WO2017206792A1 - 用于oled面板的像素布图的掩膜结构、oled面板及其制作方法 - Google Patents

用于oled面板的像素布图的掩膜结构、oled面板及其制作方法 Download PDF

Info

Publication number
WO2017206792A1
WO2017206792A1 PCT/CN2017/085902 CN2017085902W WO2017206792A1 WO 2017206792 A1 WO2017206792 A1 WO 2017206792A1 CN 2017085902 W CN2017085902 W CN 2017085902W WO 2017206792 A1 WO2017206792 A1 WO 2017206792A1
Authority
WO
WIPO (PCT)
Prior art keywords
deposition
sub
deposition wall
wall
pixel region
Prior art date
Application number
PCT/CN2017/085902
Other languages
English (en)
French (fr)
Inventor
克里斯塔尔⋅鲍里斯
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/737,185 priority Critical patent/US10510991B2/en
Publication of WO2017206792A1 publication Critical patent/WO2017206792A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Definitions

  • Embodiments of the present disclosure relate to a mask structure for a pixel layout of an OLED panel, an OLED panel, and a method of fabricating the same.
  • organic electroluminescent displays are self-illuminating and do not require a backlight, thus enabling weight reduction and size miniaturization. Moreover, the organic electroluminescent display has a low driving voltage, a high luminous efficiency, and a wide viewing angle, and has been widely concerned.
  • An organic electroluminescent display includes a plurality of organic light emitting display (OLED) devices for displaying an image.
  • OLED organic light emitting display
  • Each OLED includes an anode, an organic light emitting layer, and a cathode.
  • the anode and the cathode provide holes and electrons to the organic light-emitting layer, and holes and electrons recombine in the organic light-emitting layer to form excitons, and when the excitons fall to the bottom state, light of a predetermined wavelength is generated.
  • Light having a wavelength corresponding to, for example, red, green, and blue is generated according to material properties of the organic light-emitting layer.
  • each of the organic light-emitting layers that realize red (R), green (G), and blue (B) should be patterned for each pixel to achieve full-color display.
  • Prior art techniques for fabricating OLED devices include vacuum deposition, jet-printing, nozzle-printing, laser ablation, laser induced thermal imaging, and the like. Among these methods, the vacuum deposition process produces devices with optimal characteristics.
  • vacuum deposition requires a fine metal mask (FMM) to produce the layout required for high resolution display.
  • FMM has many problems such as high production cost, difficulty in stretching and maintenance, and the FMM needs to be accurately aligned with the substrate before deposition begins. For large-size substrates, alignment is very difficult and high resolution is required The situation is especially difficult.
  • the alignment process also requires adding complex attachments to the evaporation chamber to handle the alignment process.
  • an embodiment of the present disclosure provides a mask structure for a pixel layout of an OLED panel, including:
  • the deposition mask including a pair of first deposition walls and second deposition walls disposed opposite each other in a first direction, intersecting the first direction a pair of third deposition walls and fourth deposition walls disposed opposite each other in the second direction, and pairs of fifth deposition walls and sixth deposition walls disposed opposite each other in the first direction,
  • the pixel layout includes a first sub-pixel region adjacent to the second deposition wall, a second sub-pixel region adjacent to the first deposition wall, and a third adjacent to the fourth deposition wall Sub-pixel area.
  • the pixel layout further includes a fourth sub-pixel region adjacent to the third deposition wall.
  • the first deposition wall and the second deposition wall are apart from the first distance L1 in the first direction, and the third deposition wall and the fourth deposition wall are in the second direction
  • the second deposition distance and the sixth deposition wall are apart from the third distance L3 in the first direction
  • a line connecting from an inner edge of the first sub-pixel region to a top of the first deposition wall forms an angle ⁇ 1 with the substrate, from the a line connecting the inner edge of the two sub-pixel regions to the top of the second deposition wall at an angle ⁇ 2 to the substrate, and in a slice cut in the second direction, from the third sub-pixel region a line connecting the inner edge to the top of the third deposition wall at an angle ⁇ 3 to the substrate, wherein ⁇ 1, ⁇ 2, and ⁇ 3 are both greater than 0 degrees and less than 90 degrees.
  • the height h1 of the first deposition wall, the height h2 of the second deposition wall, the height h3 of the third deposition wall, the height h4 of the fourth deposition wall, the height h5 of the fifth deposition wall, and the height h6 of the sixth deposition wall Meet the following relationship:
  • the pixel layout includes a third deposition wall (in a cut surface obtained along the second direction, from an inner edge of the fourth sub-pixel region to the The line connecting the top of the fourth deposition wall is at an angle ⁇ 4 to the substrate, wherein ⁇ 4 is greater than 0 degrees and less than 90 degrees.
  • At least two of ⁇ 1, ⁇ 2, and ⁇ 3 are equal to each other.
