly limited, and examples thereof include a method of adjusting the amount of catalyst in the polymerization step.
  • a molecular weight peak can be measured on condition of the following using the gel permeation chromatography System21 by Showa Denko KK. In this measurement, a column in which one KG manufactured by Showa Denko KK, one K-800RL and one K-800R were connected in series was used as the column, and the column temperature was 40 ° C.
  • the solvent is chloroform
  • the solvent flow rate is 10 mL / min
  • the sample concentration is 1 g of hydrogenated block copolymer / 1 liter of chloroform solution.
  • a calibration curve is prepared using standard polystyrene (the molecular weight of standard polystyrene is 3650000, 217000, 1090000, 681000, 204000, 52000, 30200, 13800, 3360, 1300, 550). Further, the UV (ultraviolet) wavelength of the detection unit is measured by setting both standard polystyrene and hydrogenated block copolymer to 254 nm.
  • the molecular weight distribution (Mw / Mn) before hydrogenation of the component (b-1) and the component (b-2) is 1 from the viewpoint of obtaining further excellent rigidity, chemical resistance, low temperature impact resistance, and tracking resistance. It is preferably 0.01 to 1.50, more preferably 1.03 to 1.40.
  • the production method of the hydrogenated block copolymer in the component (b-1) and the component (b-2) is not particularly limited, and a known production method can be used, for example, Japanese Patent Application Laid-Open No. 47-11486. JP, JP 49-66743, JP 50-75651, JP 54-126255, JP 56-10542, JP 56-62847, JP No. 56-100900, JP-A-2-300218, British Patent 1130770, US Pat. No. 3,281,383, US Pat. No. 3,369,517, British Patent No. 1020720, US Pat. No. 3,330,024. And the methods described in US Pat. No. 4,501,857.
  • modified product of the hydrogenated block copolymer in the component (b-1) and the component (b-2) include the above hydrogenated block copolymer (particularly, an unmodified hydrogenated block copolymer), ⁇ , ⁇ -unsaturated carboxylic acid or a derivative thereof (ester compound or acid anhydride compound) is reacted at 80 to 350 ° C. in a molten state, a solution state or a slurry state in the presence or absence of a radical generator.
  • the modified hydrogenated block copolymer obtained by this is mentioned.
  • -Ratio of component (b-1) to component (b-2)- Ratio of component (b-1) having a molecular weight peak in terms of standard polystyrene by GPC measurement of 80,000 to 200,000 and component (b-2) having a molecular weight peak in terms of standard polystyrene by GPC measurement of 10,000 to less than 80,000 ( b-1): (b-2) is preferably 10:90 to 50:50 from the viewpoint of obtaining further excellent rigidity, chemical resistance, low temperature impact resistance and tracking resistance, and 20:80 More preferably, it is ⁇ 40: 60.
  • the component (c) is not particularly limited, and examples thereof include a homopolymer of an olefin monomer excluding propylene, a copolymer of two or more monomers including an olefin monomer excluding propylene, and the like.
  • a copolymer of ethylene and an ⁇ -olefin other than ethylene is preferable from the viewpoint of low temperature impact.
  • a propylene unit is not included as a monomer unit constituting the component (c).
  • component (c) It means that the content of propylene units in all the structural units constituting the component (c) is less than 0.1% by mass.
  • the component (c) examples include a copolymer of ethylene and one or more C4-C20 ⁇ -olefins. Among them, a copolymer of ethylene and one or more C4-C8 ⁇ -olefins is more preferable, and ethylene, 1-butene, 1-hexene, 4-methyl-1-pentene and A copolymer with one or more comonomers selected from the group consisting of 1-octene is more preferable, and a copolymer of ethylene and 1-butene is particularly preferable.
  • a component may be used individually by 1 type and may use 2 or more types together. Further, as the component (c), two or more kinds of ethylene- ⁇ -olefin copolymers may be used.
  • the content of ethylene in component (c) is preferably from 5 to 95% by mass, more preferably from 30 to 90%, based on the total amount of the olefin polymer, from the viewpoint of low temperature curability and flexibility of the resin composition. % By mass.
  • the content of ⁇ -olefin other than ethylene in the component (c) is not particularly limited, and is 5% by mass or more based on the total amount of the olefin polymer from the viewpoint of low-temperature curability and flexibility of the resin composition. It is preferably 20% by mass or more, and from the viewpoint of the rigidity of the resin composition, it is preferably 50% by mass or less, and more preferably 48% by mass or less.
  • the embrittlement temperature of the component (c) is ⁇ 50 ° C. or lower. From the viewpoint of obtaining more excellent impact properties and chemical resistance, it is preferably ⁇ 60 ° C. or lower, and preferably ⁇ 70 ° C. or lower. More preferred.
  • the embrittlement temperature can be measured according to ASTM D746.
  • the density (density in the raw material stage before kneading) measured according to JIS K7112 of the component (c) is preferably 0.87 g / cm 3 or more from the viewpoint of chemical resistance of the resin composition. More preferably, it is 90 g / cm 3 or more.
  • C Although it does not specifically limit as a method of controlling the density of a component in the said range, For example, the method etc. which adjust by controlling the content rate of an ethylene unit are mentioned.
  • the melt flow rate of component (c) (MFR, conforming to ASTM D-1238, measured at 190 ° C. under a load of 2.16 kgf and density at the raw material stage before kneading) is the resin composition of component (c) From the viewpoint of stabilizing the morphology by dispersion in the resin and impact resistance of the resin composition, 0.1 to 5.0 g / 10 min is preferable, and 0.3 to 4.0 g / 10 min is more preferable.
  • the method for controlling the melt flow rate of the component (c) within the above range is not particularly limited.
  • the component (c) when the component (c) is produced, a method for adjusting the polymerization temperature and the polymerization pressure, ethylene in the polymerization system, And a method of adjusting the molar ratio between the concentration of monomers such as ⁇ -olefin and the concentration of hydrogen.
  • the component (c) may be, for example, an olefin polymer rubber made of an olefin excluding propylene.
  • the torsional rigidity of the component (c) is preferably from 1 to 30 MPa, more preferably from 1 to 25 MPa, from the viewpoint that sufficient impact resistance can be imparted to the composition.
  • the torsional rigidity of the component (c) can be measured in accordance with ASTM D 1043.
  • the Shore A component (c) is preferably 40 to 110, more preferably 50 to 100, from the viewpoint of giving sufficient impact resistance to the composition.
  • Shore A of (c) component can be measured based on JISK6253.
  • the method for preparing the component (c) is not particularly limited, and a catalyst (for example, based on titanium, metallocene, or vanadium that can easily obtain a high molecular weight ⁇ -olefin polymer under usual processing conditions) And the like, and the like.
  • a catalyst for example, based on titanium, metallocene, or vanadium that can easily obtain a high molecular weight ⁇ -olefin polymer under usual processing conditions
  • a method using a metallocene catalyst and a titanium chloride catalyst is preferable from the viewpoint of stability of structure control.
  • a method for producing the ethylene- ⁇ -olefin copolymer known methods described in JP-A-6-306121, JP-A-7-500622 and the like can be used.
  • the admixture used as necessary in the present embodiment is not particularly limited, but includes a segment chain having high compatibility with the component (a), the component (b-1), and the component (b-2).
  • a copolymer having a component and / or a segment chain having high compatibility with the component (c) is preferable.
  • Examples of the segment chain having high compatibility with the component (a) include a polystyrene chain and a polyphenylene ether chain.
  • Examples of the segment chain having high compatibility with the component (b-1) and the component (b-2) and / or the component (c) include a polyolefin chain, a copolymer elastomer molecular chain of ethylene and ⁇ -olefin, and the like. Is mentioned.
  • a copolymer examples include, for example, a copolymer having a polystyrene chain-polyolefin chain, a copolymer having a polyphenylene ether chain-polyolefin chain, and a hydrogenated block copolymer thereof. .
  • a hydrogenated block copolymer is preferable from the viewpoint of thermal stability. These may be used individually by 1 type and may use 2 or more types together.
  • a block copolymer comprising a polymer block I mainly composed of a vinyl aromatic compound and at least one polymer block II mainly composed of a conjugated diene compound.
  • Examples thereof include a hydrogenated block copolymer in which at least a part of the polymer is hydrogenated.
  • the hydrogenated block copolymer as the component (d) is at least a block copolymer composed of a polymer block I mainly composed of a vinyl aromatic compound and a polymer block II mainly composed of a conjugated diene compound. It is preferable that a part thereof is hydrogenated.
  • the above-mentioned (b) component shall not be contained in the hydrogenated block copolymer as (d) component.
  • the vinyl aromatic compound constituting the polymer block I is not particularly limited, and examples thereof include styrene, ⁇ -methylstyrene, vinyltoluene, p-tert-butylstyrene, diphenylethylene and the like, and styrene is preferable.
  • Examples of the conjugated diene compound constituting the polymer block I include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, and the like, butadiene, isoprene, and combinations thereof are preferable. Butadiene is more preferred. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the number average molecular weight (Mn) of the polymer block I is preferably 15,000 or more, more preferably 20,000 or more, 25, Is more preferably 2,000 or more, particularly preferably 26,000 or more, and is preferably 100,000 or less.
  • the polymer block II mainly composed of a conjugated diene compound is not particularly limited, and examples thereof include a homopolymer block of a conjugated diene compound and a copolymer block of a conjugated diene compound and a vinyl aromatic compound.
  • “consisting mainly of a conjugated diene compound” means that the polymer block II before hydrogenation contains more than 50% by mass of the conjugated diene compound unit, and the flow of the resin composition From the viewpoint of enhancing the properties, the conjugated diene compound unit is preferably contained in an amount of 70% by mass or more, more preferably 80% by mass or more, and may be 100% by mass or less.
  • the conjugated diene compound constituting the polymer block II is not particularly limited, and examples thereof include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, and the like. Isoprene and combinations thereof are preferred, and butadiene is more preferred.
  • the vinyl aromatic compound constituting the polymer block II is not particularly limited, and examples thereof include styrene, ⁇ -methylstyrene, vinyltoluene, p-tert-butylstyrene, diphenylethylene and the like, and styrene is preferable. . These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the hydrogenation rate with respect to the ethylenic double bond in the conjugated diene compound unit contained in the polymer block II is 80% or more from the viewpoint of obtaining further excellent rigidity, chemical resistance, low temperature impact resistance, and tracking resistance. And more preferably 90% or more.
  • the hydrogenation rate can be measured using a nuclear magnetic resonance apparatus (NMR).
  • the distribution of the vinyl aromatic compound in the molecular chain in the polymer block I contained in the block copolymer and the conjugated diene compound in the molecular chain in the polymer block II as the component (d) are particularly limited. Without mentioning, for example, random, tapered (in which the monomer portion increases or decreases along the molecular chain), a partial block shape, or a combination thereof.
  • the block structure of the unmodified and modified hydrogenated block copolymer as the component (d) is not particularly limited.
  • the polymer block I is “I” and the polymer block When II is represented as “II”, component (c) includes I-II, I-II-I, II-I-II-I, (I-II-) 4 M, I-II-I-II Examples include structures such as -I.
  • the component (d) may contain a block other than the polymer block I and the polymer block II.
  • the molecular structure of the block copolymer of the unmodified and modified hydrogenated block copolymer as the component (d) is not particularly limited, and for example, linear, branched, radial, or a combination thereof Is mentioned.
  • the block copolymer as the component (d) includes a plurality of polymer blocks I or polymer blocks II
  • the plurality of polymer blocks I or the plurality of polymer blocks II are: Each may have the same structure or a different structure.
  • the content of the vinyl aromatic compound unit in the block copolymer before hydrogenation is 30% by mass or more. Preferably, it is 32% by mass or more, more preferably more than 40% by mass, particularly preferably 50% by mass or less, and further preferably 48% by mass or less.
  • content of a vinyl aromatic compound can be measured using a ultraviolet spectrophotometer.
  • the total ratio of the 1,2-vinyl bond amount and the 3,4-vinyl bond amount to the ethylenic double bond in the conjugated diene compound unit contained in the component (d) is more than 50% and 90% or less. Is more preferable, and 60 to 90% is more preferable.
  • the method for adding hydrogen to the block copolymer is not particularly limited.
  • a supported type in which a metal such as Ni, Pt, Pd, or Ru is supported on carbon, silica, alumina, diatomaceous earth, or the like.
  • a heterogeneous hydrogenation catalyst (2) a so-called Ziegler-type hydrogenation catalyst using an organic acid salt such as Ni, Co, Fe, Cr or a transition metal salt such as acetylacetone salt and a reducing agent such as organic aluminum; )
  • a homogeneous hydrogenation catalyst such as a so-called organometallic complex such as an organometallic compound such as Ti, Ru, Rh and Zr, for example, under conditions of a reaction temperature of 0 to 200 ° C. and a hydrogen pressure of 0.1 to 15 MPa. And a method of hydrogenation.
  • the method for synthesizing the block copolymer including the polymer block I and the polymer block II is not particularly limited, and examples thereof include known methods such as anionic polymerization.
  • the production method of the unmodified and modified hydrogenated block copolymer is not particularly limited, and a known production method can be used.
  • Examples include the method described in the specification of 4501857.
  • modified hydrogenated block copolymer in the component (d) will be described.
  • the modified hydrogenated block copolymer is obtained by grafting or adding an ⁇ , ⁇ -unsaturated carboxylic acid or a derivative thereof (for example, acid anhydride, ester, etc.) to the above unmodified hydrogenated block copolymer. It is.
  • the rate of mass increase due to grafting or addition is not particularly limited, and is preferably 0.01% by mass or more and 100% by mass or less with respect to 100% by mass of the unmodified hydrogenated block copolymer. Preferably, it is 7 mass% or less, more preferably 5 mass% or less.
  • the method for producing the modified hydrogenated block copolymer is not particularly limited, and for example, in the presence or absence of a radical generator, in the molten state, in the solution state or in the slurry state, at 80 to 350 ° C. And a method of reacting the above-mentioned unmodified hydrogenated block copolymer with an ⁇ , ⁇ -unsaturated carboxylic acid or a derivative thereof.
  • the (e) phosphate ester-based compound optionally used in the present embodiment is not particularly limited, and is generally any phosphate ester compound having an effect of improving the flame retardancy of the resin composition (phosphate ester compound).
  • Condensed phosphate ester compounds for example, triphenyl phosphate, phenyl bisdodecyl phosphate, phenyl bisneopentyl phosphate, phenyl-bis (3,5,5'-trimethyl-hexyl phosphate), ethyl diphenyl phosphate, 2-ethyl-hexyl di (p-tolyl) phosphate, bis- (2-ethylhexyl) -p-tolyl phosphate, tolyl phosphate, bis- (2-ethylhexyl) phenyl phosphate, tri- (nonylphenyl) phosphate, di (dodecyl) ) -P-Tolylphosph Phosphate, tricresyl phosphate, dibutylphenyl phosphate, 2-chloroethyldiphenyl phosphate, p-tolylbis (2,
  • the phosphoric ester compound is represented by the following formula (4): [In the formula (4), Q 41 , Q 42 , Q 43 and Q 44 are each independently an alkyl group having 1 to 6 carbon atoms; R 41 and R 42 are each independently methyl R 43 and R 44 are each independently a hydrogen atom or a methyl group; x is an integer of 0 or more; p 1 , p 2 , p 3 , and p 4 are each 0 to And q 1 and q 2 are each an integer of 0 to 2], and the following formula (5): [In the formula (5), Q 51 , Q 52 , Q 53 and Q 54 are each independently an alkyl group having 1 to 6 carbon atoms; R 51 is a methyl group; R 1 , r 2 , r 3 , r 4 are each an integer from 0 to 3; s 1 is an integer from 0 to 2, respectively]
  • the main component is at least one selected from the group consisting of aromatic condensed phosphat
  • x , Y is preferably 1 or more.
  • the preferred (e) phosphate ester-based compound can be generally obtained as a mixture containing 90% or more of compounds in which x and y are 1 to 3, other than compounds in which x and y are 1 to 3.
  • multimers and other by-products in which x and y are 4 or more are included.
  • (F) Phosphinates In the present embodiment, (f) phosphinic acid salts can be used as necessary.
  • phosphinic acid salts are not particularly limited, and examples thereof include calcium dimethylphosphinate, magnesium dimethylphosphinate, aluminum dimethylphosphinate, zinc dimethylphosphinate, calcium ethylmethylphosphinate, ethylmethylphosphine.
  • phosphinic acid salts are not particularly limited, and examples thereof include Exolit (registered trademark) OP1230, OP1240, OP1311, OP1312, OP930, and OP935 manufactured by Clariant Japan.
  • the composition of this embodiment does not substantially contain (g) a polypropylene resin from the viewpoint of low-temperature impact properties of the resin composition.
  • substantially free means that the content of the (g) polypropylene resin in the resin composition is less than 0.1%.
  • the polypropylene resin is not particularly limited, and examples thereof include polymers containing propylene units such as homopolypropylene, copolymers containing polypropylene blocks, modified polypropylene, and mixtures thereof.
  • the content of the polypropylene-based resin in the resin composition is, for example, that the resin composition is freeze-pulverized into a powder form, and then the powder is dissolved in chloroform at 23 ° C., and the insoluble content is 150 ° C.
  • the fraction dissolved in o-dichlorobenzene is further collected, and the fraction can be determined by NMR measurement.
  • thermoplastic resin (h) other than the components (a) to (d) and (g) optionally used in the present embodiment is not particularly limited, and examples thereof include polystyrene, syndiotactic polystyrene, Examples include high impact polystyrene.
  • the additive (i) other than the components (a) to (h) optionally used in the present embodiment is not particularly limited, and examples thereof include vinyls other than the components (b) and (d).
  • Flame retardant (ammonium polyphosphate compound, magnesium hydroxide, aromatic halogen flame retardant, silicone flame retardant, zinc borate, etc.), fluorine polymer, plasticizer (low molecular weight polyethylene, epoxidized soybean oil, polyethylene glycol) Flame retardant aids such as antimony trioxide, weather resistance (light) improvers, polyolefin nucleating agents, slip agents, various colorants, release agents, etc.
  • the content of each component in the resin composition of the present embodiment increases the low-temperature impact resistance, chemical resistance and dielectric breakdown strength of the resin composition, and imparts sufficient rigidity that can be applied to mechanical parts and structures.
  • the total amount of the component (a) is 50 to 90 parts by mass
  • the total amount of the component (b-1) and the component (b-2) is 0 to 100 parts by mass for the total of the components (a) to (c).
  • component (c) is preferably 0 to 30 parts by mass
  • component (a) is 60 to 85 parts by mass
  • the total amount of components (b-1) and (b-2) is 0 to More preferably, the content is 25 parts by mass and the component (c) is 0 to 25 parts by mass.
  • the content of the admixture (d) is preferably 1 to 20 parts by mass with respect to 100 parts by mass in total of the components (a) to (c) from the viewpoint of the mechanical property balance of the composition.
  • the content of the (e) phosphate ester compound is 5 to 30 parts by mass with respect to 100 parts by mass in total of the components (a) to (d) from the viewpoint of the mechanical property balance of the composition. preferable.
  • the content of (f) phosphinate is 3 to 3 parts per 100 parts by mass in total of components (a) to (d) from the viewpoint of the balance between mechanical properties and flame retardancy of the resin composition.
  • the amount is preferably 30 parts by mass, and more preferably 4 to 27 parts by mass.
  • the content of the (h) thermoplastic resin is not particularly limited as long as the effects of the present invention are not impaired.
  • the content of the thermoplastic resin is 0 with respect to a total of 100 parts by mass of the components (a) to (d). It may be up to 400 parts by mass.
  • the content of each component in the resin composition of the present embodiment is the low-temperature impact resistance, chemical resistance, From the viewpoint of increasing the dielectric breakdown strength and providing sufficient rigidity that can be applied to mechanical parts and structures, the components (a), (b-1), (b-2), and (d)
  • the total amount of component (a) is 50 to 80 parts by mass
  • the total amount of components (b-1) and (b-2) is 5 to 30 parts by mass
  • component (d) is 1 to 20 parts per 100 parts by mass in total.
  • the component (a) is 60 to 80 parts by mass
  • the total amount of the components (b-1) and (b-2) is 10 to 30 parts by mass
  • the component (d) is preferably 5 to 20 parts by mass.
  • the component (c) and the component (d) are included, the content of each component in the resin composition of the present embodiment increases the low-temperature impact resistance, chemical resistance, and dielectric breakdown strength of the resin composition, From the viewpoint of imparting sufficient rigidity that can be applied to the structure, the component (a) is 50 to 80 parts by mass with respect to a total of 100 parts by mass of the component (a), the component (c), and the component (d).
  • the component (c) is preferably 5 to 30 parts by mass
  • the component (d) is preferably 1 to 20 parts by mass, more preferably the component (a) is 60 to 80 parts by mass, and the component (c) is 10 to 30 parts by mass. Part by mass, component (d) is 5 to 20 parts by mass.
  • the resin composition of the present embodiment has a flexural modulus measured according to ISO 178 of 1600 MPa or more, and preferably 1700 to 3000 MPa. By being in this range, it is possible to have rigidity applicable to structural parts and structures.
  • the flexural modulus In order for the flexural modulus to be 1600 MPa or more, the specific components (a) to (c), and (d), (e), (g), and (h) are added as necessary. A specific amount can be contained and adjusted as appropriate.
  • the morphology of the resin composition of the present embodiment is that (a) polyphenylene ether resin is a continuous phase from the viewpoint of mechanical strength and chemical resistance. Further, from the viewpoint of obtaining further excellent chemical resistance, it is preferable that at least a part of the component (b-1) and / or the component (b-2) form a worm-like domain. More preferably, the component (b-1) and the component (b-2) form a worm-like domain.
  • the morphology of the resin composition can be observed using, for example, a TEM (transmission electron microscope) after staining the component (b-1) and the component (b-2) with osmium tetroxide.
  • the earthworm-like domain here is also generally expressed as a worm-like shape, and “forms an earthworm-like domain” means a block of the component (b-1) and the component (b-2)
  • the common mass is a worm-like elongated structure, and is a domain formed by bending or branching.
  • the domain may be bent or an arc may be drawn, or it may be divided into two or more branches, or the connection may be repeated.
  • FIG. 1 is an image obtained by observing a resin composition having a continuous phase 2 and a worm-like domain 1 using a TEM
  • FIG. 2 is a resin having no worm-like domain. It is an image of a composition.
  • FIG. 1 is an image obtained by observing a resin composition having a continuous phase 2 and a worm-like domain 1 using a TEM
  • FIG. 2 is a resin having no worm-like domain. It is an image of a composition.
  • FIG. 1 is an image obtained by observing a resin composition having
  • the stained part is a worm-like domain containing (b-1) and (b-2).
  • a method for controlling the morphology of the component (b-1) and the component (b-2) in a worm shape for example, the structure and molecular weight of each block part of the component (b-1) and the component (b-2) Or (d) by appropriately selecting the type of admixture.
  • the length of the earthworm-like domain is preferably from 0.1 to 10.0 ⁇ m, more preferably from 0.1 to 5.0 ⁇ m from the viewpoint of obtaining further excellent chemical resistance.
  • the width of the earthworm-like domain is preferably 0.01 to 1.0 ⁇ m, more preferably 0.02 to 0.5 ⁇ m, from the viewpoint of obtaining further excellent chemical resistance.
  • the aspect ratio of the earthworm-like domain is preferably 5 to 1000, more preferably 10 to 500 from the viewpoint of obtaining further excellent chemical resistance.
  • the maximum distance between the worm-like domains is preferably 0.005 to 0.2 ⁇ m, more preferably 0.01 to 0.15 ⁇ m from the viewpoint of obtaining further excellent chemical resistance.
  • the maximum distance between worm-like domains was determined by observing arbitrary 100 worm-like domains in an image obtained by observing an arbitrary cross section of the resin composition with a TEM, and measuring the distance between each worm-like domain.
  • the proportion of the earthworm-like domain in the resin composition is preferably 5 to 50%, more preferably 10 to 50% from the viewpoint of obtaining further excellent chemical resistance.
  • the ratio of the said earthworm-like domain in a resin composition occupies the earthworm-like domain which occupies in the part of 100 micrometers 2 or more arbitrarily selected in the image which observed the arbitrary cross sections of the resin composition with TEM. The area ratio.
  • the dimensions and the like of the earthworm-like domain can be measured using an image taken by TEM after staining with osmium tetroxide.
  • the component (c) is preferably dispersed in the resin composition.
  • the component (c) is preferably dispersed with an average minor axis diameter of 2 ⁇ m or less, and more preferably 1.5 ⁇ m or less, from the viewpoint of further improving mechanical strength and chemical resistance.
  • the component (c) is preferably dispersed with an average major axis diameter / average minor axis diameter of 1 to 10 from the viewpoint of further improving mechanical strength and chemical resistance.
  • the component (b) preferably has an average minor axis diameter of 2 ⁇ m or less and an average major axis diameter / average minor axis diameter of 1-10.
  • the morphology of the resin composition may be, for example, adjusting the structure and molecular weight of each block part of the component (b-1) and / or the component (b-2), adjusting the structure and molecular weight of the component (c), (D) It can adjust by selecting the kind of component suitably.
  • a preferred production method of the resin composition of the present embodiment is a production method including the following steps (1-1) and (1-2).
  • (1-1) A step of obtaining a kneaded product by melt-kneading the component (a) and, if necessary, the component (d).
  • the component (a) may be added in whole or in part.
  • the component (d) may be added in whole or in part.
  • the step (1-1) is preferably a step of obtaining a kneaded product by melt-kneading the whole amount of the component (a) and, if necessary, the whole amount or a part of the component (d).
  • the above components (b-1), (b-2) and (c) may be added in whole or in part.
  • all components (b-1), (b-2) and (c) are added in steps (1-1) and (1-2). May be.
  • the step (1-2) the total amount of the components (b-1), (b-2) and (c) is added to the kneaded product obtained in the step (1-1).
  • a step of melt kneading is preferable.
  • the components (b-1), (b-2) and (c) are added in the step (1-2) at the time of melt kneading (particularly (b-1) Component, (b-2) component, (c) by adding the total amount of component in step (1-2)), (b-1) component, (b-2) component, (c) component is (a) A resin composition which is efficiently dispersed in the components and has more excellent chemical resistance can be obtained.
  • the melt kneader suitably used for melt kneading each component in the method for producing a resin composition of the present embodiment is not particularly limited, and examples thereof include a single screw extruder and a twin screw extruder. Examples thereof include an extruder such as a multi-screw extruder, a heat-melt kneader using a roll, a kneader, a Brabender plastograph, a Banbury mixer, and the like. In particular, a twin-screw extruder is preferable from the viewpoint of kneadability.
  • twin screw extruder examples include a ZSK series manufactured by Coperion, a TEM series manufactured by Toshiba Machine Co., Ltd., and a TEX series manufactured by Nippon Steel Works.
  • the type and standard of the extruder are not particularly limited and may be known ones.
  • the L / D (barrel effective length / barrel inner diameter) of the extruder is preferably 20 or more, more preferably 30 or more, and preferably 75 or less, and more preferably 60 or less. preferable.
  • the configuration of the extruder is not particularly limited.
  • the first raw material supply port on the upstream side in the flow direction of the raw material the first vacuum vent downstream from the first raw material supply port, and the first vacuum vent.
  • a two-liquid pump can be provided.
  • the method of supplying the raw material at the second raw material supply port is not particularly limited, and the method of adding using the forced side feeder from the side open port may be a method of simply adding from the upper open port of the raw material supply port.
  • a method of adding from the side opening using a forced side feeder is preferable.
  • melt-kneading temperature is not particularly limited and may be 200 to 370 ° C.
  • screw rotation speed is not particularly limited and may be 100 to 1200 rpm.
  • the liquid raw material can be added directly into the cylinder system using a liquid pump or the like at the extruder cylinder.
  • the liquid pump is not particularly limited, and examples thereof include a gear pump and a flange type pump, and a gear pump is preferable.
  • the tank for storing the liquid raw material, the piping between the tank and the liquid pump, the pump and the extruder cylinder It is preferable to heat a portion that becomes a flow path of the liquid raw material such as a pipe between them using a heater or the like to reduce the viscosity of the liquid raw material.
  • the molded body of the present embodiment is composed of the resin composition of the present embodiment described above.
  • the molded body of the present embodiment is not particularly limited, and examples thereof include automobile parts, interior / exterior parts of electrical equipment, and other parts.
  • the automobile parts are not particularly limited, and include, for example, exterior parts such as bumpers, fenders, door panels, various moldings, emblems, engine hoods, wheel caps, roofs, spoilers, various aero parts, instrument panels, consoles, etc. Examples include interior parts such as boxes and trims; secondary battery battery case parts mounted on automobiles, electric cars, hybrid electric cars, etc .; lithium ion secondary battery parts.
  • the interior and exterior parts of the electrical equipment are not particularly limited.
  • Other parts include electric wires and cables obtained by coating metal conductors or optical fibers, fuel cases for solid methanol batteries, fuel cell water pipes, water cooling tanks, boiler exterior cases, ink jet printer peripheral parts and components , Furniture (chairs, etc.), chassis, water piping, joints, etc.
  • the molded body of the present embodiment can be produced by molding the resin composition of the present embodiment described above.
  • the method for producing the molded body of the present embodiment is not particularly limited, and examples thereof include injection molding, extrusion molding, extrusion profile forming, hollow molding, compression molding, and the like, and the effects of the present invention are more effectively achieved. From the viewpoint of obtaining, injection molding is preferable.
  • (Bi-1) content of polystyrene in block copolymer before hydrogenation: 30% by mass, molecular weight peak of block copolymer after hydrogenation: 125,000, number average molecular weight of polystyrene block (Mn ): 18,750, number average molecular weight (Mn) of polybutadiene block: 87,500, molecular weight distribution of block copolymer before hydrogenation (Mw / Mn): 1.10, 1, in polybutadiene block before hydrogenation 2-vinyl bond amount (total vinyl bond amount): 40%, hydrogenation rate with respect to the polybutadiene portion constituting the polybutadiene block: 35%, glass transition temperature of the polybutadiene block after hydrogenation: ⁇ 80 ° C.
  • (B-iv-1) content of polystyrene in the block copolymer before hydrogenation: 15% by mass, molecular weight peak of the block copolymer after hydrogenation: 130,000, number average molecular weight of polystyrene block (Mn ): 9,750, number average molecular weight (Mn) of polybutadiene block: 110,500, molecular weight distribution of block copolymer before hydrogenation (Mw / Mn): 1.10, 1, in polybutadiene block before hydrogenation 2-vinyl bond content (total vinyl bond content): 41%, hydrogenation rate with respect to the polybutadiene portion constituting the polybutadiene block: 98%, glass transition temperature of the polybutadiene block after hydrogenation: ⁇ 55 ° C.
  • (B-iv-1) :( b-iv-2) 30: 70
  • Bv-2 content of polystyrene in block copolymer before hydrogenation: 20% by mass, molecular weight peak of block copolymer after hydrogenation: 195,000, number average molecular weight of polystyrene block (Mn ): 19,500, number average molecular weight (Mn) of polybutadiene block: 156,000, molecular weight distribution of block copolymer before hydrogenation (Mw / Mn): 1.10, 1, in polybutadiene block before hydrogenation 2-vinyl bond amount (total vinyl bond amount): 50%, hydrogenation rate with respect to the polybutadiene portion constituting the polybutadiene block: 99%, glass transition temperature of the polybutadiene block after hydrogenation: ⁇ 48 ° C.
  • (Bv-1) :( bv-2) 30: 70
  • (B-vi-1): content of polystyrene in block copolymer before hydrogenation: 20% by mass, molecular weight peak of block copolymer after hydrogenation 70,000, number average molecular weight of polystyrene block (Mn ): 14,000, number average molecular weight (Mn) of polybutadiene block: 56,000, molecular weight distribution of block copolymer before hydrogenation (Mw / Mn): 1.10, 1, in polybutadiene block before hydrogenation 2-vinyl bond amount (total vinyl bond amount): 50%, hydrogenation rate with respect to the polybutadiene portion constituting the polybutadiene block: 99%, glass transition temperature of the polybutadiene block after hydrogenation: ⁇ 48 ° C.
  • (B-vi-2): content of polystyrene in the block copolymer before hydrogenation: 20% by mass, molecular weight peak of the block copolymer after hydrogenation: 130,000, number average molecular weight of polystyrene block (Mn ): 13,000, number average molecular weight of polybutadiene block (Mn): 104,000, molecular weight distribution of block copolymer before hydrogenation (Mw / Mn): 1.10, 1, in polybutadiene block before hydrogenation 2-vinyl bond amount (total vinyl bond amount): 50%, hydrogenation rate with respect to the polybutadiene portion constituting the polybutadiene block: 99%, glass transition temperature of the polybutadiene block after hydrogenation: ⁇ 48 ° C. (B-vi-1) :( b-vi-2) 30: 70
  • Admixture- A block copolymer having a II-I-I-I block structure was synthesized by a known method, with the polymer block I made of polystyrene and the polymer block II made of polybutadiene. Hydrogenation was performed on the synthesized block copolymer by a known method. The polymer was not modified. The physical properties of the resulting unmodified hydrogenated block copolymer are shown below.
  • the obtained resin composition pellets were supplied to a small injection molding machine (trade name: IS-100GN, manufactured by Toshiba Machine Co., Ltd.) set at a cylinder temperature of 280 ° C., and the mold temperature was 70 ° C.
  • a flat plate of 150 mm ⁇ 150 mm ⁇ 3 mm was formed under the conditions of an injection pressure of 75 MPa, an injection time of 20 seconds, and a cooling time of 15 seconds.
  • a test piece of 75 mm ⁇ 12.7 mm ⁇ 3 mm was cut out from this flat plate, and the test piece was set on a bending foam designed so that the strain continuously changed.
  • a phthalate ester compound (Bis (2-ethylhexyl) phthalate, manufactured by Tokyo Chemical Industry Co., Ltd.) was applied to the surface of the test piece, and left for 48 hours under the condition of 23 ° C. ⁇ 50 RH%. After 48 hours, the test piece was strained, and the stop position of the bending foam was measured when a crack occurred on the surface of the test piece, and the critical strain amount (%) indicating the limit strain amount at which no crack occurred was obtained. . As an evaluation criterion, it was determined that the larger the numerical value of the critical strain amount, the better the chemical resistance.
  • the obtained resin composition pellets are supplied to a small injection molding machine (trade name: IS-100GN, manufactured by Toshiba Machine Co., Ltd.) set at a cylinder temperature of 280 ° C., and the mold temperature is 70 ° C.
  • a flat plate of 50 mm ⁇ 90 mm ⁇ 2 mm was formed under the conditions of an injection pressure of 70 MPa, an injection time of 20 seconds, and a cooling time of 10 seconds.
  • the obtained flat plate was subjected to a drop weight impact test using a striker with a tip diameter of 12.7 mm in accordance with JIS K 7211-1 in an environment of ⁇ 40 ° C., and the total absorbed energy required for breaking the test piece (J) was measured. The larger the value, the better the low temperature impact resistance.
  • the obtained resin composition pellets were supplied to a small injection molding machine (trade name: IS-100GN, manufactured by Toshiba Machine Co., Ltd.) set at a cylinder temperature of 280 ° C. It was molded into a 120 mm ⁇ 80 mm ⁇ 3 mm flat plate under the condition of an injection pressure of 70 MPa. From the obtained flat plate, a 20 mm ⁇ 20 mm ⁇ 3 mm flat plate was cut out, and the maximum voltage (V) at which tracking breakdown did not occur was measured according to IEC60112: 2003 (used electrolyte: solution A, number of drops: 50 drops). The tracking resistance was evaluated. It was determined that the larger the value, the better the tracking resistance.
  • V maximum voltage
  • the obtained resin composition pellets are supplied to a small injection molding machine (trade name: IS-100GN, manufactured by Toshiba Machine Co., Ltd.) set at a cylinder temperature of 280 ° C., and the mold temperature is 70 ° C., injection. Molding was performed under the condition of a pressure of 60 MPa, and five test pieces for UL94 vertical combustion test measurement (1.6 mm thickness) were produced. The flame retardancy of these five test pieces was evaluated based on the UL94 vertical combustion test method. After 10 seconds of flame contact, the combustion time from the release of the flame until the flame disappears is defined as t1 (seconds). After 10 seconds of flame contact, the combustion time from the release of the flame until the flame disappears is represented by t2 (seconds).
  • the worm-like domain formed by the components (b-1) and (b-2) refers to the portion 1 in FIG. 1
  • the continuous phase refers to the portion 2 in FIG. 1 is an image of Example 1
  • FIG. 2 is an image of Comparative Example 1.
  • whether or not (a) component forms a continuous phase when (a) component forms a continuous phase ((a) component and other components are co-continuous) The case (including the case) was judged as “ ⁇ ” (good), and the case where the component (a) was in the dispersed phase was judged as “x” (bad).
  • a twin-screw extruder manufactured by Coperion Co., Ltd., ZSK-25 was used as a melt-kneader used in the production of the resin compositions of Examples and Comparative Examples.
  • the L / D of the extruder was 35.
  • the configuration of the twin-screw extruder includes a first raw material supply port on the upstream side in the flow direction of the raw material, a first vacuum vent downstream from the first raw material supply port, and a second raw material supply downstream from the first vacuum vent. And a second vacuum vent downstream from the liquid feed pump.
  • the barrel set temperature of the twin screw extruder is set to 320 ° C. from the first raw material supply port to the first vacuum vent, and 270 ° C. downstream from the second raw material supply port.
  • the screw rotation speed is 300 rpm, and the extrusion rate is 15 kg / h.
  • the pellet of the resin composition was manufactured on condition of this. Table 1 shows the configuration of the twin screw extruder.
  • the resin compositions of the examples are excellent in low-temperature impact resistance, chemical resistance, and tracking resistance as compared with the resin compositions of the comparative examples, and are applicable to mechanical parts and structures. Also found to have possible rigidity.
  • the present invention it is possible to obtain a resin composition and a molded body that have excellent low-temperature impact resistance, chemical resistance, and tracking resistance and have rigidity that can be applied to mechanical parts and structures.
  • the molded body containing the resin composition of the present invention is suitably used as an automobile part, an interior / exterior part of an electric device, other parts, and the like.