  • ⁇ 4 is equal to at least one of ⁇ 1, ⁇ 2, and ⁇ 3.
  • the height h5 of the fifth deposition wall and the height h6 of the sixth deposition wall are greater than the height h1 of the first deposition wall and the height h2 of the second deposition wall, the first deposition The wall has an inner sidewall in the same plane as the fifth deposition wall, and the second deposition wall and the sixth deposition wall have inner sidewalls in the same plane.
  • the deposition mask includes two pairs of fifth deposition walls and a sixth deposition wall, a first pair of the fifth deposition wall and the sixth deposition wall, and the fifth deposition a second pair of walls and the sixth deposition wall are respectively located on opposite sides of the pair of the first deposition wall and the second deposition wall, and the deposition mask further includes a fourth distance in the second direction a distance L4, two pairs of seventh deposition walls and an eighth deposition wall disposed oppositely, a first pair of the seventh deposition wall and the eighth deposition wall, and a second of the seventh deposition wall and the eighth deposition wall Paired on opposite sides of the pair of the third deposition wall and the fourth deposition wall, respectively
  • the height h7 of the seventh deposition wall and the height h8 of the eighth deposition wall satisfy the following relationship:
  • first deposition wall is offset from the fifth deposition wall toward the outer side of the pixel region in a first direction by a width b2 of the second sub-pixel region
  • second deposition wall being opposite to the a sixth deposition wall is offset from the first direction toward an outer side of the pixel region by a width b1 of the first sub-pixel region
  • third deposition wall being oriented along the second direction with respect to the seventh deposition wall
  • the outer side of the pixel area is offset from the width b4 of the fourth sub-pixel area
  • the fourth deposition wall is offset from the eighth deposition wall toward the outer side of the pixel area in the second direction by a third sub-pixel Width B3.
  • the first deposition wall to the eighth deposition wall have the same height.
  • the material of the deposition mask is selected from one or more of photosensitive polyimide, polyacrylate, phenolic resin, and epoxy resin.
  • the height h1 of the first deposition wall, the height h2 of the second deposition wall ranges from 0.02 to 10000 ⁇ m, the height h3 of the third deposition wall, and the fourth deposition
  • the height h4 of the wall, the height h5 of the fifth deposition wall, and the height h6 of the sixth deposition wall range from 0.05 to 34000 ⁇ m.
  • the height h1 of the first deposition wall, the height h2 of the second deposition wall ranges from 1.8 to 95 ⁇ m, the height h3 of the third deposition wall, and the fourth deposition
  • the height h4 of the wall, the height h5 of the fifth deposition wall, and the height h6 of the sixth deposition wall range from 4.8 to 165 ⁇ m.
  • the first deposition wall, the second deposition wall, the third deposition wall, the fourth deposition wall, the fifth deposition wall, and the sixth deposition wall ranges from 0.07 to 45000 ⁇ m.
  • the first deposition wall, the second deposition wall, the third deposition wall, the fourth deposition wall, the fifth deposition wall, and the sixth deposition wall The height of each of the seventh deposition wall and the eighth deposition wall ranges from 5.4 to 346 ⁇ m.
  • an embodiment of the present disclosure provides an OLED panel, including a pixel structure, the pixel structure including:
  • first sub-pixel region a first sub-pixel region, a second sub-pixel region, and a third sub-pixel region, wherein the first sub-pixel region and the second sub-pixel region are aligned in the first direction and both are parallel to each other in a second direction intersecting the first direction
  • the third sub-pixel region is located at one end of the first and second sub-pixel regions in the second direction and extends in the first direction.
  • the pixel structure further includes:
  • a fourth sub-pixel region located at the other end of the first sub-pixel region and the second sub-pixel region in the second direction and extending along the first direction, wherein the third sub-pixel region and the fourth sub-pixel region are Second Align with each other in the direction.
  • the two sides of the third sub-pixel region in the first direction are respectively aligned with the outer sides of the first sub-pixel region and the second sub-pixel region in the first direction.
  • the two sides of the fourth sub-pixel region in the first direction are respectively aligned with the outer sides of the first to third sub-pixel regions in the first direction.
  • the outer side of the third sub-pixel area in the second direction and the outer side of the fourth sub-pixel area in the second direction are respectively opposite to the paired first
  • the two outer sides of the sub-pixel region and the second sub-pixel region in the second direction are outwardly offset from the width of the third sub-pixel region and the width of the fourth sub-pixel region, and the first sub-pixel region
  • the outer side in the first direction and the outer side of the second sub-pixel area in the first direction are respectively opposite to the pair of the third sub-pixel area and the fourth sub-pixel area in the first direction
  • the outer sides are outwardly offset from the width of the first sub-pixel region and the width of the second sub-pixel region.