Abstract

本発明は、低温衝撃性、耐薬品性、耐トラッキング性に優れ、機構部品や構造体への適用も可能な剛性を持つ樹脂組成物及び成形体を提供することを目的とする。本発明の樹脂組成物は、(a)ポリフェニレンエーテル系樹脂と、(b-1)分子量ピークを8万~20万に有する水素添加ブロック共重合体及び/若しくは該共重合体の変性物、及び(b-2)分子量ピークを1万以上8万未満に有する水素添加ブロック共重合体及び/若しくは該共重合体の変性物、並びに/又は、(c)プロピレンを除くオレフィンからなるオレフィン系重合体、とを含有し、前記(a)成分が連続相を形成し、重合体ブロックBのガラス転移温度が-50℃以下であり、前記(c)成分の脆化温度が-50℃以下であり、実質的に、(g)ポリプロピレン系樹脂を含有せず、ISO 178に準じて測定した曲げ弾性率が、1600MPa以上である、ことを特徴とする。

Description

樹脂組成物、樹脂組成物の製造方法及び成形体
 本発明は、樹脂組成物、樹脂組成物の製造方法及び成形体に関する。
 ポリフェニレンエーテル(以下、単に「PPE」と称する場合がある)は、耐熱性、低比重、難燃性等の長所を持っており、OA、自動車用途をはじめとする多種の用途で利用されている。ところが、ポリフェニレンエーテルは非晶性樹脂であるがゆえ、油脂や有機溶剤に対する耐性が不十分となり、使用用途・環境にある程度の制限があるという課題があった。
 このため、一部の用途においては、PPE樹脂に結晶性樹脂をアロイさせて耐薬品性を向上させるという試みが行われているが、当該結晶性樹脂のガラス転移温度以下の温度領域では、耐衝撃性が急激に悪化するという問題があった。
 これに対して、ガラス転移温度の低い熱可塑性エラストマーを添加して、低温衝撃性を高めるという検討もなされている(例えば、特許文献1)が、低温衝撃性・耐薬品性に加えて、耐トラッキング性をもつ樹脂組成物を得ることはできていないのが現状である。
 また、ある程度の耐衝撃性を付与させるためには、比較的多量の熱可塑性エラストマーを添加する必要があるため、得られる組成物の剛性が低くなり、その用途は限定されたものとなり、機構部品や構造体への展開が難しい状況にあった(例えば、特許文献2~4)。
国際公開2015/50060号公報 特開2004-161929号公報 特許第5422561号公報 特開2007-519782号公報
 そこで、本発明は、低温衝撃性、耐薬品性、耐トラッキング性に優れ、機構部品や構造体への適用も可能な剛性を持つ樹脂組成物及び成形体を提供することを目的とする。
 本発明者らは、上記課題を解決するため鋭意検討した結果、ポリフェニレンエーテル系樹脂と、特定の構造を有する水素添加ブロック共重合体及び/若しくは該水素ブロック共重合体の変性物の組み合わせ、並びに/又は特定のオレフィン系重合体と、を含み、実質的にポリプロピレン系樹脂を含まず、ポリフェニレンエーテル系樹脂が連続相を形成し、ISO 178に準じて測定した曲げ弾性率が特定の値以上である樹脂組成物が上記課題を有利に解決できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は下記の通りである。
[1]
(a)ポリフェニレンエーテル系樹脂と、
(b-1)ビニル芳香族化合物を主体とする重合体ブロックAを少なくとも1個と、共役ジエン化合物を主体とする重合体ブロックBを少なくとも1個とを含むブロック共重合体の少なくとも一部が水素添加されてなり、GPC測定による標準ポリスチレン換算の分子量ピークを8万~20万に有する水素添加ブロック共重合体及び/若しくは該水素添加ブロック共重合体の変性物、及び(b-2)ビニル芳香族化合物を主体とする重合体ブロックAを少なくとも1個と、共役ジエン化合物を主体とする重合体ブロックBを少なくとも1個とを含むブロック共重合体の少なくとも一部が水素添加されてなり、GPC測定による標準ポリスチレン換算の分子量ピークを1万以上8万未満に有する水素添加ブロック共重合体及び/若しくは該水素添加ブロック共重合体の変性物、並びに/又は、(c)プロピレンを除くオレフィンからなるオレフィン系重合体、
とを含有し、
 前記(a)成分が連続相を形成し、
 前記(b-1)成分及び前記(b-2)成分中の、前記重合体ブロックBのガラス転移温度が-50℃以下であり、
 前記(c)成分の脆化温度が-50℃以下であり、
 実質的に、(g)ポリプロピレン系樹脂を含有せず、
 ISO 178に準じて測定した曲げ弾性率が、1600MPa以上である、
ことを特徴とする、樹脂組成物。
[2]
 前記(b-1)成分と、前記(b-2)成分との比((b-1):(b-2))が10:90~50:50である、[1]に記載の樹脂組成物。
[3]
 さらに(d)混和剤を含む、[1]又は[2]に記載の樹脂組成物。
[4]
 前記(b-1)成分及び/又は前記(b-2)成分が、ミミズ状のドメインを形成している、[1]~[3]いずれかに記載の樹脂組成物。
[5]
 前記(c)成分が、平均短軸径が2μm以下かつ平均長軸径/平均短軸径が1~10で、樹脂組成物中に分散している、[1]~[4]いずれかに記載の樹脂組成物。
[6]
 さらに、(e)リン酸エステル系化合物を含有する、[1]~[5]いずれかに記載の樹脂組成物。
[7]
 さらに、(f)ホスフィン酸塩類を含有し、
 前記(f)成分が、下記一般式(1)で表されるホスフィン酸塩
Figure JPOXMLDOC01-appb-C000003
[式中、R11及びR12は、各々独立して、直鎖状若しくは分岐状の炭素原子数1~6のアルキル基及び/又は炭素原子数6~10のアリール基であり;M1は、カルシウムイオン、マグネシウムイオン、アルミニウムイオン、亜鉛イオン、ビスマスイオン、マンガンイオン、ナトリウムイオン、カリウムイオン及びプロトン化された窒素塩基からなる群より選ばれる少なくとも1種であり;aは、1~3の整数であり;mは、1~3の整数であり;a=mである]、及び
 下記式(2)で表されるジホスフィン酸塩
Figure JPOXMLDOC01-appb-C000004
[式中、R21及びR22は、各々独立して、直鎖状若しくは分岐状の炭素原子数1~6のアルキル基及び/又は炭素原子数6~10のアリール基であり;R23は、直鎖状若しくは分岐状の炭素原子数1~10のアルキレン基、炭素原子数6~10のアリーレン基、炭素原子数6~10のアルキルアリーレン基又は炭素原子数6~10のアリールアルキレン基であり;M2は、カルシウムイオン、マグネシウムイオン、アルミニウムイオン、亜鉛イオン、ビスマスイオン、マンガンイオン、ナトリウムイオン、カリウムイオン及びプロトン化された窒素塩基からなる群より選ばれる少なくとも1種であり;bは、1~3の整数であり;nは、1~3の整数であり;jは、1又は2の整数であり;b・j=2nである]
からなる群より選ばれる少なくとも1種のホスフィン酸塩類を含有する、[1]~[6]のいずれかに記載の樹脂組成物。
[8]
 前記(c)成分が、エチレン-1-ブテン共重合体である、[1]~[7]のいずれかに記載の樹脂組成物。
[9]
 前記(c)成分の密度が、0.87g/cm3以上である、[1]~[8]のいずれかに記載の樹脂組成物。
[10]
 前記(c)成分の密度が、0.90g/cm3以上である、[1]~[9]のいずれかに記載の樹脂組成物。
[11]
 前記(d)成分が、ビニル芳香族化合物を主体とする少なくとも1個の重合体ブロックIと、共役ジエン化合物を主体とする少なくとも1個の重合体ブロックIIとを含むブロック共重合体の少なくとも一部が水素添加されてなる水素添加ブロック共重合体及び/又は該水素添加ブロック共重合体の変性物であり、
 前記(d)成分中に含まれる共役ジエン化合物単位における二重結合に対する、1,2-ビニル結合及び3,4-ビニル結合の合計が50%超90%以下であり、
 前記(d)成分中の、ビニル芳香族化合物単位の含有量が30~50質量%であり、
 前記(d)成分中の、重合体ブロックIIのガラス転移温度が-50℃超であり、
 前記(d)成分中に含まれる共役ジエン化合物単位における二重結合に対する水素添加率が80~100%である、[1]~[10]のいずれかに記載の樹脂組成物。
[12]
 下記工程(1-1)及び(1-2)を含むことを特徴とする、[1]~[11]のいずれかに記載の樹脂組成物の製造方法。
(1-1):前記(a)成分、及び必要に応じて(d)成分を溶融混練して混練物を得る工程。
(1-2):前記工程(1-1)で得られた前記混練物に対して、前記(b-1)成分及び前記(b-2)成分、並びに/又は前記(c)成分を添加し、溶融混練する工程。
[13]
 [1]~[11]のいずれかに記載の樹脂組成物を含むことを特徴とする、成形体。
 本発明によれば、低温衝撃性、耐薬品性、耐トラッキング性に優れ、機構部品や構造体への適用も可能な剛性を持つ樹脂組成物及び成形体を得ることができる。
図1は、実施例1の(b-1)成分及び(b-2)成分がミミズ状のドメインを形成している樹脂組成物をTEMで観察した画像である。 図2は、比較例1のミミズ状のドメインを形成していない樹脂組成物をTEMで観察した画像である。
 以下、本発明を実施するための形態(以下、「本実施形態」ともいう)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
[樹脂組成物]
 本実施形態の樹脂組成物は、(a)ポリフェニレンエーテル系樹脂と、
(b-1)ビニル芳香族化合物を主体とする重合体ブロックAを少なくとも1個と、共役ジエン化合物を主体とする重合体ブロックBを少なくとも1個とを含むブロック共重合体の少なくとも一部が水素添加されてなり、GPC測定による標準ポリスチレン換算の分子量ピークを8万~20万に有する水素添加ブロック共重合体及び/若しくは該水素添加ブロック共重合体の変性物、及び(b-2)ビニル芳香族化合物を主体とする重合体ブロックAを少なくとも1個と、共役ジエン化合物を主体とする重合体ブロックBを少なくとも1個とを含むブロック共重合体の少なくとも一部が水素添加されてなり、GPC測定による標準ポリスチレン換算の分子量ピークを1万以上8万未満に有する水素添加ブロック共重合体及び/若しくは該水素添加ブロック共重合体の変性物、並びに/又は、(c)プロピレンを除くオレフィンからなるオレフィン系重合体、
とを含有し、
 前記(a)成分が連続相を形成し、
 前記(b-1)成分及び前記(b-2)成分中の、前記重合体ブロックBのガラス転移温度が-50℃以下であり、
 前記(c)成分の脆化温度が-50℃以下であり、
 実質的に、(g)ポリプロピレン系樹脂を含有せず、
 ISO 178に準じて測定した曲げ弾性率が、1600MPa以上である。
 即ち、本実施形態の樹脂組成物は、上記(a)成分、上記(b-1)成分、上記(b-2)成分の組み合わせ:上記(a)成分、上記(c)成分の組み合わせ:上記(a)成分、上記(b-1)成分、上記(b-2)成分、上記(c)成分の組み合わせ:の何れかを少なくとも含む。
 なお、本明細書において、ビニル芳香族化合物を主体とする少なくとも1個の重合体ブロックと、共役ジエン化合物を主体とする少なくとも1個の重合体ブロックとを含むブロック共重合体の少なくとも一部が水素添加されてなる水素添加ブロック共重合体及び/又は該水素添加ブロック共重合体の変性物を、単に「水添ブロック共重合体」と称する場合がある。また、水添ブロック共重合体のうち、変性していない水素添加ブロック共重合体を、「未変性水素添加ブロック共重合体」、水素添加ブロック共重合体の変性物を、「変性水素添加ブロック共重合体」と称する場合がある。
 また、共役ジエン化合物単位における1,2-ビニル結合及び3,4-ビニル結合を、「全ビニル結合」と称する場合がある。
 以下、本実施形態の樹脂組成物の成分について記載する。
 本実施形態の樹脂組成物は、低温衝撃性、耐薬品性、耐トラッキング性に優れ、機構部品や構造体への適用も可能な剛性を持つ。また、難燃性にも優れることが好ましい。なお、本実施形態において難燃性に優れるとは、後述の実施例に記載のUL94垂直燃焼試験において難燃レベルV-1以上であることを指す。
((a)ポリフェニレンエーテル系樹脂)
 本実施形態で用いられる(a)ポリフェニレンエーテル系樹脂としては、特に限定されることなく、例えば、ポリフェニレンエーテル、変性ポリフェニレンエーテル、及び両者の混合物等が挙げられる。(a)成分は、1種単独で用いてもよく、2種以上を組み合わせて併用してもよい。
 (a)成分の還元粘度は、樹脂組成物の難燃性を更に向上させる観点から、0.25dL/g以上であることが好ましく、0.28dL/g以上であることが更に好ましく、また、0.60dL/g以下であることが好ましく、0.57dL/g以下であることが更に好ましく、0.55dL/g以下であることが特に好ましい。還元粘度は、重合時間や触媒量により制御することができる。
 なお、還元粘度は、ηsp/c:0.5g/dLのクロロホルム溶液を用いて、温度30℃の条件下、ウベローデ型粘度管で測定することができる。
-ポリフェニレンエーテル-
 ポリフェニレンエーテルとしては、特に限定されることなく、例えば、下記式(3)で表される繰り返し単位構造からなる単独重合体、及び/又は下記式(3)で表される繰り返し単位構造を有する共重合体が挙げられる。
Figure JPOXMLDOC01-appb-C000005
[式中、R31、R32、R33、及びR34は、各々独立して、水素原子、ハロゲン原子、炭素原子数1~7の第1級のアルキル基、炭素原子数1~7の第2級のアルキル基、フェニル基、ハロアルキル基、アミノアルキル基、炭化水素オキシ基、及び少なくとも2個の炭素原子がハロゲン原子と酸素原子とを隔てているハロ炭化水素オキシ基からなる群より選ばれる一価の基である。]
 このようなポリフェニレンエーテルとしては、特に限定されることなく、公知のものを用いることができる。ポリフェニレンエーテルの具体例としては、例えば、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエーテル)、ポリ(2,6-ジクロロ-1,4-フェニレンエーテル)等の単独重合体;2,6-ジメチルフェノールと2,3,6-トリメチルフェノールや2-メチル-6-ブチルフェノール等の他のフェノール類との共重合物等の共重合体;等が挙げられ、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合物が好ましく、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)が更に好ましい。
 ポリフェニレンエーテルの製造方法としては、特に限定されることなく、従来公知の方法を用いることができる。ポリフェニレンエーテルの製造方法の具体例としては、例えば、第一銅塩とアミンとのコンプレックスを触媒として用いて、例えば、2,6-キシレノールを酸化重合することによって製造する、米国特許第3306874号明細書等に記載される方法や、米国特許第3306875号明細書、米国特許第3257357号明細書、米国特許第3257358号明細書、特公昭52-17880号公報、特開昭50-51197号公報、特開昭63-152628号公報等に記載される方法等が挙げられる。
-変性ポリフェニレンエーテル-
 変性ポリフェニレンエーテルとしては、特に限定されることなく、例えば、上記ポリフェニレンエーテルに、スチレン系重合体及び/又はその誘導体をグラフト化及び/又は付加させたもの等が挙げられる。グラフト化及び/又は付加による質量増加の割合は、特に限定されることなく、変性ポリフェニレンエーテル100質量%に対して、0.01質量%以上であることが好ましく、また、10質量%以下であることが好ましく、7質量%以下であることが更に好ましく、5質量%以下であることが特に好ましい。
 変性ポリフェニレンエーテルの製造方法としては、特に限定されることなく、例えば、ラジカル発生剤の存在下又は非存在下で、溶融状態、溶液状態又はスラリー状態において、80~350℃の条件下で、上記ポリフェニレンエーテルと、スチレン系重合体及び/又はその誘導体と、を反応させる方法等が挙げられる。
 (a)成分が、ポリフェニレンエーテルと変性ポリフェニレンエーテルとの混合物である場合には、上記ポリフェニレンエーテルと上記変性ポリフェニレンエーテルとの混合割合は、特に限定されることなく、任意の割合としてよい。
((b-1)(b-2)水素添加ブロック共重合体)
 (b-1)成分、(b-2)成分としての水添ブロック共重合体とは、ビニル芳香族化合物を主体とする重合体ブロックAを少なくとも1個と、共役ジエン化合物を主体とする重合体ブロックBを少なくとも1個とを含むブロック共重合体の少なくとも一部が水素添加されてなる水素添加ブロック共重合体及び/又は該水素添加ブロック共重合体の変性物である。GPC測定による標準ポリスチレン換算の分子量ピークを、(b-1)成分は8万~20万に有し、(b-2)成分は1万以上8万未満に有する。
 分子量ピークが上記条件を満たすことにより、組成物の低温衝撃性が向上する。
--重合体ブロックA--
 ビニル芳香族化合物を主体とする重合体ブロックAとしては、ビニル芳香族化合物のホモ重合体ブロック、ビニル芳香族化合物と共役ジエン化合物との共重合体ブロック等が挙げられる。中でも、ビニル芳香族化合物のホモ重合体ブロック、ビニル芳香族化合物単位を50質量%超(好ましくは70質量%以上)含有する、ビニル芳香族化合物と共役ジエン化合物との共重合体ブロック等が好ましい。
 ここで、重合体ブロックAにおいて「ビニル芳香族化合物を主体とする」とは、水素添加前の重合体ブロックA中にビニル芳香族化合物単位を50質量%超含有することをいい、ビニル芳香族化合物単位を70質量%以上含有することが好ましい。
 上記ビニル芳香族化合物としては、特に限定されないが、例えば、スチレン、α-メチルスチレン、ビニルトルエン、p-tert-ブチルスチレン、ジフェニルエチレン等が挙げられる。中でも、スチレンが好ましい。
 上記共役ジエン化合物としては、後述の共役ジエン化合物が挙げられ、ブタジエン、イソプレン及びこれらの組み合わせが好ましい。
 これらは1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 重合体ブロックAにおいて、重合体ブロックにおける分子鎖中のビニル芳香族化合物、共役ジエン化合物等の分布は、ランダム、テーパード(分子鎖に沿ってモノマー成分が増加又は減少するもの)、一部ブロック状又はこれらの任意の組み合わせで構成されていてもよい。
 重合体ブロックAが(b-1)成分及び/又は(b-2)成分中に2個以上ある場合は、各重合体ブロックAは、それぞれ同一構造であってもよいし、異なる構造であってもよい。また、(b-1)成分中の重合体ブロックAと(b-2)成分中の重合体ブロックAとは同じであってもよいし異なっていてもよい。
 重合体ブロックAの数平均分子量(Mn)は、一層優れた剛性、耐薬品性、低温衝撃性、耐トラッキング性が得られる観点から、5,000~25,000であることが好ましく、より好ましくは10,000~25,000である。
--重合体ブロックB--
 共役ジエン化合物を主体とする重合体ブロックBとしては、共役ジエン化合物のホモ重合体ブロック、共役ジエン化合物とビニル芳香族化合物とのランダム共重合体ブロック等が挙げられる。中でも、共役ジエン化合物のホモ重合体ブロック、共役ジエン化合物単位を50質量%超(好ましくは70質量%以上)含有する、共役ジエン化合物とビニル芳香族化合物との共重合体ブロック等が好ましい。
 ここで、重合体ブロックBにおいて「共役ジエン化合物を主体とする」とは、重合体ブロックB中に共役ジエン化合物単位を50質量%超含有することをいい、共役ジエン化合物単位を70質量%以上含有することが好ましい。
 上記共役ジエン化合物としては、特に限定されないが、例えば、ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン等が挙げられる。中でも、ブタジエン、イソプレン及びこれらの組み合わせが好ましい。
 上記ビニル芳香族化合物としては、上述のビニル芳香族化合物が挙げられ、スチレンが好ましい。
 これらは1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 重合体ブロックBにおいて、重合体ブロックにおける分子鎖中の共役ジエン化合物、ビニル芳香族化合物等の分布は、ランダム、テーパード(分子鎖に沿ってモノマー成分が増加又は減少するもの)、一部ブロック状又はこれらの任意の組み合わせで構成されていてもよい。
 重合体ブロックBが(b-1)成分及び/又は(b-2)成分中に2個以上ある場合は、各重合体ブロックBはそれぞれ同一構造であってもよいし、異なる構造であってもよい。また、(b-1)成分中の重合体ブロックBと(b-2)成分中の重合体ブロックBとは同じであってもよいし異なっていてもよい。
 上記重合体ブロックB中の共役ジエン化合物単位におけるエチレン性二重結合に対する水素添加率としては、一層優れた剛性、耐薬品性、低温衝撃性、耐トラッキング性が得られる観点から、20%以上80%未満であることが好ましく、より好ましくは20%以上70%未満である。水素添加率が上記範囲内であると、樹脂組成物の衝撃性が改善されるため好ましい。
 上記重合体ブロックB中の共役ジエン化合物単位におけるエチレン性二重結合に対する、1,2-ビニル結合及び3,4-ビニル結合の合計の割合は、一層優れた剛性、耐薬品性、低温衝撃性、耐トラッキング性が得られる観点から、25%以上60%未満であることが好ましく、25~55%であることがより好ましく、25~50%であることがさらに好ましい。
 なお、本明細書において、1,2-ビニル結合量及び3,4-ビニル結合量の合計(全ビニル結合量)とは、水素添加前の共役ジエン化合物含有重合体ブロック中の共役ジエン化合物単位における、1,2-ビニル結合量と3,4-ビニル結合量との合計の、1,2-ビニル結合量と、3,4-ビニル結合量と、1,4-共役結合量との合計に対する割合を指す。全ビニル結合量は、赤外分光光度計を用いて測定し、Analytical Chemistry,Volume21,No.8,August 1949に記載の方法に準じて算出することができる。
 重合体ブロックBの数平均分子量(Mn)は、一層優れた剛性、耐薬品性、低温衝撃性、耐トラッキング性が得られる観点から、20,000~100,000であることが好ましく、より好ましくは20,000~80,000である。
 重合体ブロックBの水素添加後のガラス転移温度は、-50℃以下であり、一層優れた剛性、耐薬品性、低温衝撃性、耐トラッキング性が得られる観点から、-60℃以下であることが好ましく、-70℃以下であることがより好ましい。
 なお、本明細書において、ブロック共重合体のガラス転移温度、及びブロック共重合体中の重合体ブロックのガラス転移温度は、例えば、動的粘弾性測定装置を用いて、フィルム状態にしたサンプルを用い、引張モード、温度スキャン速度3℃/分、周波数1Hz、窒素雰囲気下で測定することができる。
 重合体ブロックBとしては、重合体ブロックB中に含まれる共役ジエン化合物単位におけるエチレン性二重結合に対する1,2-ビニル結合及び3,4-ビニル結合の合計の割合が、25%以上60%未満である単一の重合体ブロックであってもよいし、1,2-ビニル結合及び3,4-ビニル結合の合計の割合が25~45%である共役ジエン化合物を主体とする重合体ブロックB1と、1,2-ビニル結合及び3,4-ビニル結合の合計の割合が45%以上70%未満である共役ジエン化合物を主体とする重合体ブロックB2とを併せ持つ共役ジエン化合物を主体とする重合体ブロックであってもよい。
 重合体ブロックB1及び重合体ブロックB2を有するブロック共重合体の構造は、上記重合体ブロックAを「A」とし、上記重合体ブロックB1を「B1」とし、上記重合体ブロックB2を「B2」とすると、例えば、A-B2-B1-A、A-B2-B1等で示され、調整された各モノマー単位のフィードシーケンスに基づいて全ビニル結合量を制御した公知の重合方法によって得ることができる。
--水素添加ブロック共重合体の構造--
 (b-1)成分、(b-2)成分における水添ブロック共重合体の構造は、上記重合体ブロックAを「A」とし、上記重合体ブロックBを「B」とすると、例えば、A-B型、A-B-A型、B-A-B-A型、(A-B-)n-X型(ここでnは1以上の整数、Xは四塩化ケイ素、四塩化スズ等の多官能カップリング剤の反応残基又は多官能性有機リチウム化合物等の開始剤の残基を示す。)、A-B-A-B-A型等の構造が挙げられる。
 また、ブロック構造について言及すると、重合体ブロックBが、共役ジエン化合物のホモ重合体ブロック、又は共役ジエン化合物単位を50質量%超(好ましくは70質量%以上)含有する共役ジエン化合物とビニル芳香族化合物との共重合体ブロックであり、重合体ブロックAが、ビニル芳香族化合物のホモ重合体ブロック、又はビニル芳香族化合物を50質量%超(好ましくは70質量%以上)含有するビニル芳香族化合物と共役ジエン化合物との共重合体ブロックであることが好ましい。
 (b-1)成分、(b-2)成分には、重合体ブロックA及び重合体ブロックB以外のブロックが含まれていてもよい。
 (b-1)成分、(b-2)成分における水添ブロック共重合体の分子構造としては、特に限定されず、例えば、直鎖状、分岐状、放射状又はこれらの任意の組み合わせのいずれであってもよい。
--ビニル芳香族化合物単位の含有量--
 (b-1)成分、(b-2)成分中におけるビニル芳香族化合物単位(ビニル芳香族化合物由来の水添ブロック共重合体構成単位)の含有量は、特に限定されないが、組成物の耐熱性と機械的強度の観点から、10~70質量%であることが好ましく、より好ましくは20~70質量%、より好ましくは20~60質量%、さらに好ましくは30~50質量%、特に好ましくは30~40質量%である。また、これらの範囲のビニル芳香族化合物単位含有量を有する1種の(b-1)成分、(b-2)成分のみならず、2種以上の異なるビニル芳香族化合物単位含有量を有する(b-1)成分、(b-2)成分を併用することもできる。
--全ビニル結合量--
 (b-1)成分、(b-2)成分中に含まれる共役ジエン化合物単位におけるエチレン性二重結合に対する、1,2-ビニル結合及び3,4-ビニル結合の合計の割合は、25%以上60%未満であることが好ましく、25%以上55%以下であることがより好ましく、25%以上50%以下であることがさらに好ましい。
 1,2-ビニル結合及び3,4-ビニル結合の合計の割合が60%未満であると、樹脂組成物の低温での耐衝撃性が改善される。50%以下であると、低温での耐衝撃性が一層改善される。また、1,2-ビニル結合及び3,4-ビニル結合の合計の割合が25%以上であると、(d)成分との相溶性が向上する観点で好ましい。
 1,2-ビニル結合及び3,4-ビニル結合の合計の割合を上記範囲内に制御する方法としては、特に限定されないが、例えば、(b-1)成分、(b-2)成分の製造において、1,2-ビニル結合量調節剤を添加する方法や、重合温度を調整する方法が挙げられる。
 「共役ジエン化合物単位における二重結合に対する、1,2-ビニル結合及び3,4-ビニル結合の合計」とは、水添ブロック共重合体の水添前のブロック共重合体中の共役ジエン化合物単位における二重結合(エチレン性二重結合)に対する、1,2-ビニル結合及び3,4-ビニル結合の合計をいう。例えば、水添前のブロック共重合体を赤外分光光度計により測定し、ハンプトン法で算出することができる。また、水添後のブロック共重合体からNMRを用いて算出することもできる。
--水素添加率--
 (b-1)成分、(b-2)成分において、ブロック共重合体中のエチレン性二重結合(共役ジエン化合物単位における二重結合)に対する水素添加率としては、0%超80%未満であることが好ましく、より好ましくは10%以上80%未満、さらに好ましくは20%以上80%未満、さらに好ましくは20~70%、特に好ましくは20%以上70%未満である。水素添加率が上記範囲内であると、樹脂組成物の衝撃性が改善されるため好ましい。
 このような水素添加率を有する(b-1)成分、(b-2)成分は、例えば、ブロック共重合体のエチレン性二重結合の水素添加反応において、消費水素量を所望の水素添加率(例えば、10%以上80%未満)の範囲に制御することにより容易に得られる。
 水素添加率は、例えば、NMR測定により、重合体ブロックB中の残存した二重結合量を定量すること等によって求めることができる。
 (b-1)成分、(b-2)成分が、(b-1)成分又は(b-2)成分中に含まれる共役ジエン化合物単位におけるエチレン性二重結合に対する、1,2-ビニル結合及び3,4-ビニル結合の合計の割合が60%未満、及び/又は(b)成分中のエチレン性二重結合に対する水素添加率が80%未満の場合に、樹脂組成物の低温での耐衝撃性が改善されるのでより好ましい。
--分子量ピーク--
(b-1)成分のGPC測定による標準ポリスチレン換算の水素添加後の分子量ピークは、低温衝撃性、耐薬品性、耐トラッキング性、及び剛性の観点から、8万~20万であり、10万~20万であることが好ましい。また、(b-2)成分のGPC測定による標準ポリスチレン換算の水素添加後の分子量ピークは、低温衝撃性、耐薬品性、耐トラッキング性、及び剛性の観点から、1万以上8万未満であり、3万以上8万未満であることが好ましい。
 (b-1)、(b-2)成分の分子量ピークを上記範囲に制御する方法としては、特に限定されないが、例えば、重合工程における触媒量を調整する方法が挙げられる。
 なお、本明細書において、分子量ピークは、昭和電工(株)製ゲルパーミエーションクロマトグラフィー System21を用いて以下の条件で測定することができる。該測定において、カラムとして、昭和電工(株)製K-Gを1本、K-800RLを1本、さらにK-800Rを1本の順番で直列につないだカラムを用い、カラム温度を40℃とし、溶媒をクロロホルムとし、溶媒流量を10mL/分とし、サンプル濃度を、水添ブロック共重合体1g/クロロホルム溶液1リットルとする。また、標準ポリスチレン(標準ポリスチレンの分子量は、3650000、2170000、1090000、681000、204000、52000、30200、13800、3360、1300、550)を用いて検量線を作成する。さらに、検出部のUV(紫外線)の波長は、標準ポリスチレン及び水添ブロック共重合体共に254nmに設定して測定する。
 なお、(b-1)成分を形成する重合体ブロックAの数平均分子量(MnbA)は、例えば、(b-1)成分がA-B-A型構造の場合、(b-1)成分の数平均分子量(Mnb)を基に、(b-1)成分の分子量分布が1、さらにビニル芳香族化合物を主体とする重合体ブロックAの2つが同一分子量として存在することを前提とし、(MnbA)=(Mnb)×結合ビニル芳香族化合物量の割合÷2の計算式で求めることができる。なお、ビニル芳香族化合物-共役ジエン化合物ブロック共重合体を合成する段階で、ブロック構造A及びブロック構造Bのシーケンスが明確になっている場合は、上記計算式に依存せずに、測定した(b-1)成分の数平均分子量(Mnb)をベースにブロック構造Aの割合から算出してもよい。
 (b-1)成分、(b-2)成分の水素添加前の分子量分布(Mw/Mn)は、一層優れた剛性、耐薬品性、低温衝撃性、耐トラッキング性が得られる観点から、1.01~1.50であることが好ましく、1.03~1.40であることがより好ましい。
--製造方法--
 (b-1)成分、(b-2)成分における水添ブロック共重合体の製造方法としては、特に限定されず、公知の製造方法を用いることができ、例えば、特開昭47-11486号公報、特開昭49-66743号公報、特開昭50-75651号公報、特開昭54-126255号公報、特開昭56-10542号公報、特開昭56-62847号公報、特開昭56-100840号公報、特開平2-300218号公報、英国特許第1130770号明細書、米国特許第3281383号明細書、米国特許第3639517号明細書、英国特許第1020720号明細書、米国特許第3333024号明細書及び米国特許第4501857号明細書等に記載の方法が挙げられる。
-変性水素添加ブロック共重合体-
 (b-1)成分、(b-2)成分における水素添加ブロック共重合体の変性物としては、例えば、上記水素添加ブロック共重合体(特に、未変性水素添加ブロック共重合体)と、α,β-不飽和カルボン酸又はその誘導体(エステル化合物や酸無水物化合物)とをラジカル発生剤の存在下又は非存在下に、溶融状態、溶液状態又はスラリー状態で、80~350℃で反応させることによって得られる変性水素添加ブロック共重合体等が挙げられる。この場合、α,β-不飽和カルボン酸又はその誘導体は、未変性水素添加ブロック共重合体に対して、0.01~10質量%の割合でグラフト化又は付加していることが好ましい。
 (b-1)成分、(b-2)成分として、未変性水素添加ブロック共重合体と変性水素添加ブロック共重合体とを併用する場合、未変性水素添加ブロック共重合体と、変性水素添加ブロック共重合体との混合割合は特に制限されずに決定できる。
--(b-1)成分と(b-2)成分との比--
 GPC測定による標準ポリスチレン換算の分子量ピークが8万~20万の成分(b-1)と、GPC測定による標準ポリスチレン換算の分子量ピークが1万以上8万未満の成分(b-2)の比(b-1):(b-2)は、一層優れた剛性、耐薬品性、低温衝撃性、耐トラッキング性が得られる観点から、10:90~50:50であることが好ましく、20:80~40:60であることがさらに好ましい。
 なお、(b-1)成分と(b-2)成分との比は、上記分子量ピークの測定と同様のGPC測定時のそれぞれのピークの面積比を計算すること等で求めることができる。
 (b-1)成分と(b-2)成分との比を上記範囲に制御する方法としては、特に限定されないが、例えば、重合後のカップリング処理時のカップリング剤の量を調整する方法等が挙げられる。
((c)オレフィン系重合体)
 (c)成分としては、特に限定されるものではなく、例えば、プロピレンを除くオレフィン系モノマーの単独重合体、プロピレンを除くオレフィン系モノマーを含む2種類以上のモノマーの共重合体等が挙げられる。中でも、低温衝撃性の観点から、エチレンとエチレン以外のα-オレフィンとの共重合体が好ましい。ここで、得られる樹脂組成物の低温衝撃性、耐薬品性、耐トラッキング性、及び剛性の観点から、(c)成分を構成するモノマー単位として、プロピレン単位は含まれないものとする。
 なお、「プロピレンを除くオレフィンからなるオレフィン系重合体」「プロピレン単位は含まれない」には、発明の効果を阻害しない程度のプロピレンを構成単位として含む場合も含まれ、例えば、(c)成分中の(c)成分を構成する全構成単位中のプロピレン単位の含有量が、0.1質量%未満であることをいう。
 (c)成分としては、例えば、エチレンと、1種又は2種以上のC4~C20のα-オレフィンとの共重合体等が挙げられる。中でも、エチレンと、1種又は2種以上のC4~C8のα-オレフィンとの共重合体であることがより好ましく、エチレンと、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン及び1-オクテンからなる群から選択される1種又は2種以上のコモノマーとの共重合体であることがさらに好ましく、エチレンと1-ブテンとの共重合体であることが特に好ましい。かかる共重合体を(c)成分として用いることで、より高い衝撃性とより高い耐薬品性とを有する樹脂組成物が得られる傾向にある。
 (c)成分は、1種単独で用いてもよいし、2種以上を併用してもよい。また、(c)成分として、2種以上のエチレン-α-オレフィン共重合体を用いてもよい。
 (c)成分中のエチレンの含有量は、樹脂組成物の耐低温硬化性や柔軟性の観点から、オレフィン系重合体全量に対して、5~95質量%が好ましく、より好ましくは30~90質量%である。
 (c)成分中のエチレン以外のα-オレフィンの含有量は、特に限定されず、樹脂組成物の耐低温硬化性や柔軟性の観点から、オレフィン系重合体全量に対して、5質量%以上であることが好ましく、20質量%以上であることがより好ましく、また、樹脂組成物の剛性の観点から、50質量%以下であることが好ましく、48質量%以下であることがより好ましい。
 (c)成分の脆化温度は、-50℃以下であり、一層優れた衝撃性と耐薬品性が得られる観点から、-60℃以下であることが好ましく、-70℃以下であることがより好ましい。
 なお、上記脆化温度は、ASTM D746に準じて測定することができる。
 (c)成分のJIS K7112に準拠して測定される密度(混練する前の原料段階での密度)は、樹脂組成物の耐薬品性の観点から、0.87g/cm3以上が好ましく、0.90g/cm3以上がより好ましい。
 (c)成分の密度を上記範囲内に制御する方法としては、特に限定されないが、例えば、エチレン単位の含有割合を制御することにより調整する方法等が挙げられる。
 (c)成分のメルトフローレート(MFR、ASTM D-1238に準拠し、190℃、2.16kgfの荷重で測定、混練する前の原料段階での密度)は、(c)成分の樹脂組成物中への分散によるモルフォロジーの安定化、及び樹脂組成物の耐衝撃性の観点から、0.1~5.0g/10分が好ましく、0.3~4.0g/10分がより好ましい。
 (c)成分のメルトフローレートを上記範囲内に制御する方法としては、特に限定されないが、例えば、(c)成分を製造する際、重合温度及び重合圧力を調整する方法、重合系内のエチレン、α-オレフィン等のモノマー濃度と水素濃度とのモル比率を調整する方法等が挙げられる。
 (c)成分は、例えば、プロピレンを除くオレフィンからなるオレフィン系重合体ゴムであってもよい。
 (c)成分のねじり剛性としては、組成物に十分な耐衝撃性を付与させることができる観点から、1~30MPaであることが好ましく、より好ましくは1~25MPaである。なお、(c)成分のねじり剛性は、ASTM D 1043に準拠して測定することができる。
 (c)成分のショアAとしては、組成物に十分な耐衝撃性を与えるという観点から、40~110であることが好ましく、50~100であることがより好ましい。なお、(c)成分のショアAは、JIS K 6253に準拠して測定することができる。
 (c)成分の調製方法は、特に限定されず、通常行われる加工条件下で高分子量化されたα-オレフィン重合体を容易に得ることができる触媒(例えば、チタニウム、メタロセン、又はバナジウムをベースとする触媒等)を用いる方法等が挙げられる。これらの中でも、構造制御の安定性の観点から、メタロセン触媒及び塩化チタン触媒を用いる方法が好ましい。エチレン-α-オレフィン共重合体の製法としては、特開平6-306121号公報や特表平7-500622号公報等に記載されている公知の方法を用いることができる。
((d)混和剤)
 本実施形態で必要に応じて用いられる(d)混和剤は、特に限定されることないが、(a)成分に対する相溶性が高いセグメント鎖と、(b-1)成分及び(b-2)成分、並びに/又は(c)成分に対する相溶性が高いセグメント鎖と、を有する共重合体であることが好ましい。(a)成分に対する相溶性が高いセグメント鎖としては、例えば、ポリスチレン鎖、ポリフェニレンエーテル鎖等が挙げられる。(b-1)成分及び(b-2)成分、並びに/又は(c)成分に対する相溶性が高いセグメント鎖としては、例えば、ポリオレフィン鎖、エチレンとα-オレフィンとの共重合体エラストマー分子鎖等が挙げられる。
 このような共重合体の好ましい具体例としては、例えば、ポリスチレン鎖-ポリオレフィン鎖を有する共重合体、ポリフェニレンエーテル鎖-ポリオレフィン鎖を有する共重合体、これらの水素添加ブロック共重合体等が挙げられる。中でも、熱安定性の観点から、水素添加ブロック共重合体が好ましい。これらは、1種単独で用いてもよいし、2種以上を併用してもよい。
 (d)成分としての水素添加ブロック共重合体としては、ビニル芳香族化合物を主体とする重合体ブロックIと、共役ジエン化合物を主体とする少なくとも1個の重合体ブロックIIと、を含むブロック共重合体の少なくとも一部が水素添加された水素添加ブロック共重合体が挙げられる。中でも、(d)成分としての水素添加ブロック共重合体は、ビニル芳香族化合物を主体とする重合体ブロックIと、共役ジエン化合物を主体とする重合体ブロックIIとからなるブロック共重合体の少なくとも一部が水素添加されたものであることが好ましい。
 なお、(d)成分としての水素添加ブロック共重合体には、上述の(b)成分は含まれないものとする。
 以下、(d)成分における未変性及び変性水素添加ブロック共重合体に関する事項について記載する。
-ビニル芳香族化合物を主体とする重合体ブロックI-
 ビニル芳香族化合物を主体とする重合体ブロックIとしては、特に限定されることなく、例えば、ビニル芳香族化合物の単独重合体ブロック、ビニル芳香族化合物と共役ジエン化合物との共重合体ブロック等が挙げられる。
 なお、重合体ブロックIにおいて「ビニル芳香族化合物を主体とする」とは、水素添加前の重合体ブロックI中にビニル芳香族化合物単位を、50質量%超含有することをいい、ビニル芳香族化合物単位を70質量%以上含有することが好ましく、80質量%以上含有することが更に好ましく、また、100質量%以下としてよい。
 重合体ブロックIを構成するビニル芳香族化合物としては、特に限定されることなく、例えば、スチレン、α-メチルスチレン、ビニルトルエン、p-tert-ブチルスチレン、ジフェニルエチレン等が挙げられ、スチレンが好ましい。
 重合体ブロックIを構成する共役ジエン化合物としては、ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン等が挙げられ、ブタジエン、イソプレン、及びこれらの組み合わせが好ましく、ブタジエンが更に好ましい。
 これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 重合体ブロックIの数平均分子量(Mn)は、樹脂組成物内での分散性を向上させる観点から、15,000以上であることが好ましく、20,000以上であることがより好ましく、25,000以上であることがさらに好ましく、26,000以上であることが特に好ましく、また、100,000以下であることが好ましい。
-共役ジエン化合物を主体とする重合体ブロックII-
 共役ジエン化合物を主体とする重合体ブロックIIとしては、特に限定されることなく、例えば、共役ジエン化合物の単独重合体ブロック、共役ジエン化合物とビニル芳香族化合物との共重合体ブロック等が挙げられる。
 なお、重合体ブロックIIにおいて「共役ジエン化合物を主体とする」とは、水素添加前の重合体ブロックII中に共役ジエン化合物単位を、50質量%超含有することをいい、樹脂組成物の流動性を高める観点から、共役ジエン化合物単位を70質量%以上含有することが好ましく、80質量%以上含有することが更に好ましく、また、100質量%以下としてよい。
 重合体ブロックIIを構成する共役ジエン化合物としては、特に限定されることなく、例えば、ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン等が挙げられ、ブタジエン、イソプレン、及びこれらの組み合わせが好ましく、ブタジエンが更に好ましい。
 重合体ブロックIIを構成するビニル芳香族化合物としては、特に限定されることなく、例えば、スチレン、α-メチルスチレン、ビニルトルエン、p-tert-ブチルスチレン、ジフェニルエチレン等が挙げられ、スチレンが好ましい。
 これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 上記重合体ブロックIIに含まれる共役ジエン化合物単位におけるエチレン性二重結合に対する水素添加率としては、一層優れた剛性、耐薬品性、低温衝撃性、耐トラッキング性が得られる観点から、80%以上であることが好ましく、より好ましくは90%以上である。
 なお、水素添加率は、核磁気共鳴装置(NMR)を用いて測定することができる。
 重合体ブロックIIのミクロ構造(共役ジエン化合物の結合形態)において、重合体ブロックIIに含まれる共役ジエン化合物単位におけるエチレン性二重結合に対する、1,2-ビニル結合量と3,4-ビニル結合量との合計(全ビニル結合量)は、重合体ブロックIIの(b)成分への相溶性を高め低温衝撃性を向上させる観点から、50%以上であることが好ましく、55%以上であることがより好ましく、65%以上であることが更に好ましく、また、90%以下であることが好ましい。
 重合体ブロックIIの数平均分子量(Mn)は、一層優れた剛性、耐薬品性、低温衝撃性、耐トラッキング性が得られる観点から、30,000~100,000であることが好ましく、より好ましくは40,000~100,000である。
 重合体ブロックIIの水素添加後のガラス転移温度は、一層優れた剛性、耐薬品性、低温衝撃性、耐トラッキング性が得られる観点から、-50℃超であることが好ましく、より好ましくは-50℃超0℃以下、さらに好ましくは-40~-10℃である。
 (d)成分としての、ブロック共重合体に含まれる重合体ブロックIにおける分子鎖中のビニル芳香族化合物、及び重合体ブロックIIにおける分子鎖中の共役ジエン化合物の分布としては、特に限定されることなく、例えば、ランダム、テーパード(分子鎖に沿って単量体部分が増加又は減少するもの)、一部ブロック状、又はこれらの組み合わせ挙げられる。
 (d)成分としての、未変性及び変性水素添加ブロック共重合体のブロック共重合体のブロック構造としては、特に限定されることなく、例えば、重合体ブロックIを「I」と、重合体ブロックIIを「II」と表すと、(c)成分としては、I-II、I-II-I、II-I-II-I、(I-II-)4M、I-II-I-II-I等の構造が挙げられる。ここで、(I-II-)4Mは、四塩化ケイ素(M=Si)、四塩化スズ(M=Sn)等といった多官能カップリング剤の反応残基、又は多官能性有機リチウム化合物等の開始剤の残基等である。
 (d)成分には、重合体ブロックI及び重合体ブロックII以外のブロックが含まれていてもよい。
 (d)成分としての、未変性及び変性水素添加ブロック共重合体のブロック共重合体の分子構造としては、特に限定されることなく、例えば、直鎖状、分岐状、放射状、又はこれらの組み合わせが挙げられる。
 (d)成分としてのブロック共重合体中に重合体ブロックI又は重合体ブロックIIのいずれかが複数個以上含まれる場合には、複数の重合体ブロックI又は複数の重合体ブロックII同士は、それぞれ同一構造であってもよいし、異なる構造であってもよい。
 (d)成分の流動性、耐衝撃性、外観性を向上させ、ウェルド発生を低減する観点から、水素添加前のブロック共重合体におけるビニル芳香族化合物単位の含有量は、30質量%以上であることが好ましく、32質量%以上であることが更に好ましく、40質量%超であることが特に好ましく、また、50質量%以下であることが好ましく、48質量%以下であることが更に好ましい。
 なお、ビニル芳香族化合物の含有量は、紫外線分光光度計を用いて測定することができる。
 (d)成分中に含まれる共役ジエン化合物単位におけるエチレン性二重結合に対する、1,2-ビニル結合量及び3,4-ビニル結合量の合計の割合は、50%超90%以下であることが好ましく、より好ましくは60~90%である。
 (d)成分において、ブロック共重合体中のエチレン性二重結合(共役ジエン化合物単位における二重結合)に対する水素添加率としては、80~100%であることが好ましく、より好ましくは90~100%である。
 (d)成分において、水素添加前のブロック共重合体の数平均分子量(Mn)は、5,000以上であることが好ましく、10,000以上であることが更に好ましく、30,000以上であることが特に好ましく、また、1,000,000以下であることが好ましく、800,000以下であることが更に好ましく、500,000以下であることが特に好ましい。
 水素添加前のブロック共重合体の分子量分布(Mw/Mn)は、10以下であることが好ましく、8以下であることが更に好ましく、5以下であることが特に好ましい。
 なお、分子量分布(Mw/Mn)は、GPC(移動層:クロロホルム、標準物質:ポリスチレン)を用いて、求めた重量平均分子量(Mw)を、前述の数平均分子量(Mn)で除することによって算出することができる。
 ブロック共重合体に水素添加する方法としては、特に限定されることなく、例えば、(1)Ni、Pt、Pd、Ru等の金属をカーボン、シリカ、アルミナ、ケイソウ土等に担持させた担持型不均一系水添触媒、(2)Ni、Co、Fe、Cr等の有機酸塩又はアセチルアセトン塩等の遷移金属塩と有機アルミニウム等の還元剤とを用いる、いわゆるチーグラー型水添触媒、(3)Ti、Ru、Rh、Zr等の有機金属化合物等のいわゆる有機金属錯体等の均一系水添触媒を用いて、例えば、反応温度0~200℃、水素圧力0.1~15MPaの条件下で、水素添加する方法が挙げられる。
 重合体ブロックIと重合体ブロックIIとを含むブロック共重合体の合成方法としては、特に限定されることなく、例えば、アニオン重合等の公知の方法が挙げられる。
 未変性及び変性水素添加ブロック共重合体の製造方法としては、特に限定されることなく、公知の製造方法を用いることができ、例えば、特開昭47-11486号公報、特開昭49-66743号公報、特開昭50-75651号公報、特開昭54-126255号公報、特開昭56-10542号公報、特開昭56-62847号公報、特開昭56-100840号公報、特開平2-300218号公報、英国特許第1130770号明細書、米国特許第3281383号明細書、米国特許第3639517号明細書、英国特許第1020720号明細書、米国特許第3333024号明細書、及び米国特許第4501857号明細書に記載の方法等が挙げられる。
 以下、特に、(d)成分における、変性水素添加ブロック共重合体に関する事項について記載する。
-変性水素添加ブロック共重合体-
 変性水素添加ブロック共重合体は、上記の未変性水素添加ブロック共重合体に、α,β-不飽和カルボン酸又はその誘導体(例えば、酸無水物、エステル等)をグラフト化又は付加させたものである。
 グラフト化又は付加による質量増加の割合は、特に限定されることなく、未変性水素添加ブロック共重合体100質量%に対して、0.01質量%以上であることが好ましく、10質量%以下であることが好ましく、7質量%以下であることが更に好ましく、5質量%以下であることが特に好ましい。
 変性水素添加ブロック共重合体の製造方法としては、特に限定されることなく、例えば、ラジカル発生剤の存在下又は非存在下、溶融状態、溶液状態又はスラリー状態で、80~350℃の条件下で、上記の未変性水素添加ブロック共重合体とα,β-不飽和カルボン酸又はその誘導体とを反応させる方法等が挙げられる。
((e)リン酸エステル系化合物)
 本実施形態で任意選択的に用いられる(e)リン酸エステル系化合物としては、特に限定されることなく、樹脂組成物の難燃性向上の効果を有するリン酸エステル化合物全般(リン酸エステル化合物、縮合リン酸エステル化合物等)としてよく、例えば、トリフェニルホフェート、フェニルビスドデシルホスフェート、フェニルビスネオペンチルホスフェート、フェニル-ビス(3,5,5’-トリメチル-ヘキシルホスフェート)、エチルジフェニルホスフェート、2-エチル-ヘキシルジ(p-トリル)ホスフェート、ビス-(2-エチルヘキシル)-p-トリルホスフェート、トリトリルホスフェート、ビス-(2-エチルヘキシル)フェニルホスフェート、トリ-(ノニルフェニル)ホスフェート、ジ(ドデシル)-p-トリルホスフェート、トリクレジルホスフェート、ジブチルフェニルホスフェート、2-クロロエチルジフェニルホスフェート、p-トリルビス(2,5,5’-トリメチルヘキシル)ホスフェート、2-エチルヘキシルジフェニルホスフェート、ビスフェノールA・ビス(ジフェニルホスフェート)、ジフェニル-(3-ヒドロキシフェニル)ホスフェート、ビスフェノールA・ビス(ジクレジルホスフェート)、レゾルシン・ビス(ジフェニルホスフェート)、レゾルシン・ビス(ジキシレニルホスフェート)、2-ナフチルジフェニルホスフェート、1-ナフチルジフェニルホスフェート、ジ(2-ナフチル)フェニルホスフェート等が挙げられる。
 特に、(e)リン酸エステル系化合物としては、下記式(4)
Figure JPOXMLDOC01-appb-C000006