  • the OLED panel further includes:
  • the deposition mask including a pair of first deposition walls and second deposition walls disposed opposite each other in a first direction, in a second direction intersecting the first direction a pair of third deposition walls and fourth deposition walls disposed opposite each other, and a pair of fifth deposition walls and sixth deposition walls disposed opposite each other in the first direction, wherein
  • the first sub-pixel region is adjacent to the second deposition wall
  • the second sub-pixel region is adjacent to the first deposition wall
  • the third sub-pixel region is adjacent to the fourth deposition wall.
  • the first deposition wall and the second deposition wall are apart from the first distance L1 in the first direction, and the third deposition wall and the fourth deposition wall are in the second direction
  • the second deposition distance and the sixth deposition wall are apart from the third distance L3 in the first direction
  • a line connecting from an inner edge of the first sub-pixel region to a top of the first deposition wall is at an angle ⁇ 1 from the substrate, from the second a line connecting the inner edge of the sub-pixel region to the top of the second deposition wall at an angle ⁇ 2 to the substrate, and in a cut surface obtained by cutting in the second direction, from the third sub-pixel region a line connecting the inner edge to the top of the third deposition wall at an angle ⁇ 3 to the substrate, wherein ⁇ 1, ⁇ 2 ⁇ 3 is greater than 0 degrees and less than 90 degrees, and
  • the height h1 of the first deposition wall, the height h2 of the second deposition wall, the height h3 of the third deposition wall, the height h4 of the fourth deposition wall, the height h5 of the fifth deposition wall, and the height h6 of the sixth deposition wall Meet the following relationship:
  • the deposition mask includes two pairs of fifth deposition walls and a sixth deposition wall, a first pair of the fifth deposition wall and the sixth deposition wall, and the fifth deposition a second pair of walls and the sixth deposition wall are respectively located on opposite sides of the pair of the first deposition wall and the second deposition wall, and the deposition mask further includes a fourth distance in the second direction a distance L4, two pairs of seventh deposition walls and an eighth deposition wall disposed oppositely, a first pair of the seventh deposition wall and the eighth deposition wall, and a second of the seventh deposition wall and the eighth deposition wall Paired on opposite sides of the pair of the third deposition wall and the fourth deposition wall, respectively
  • the height h7 of the seventh deposition wall and the height h8 of the eighth deposition wall satisfy the following relationship:
  • first deposition wall is offset from the fifth deposition wall toward the outer side of the pixel region in a first direction by a width b2 of the second sub-pixel region
  • second deposition wall being opposite to the a sixth deposition wall is offset from the first direction toward an outer side of the pixel region by a width b1 of the first sub-pixel region
  • third deposition wall being oriented along the second direction with respect to the seventh deposition wall
  • the outer side of the pixel area is offset from the width b4 of the fourth sub-pixel area
  • the fourth deposition wall is offset from the eighth deposition wall toward the outer side of the pixel area in the second direction by a third sub-pixel area
  • the first deposition wall, the second deposition wall, the third deposition wall, the fourth deposition wall, the fifth deposition wall, and the sixth deposition wall have the same height.
  • the height h1 of the first deposition wall, the height h2 of the second deposition wall ranges from 0.02 to 10000 ⁇ m, the height h3 of the third deposition wall, and the height h4 of the fourth deposition wall,
  • the height h5 of the fifth deposition wall and the height h6 of the sixth deposition wall range from 0.05 to 34000 ⁇ m.
  • the height h1 of the first deposition wall, the height h2 of the second deposition wall ranges from 1.8 to 95 ⁇ m, the height h3 of the third deposition wall, the height h4 of the fourth deposition wall, and the fifth deposition
  • the height h5 of the wall and the height h6 of the sixth deposition wall range from 4.8 to 165 ⁇ m.
  • the first deposition wall, the second deposition wall, the third deposition wall, the fourth deposition wall, the fifth deposition wall, and the sixth deposition wall ranges from 0.07 to 45000 ⁇ m.
  • the first deposition wall, the second deposition wall, the third deposition wall, the fourth deposition wall, the fifth deposition wall, and the sixth deposition wall The height of each of the seventh deposition wall and the eighth deposition wall ranges from 5.4 to 346 ⁇ m.
  • an embodiment of the present disclosure provides a method for fabricating an OLED panel, including:
  • the deposition mask including a pair of first deposition walls and second deposition walls disposed opposite each other in the first direction, intersecting the first direction a pair of third deposition walls and fourth deposition walls disposed opposite each other in the second direction, and a pair of fifth deposition walls and sixth deposition walls disposed opposite each other in the first direction;
  • the first sub-pixel material is obliquely deposited to the first sub-pixel region adjacent to the second deposition wall facing the second deposition wall in a first direction, and the second deposition surface facing the first deposition wall in a first direction
  • Sub-pixel material is obliquely deposited to a second sub-pixel region adjacent to the first deposition wall
  • a third sub-pixel material is obliquely deposited to the fourth deposition wall in a second direction toward the fourth deposition wall
  • the third sub-pixel area of the neighbor is obliquely deposited to the first sub-pixel region adjacent to the second deposition wall facing the second deposition wall in a first direction
  • the method further includes:
  • the fourth sub-pixel material is obliquely deposited in a second direction toward the third deposition wall to a fourth sub-pixel region adjacent to the third deposition wall.
  • the first deposition wall and the second deposition wall are apart from the first distance L1 in the first direction, and the third deposition wall and the fourth deposition wall are in the second direction
  • the second deposition distance and the sixth deposition wall are apart from the third distance L3 in the first direction
  • the oblique deposition angles of the first, second, and third sub-pixel materials are respectively ⁇ 1, ⁇ 2, and ⁇ 3, wherein ⁇ 1, ⁇ 2, and ⁇ 3 are deposition directions of the first, second, and third sub-pixel materials, respectively.
  • the angle formed by the substrate is greater than 0 degrees and less than 90 degrees.
  • the height h1 of the first deposition wall, the height h2 of the second deposition wall, the height h3 of the third deposition wall, the height h4 of the fourth deposition wall, the height h5 of the fifth deposition wall, and the height h6 of the sixth deposition wall satisfy the following relationship:
  • the oblique deposition angle of the fourth sub-pixel material is ⁇ 4, wherein ⁇ 4 is an angle formed by a deposition direction of the fourth sub-pixel material and the substrate and is greater than 0 degrees and less than 90 degrees. .
  • At least two of ⁇ 1, ⁇ 2, and ⁇ 3 are equal to each other.
  • ⁇ 4 is equal to at least one of ⁇ 1, ⁇ 2, and ⁇ 3.
  • the height h5 of the fifth deposition wall and the height h6 of the sixth deposition wall are greater than the height h1 of the first deposition wall and the height h2 of the second deposition wall, the first deposition The wall has an inner sidewall in the same plane as the fifth deposition wall, and the second deposition wall and the sixth deposition wall have inner sidewalls in the same plane.
  • the deposition mask includes two pairs of fifth deposition walls and a sixth deposition wall, a first pair of the fifth deposition wall and the sixth deposition wall, and the fifth deposition a second pair of walls and the sixth deposition wall are respectively located on opposite sides of the pair of the first deposition wall and the second deposition wall, and the deposition mask further includes a fourth distance in the second direction Two pairs of seventh deposition walls and eighth deposition walls disposed at a distance L4, opposite and parallel, a first pair of the seventh deposition wall and the eighth deposition wall, and a seventh deposition wall and the eighth deposition wall a second pair is respectively located on opposite sides of the pair of the third deposition wall and the fourth deposition wall,
  • the height h7 of the seventh deposition wall and the height h8 of the eighth deposition wall satisfy the following relationship:
  • first deposition wall is oriented in the first direction relative to the fifth deposition wall
  • the outer side of the pixel area is offset from the width b2 of the second sub-pixel area
  • the second deposition wall is offset from the sixth deposition wall toward the outer side of the pixel area in the first direction by the first sub-pixel area Width b1
  • the third deposition wall is offset from the seventh deposition wall toward the outside of the pixel region in the second direction by a width b4 of the fourth sub-pixel region, the fourth deposition wall being opposite to the
  • the eighth deposition wall is offset from the outer side of the pixel region by a width b3 of the third sub-pixel along the second direction.
  • the first deposition wall, the second deposition wall, the third deposition wall, the fourth deposition wall, the fifth deposition wall, and the sixth deposition wall have the same height.
  • the material of the deposition mask is selected from one or more of photosensitive polyimide, polyacrylate, phenolic resin, and epoxy resin.
  • the height h1 of the first deposition wall, the height h2 of the second deposition wall ranges from 0.02 to 10000 ⁇ m, the height h3 of the third deposition wall, and the fourth deposition
  • the height h4 of the wall, the height h5 of the fifth deposition wall, and the height h6 of the sixth deposition wall range from 0.05 to 34000 ⁇ m.
  • the height h1 of the first deposition wall, the height h2 of the second deposition wall ranges from 1.8 to 95 ⁇ m, the height h3 of the third deposition wall, and the fourth deposition
  • the height h4 of the wall, the height h5 of the fifth deposition wall, and the height h6 of the sixth deposition wall range from 4.8 to 165 ⁇ m.
  • the first deposition wall, the second deposition wall, the third deposition wall, the fourth deposition wall, the fifth deposition wall, and the sixth deposition wall ranges from 0.07 to 45000 ⁇ m.
  • the first deposition wall, the second deposition wall, the third deposition wall, the fourth deposition wall, the fifth deposition wall, and the sixth deposition wall The height of each of the seventh deposition wall and the eighth deposition wall ranges from 5.4 to 346 ⁇ m.