[式(4)中、Q41、Q42、Q43、Q44は、各々独立して、炭素原子数1~6のアルキル基であり;R41、R42は、各々独立して、メチル基であり;R43、R44は、各々独立して、水素原子又はメチル基であり;xは0以上の整数であり;p1、p2、p3、p4は、それぞれ、0~3の整数であり;q1、q2は、それぞれ、0~2の整数である]、及び
下記式(5)
Figure JPOXMLDOC01-appb-C000007
[式(5)中、Q51、Q52、Q53、Q54は、各々独立して、炭素原子数1~6のアルキル基であり;R51は、メチル基であり;yは0以上の整数であり;r1、r2、r3、r4は、それぞれ、0~3の整数であり;s1は、それぞれ、0~2の整数である]
で表される芳香族縮合リン酸エステル化合物よりなる群から選ばれる少なくとも1種を主成分とするもの好ましい。
 なお、上記式(4)及び上記式(5)で表される縮合リン酸エステル化合物は、それぞれ複数種の分子を含んでよく、各分子について、nは、1~3の整数であることが好ましい。
 上記式(4)及び上記式(5)で表される縮合リン酸エステル化合物よりなる群から選ばれる少なくとも1種を主成分とする好適な(e)リン酸エステル系化合物では、全体として、x、yの平均値が1以上であることが好ましい。上記の好適な(e)リン酸エステル系化合物は、一般に、x、yが1~3である化合物を90%以上含む混合物として入手することができ、x、yが1~3である化合物以外に、x、yが4以上である多量体やその他の副生成物を含む。
((f)ホスフィン酸塩類)
 本実施形態では、必要に応じて、(f)ホスフィン酸塩類を用いることができる。(f)ホスフィン酸塩類としては、下記式(1)で表されるホスフィン酸塩
Figure JPOXMLDOC01-appb-C000008
[式(1)中、R11及びR12は、各々独立して、直鎖状若しくは分岐状の炭素原子数1~6のアルキル基及び/又は炭素原子数6~10のアリール基であり;M1は、カルシウムイオン、マグネシウムイオン、アルミニウムイオン、亜鉛イオン、ビスマスイオン、マンガンイオン、ナトリウムイオン、カリウムイオン及びプロトン化された窒素塩基からなる群より選ばれる少なくとも1種であり;aは、1~3の整数であり;mは、1~3の整数であり;a=mである]、及び
下記式(2)で表されるジホスフィン酸塩
Figure JPOXMLDOC01-appb-C000009
[式(2)中、R21及びR22は、各々独立して、直鎖状若しくは分岐状の炭素原子数1~6のアルキル基及び/又は炭素原子数6~10のアリール基であり;R23は、直鎖状若しくは分岐状の炭素原子数1~10のアルキレン基、炭素原子数6~10のアリーレン基、炭素原子数6~10のアルキルアリーレン基又は炭素原子数6~10のアリールアルキレン基であり;M2は、カルシウムイオン、マグネシウムイオン、アルミニウムイオン、亜鉛イオン、ビスマスイオン、マンガンイオン、ナトリウムイオン、カリウムイオン及びプロトン化された窒素塩基からなる群より選ばれる少なくとも1種であり;bは、1~3の整数であり;nは、1~3の整数であり;jは、1又は2の整数であり;b・j=2nである]
からなる群より選ばれる少なくとも1種が挙げられる。
 また、(f)ホスフィン酸塩類は、上記式(1)で表されるホスフィン酸塩と上記式(2)で表されるジホスフィン酸塩との混合物としてもよい。
 このような(f)ホスフィン酸塩類としては、特に限定されることなく、例えば、ジメチルホスフィン酸カルシウム、ジメチルホスフィン酸マグネシウム、ジメチルホスフィン酸アルミニウム、ジメチルホスフィン酸亜鉛、エチルメチルホスフィン酸カルシウム、エチルメチルホスフィン酸マグネシウム、エチルメチルホスフィン酸アルミニウム、エチルメチルホスフィン酸亜鉛、ジエチルホスフィン酸カルシウム、ジエチルホスフィン酸マグネシウム、ジエチルホスフィン酸アルミニウム、ジエチルホスフィン酸亜鉛、メチル-n-プロピルホスフィン酸カルシウム、メチル-n-プロピルホスフィン酸マグネシウム、メチル-n-プロピルホスフィン酸アルミニウム、メチル-n-プロピルホスフィン酸亜鉛、メタンジ(メチルホスフィン酸)カルシウム、メタンジ(メチルホスフィン酸)マグネシウム、メタンジ(メチルホスフィン酸)アルミニウム、メタンジ(メチルホスフィン酸)亜鉛、ベンゼン-1,4-(ジメチルホスフィン酸)カルシウム、ベンゼン-1,4-(ジメチルホスフィン酸)マグネシウム、ベンゼン-1,4-(ジメチルホスフィン酸)アルミニウム、ベンゼン-1,4-(ジメチルホスフィン酸)亜鉛、メチルフェニルホスフィン酸カルシウム、メチルフェニルホスフィン酸マグネシウム、メチルフェニルホスフィン酸アルミニウム、メチルフェニルホスフィン酸亜鉛、ジフェニルホスフィン酸カルシウム、ジフェニルホスフィン酸マグネシウム、ジフェニルホスフィン酸アルミニウム、ジフェニルホスフィン酸亜鉛が挙げられ、ジメチルホスフィン酸カルシウム、ジメチルホスフィン酸アルミニウム、ジメチルホスフィン酸亜鉛、エチルメチルホスフィン酸カルシウム、エチルメチルホスフィン酸アルミニウム、エチルメチルホスフィン酸亜鉛、ジエチルホスフィン酸カルシウム、ジエチルホスフィン酸アルミニウム、ジエチルホスフィン酸亜鉛であることが好ましく、ジエチルホスフィン酸アルミニウムであることが更に好ましい。
 (f)ホスフィン酸塩類の市販品としては、特に限定されることなく、例えば、クラリアントジャパン社製のExolit(登録商標)OP1230、OP1240、OP1311、OP1312、OP930、OP935等が挙げられる。
((g)ポリプロピレン系樹脂)
 本実施形態の組成物は、樹脂組成物の低温衝撃性の観点から、実質的に(g)ポリプロピレン系樹脂を含まない。ここで、実質的に含まないとは、樹脂組成物中の(g)ポリプロピレン系樹脂の含有量が0.1%未満であることをいう。
 (g)ポリプロピレン系樹脂としては、特に限定されることなく、例えば、ホモポリプロピレン、ポリプロピレンブロックを含むコポリマー、変性ポリプロピレン、及びこれらの混合物等のプロピレン単位を含有する重合体が挙げられる。
 なお、樹脂組成物中のポリプロピレン系樹脂の含有量は、例えば、樹脂組成物を凍結粉砕してパウダー状にした後、そのパウダーを23℃のクロロホルムに溶解させ、その不溶分のうち、150℃のo-ジクロロベンゼンに溶解する画分をさらに回収し、その画分をNMRにより測定することにより求めることができる。
((h)熱可塑性樹脂)
 本実施形態で任意選択的に用いられる、(a)~(d)、(g)成分以外の熱可塑性樹脂(h)としては、特に限定されることなく、例えば、ポリスチレン、シンジオタクチックポリスチレン、ハイインパクトポリスチレン等が挙げられる。
((i)その他の添加剤)
 本実施形態で任意選択的に用いられる、(a)~(h)成分以外のその他の添加剤(i)としては、特に限定されることなく、例えば、(b)(d)成分以外のビニル芳香族化合物-共役ジエン化合物のブロック共重合体、(c)(g)成分以外のオレフィン系エラストマー、酸化防止剤、金属不活性化剤、熱安定剤、(e)成分及び(f)成分以外の難燃剤(ポリリン酸アンモニウム系化合物、水酸化マグネシウム、芳香族ハロゲン系難燃剤、シリコーン系難燃剤、ホウ酸亜鉛等)、フッ素系ポリマー、可塑剤(低分子量ポリエチレン、エポキシ化大豆油、ポリエチレングリコール、脂肪酸エステル類等)、三酸化アンチモン等の難燃助剤、耐候(光)性改良剤、ポリオレフィン用造核剤、スリップ剤、各種着色剤、離型剤等が挙げられる。
 以下、本実施形態の樹脂組成物の成分の割合について記載する。
 本実施形態の樹脂組成物における各成分の含有量は、樹脂組成物の低温衝撃性、耐薬品性・絶縁破壊強度を高め、機構部品や構造体への適用も可能な十分な剛性を付与させる観点から、(a)~(c)成分の合計100質量部に対して、(a)成分が50~90質量部、(b-1)成分及び(b-2)成分の合計量が0~30質量部、(c)成分が0~30質量部であることが好ましく、(a)成分が60~85質量部、(b-1)成分及び(b-2)成分の合計量が0~25質量部、(c)成分が0~25質量部であることがより好ましい。
 また(d)混和剤の含有量は、組成物の機械的特性バランスの観点から(a)成分~(c)成分の合計100質量部に対して、1~20質量部であることが好ましい。
 また(e)リン酸エステル化合物の含有量は、組成物の機械的特性バランスの観点から(a)成分~(d)成分の合計100質量部に対して、5~30質量部であることが好ましい。
 また、(f)ホスフィン酸塩の含有量は、樹脂組成物の機械的特性と難燃性のバランスの観点から、(a)成分~(d)成分の合計100質量部に対して、3~30質量部であることが好ましく、4~27質量部であることが更に好ましい。
 また、(h)熱可塑性樹脂の含有量は、本発明の効果を損なわない限り、特に限定されることなく、例えば、(a)成分~(d)成分の合計100質量部に対して、0~400質量部としてよい。
 (b-1)成分、(b-2)成分と(d)成分を含む場合の、本実施形態の樹脂組成物における各成分の含有量は、樹脂組成物の低温衝撃性、耐薬品性・絶縁破壊強度を高め、機構部品や構造体への適用も可能な十分な剛性を付与させる観点から、(a)成分、(b-1)成分、(b-2)成分、(d)成分の合計100質量部に対して、(a)成分が50~80質量部、(b-1)成分及び(b-2)成分の合計量が5~30質量部、(d)成分が1~20質量部であることが好ましく、より好ましくは(a)成分が60~80質量部、(b-1)成分及び(b-2)成分の合計量が10~30質量部、(d)成分が5~20質量部である。
 (c)成分と(d)成分を含む場合の、本実施形態の樹脂組成物における各成分の含有量は、樹脂組成物の低温衝撃性、耐薬品性・絶縁破壊強度を高め、機構部品や構造体への適用も可能な十分な剛性を付与させる観点から、(a)成分、(c)成分、(d)成分の合計100質量部に対して、(a)成分が50~80質量部、(c)成分が5~30質量部、(d)成分が1~20質量部であることが好ましく、より好ましくは(a)成分が60~80質量部、(c)成分が10~30質量部、(d)成分が5~20質量部である。
(曲げ弾性率)
 本実施形態の樹脂組成物は、ISO 178に準じて測定した曲げ弾性率が、1600MPa以上であり、好ましくは1700~3000MPaである。この範囲にあることにより、構造部品や構造体へ適用可能な剛性を持つことができる。
 曲げ弾性率が1600MPa以上にするには、特定の成分(a)成分~(c)成分、及び必要に応じて、(d)成分、(e)成分、(g)成分、(h)成分を特定量含有させて適宜調整することができる。
(モルフォロジー)
 本実施形態の樹脂組成物のモルフォロジーは、機械的強度、耐薬品性の観点から、(a)ポリフェニレンエーテル系樹脂が連続相である。また、一層優れた耐薬品性が得られる観点から、(b-1)成分及び/又は(b-2)成分の少なくとも一部がミミズ状のドメインを形成していることが好ましく、全ての(b-1)成分及び(b-2)成分がミミズ状のドメインを形成していることがより好ましい。
 樹脂組成物のモルフォロジーは、例えば、(b-1)成分及び(b-2)成分部分を四酸化オスミウムで染色した後にTEM(透過型電子顕微鏡)を用いて、観察することができる。
 ここでいうミミズ状のドメインとは、一般的にはワームライク形状とも表現され、「ミミズ状のドメインを形成している」とは、(b-1)成分及び(b-2)成分のブロック共重体がミミズ状の細長い構造であり、屈曲あるいは分岐して形成されるドメインであることをいう。なお、本実施形態における「ミミズ状」においては、ドメインが折れ曲がったり円弧を描いていてもよく、また二股以上に分かれたり、連結を繰り返していてもよい。
 ここで、図1は、連続相2と、ミミズ状のドメイン1と、を有する樹脂組成物を、TEMを用いて観察した画像であり、図2は、ミミズ状のドメインを有していない樹脂組成物の画像である。図1において、染色された部分が、(b-1)(b-2)を含むミミズ状のドメインである。
 なお、(b-1)成分、(b-2)成分のモルフォロジーをミミズ状に制御する方法としては、例えば、(b-1)成分、(b-2)成分の各ブロック部分の構造や分子量を調整したり、(d)混和剤の種類を適宜選択したりすることにより達成することができる。
 上記ミミズ状のドメインの長さとしては、一層優れた耐薬品性が得られる観点から、0.1~10.0μmが好ましく、より好ましくは0.1~5.0μmである。
 また、上記ミミズ状のドメインの幅としては、一層優れた耐薬品性が得られる観点から、0.01~1.0μmが好ましく、より好ましくは0.02~0.5μmである。
 また、上記ミミズ状のドメインのアスペクト比としては、一層優れた耐薬品性が得られる観点から、5~1000が好ましく、より好ましくは10~500である。
 また、上記ミミズ状のドメイン間の最大距離としては、一層優れた耐薬品性が得られる観点から、0.005~0.2μmが好ましく、より好ましくは0.01~0.15μmである。なお、ミミズ状ドメイン間の最大距離は、樹脂組成物の任意の断面をTEMで観察した画像において、任意の100個のミミズ状のドメインを観察し、各ミミズ状ドメイン間の距離を測定したうちの、最大の距離をいう。
 また、樹脂組成物中の上記ミミズ状のドメインの割合は、一層優れた耐薬品性が得られる観点から、5~50%が好ましく、より好ましくは10~50%である。なお、樹脂組成物中の上記ミミズ状のドメインの割合は、樹脂組成物の任意の断面をTEMで観察した画像において、任意に選択した100μm2以上の部分中に占める、ミミズ状のドメインが占める面積の割合をいう。
 上記ミミズ状ドメインの寸法等は、四酸化オスミウムで染色した後にTEMにより撮影した画像を用いて、測定することができる。
 また、機械的強度、耐薬品性に一層優れる観点から、(c)成分は樹脂組成物中に分散していることが好ましい。(c)成分は、機械的強度、耐薬品性にさらに一層優れる観点から、平均短軸径が2μm以下で分散していることが好ましく、1.5μm以下で分散していることがより好ましい。(c)成分は、機械的強度、耐薬品性にさらに一層優れる観点から、平均長軸径/平均短軸径が1~10で分散していることが好ましい。特に(b)成分は、平均短軸径が2μm以下で、平均長軸径/平均短軸径が1~10で分散していることが好ましい。
 これらのモルフォロジー、後述の実施例に記載の方法で測定することができ、例えば、TEM(透過型電子顕微鏡)を用いて観察することができる。
 樹脂組成物のモルフォロジーは、例えば、(b-1)成分及び/又は(b-2)成分の各ブロック部分の構造や分子量を調整したり、(c)成分の構造や分子量を調整したり、(d)成分の種類を適宜選択したりすることにより調整することができる。
(樹脂組成物の製造方法)
 本実施形態の樹脂組成物は、前述の(a)成分~(c)成分、及び必要に応じて、(d)成分、(e)成分、(f)成分、(h)成分を溶融混練することによって製造することができる。
 本実施形態の樹脂組成物の好ましい製造方法は、以下の工程(1-1)及び(1-2)を含む製造方法である。
(1-1):前記(a)成分、及び必要に応じて(d)成分を溶融混練して混練物を得る工程。
(1-2):前記工程(1-1)で得られた前記混練物に対して、前記(b-1)成分及び前記(b-2)成分、並びに/又は前記(c)成分を添加し、溶融混練する工程。
 上記工程(1-1)において、上記(a)成分は全量を添加してもよいし一部を添加してもよい。また、上記(d)成分は全量を添加してもよいし一部を添加してもよい。中でも、上記工程(1-1)は、上記(a)成分の全量、必要に応じて上記(d)成分の全量又は一部を溶融混練して混練物を得る工程であることが好ましい。
 上記工程(1-2)において、上記(b-1)成分、(b-2)成分、(c)成分は全量を添加してもよいし一部を添加してもよい。工程(1-2)で一部を添加する場合、(b-1)成分、(b-2)成分、(c)成分は工程(1-1)及び工程(1-2)で全量を添加してもよい。上記工程(1-2)は、上記工程(1-1)で得られた上記混練物に対して、上記(b-1)成分、(b-2)成分、(c)成分の全量を添加し、溶融混練する工程であることが好ましい。
 この製造方法のように、溶融混練時において、(b-1)成分、(b-2)成分、(c)成分を工程(1-2)で添加することによって(特に、(b-1)成分、(b-2)成分、(c)成分全量を工程(1-2)で添加することによって)、(b-1)成分、(b-2)成分、(c)成分が(a)成分中に効率よく分散し、耐薬品性に一層優れた樹脂組成物が得られる。
 本実施形態の樹脂組成物の製造方法において各成分の溶融混練を行うために好適に用いられる溶融混練機としては、特に限定されることなく、例えば、単軸押出機や二軸押出機等の多軸押出機等の押出機、ロール、ニーダー、ブラベンダープラストグラフ、バンバリーミキサー等による加熱溶融混練機等が挙げられるが、特に、混練性の観点から、二軸押出機が好ましい。二軸押出機としては、具体的には、コペリオン社製のZSKシリーズ、東芝機械(株)製のTEMシリーズ、日本製鋼所(株)製のTEXシリーズが挙げられる。
 押出機の種類や規格等は、特に限定されることなく、公知のものとしてよい。
 以下、単軸押出機や二軸押出機等の多軸押出機等の押出機を用いた場合の好適な実施形態について記載する。
 押出機のL/D(バレル有効長/バレル内径)は、20以上であることが好ましく、30以上であることが更に好ましく、また、75以下であることが好ましく、60以下であることが更に好ましい。
 押出機の構成は、特に限定されることなく、例えば、原料が流れる方向について上流側に第1原料供給口、該第1原料供給口よりも下流に第1真空ベント、該第1真空ベントよりも下流に第2原料供給口、該第2原料供給口よりも下流に第1液添ポンプ、該第1液添ポンプよりも下流に第2真空ベント、該第2真空ベントよりも下流に第2液添ポンプを備えるものとすることができる。
 また、第2原料供給口における原料の供給方法としては、特に限定されることなく、原料供給口の上部開放口から単に添加する方法としても、サイド開放口から強制サイドフィーダーを用いて添加する方法としてもよく、特に、安定供給の観点から、サイド開放口から強制サイドフィーダーを用いて添加する方法が好ましい。
 各成分を溶融混練する際、溶融混練温度は、特に限定されることなく、200~370℃としてよく、スクリュー回転数は、特に限定されることなく、100~1200rpmとしてよい。
 液状の原料を添加する場合、押出機シリンダー部分において液添ポンプ等を用いて、液状の原料をシリンダー系中に直接送り込むことによって、添加することができる。液添ポンプとしては、特に限定されることなく、例えば、ギアポンプやフランジ式ポンプ等が挙げられ、ギアポンプが好ましい。このとき、液添ポンプにかかる負荷を小さくし、原料の操作性を高める観点から、液状原料を貯めておくタンク、該タンクと液添ポンプ間との配管や、該ポンプと押出機シリンダーとの間の配管等の液状の原料の流路となる部分を、ヒーター等を用いて加熱して、液状の原料の粘度を小さくしておくことが好ましい。
[成形体]