  • FIG. 1 is a perspective schematic view of a shape of a deposition mask that can be used as an embedding mask during deposition to provide a pixel layout for an OLED panel, in accordance with an embodiment of the present disclosure
  • FIG. 2 is a perspective schematic view of a shape of a deposition mask that may be used as an embedding mask during deposition to provide a pixel layout for an OLED panel, in accordance with another embodiment of the present disclosure
  • FIG. 3 is a schematic illustration of a material for depositing a first sub-pixel region from a first sub-pixel material source at a tilt angle ⁇ 1 in accordance with an embodiment of the present disclosure
  • FIG. 4 is a schematic illustration of a material for depositing a second sub-pixel region from a second sub-pixel material source at a tilt angle ⁇ 2 in accordance with an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram showing protection of a third sub-pixel region during deposition of a material of a first sub-pixel region from a first sub-pixel material source;
  • FIG. 6 is a schematic diagram showing protection of a third sub-pixel region during deposition of a material of a second sub-pixel region from a second sub-pixel material source;
  • FIG. 7 is a schematic illustration of a material for depositing a third sub-pixel region from a third sub-pixel material source at a tilt angle ⁇ 3, in accordance with an embodiment of the present disclosure
  • FIG. 8 is a schematic illustration of a material for depositing a fourth sub-pixel region from a fourth sub-pixel material source at a tilt angle ⁇ 4, in accordance with an embodiment of the present disclosure
  • FIG. 9 is a plan view of a pixel region formed by three sub-pixel regions after deposition is completed, in accordance with an embodiment of the present disclosure.
  • FIG. 10 is a plan view of a pixel region formed by four sub-pixel regions after deposition is completed, according to another embodiment of the present disclosure.
  • FIG. 11 is a plan view of a pixel region formed by four sub-pixel regions after deposition is completed, according to still another embodiment of the present disclosure.
  • each pixel region is formed by three sub-pixel regions, in accordance with an embodiment of the present disclosure
  • FIG. 12B is an OLED display panel after deposition is completed according to another embodiment of the present disclosure. a plan view of a pixel array in which each pixel region is formed by four sub-pixel regions;
  • each pixel region is formed by four sub-pixel regions, in accordance with yet another embodiment of the present disclosure.
  • first”, “second”, and the like are used for descriptive purposes only, and are not to be construed as indicating or implying relative importance, or fixing the relative position of the corresponding component, or implicitly indicating the number of technical features indicated.
  • features defining “first”, “second”, etc. may include one or more of the features, either explicitly or implicitly.
  • FIGS. 1-12 Exemplary embodiments of the present disclosure are described below with reference to FIGS. 1-12.
  • a deposition mask is formed on top of a substrate such as a TFT panel by, for example, spin coating and subsequent photolithography etching prior to deposition of the organic material of the OLED device of the OLED panel.
  • the deposition mask is formed such that a deposition wall is formed around the pixel region as shown in FIGS. 1 and 2. That is, a patterned deposition mask surrounding each pixel region is formed on the substrate.
  • the deposition mask includes a pair of first deposition walls 101 and second deposition walls 201 disposed at a distance from the first distance L1 in a first direction and oppositely and in parallel, in a second direction intersecting the first direction Pairs of third deposition walls 301 and fourth deposition walls 401 spaced apart from each other by a second distance L2, opposite and parallel, and a pair of fifth depositions disposed opposite each other in a first direction at a third distance L3 Wall 501 and sixth deposition wall 601.
  • a solid line double arrow is used to indicate the first direction
  • a dotted double arrow is used to indicate the second direction intersecting the first direction
  • the first direction can be at any angle to the second direction.
  • the first direction is orthogonal to the second direction.
  • a pixel is a repeating unit capable of emitting light in a patterned illuminated display structure.
  • the structure of each pixel may be composed of one or more sub-pixels.
  • each pixel may be composed of three or more sub-pixels.
  • the formed deposition mask surrounds each of the pixel regions, and each of the pixel regions includes three sub-pixel regions 1 to 3 to be formed in the next step.
  • the formed deposition mask surrounds each of the pixel regions, and each of the pixel regions includes four sub-pixel regions 1 to 4 to be formed in the next step.
  • the deposition mask can be formed of a photosensitive material.
  • the deposition mask may be formed of a photoresist.
  • the deposition mask layer can be formed to have a desired pattern using a mature photolithography process.
  • the material of the deposition mask may be selected from one or more of photosensitive polyimide, polyacrylate, phenolic resin, epoxy resin.
  • the photosensitive polyimide may be polymethylglutarimide (PMGI), PW-1000 manufactured by Toray, PW-1200, PW-1500, or the like.
  • the substrate can be any substrate suitable for fabricating an OLED panel device.
  • the substrate may be a TFT panel.
  • the second deposition wall 201 in the first direction After forming a patterned deposition mask surrounding each pixel region on the substrate, as shown in FIGS. 3-7, facing the second deposition wall 201 in the first direction will take the first sub-source from the first material source 102 at an angle ⁇ 1.
  • the pixel material is obliquely deposited to the first sub-pixel region 1 (FIG. 3) adjacent to the second deposition wall 201, and the second sub-pixel from the second material source 202 is directed at the first deposition wall 101 in the first direction at an angle ⁇ 2.
  • the material is obliquely deposited to the second sub-pixel region 2 (FIG.
  • the third sub-pixel region 3 adjacent to the fourth deposition wall 401 is obliquely deposited, wherein ⁇ 1, ⁇ 2, and ⁇ 3 are deposition directions of the first sub-pixel, the second sub-pixel, and the third sub-pixel material, respectively.
  • the angle formed by the substrate is greater than 0 degrees and less than 90 degrees, and the first sub-pixel, the second sub-pixel, and the third sub-pixel material are different from each other.
  • the first sub-pixel material from the first material source 102 is obliquely deposited to the first sub-pixel region 1 at an angle ⁇ 1 facing the second deposition wall 201 in the first direction.
  • the deposition wall 101 forms an occluded region between the deposition wall 101 and the deposition wall 201, but the height of the deposition wall 101 is selected such that the first sub-pixel material should be deposited.
  • the region (first sub-pixel region 1) is unoccluded, thereby depositing the first sub-pixel material only in the first sub-pixel region 1 adjacent to the second deposition wall 201.
  • the occluded area is adjacent to the first deposition wall 101.
  • the height of the first deposition wall 101 is h1
  • the distance between the first deposition wall 101 and the second deposition wall 201 is L1
  • the width of the first sub-pixel region 1 in the first direction is b1.
  • the height h1 of the first deposition wall 101 can be calculated using the following formula (1).
  • the second sub-pixel material from the second material source 202 is obliquely deposited to the second sub-pixel region 2 at an angle a2 facing the first deposition wall 101 in the first direction.
  • the deposition wall 201 forms an occluded region between the deposition wall 201 and the deposition wall 101, but the height of the deposition wall 201 is selected such that a second sub-pixel material should be deposited.
  • the region (second sub-pixel region 2) is unoccluded, so that only the second sub-pixel material is deposited in the second sub-pixel region 2 adjacent to the first deposition wall 101.
  • the occluded area is adjacent to the second deposition wall 201.
  • the height of the second deposition wall 201 is h2, the distance between the first deposition wall 101 and the second deposition wall 201 is L1, and the width of the second sub-pixel region 2 in the first direction is b2.
  • the height h2 of the second deposition wall 201 can be calculated using the following formula (2).
  • the fifth deposition wall 501 and the sixth deposition wall 601 protect the third sub-pixel. District 3.
  • the fifth deposition wall 501 and the sixth deposition wall 601 are apart from the third distance L3 by heights h5 and h6, respectively.
  • the height h5 of the fifth deposition wall 501 needs to satisfy the following Relationship (3).
  • the material of the second sub-pixel region 2 is deposited from the second material source 202 (ie, The fifth deposition wall 501 and the sixth deposition wall 601 protect the third sub-pixel region 3 during the second sub-pixel material.
  • the height h6 of the sixth deposition wall 601 needs to satisfy the following Relationship (4).
  • the third sub-pixel material from the third material source 302 is obliquely deposited to the third sub-pixel region 3 at an angle ⁇ 3 facing the fourth deposition wall 401 in the second direction.
  • the deposition wall 301 forms an occluded region between the deposition wall 301 and the deposition wall 401, but the height of the deposition wall 301 is selected such that a third sub-pixel material should be deposited.
  • the region (third sub-pixel region 3) is unoccluded, so that only the third sub-pixel material is deposited in the third sub-pixel region 3 adjacent to the fourth deposition wall 401.
  • the occluded area is adjacent to the third deposition wall 301.
  • the height of the third deposition wall 301 is h3, the distance between the third deposition wall 301 and the fourth deposition wall 401 is L2, and the width of the third sub-pixel region 3 in the second direction is b3.
  • the height h3 of the third deposition wall 301 can be calculated using the following formula (5).
  • the first sub-pixel region 1 is first formed, then the second sub-pixel region 2 is formed, and finally the third sub-pixel region 3 is formed.
  • the present disclosure does not limit the order in which the sub-pixels are formed, and the order in which the sub-pixels are formed may be adjusted according to actual conditions.
  • the tilt angles for forming the first sub-pixel region 1, the second sub-pixel region 2, and the third sub-pixel region 3 can be determined according to actual needs.
  • the above-described inclination angles ⁇ 1, ⁇ 2, ⁇ 3 may not be equal to each other. In another exemplary embodiment, at least two of the above ⁇ 1, ⁇ 2, and ⁇ 3 are equal to each other. In this way, each of ⁇ 1, ⁇ 2, ⁇ 3 can be adjusted depending on the pixel design and the specific process conditions and needs, which allows for more flexible deposition of the sub-pixel material.