 本実施形態の成形体は、前述の本実施形態の樹脂組成物からなる。
 本実施形態の成形体としては、特に限定されることなく、例えば、自動車部品、電気機器の内外装部品、その他の部品等が挙げられる。自動車部品としては、特に限定されることなく、例えば、バンパー、フェンダー、ドアーパネル、各種モール、エンブレム、エンジンフード、ホイールキャップ、ルーフ、スポイラー、各種エアロパーツ等の外装部品;インストゥルメントパネル、コンソールボックス、トリム等の内装部品;自動車、電気自動車、ハイブリッド電気自動車等に搭載される二次電池電槽部品;リチウムイオン二次電池部品等が挙げられる。また、電気機器の内外装部品としては、特に限定されることなく、例えば、各種コンピューター及びその周辺機器、ジャンクションボックス、各種コネクター、その他のOA機器、テレビ、ビデオ、各種ディスクプレーヤー等のキャビネット、シャーシ、冷蔵庫、エアコン、液晶プロジェクターに用いられる部品等が挙げられる。その他の部品としては、金属導体又は光ファイバーに被覆を施すことによって得られる電線・ケーブル、固体メタノール電池用燃料ケース、燃料電池配水管、水冷用タンク、ボイラー外装ケース、インクジェットプリンターのインク周辺部品・部材、家具(椅子等)、シャーシ、水配管、継ぎ手等が挙げられる。
(成形体の製造方法)
 本実施形態の成形体は、前述の本実施形態の樹脂組成物を成形することによって製造することができる。
 本実施形態の成形体の製造方法としては、特に限定されることなく、例えば、射出成形、押出成形、押出異形成形、中空成形、圧縮成形等が挙げられ、本発明の効果をより効果的に得る観点から、射出成形が好ましい。
 以下、実施例を挙げて本発明の実施の形態を説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例及び比較例の樹脂組成物及び成形体に用いた原材料を以下に示す。
-(a)ポリフェニレンエーテル系樹脂-
 (a-i):2,6-キシレノールを酸化重合して得た、還元粘度(ηsp/c:0.5g/dLのクロロホルム溶液)0.51dL/gのポリフェニレンエーテル
 (a-ii):2,6-キシレノールを酸化重合して得た、還元粘度(ηsp/c:0.5g/dLのクロロホルム溶液)0.42dL/gのポリフェニレンエーテル
 なお、還元粘度は、ηsp/c:0.5g/dLのクロロホルム溶液を用いて、温度30℃の条件下、ウベローデ型粘度管で測定した。
-(b)水素添加ブロック共重合体-
 重合体ブロックAをポリスチレンからなるものとし、重合体ブロックBをポリブタジエンからなるものとして、未変性のブロック共重合体を合成した。得られたブロック共重合体の物性を下記に示す。
(b-i):以下に示す(b-i-1)と(b-i-2)の混合物
 (b-i-2):水素添加前のブロック共重合体におけるポリスチレンの含有量:30質量%、水素添加後のブロック共重合体の分子量ピーク:65,000、ポリスチレンブロックの数平均分子量(Mn):19,500、ポリブタジエンブロックの数平均分子量(Mn):45,500、水素添加前のブロック共重合体の分子量分布(Mw/Mn):1.10、水素添加前のポリブタジエンブロックにおける1,2-ビニル結合量(全ビニル結合量):40%、ポリブタジエンブロックを構成するポリブタジエン部分に対する水素添加率:35%、水素添加後のポリブタジエンブロックのガラス転移温度:-80℃。
 (b-i-1):水素添加前のブロック共重合体におけるポリスチレンの含有量:30質量%、水素添加後のブロック共重合体の分子量ピーク:125,000、ポリスチレンブロックの数平均分子量(Mn):18,750、ポリブタジエンブロックの数平均分子量(Mn):87,500、水素添加前のブロック共重合体の分子量分布(Mw/Mn):1.10、水素添加前のポリブタジエンブロックにおける1,2-ビニル結合量(全ビニル結合量):40%、ポリブタジエンブロックを構成するポリブタジエン部分に対する水素添加率:35%、水素添加後のポリブタジエンブロックのガラス転移温度:-80℃。
 混合比(b-i-1):(b-i-2)=30:70
 なお、ビニル芳香族化合物の含有量は、紫外線分光光度計を用いて測定した。数平均分子量(Mn)及び分子量ピークは、GPC(移動層:クロロホルム、標準物質:ポリスチレン)を用いて求めた。分子量分布(Mw/Mn)は、GPC(移動層:クロロホルム、標準物質:ポリスチレン)を用いて、従来公知の方法により求めた重量平均分子量(Mw)を、前述の数平均分子量(Mn)で除することによって算出した。全ビニル結合量は、赤外分光光度計を用いて測定し、Analytical Chemistry,Volume21,No.8,August 1949に記載の方法に準じて算出した。水素添加率は、核磁気共鳴装置(NMR)を用いて測定した。混合比は、GPC測定時のピーク面積比により求めた。
(b-ii)
 上記(b-i)に記載の(b-i-1)、(b-i-2)と同じ成分を(b-i-1):(b-i-2)=5:95である混合物。
(b-iii)
 上記(b-i)に記載の(b-i-1)、(b-i-2)と同じ成分を(b-i-1):(b-i-2)=55:45である混合物。
(b-iv):以下に示す(b-iv-1)と(b-iv-2)の混合物。
 (b-iv-2):水素添加前のブロック共重合体におけるポリスチレンの含有量:15質量%、水素添加後のブロック共重合体の分子量ピーク:70,000、ポリスチレンブロックの数平均分子量(Mn):10,500、ポリブタジエンブロックの数平均分子量(Mn):59,500、水素添加前のブロック共重合体の分子量分布(Mw/Mn):1.10、水素添加前のポリブタジエンブロックにおける1,2-ビニル結合量(全ビニル結合量):41%、ポリブタジエンブロックを構成するポリブタジエン部分に対する水素添加率:98%、水素添加後のポリブタジエンブロックのガラス転移温度:-55℃。
 (b-iv-1):水素添加前のブロック共重合体におけるポリスチレンの含有量:15質量%、水素添加後のブロック共重合体の分子量ピーク:130,000、ポリスチレンブロックの数平均分子量(Mn):9,750、ポリブタジエンブロックの数平均分子量(Mn):110,500、水素添加前のブロック共重合体の分子量分布(Mw/Mn):1.10、水素添加前のポリブタジエンブロックにおける1,2-ビニル結合量(全ビニル結合量):41%、ポリブタジエンブロックを構成するポリブタジエン部分に対する水素添加率:98%、水素添加後のポリブタジエンブロックのガラス転移温度:-55℃。
(b-iv-1):(b-iv-2)=30:70
(b-v-x):以下に示す(b-v-1)と(b-v-2)の混合物。
 (b-v-1):水素添加前のブロック共重合体におけるポリスチレンの含有量:20質量%、水素添加後のブロック共重合体の分子量ピーク:100,000、ポリスチレンブロックの数平均分子量(Mn):20,000、ポリブタジエンブロックの数平均分子量(Mn):80,000、水素添加前のブロック共重合体の分子量分布(Mw/Mn):1.10、水素添加前のポリブタジエンブロックにおける1,2-ビニル結合量(全ビニル結合量):50%、ポリブタジエンブロックを構成するポリブタジエン部分に対する水素添加率:99%、水素添加後のポリブタジエンブロックのガラス転移温度:-48℃。
 (b-v-2):水素添加前のブロック共重合体におけるポリスチレンの含有量:20質量%、水素添加後のブロック共重合体の分子量ピーク:195,000、ポリスチレンブロックの数平均分子量(Mn):19,500、ポリブタジエンブロックの数平均分子量(Mn):156,000、水素添加前のブロック共重合体の分子量分布(Mw/Mn):1.10、水素添加前のポリブタジエンブロックにおける1,2-ビニル結合量(全ビニル結合量):50%、ポリブタジエンブロックを構成するポリブタジエン部分に対する水素添加率:99%、水素添加後のポリブタジエンブロックのガラス転移温度:-48℃。
(b-v-1):(b-v-2)=30:70
(b-vi-x):以下に示す(b-vi-1)と(b-vi-2)の混合物。
 (b-vi-1):水素添加前のブロック共重合体におけるポリスチレンの含有量:20質量%、水素添加後のブロック共重合体の分子量ピーク=70,000、ポリスチレンブロックの数平均分子量(Mn):14,000、ポリブタジエンブロックの数平均分子量(Mn):56,000、水素添加前のブロック共重合体の分子量分布(Mw/Mn):1.10、水素添加前のポリブタジエンブロックにおける1,2-ビニル結合量(全ビニル結合量):50%、ポリブタジエンブロックを構成するポリブタジエン部分に対する水素添加率:99%、水素添加後のポリブタジエンブロックのガラス転移温度:-48℃。
 (b-vi-2):水素添加前のブロック共重合体におけるポリスチレンの含有量:20質量%、水素添加後のブロック共重合体の分子量ピーク:130,000、ポリスチレンブロックの数平均分子量(Mn):13,000、ポリブタジエンブロックの数平均分子量(Mn):104,000、水素添加前のブロック共重合体の分子量分布(Mw/Mn):1.10、水素添加前のポリブタジエンブロックにおける1,2-ビニル結合量(全ビニル結合量):50%、ポリブタジエンブロックを構成するポリブタジエン部分に対する水素添加率:99%、水素添加後のポリブタジエンブロックのガラス転移温度:-48℃。
 (b-vi-1):(b-vi-2)=30:70
-(c)オレフィン系重合体-
(c-i):エチレン-ブテン共重合体、商品名「タフマーDF610」、三井化学(株)製、MFR:1.2g/10分(190℃、2.16kgf条件)、脆化温度:<-70℃、密度:0.862g/cm3
(c-ii):エチレン-ブテン共重合体、商品名「タフマーDF810」、三井化学(株)製、MFR:1.2g/10分(190℃、2.16kgf条件)、脆化温度:<-70℃、密度:0.885g/cm3
(c-iii):エチレン-ブテン共重合体、商品名「タフマーDF110」、三井化学(株)製、MFR:1.2g/10分(190℃、2.16kgf条件)、脆化温度:<-70℃、密度:0.905g/cm3
(c-iv-x):商品名「タフマーBL3450M」、三井化学(株)製、MFR:4.0g/10分(190℃、2.16kgf条件)、脆化温度:-32℃
(c-v):低密度ポリエチレン、MFR=2.0g/10分(190℃、2.16kgf条件)、脆化温度:-80℃、密度:0.918g/cm3
-(d)混和剤-
 公知の方法により、重合体ブロックIをポリスチレンからなるものとし、重合体ブロックIIをポリブタジエンからなるものとして、II-I-II-Iのブロック構造を有するブロック共重合体を合成した。公知の方法により、合成したブロック共重合体に水素添加を行った。重合体の変性は行わなかった。得られた未変性水素添加ブロック共重合体の物性を下記に示す。
 水素添加前のブロック共重合体におけるポリスチレンの含有量:44質量%、水素添加後のブロック共重合体の分子量ピーク:95,000、ポリスチレンブロックの数平均分子量(Mn):41,800、ポリブタジエンブロックの数平均分子量(Mn):53,200、水素添加前のブロック共重合体の分子量分布(Mw/Mn):1.06、水素添加前のポリブタジエンブロックにおける1,2-ビニル結合量(全ビニル結合量):75%、ポリブタジエンブロックを構成するポリブタジエン部分に対する水素添加率:99%、水素添加後のポリブタジエンブロックのガラス転移温度:-15℃。
-(e)リン酸エステル系化合物-
(e):大八化学社製「E890」(縮合リン酸エステル化合物)
-(f)ホスフィン酸塩類-
(f):クラリアントジャパン社製「Exolit OP1230」(式(1)に該当)
-(g)ポリプロピレン系樹脂-
(g-i)プロピレンホモポリマー(融点:165℃、MFR:6.0g/10分(190℃、2.16kgf条件))
(g-ii)日本ポリプロ(株)製「ウェルネクスRFX4V」(エチレン-プロピレン共重合体)、MFR:6.0g/10分(190℃、2.16kg条件)、密度:0.890g/cm3
 実施例及び比較例における物性の測定方法(1)~(6)を以下に示す。
(1)曲げ弾性率
 得られた樹脂組成物ペレットを、シリンダー温度280℃に設定した小型射出成形機(商品名:IS-100GN、東芝機械社製)に供給し、金型温度70℃、射出圧力70MPa、射出時間20秒、冷却時間15秒の条件で成形し、評価用ISOダンベルを作製した。このISOダンベルを、ISO 178に従い、曲げ弾性率(MPa)を測定した。
 曲げ弾性率の値が大きい程、剛性に優れていると判定した。特に、1600MPa以上である場合は、機構部品や構造物への適用も可能な剛性を有していた。
(2)耐薬品性
 得られた樹脂組成物のペレットを、シリンダー温度280℃に設定した小型射出成形機(商品名:IS-100GN、東芝機械社製)に供給し、金型温度70℃、射出圧力75MPa、射出時間20秒、冷却時間15秒の条件で、150mm×150mm×3mmの平板に成形した。
 この平板から、75mm×12.7mm×3mmの試験片を切り出し、試験片を歪みが連続的に変化するように設計されたベンディングフォームにセットした。試験片の表面にフタル酸エステル化合物(東京化成工業製、ビス(2ーエチルヘキシル)フタレート)を塗布し、23℃×50RH%の条件で48時間放置した。48時間後に試験片に歪みを与え、試験片の表面にクラックが発生したときのベンディングフォームの停止位置を測定して、クラックが発生しない限界の歪み量を示す臨界歪み量(%)を求めた。
 評価基準としては、臨界歪み量の数値が大きいほど、耐薬品性に優れていると判定した。
(3)落錘衝撃強度
 得られた樹脂組成物のペレットを、シリンダー温度280℃に設定した小型射出成形機(商品名:IS-100GN、東芝機械社製)に供給し、金型温度70℃、射出圧力70MPa、射出時間20秒、冷却時間10秒の条件で、50mm×90mm×2mmの平板に成形した。
 得られた平板を、-40℃の環境下でJIS K 7211-1に準じて、先端直径12.7mmφのストライカーを用いて落錘衝撃試験を実施し、試験片の破壊に要した全吸収エネルギー(J)を測定した。
 値が大きい程、低温衝撃性に優れていると判定した。
(4)耐トラッキング性
 得られた樹脂組成物のペレットを、シリンダー温度280℃に設定した小型射出成形機(商品名:IS-100GN、東芝機械社製)に供給し、金型温度70℃、射出圧力70MPaの条件で、120mm×80mm×3mmの平板に成形した。得られた平板から、20mm×20mm×3mmの平板を切り出し、IEC60112:2003(使用電解液:溶液A、滴下数:50滴)に準じて、トラッキング破壊が発生しない最大電圧(V)を測定し、耐トラッキング性を評価した。
 値が大きい程、耐トラッキング性に優れていると判定した。
(5)難燃性
 得られた樹脂組成物ペレットを、シリンダー温度280℃に設定した小型射出成形機(商品名:IS-100GN、東芝機械社製)に供給し、金型温度70℃、射出圧力60MPaの条件で成形し、UL94垂直燃焼試験測定用試験片(1.6mm厚み)を5本作製した。UL94垂直燃焼試験方法に基づいて、これら5本の試験片の難燃性を評価した。10秒間の接炎後、炎を離してから炎が消えるまでの燃焼時間をt1(秒)とし、再び10秒間の接炎後、炎を離してから炎が消えるまでの燃焼時間をt2(秒)とし、各5本について、t1及びt2の平均を平均燃焼時間として求めた。一方、t1及びt2を合わせた10点の燃焼時間のうち最大のものを最大燃焼時間として求めた。そして、UL94規格に基づいて、V-0、V-1、V-2、HBの判定を行った。
 特に、難燃レベルV-1以上の判定の場合に、難燃性に優れていると判定した。
(6)モルフォロジー
 上記(1)曲げ弾性率と同様にして作製した評価用ISOダンベルから、ウルトラミクロトームを用いて超薄切片を作製した後、四酸化オスミウムで(b-1)成分、(b-2)成分を染色した。TEM(商品名「HT7700」、日立ハイテクノロジーズ社製)を用いて、染色後の超薄切片を観察し、倍率10,000倍の画像を得た。得られた画像を観察して、(b-1)成分、(b-2)成分がミミズ状のドメインを形成しているか判定した。そして、画像の全体(例えば、全画像の70%以上)にわたり、ミミズ状のドメインが観察される画像が得られた場合を「○」(良好)、画像が得られない場合を「×」(不良)と判定した。
 ここで、(b-1)成分、(b-2)成分が形成するミミズ状のドメインとは図1中の1の部分をいい、連続相とは、図1中の2の部分をいう。なお、図1は実施例1の画像であり、図2は比較例1の画像である。
 また、(a)成分が連続相を形成するか否かを、上記で得られた画像において、(a)成分が連続相を形成する場合((a)成分と他の成分が共連続である場合を含む)を「○」(良好)、(a)成分が分散相になっている場合を「×」(不良)と判定した。
 同じ画像を用いて(c)成分が樹脂組成物中に分散しているか判定し、100個の(c)成分のドメインに関して短軸径(μm)と長軸径(μm)とを測定し、それらの平均を取ることにより平均短軸径(μm)と平均長軸径(μm)とを求めた。(c)成分の平均短軸径が2μm以下、且つ平均短軸径に対する平均長軸径の割合(平均長軸径/平均短軸径)が1~10である場合を「○」(良好)、それ以外の場合を「×」(不良)と判定した。
(実施例1~39、比較例1~24)
 以下、各実施例及び各比較例について詳述する。
 各実施例及び各比較例の樹脂組成物の製造に用いる溶融混練機として、二軸押出機(コペリオン社製、ZSK-25)を用いた。押出機のL/Dは、35とした。
 二軸押出機の構成は、原料が流れる方向について上流側に第1原料供給口、該第1原料供給口よりも下流に第1真空ベント、該第1真空ベントよりも下流に第2原料供給口、該第2原料供給口よりも下流に液添ポンプ、該液添ポンプよりも下流に第2真空ベントを備えるものとした。
 二軸押出機のバレル設定温度は、第1原料供給口から第1真空ベントまでを320℃、第2原料供給口よりも下流を270℃の設定とし、スクリュー回転数300rpm、押出レート15kg/hの条件で樹脂組成物のペレットを製造した。二軸押出機の構成を表1に示す。
Figure JPOXMLDOC01-appb-T000010
 上記の通り設定した二軸押出機に、(a)成分~(g)成分を表2、3に示す通りに二軸押出機に供給し、樹脂組成物のペレットを得た。
 各実施例及び各比較例について、前述の測定方法(1)~(6)により物性試験を行った。結果を表2、表3に示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 表2、表3に示す通り、実施例の樹脂組成物は、比較例の樹脂組成物と比較して、低温衝撃性、耐薬品性、耐トラッキング性に優れ、機構部品や構造体への適用も可能な剛性を持つことがわかった。
 本発明によれば、低温衝撃性、耐薬品性、耐トラッキング性に優れ、機構部品や構造体への適用も可能な剛性を持つ樹脂組成物及び成形体を得ることができる。本発明の樹脂組成物を含む成形体は、自動車部品、電気機器の内外装部品、その他の部品等として好適に用いられる。