  • the above ⁇ 1, ⁇ 2, ⁇ 3 may be equal to each other.
  • only one of the material container and the substrate may be rotated relative to the other, and each sub-pixel material is deposited at a fixed same angle ⁇ . To simplify the production process.
  • each sub-pixel can be blue, red, or green.
  • one pixel may also be formed by four sub-pixels surrounded by deposition walls 101, 201, 301, 401, 501, and 601, which form one pixel. .
  • the position and size of each sub-pixel can be selected based on a particular display design.
  • the fourth sub-pixel material from the fourth material source 402 can be tilted at the angle ⁇ 4 toward the third deposition wall 301 in the second direction. Deposited to the fourth sub-pixel region 4.
  • the deposition wall 401 forms an occluded region between the deposition wall 301 and the deposition wall 401, but the height of the deposition wall 401 is selected such that a fourth sub-pixel material should be deposited.
  • the region (fourth sub-pixel region 4) is unoccluded, so that only the fourth sub-pixel material is deposited in the fourth sub-pixel region 4 adjacent to the third deposition wall 301.
  • the occluded area is adjacent to the fourth deposition wall 401.
  • the height of the fourth deposition wall 401 is h4
  • the distance between the third deposition wall 301 and the fourth deposition wall 401 is L2
  • the width of the fourth sub-pixel region 4 in the second direction is b4.
  • the height h4 of the fourth deposition wall 401 can be calculated using the following formula (6).
  • the fourth sub-pixel material may be different from the first to third sub-pixel materials.
  • this embodiment can be applied to an RGBW pixel layout in which four sub-pixels of R (red), G (green), B (blue), and W (white) are included, or applied to other pixels requiring four sub-pixels. In the layout.
  • the fourth sub-pixel material may be the same as one of the other three sub-pixel materials, for example, may be the same as the third sub-pixel material. Thereby, compensation of various parameters can be performed as needed.
  • ⁇ 4 is not equal to any of ⁇ 1, ⁇ 2, ⁇ 3.
  • ⁇ 4 is equal to at least one of ⁇ 1, ⁇ 2, ⁇ 3.
  • the fifth deposition wall 501 The height h5 and the height h6 of the sixth deposition wall 601 are greater than the height h1 of the first deposition wall and the height h2 of the second deposition wall, and the first deposition wall 101 and the fifth deposition wall 501 have inner side walls in the same plane.
  • the second deposition wall 201 and the sixth deposition wall 601 have inner side walls in the same plane.
  • Figure 9 is a plan view of a pixel after deposition is completed according to the embodiment illustrated in Figure 1;
  • Figure 10 is a plan view of a pixel after deposition is completed according to the embodiment illustrated in Figure 2.
  • the first sub-pixel region 1, the second sub-pixel region 2, and the third sub-pixel region 3 form a rectangular pixel region.
  • the first sub-pixel region 1, the second sub-pixel region 2, the third sub-pixel region 3, and the fourth sub-pixel region 4 also form a rectangular pixel region.
  • the four sub-pixel regions may be different from each other, or both may be the same.
  • each pixel may have a first sub-pixel region 1, a second sub-pixel region 2, and two third sub-pixel regions 3 (when the material of the fourth sub-pixel region 4 is The material of the three sub-pixel regions 3 is replaced by).
  • FIG. 11 Another exemplary embodiment of the present disclosure is described below in conjunction with FIG. In Fig. 11, the deposition wall is indicated by a thick solid line.
  • the deposition mask may include two pairs of fifth deposition walls 501 and sixth deposition walls 601, first and fifth deposition walls 501 and 510 of the fifth deposition wall 501 and the sixth deposition wall 601.
  • a second pair of six deposition walls 601 are respectively located on opposite sides of the pair of first deposition walls 101 and second deposition walls 201, respectively.
  • the deposition mask further includes two pairs of seventh deposition walls 701 and eighth deposition walls 801, which are disposed opposite to each other in the second direction and are disposed in parallel, and a seventh deposition wall 701 and an eighth deposition wall 801 A pair and a second pair of the seventh deposition wall 701 and the eighth deposition wall 801 are respectively located on opposite sides of the pair of third deposition walls 301 and fourth deposition walls 401.
  • the heights of the first to sixth deposition walls can satisfy the above relations (1) to (6).
  • the height h7 of the seventh deposition wall 701 needs to be designed to completely block the third sub-pixel material; likewise, when it is obliquely deposited at an angle ⁇ 4
  • the height h8 of the eighth deposition wall 801 needs to be designed to completely block the fourth sub-pixel material.