Claims (13)

  1. (a)ポリフェニレンエーテル系樹脂と、
    (b-1)ビニル芳香族化合物を主体とする重合体ブロックAを少なくとも1個と、共役ジエン化合物を主体とする重合体ブロックBを少なくとも1個とを含むブロック共重合体の少なくとも一部が水素添加されてなり、GPC測定による標準ポリスチレン換算の分子量ピークを8万~20万に有する水素添加ブロック共重合体及び/若しくは該水素添加ブロック共重合体の変性物、及び(b-2)ビニル芳香族化合物を主体とする重合体ブロックAを少なくとも1個と、共役ジエン化合物を主体とする重合体ブロックBを少なくとも1個とを含むブロック共重合体の少なくとも一部が水素添加されてなり、GPC測定による標準ポリスチレン換算の分子量ピークを1万以上8万未満に有する水素添加ブロック共重合体及び/若しくは該水素添加ブロック共重合体の変性物、並びに/又は、(c)プロピレンを除くオレフィンからなるオレフィン系重合体、
    とを含有し、
     前記(a)成分が連続相を形成し、
     前記(b-1)成分及び前記(b-2)成分中の、前記重合体ブロックBのガラス転移温度が-50℃以下であり、
     前記(c)成分の脆化温度が-50℃以下であり、
     実質的に、(g)ポリプロピレン系樹脂を含有せず、
     ISO 178に準じて測定した曲げ弾性率が、1600MPa以上である、
    ことを特徴とする、樹脂組成物。
  2.  前記(b-1)成分と、前記(b-2)成分との比((b-1):(b-2))が10:90~50:50である、請求項1に記載の樹脂組成物。
  3.  さらに(d)混和剤を含む、請求項1又は2に記載の樹脂組成物。
  4.  前記(b-1)成分及び/又は前記(b-2)成分が、ミミズ状のドメインを形成している、請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  前記(c)成分が、平均短軸径が2μm以下かつ平均長軸径/平均短軸径が1~10で、樹脂組成物中に分散している、請求項1~4のいずれか1項に記載の樹脂組成物。
  6.  さらに、(e)リン酸エステル系化合物を含有する、請求項1~5のいずれか1項に記載の樹脂組成物。
  7.  さらに、(f)ホスフィン酸塩類を含有し、
     前記(f)成分が、下記一般式(1)で表されるホスフィン酸塩
    Figure JPOXMLDOC01-appb-C000001
    [式中、R11及びR12は、各々独立して、直鎖状若しくは分岐状の炭素原子数1~6のアルキル基及び/又は炭素原子数6~10のアリール基であり;M1は、カルシウムイオン、マグネシウムイオン、アルミニウムイオン、亜鉛イオン、ビスマスイオン、マンガンイオン、ナトリウムイオン、カリウムイオン及びプロトン化された窒素塩基からなる群より選ばれる少なくとも1種であり;aは、1~3の整数であり;mは、1~3の整数であり;a=mである]、及び
     下記式(2)で表されるジホスフィン酸塩
    Figure JPOXMLDOC01-appb-C000002
    [式中、R21及びR22は、各々独立して、直鎖状若しくは分岐状の炭素原子数1~6のアルキル基及び/又は炭素原子数6~10のアリール基であり;R23は、直鎖状若しくは分岐状の炭素原子数1~10のアルキレン基、炭素原子数6~10のアリーレン基、炭素原子数6~10のアルキルアリーレン基又は炭素原子数6~10のアリールアルキレン基であり;M2は、カルシウムイオン、マグネシウムイオン、アルミニウムイオン、亜鉛イオン、ビスマスイオン、マンガンイオン、ナトリウムイオン、カリウムイオン及びプロトン化された窒素塩基からなる群より選ばれる少なくとも1種であり;bは、1~3の整数であり;nは、1~3の整数であり;jは、1又は2の整数であり;b・j=2nである]
    からなる群より選ばれる少なくとも1種のホスフィン酸塩類を含有する、請求項1~6のいずれか1項に記載の樹脂組成物。
  8.  前記(c)成分が、エチレン-1-ブテン共重合体である、請求項1~7のいずれか1項に記載の樹脂組成物。
  9.  前記(c)成分の密度が、0.87g/cm3以上である、請求項1~8のいずれか1項に記載の樹脂組成物。
  10.  前記(c)成分の密度が、0.90g/cm3以上である、請求項1~9のいずれか1項に記載の樹脂組成物。
  11.  前記(d)成分が、ビニル芳香族化合物を主体とする少なくとも1個の重合体ブロックIと、共役ジエン化合物を主体とする少なくとも1個の重合体ブロックIIとを含むブロック共重合体の少なくとも一部が水素添加されてなる水素添加ブロック共重合体及び/又は該水素添加ブロック共重合体の変性物であり、
     前記(d)成分中に含まれる共役ジエン化合物単位における二重結合に対する、1,2-ビニル結合及び3,4-ビニル結合の合計が50%超90%以下であり、
     前記(d)成分中の、ビニル芳香族化合物単位の含有量が30~50質量%であり、
     前記(d)成分中の、重合体ブロックIIのガラス転移温度が-50℃超であり、
     前記(d)成分中に含まれる共役ジエン化合物単位における二重結合に対する水素添加率が80~100%である、請求項1~10のいずれか1項に記載の樹脂組成物。
  12.  下記工程(1-1)及び(1-2)を含むことを特徴とする、請求項1~11のいずれか1項に記載の樹脂組成物の製造方法。
    (1-1):前記(a)成分、及び必要に応じて(d)成分を溶融混練して混練物を得る工程。
    (1-2):前記工程(1-1)で得られた前記混練物に対して、前記(b-1)成分及び前記(b-2)成分、並びに/又は前記(c)成分を添加し、溶融混練する工程。
  13.  請求項1~11のいずれか1項に記載の樹脂組成物を含むことを特徴とする、成形体。
PCT/JP2017/019438 2016-05-31 2017-05-24 樹脂組成物、樹脂組成物の製造方法及び成形体 WO2017208945A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780018442.0A CN108884313B (zh) 2016-05-31 2017-05-24 树脂组合物、树脂组合物的制造方法和成型体
JP2018520845A JPWO2017208945A1 (ja) 2016-05-31 2017-05-24 樹脂組成物、樹脂組成物の製造方法及び成形体
EP17806502.5A EP3467034B1 (en) 2016-05-31 2017-05-24 Resin composition, process for producing resin composition, and molded object
US16/099,690 US10738189B2 (en) 2016-05-31 2017-05-24 Resin composition, method of producing resin composition, and shaped product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-109406 2016-05-31
JP2016109406 2016-05-31

Publications (1)

Publication Number Publication Date
WO2017208945A1 true WO2017208945A1 (ja) 2017-12-07

Family

ID=60478605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019438 WO2017208945A1 (ja) 2016-05-31 2017-05-24 樹脂組成物、樹脂組成物の製造方法及び成形体

Country Status (6)

Country Link
US (1) US10738189B2 (ja)
EP (1) EP3467034B1 (ja)
JP (2) JPWO2017208945A1 (ja)
CN (1) CN108884313B (ja)
TW (1) TWI643903B (ja)
WO (1) WO2017208945A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111910A1 (ja) * 2017-12-06 2019-06-13 旭化成株式会社 車載リチウムイオンバッテリー用部材
JP2020202135A (ja) * 2019-06-12 2020-12-17 旭化成株式会社 移動体用電池ユニットの保護筐体部材
WO2024048546A1 (ja) * 2022-09-01 2024-03-07 グローバルポリアセタール株式会社 ポリフェニレンエーテル系樹脂組成物および成形品

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241291A1 (ja) * 2020-05-27 2021-12-02 旭化成株式会社 樹脂組成物、変性水添ブロック共重合体の製造方法、及び成形体
CN114181512A (zh) * 2021-11-16 2022-03-15 金发科技股份有限公司 一种聚苯醚复合材料及其制备方法和应用

Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1020720A (en) 1963-12-26 1966-02-23 Shell Int Research Process for the catalytic hydrogenation of block copolymers
US3257358A (en) 1963-07-02 1966-06-21 Du Pont 2, 6-dichloro-1, 4-polyphenylene ether
US3257357A (en) 1963-04-01 1966-06-21 Du Pont Copolymers of polyphenylene ethers
US3281383A (en) 1962-08-09 1966-10-25 Phillips Petroleum Co Branched polymers prepared from monolithium-terminated polymers and compounds having at least three reactive sites
US3306874A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols
US3306875A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols and resulting products
US3333024A (en) 1963-04-25 1967-07-25 Shell Oil Co Block polymers, compositions containing them and process of their preparation
GB1130770A (en) 1965-12-29 1968-10-16 Asahi Chemical Ind Process for producing thermoplastic elastomers
US3639517A (en) 1969-09-22 1972-02-01 Phillips Petroleum Co Resinous branched block copolymers
JPS4966743A (ja) 1972-10-18 1974-06-28
JPS5051197A (ja) 1973-09-06 1975-05-07
JPS5075651A (ja) 1973-11-08 1975-06-20
JPS5217880B2 (ja) 1974-05-25 1977-05-18
JPS5422561B2 (ja) 1972-09-09 1979-08-08
JPS54126255A (en) 1978-02-28 1979-10-01 Hooker Chemicals Plastics Corp Halogenized vinyl polymer blend having improved impact resistance
JPS5610542A (en) 1979-07-06 1981-02-03 Nippon Steel Chem Co Ltd Iridescent resin composition
JPS5662847A (en) 1979-10-29 1981-05-29 Denki Kagaku Kogyo Kk Resin composition
JPS56100840A (en) 1980-01-16 1981-08-13 Denki Kagaku Kogyo Kk Resin composition
US4501857A (en) 1983-01-20 1985-02-26 Asahi Kasei Kogyo Kabushiki Kaisha Method for hydrogenation of polymer
JPS63152628A (ja) 1986-12-17 1988-06-25 Asahi Chem Ind Co Ltd 色調の優れたポリフエニレンエ−テル系樹脂の製造法
JPH02300218A (ja) 1989-05-15 1990-12-12 Kuraray Co Ltd 制振性に優れる重合体及び組成物
JPH0428738A (ja) * 1990-05-25 1992-01-31 Mitsubishi Petrochem Co Ltd 熱可塑性樹脂組成物
JPH06306121A (ja) 1993-04-21 1994-11-01 Dow Chem Co:The 弾性で実質的に線状であるオレフィンポリマー
JPH073083A (ja) * 1993-06-15 1995-01-06 Mitsubishi Chem Corp ポリフェニレンエーテル樹脂組成物の製造法
JPH07500622A (ja) 1991-10-15 1995-01-19 ザ・ダウ・ケミカル・カンパニー 弾性で実質的に線状であるオレフィンポリマー
JP2000007908A (ja) * 1998-06-24 2000-01-11 Sumitomo Chem Co Ltd ポリフェニレンエーテル系樹脂組成物
JP2000280407A (ja) * 1998-09-10 2000-10-10 Shin Etsu Polymer Co Ltd 食品包装用フィルム
JP2004161929A (ja) 2002-11-14 2004-06-10 Ge Plastics Japan Ltd ワイヤ・ケーブル被覆材用樹脂組成物
JP2004517998A (ja) * 2000-12-28 2004-06-17 ゼネラル・エレクトリック・カンパニイ 強化熱可塑性組成物及びそれから得られる物品
JP2004262149A (ja) * 2003-03-03 2004-09-24 Idemitsu Unitech Co Ltd 多層構造体及び包装体
JP2004292660A (ja) * 2003-03-27 2004-10-21 Asahi Kasei Chemicals Corp 熱可塑性樹脂組成物
JP2004307624A (ja) * 2003-04-07 2004-11-04 Mitsubishi Engineering Plastics Corp 熱可塑性樹脂組成物、およびその製造方法
JP2004315649A (ja) * 2003-04-16 2004-11-11 Asahi Kasei Chemicals Corp ポリフェニレンエーテル系樹脂組成物及び大型tv外装成形体
JP2007519782A (ja) 2004-01-07 2007-07-19 ゼネラル・エレクトリック・カンパニイ 柔軟なポリ(アリーレンエーテル)組成物及びその物品
WO2008093648A1 (ja) * 2007-01-29 2008-08-07 Kuraray Co., Ltd. 樹脂組成物及び多層構造体
JP2010254994A (ja) * 2009-04-01 2010-11-11 Asahi Kasei Chemicals Corp 樹脂組成物及びその成形体
JP2014101399A (ja) * 2012-11-16 2014-06-05 Hitachi Chemical Co Ltd シアネートエステル系樹脂組成物、これを用いたプリプレグ、及び積層板
WO2015050060A1 (ja) 2013-10-01 2015-04-09 旭化成ケミカルズ株式会社 樹脂組成物及びその成形体
WO2015098770A1 (ja) * 2013-12-27 2015-07-02 旭化成ケミカルズ株式会社 難燃性樹脂組成物、及び太陽光発電モジュール用接続構造体
WO2015108646A1 (en) * 2014-01-20 2015-07-23 Sabic Global Technologies B.V. Poly(phenylene ether) composition and article

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166264A (en) 1988-08-15 1992-11-24 General Electric Company Polyphenylene ether/polyolefin compositions
DE10297213B4 (de) * 2001-09-14 2010-07-01 Asahi Kasei Chemicals Corp. Polyphenylenehter-Zusammensetzung
JP2005344065A (ja) * 2004-06-04 2005-12-15 Mitsubishi Engineering Plastics Corp ポリフェニレンエーテル系樹脂組成物
JP2008274039A (ja) * 2007-04-26 2008-11-13 Asahi Kasei Chemicals Corp ポリフェニレンエーテル組成物
JP5422561B2 (ja) 2007-09-27 2014-02-19 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ 難燃性ポリ(アリーレンエーテル)組成物とその被覆線用被覆材としての使用
US8110632B2 (en) 2009-01-15 2012-02-07 Sabic Innovative Plastics Ip B.V. Poly(arylene ether) articles and compositions
EP2568012B1 (en) * 2010-04-28 2015-01-14 Aronkasei Co., Ltd. Elastomer composition and stopper for medical container
WO2014075291A1 (en) * 2012-11-16 2014-05-22 Sabic Innovative Plastics Ip B.V. Flexible, wrinkle resistant poly(phenylene ether) cable jacketing composition
EP3164255B1 (en) * 2014-07-03 2020-04-08 Dow Global Technologies LLC A composition, injection molded article made therefrom and process to make injection molded article

Patent Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3306874A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols
US3306875A (en) 1962-07-24 1967-02-28 Gen Electric Oxidation of phenols and resulting products
US3281383A (en) 1962-08-09 1966-10-25 Phillips Petroleum Co Branched polymers prepared from monolithium-terminated polymers and compounds having at least three reactive sites
US3257357A (en) 1963-04-01 1966-06-21 Du Pont Copolymers of polyphenylene ethers
US3333024A (en) 1963-04-25 1967-07-25 Shell Oil Co Block polymers, compositions containing them and process of their preparation
US3257358A (en) 1963-07-02 1966-06-21 Du Pont 2, 6-dichloro-1, 4-polyphenylene ether
GB1020720A (en) 1963-12-26 1966-02-23 Shell Int Research Process for the catalytic hydrogenation of block copolymers
GB1130770A (en) 1965-12-29 1968-10-16 Asahi Chemical Ind Process for producing thermoplastic elastomers
US3639517A (en) 1969-09-22 1972-02-01 Phillips Petroleum Co Resinous branched block copolymers
JPS5422561B2 (ja) 1972-09-09 1979-08-08
JPS4966743A (ja) 1972-10-18 1974-06-28
JPS5051197A (ja) 1973-09-06 1975-05-07
JPS5075651A (ja) 1973-11-08 1975-06-20
JPS5217880B2 (ja) 1974-05-25 1977-05-18
JPS54126255A (en) 1978-02-28 1979-10-01 Hooker Chemicals Plastics Corp Halogenized vinyl polymer blend having improved impact resistance
JPS5610542A (en) 1979-07-06 1981-02-03 Nippon Steel Chem Co Ltd Iridescent resin composition
JPS5662847A (en) 1979-10-29 1981-05-29 Denki Kagaku Kogyo Kk Resin composition
JPS56100840A (en) 1980-01-16 1981-08-13 Denki Kagaku Kogyo Kk Resin composition
US4501857A (en) 1983-01-20 1985-02-26 Asahi Kasei Kogyo Kabushiki Kaisha Method for hydrogenation of polymer
JPS63152628A (ja) 1986-12-17 1988-06-25 Asahi Chem Ind Co Ltd 色調の優れたポリフエニレンエ−テル系樹脂の製造法
JPH02300218A (ja) 1989-05-15 1990-12-12 Kuraray Co Ltd 制振性に優れる重合体及び組成物
JPH0428738A (ja) * 1990-05-25 1992-01-31 Mitsubishi Petrochem Co Ltd 熱可塑性樹脂組成物
JPH07500622A (ja) 1991-10-15 1995-01-19 ザ・ダウ・ケミカル・カンパニー 弾性で実質的に線状であるオレフィンポリマー
JPH06306121A (ja) 1993-04-21 1994-11-01 Dow Chem Co:The 弾性で実質的に線状であるオレフィンポリマー
JPH073083A (ja) * 1993-06-15 1995-01-06 Mitsubishi Chem Corp ポリフェニレンエーテル樹脂組成物の製造法
JP2000007908A (ja) * 1998-06-24 2000-01-11 Sumitomo Chem Co Ltd ポリフェニレンエーテル系樹脂組成物
JP2000280407A (ja) * 1998-09-10 2000-10-10 Shin Etsu Polymer Co Ltd 食品包装用フィルム
JP2004517998A (ja) * 2000-12-28 2004-06-17 ゼネラル・エレクトリック・カンパニイ 強化熱可塑性組成物及びそれから得られる物品
JP2004161929A (ja) 2002-11-14 2004-06-10 Ge Plastics Japan Ltd ワイヤ・ケーブル被覆材用樹脂組成物
JP2004262149A (ja) * 2003-03-03 2004-09-24 Idemitsu Unitech Co Ltd 多層構造体及び包装体
JP2004292660A (ja) * 2003-03-27 2004-10-21 Asahi Kasei Chemicals Corp 熱可塑性樹脂組成物
JP2004307624A (ja) * 2003-04-07 2004-11-04 Mitsubishi Engineering Plastics Corp 熱可塑性樹脂組成物、およびその製造方法
JP2004315649A (ja) * 2003-04-16 2004-11-11 Asahi Kasei Chemicals Corp ポリフェニレンエーテル系樹脂組成物及び大型tv外装成形体
JP2007519782A (ja) 2004-01-07 2007-07-19 ゼネラル・エレクトリック・カンパニイ 柔軟なポリ(アリーレンエーテル)組成物及びその物品
WO2008093648A1 (ja) * 2007-01-29 2008-08-07 Kuraray Co., Ltd. 樹脂組成物及び多層構造体
JP2010254994A (ja) * 2009-04-01 2010-11-11 Asahi Kasei Chemicals Corp 樹脂組成物及びその成形体
JP2014101399A (ja) * 2012-11-16 2014-06-05 Hitachi Chemical Co Ltd シアネートエステル系樹脂組成物、これを用いたプリプレグ、及び積層板
WO2015050060A1 (ja) 2013-10-01 2015-04-09 旭化成ケミカルズ株式会社 樹脂組成物及びその成形体
WO2015098770A1 (ja) * 2013-12-27 2015-07-02 旭化成ケミカルズ株式会社 難燃性樹脂組成物、及び太陽光発電モジュール用接続構造体
WO2015108646A1 (en) * 2014-01-20 2015-07-23 Sabic Global Technologies B.V. Poly(phenylene ether) composition and article

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANALYTICAL CHEMISTRY, vol. 21, no. 8, August 1949 (1949-08-01)
ANONYMOUS: "TAFMER DF&A Meigara no Kihon Bussei (TAFMER Alpha-olefin copolymer)", 8 December 2015 (2015-12-08), XP009511478, Retrieved from the Internet <URL:https://www.mitsuichem.com/sites/default/files/media/document/2018/brand001_2.pdf> *
See also references of EP3467034A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111910A1 (ja) * 2017-12-06 2019-06-13 旭化成株式会社 車載リチウムイオンバッテリー用部材
US11539095B2 (en) 2017-12-06 2022-12-27 Asahi Kasei Kabushiki Kaisha In-vehicle lithium ion battery member
JP2020202135A (ja) * 2019-06-12 2020-12-17 旭化成株式会社 移動体用電池ユニットの保護筐体部材
JP7344013B2 (ja) 2019-06-12 2023-09-13 旭化成株式会社 移動体用電池ユニットの保護筐体部材
WO2024048546A1 (ja) * 2022-09-01 2024-03-07 グローバルポリアセタール株式会社 ポリフェニレンエーテル系樹脂組成物および成形品

Also Published As

Publication number Publication date
JP6854873B2 (ja) 2021-04-07
CN108884313A (zh) 2018-11-23
EP3467034A4 (en) 2019-06-19
US20190185665A1 (en) 2019-06-20
CN108884313B (zh) 2021-03-30
TW201809137A (zh) 2018-03-16
EP3467034B1 (en) 2022-05-11
JP2020033575A (ja) 2020-03-05
EP3467034A1 (en) 2019-04-10
JPWO2017208945A1 (ja) 2018-09-06
TWI643903B (zh) 2018-12-11
US10738189B2 (en) 2020-08-11

Similar Documents

Publication Publication Date Title
JP6854873B2 (ja) 樹脂組成物、樹脂組成物の製造方法及び成形体
US9783675B2 (en) Resin composition and molded article thereof
JP2017214491A (ja) 樹脂組成物及び成形体
JP6561122B2 (ja) 樹脂組成物及び成形体
JP5787449B2 (ja) 樹脂組成物及び成形品
CN110770299B (zh) 树脂组合物、树脂组合物的制造方法和成型体
JP6192623B2 (ja) 樹脂組成物及びその成形体
JP7209553B2 (ja) 樹脂組成物及び成形体
JP6243795B2 (ja) 難燃性樹脂組成物を含む成形体
JP6763698B2 (ja) 樹脂組成物及び成形体
JP7032163B2 (ja) 樹脂組成物、樹脂組成物の製造方法及び成形体
JP6276145B2 (ja) 樹脂組成物及び成形体
JP6165013B2 (ja) 樹脂組成物及びその成形体
JP6175339B2 (ja) 樹脂組成物及びその成形体
JP6586327B2 (ja) 樹脂組成物及び成形体
JP2015078275A (ja) 成形体
JP6185442B2 (ja) 樹脂組成物及びその成形体
JP2022108192A (ja) 樹脂組成物
JP7344013B2 (ja) 移動体用電池ユニットの保護筐体部材
JP2010138215A (ja) 樹脂組成物、その製造方法並びにこれからなる成形品、ケーブル用被覆材及びケーブル
JP2023055126A (ja) 樹脂組成物及び成形体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018520845

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017806502

Country of ref document: EP

Effective date: 20190102