  • the first deposition wall 101 is offset from the fifth deposition wall 501 in the first direction toward the outside of the pixel region by a width b2 of the second sub-pixel region 2, and the second deposition wall 201
  • the third deposition wall 301 is offset from the outer side of the pixel region in the first direction by a width b1 of the first sub-pixel region 1 with respect to the sixth deposition wall 601, and the third deposition wall 301 is offset from the seventh deposition wall 701 to the outside of the pixel region in the second direction.
  • the width b4 of the fourth sub-pixel region 4 is shifted, and the fourth deposition wall 401 is offset from the eighth deposition wall 801 toward the outside of the pixel region in the second direction by the width b3 of the third sub-pixel 3.
  • inside and outside are the inner side and the outer side with respect to each respective pixel area of the OLED panel.
  • the first to eighth deposition walls can be designed to have their heights according to specific needs.
  • the heights of the first to eighth deposition walls may be different from each other, or may be at least the same.
  • the first to eighth deposition walls have the same height. In this embodiment, all the deposition walls have the same height, which makes the formation process of the deposition mask simpler, thereby reducing the production cost.
  • the deposition mask can be removed from the substrate using a viscous adhesive material or other means.
  • a viscous adhesive material for example, an adhesive film can be applied on top of the deposition mask and then the adhesive film can be removed together with the deposition mask such that the deposition mask is simultaneously separated from the substrate.
  • the present disclosure is not limited thereto, and a deposition mask may also be retained in the finally formed OLED device or OLED panel.
  • FIG. 12A is a plan view showing respective sub-pixel patterns on the display panel formed in the embodiment shown in FIG. 9 after the deposition mask is removed. After depositing all of the sub-pixel material, the patterned display area comprises a plurality of pixels, each pixel comprising three sub-pixels.
  • FIG. 12B is a plan view showing respective sub-pixel patterns on the display panel formed in the embodiment shown in FIG. 10 after the deposition mask is removed. After depositing all of the sub-pixel material, the patterned display area comprises a plurality of pixels, each pixel comprising four sub-pixels.
  • FIG. 12C is a plan view showing each sub-pixel pattern on the display panel formed in the embodiment shown in FIG. 11 after the deposition mask is removed. After depositing all of the sub-pixel material, the patterned display area comprises a plurality of pixels, each pixel comprising four sub-pixels.
  • the first sub-pixel, the second sub-pixel, the third sub-pixel, and the fourth sub-pixel material may be an organic light emitting layer material of the OLED, or may be each in the top emission type OLED panel.
  • the color provides the desired layer of microcavity length.
  • each deposition wall of the deposition mask there is no particular limitation on the thickness and length of each deposition wall of the deposition mask, and the thickness and length of the deposition wall can be set according to a specific pixel design.
  • Embodiments of the present disclosure also provide a mask structure for a pixel layout of an OLED panel.
  • the mask structure can be used in the above method of performing pixel layout on an OLED panel.
  • the mask structure includes a patterned deposition mask surrounding each pixel region on the substrate, the deposition mask comprising: a first distance L1 in the first direction a pair of first deposition walls 101 and second deposition walls 201 disposed opposite to each other in parallel, a pair of third deposition walls 301 disposed at a second distance L2 in a second direction intersecting the first direction and disposed in parallel and in parallel And a fourth deposition wall 401, and a pair of fifth deposition walls 501 and a sixth deposition wall 601 which are disposed opposite to each other in the first direction by a third distance L3.
  • the pixel layout includes a first sub-pixel region 1 adjacent to the second deposition wall 201, a second sub-pixel region 2 adjacent to the first deposition wall 101, and A third sub-pixel region 3 adjacent to the fourth deposition wall 401.
  • the line from the inner edge of the first sub-pixel region 1 to the top of the first deposition wall 101 is at an angle ⁇ 1 from the substrate, from the inner edge of the second sub-pixel region 2 to the top of the second deposition wall 201.
  • the wiring is at an angle ⁇ 2 to the substrate.
  • the line from the inner edge of the third sub-pixel region 3 to the top of the third deposition wall 301 is at an angle ⁇ 3 with the substrate.
  • Alpha, ⁇ 2, and ⁇ 3 are all greater than 0 degrees and less than 90 degrees.
  • the heights of the first to sixth deposition walls are h1, h2, h3, h4, h5, h6, respectively, the first sub-pixel region 1 and the second sub-pixel region 2
  • the widths in the first direction are b1 and b2, respectively, and the width of the third sub-pixel region 3 in the second direction is b3, which satisfies the following relationship:
  • H1 (L1-b1) ⁇ tan( ⁇ 1)
  • H2 (L1-b2) ⁇ tan( ⁇ 2)
  • the pixel layout may further include a fourth sub-pixel region 4 adjacent to the third deposition wall 301.
  • the line from the inner edge of the fourth sub-pixel region 4 to the top of the fourth deposition wall 401 is at an angle ⁇ 4 with the substrate, wherein ⁇ 4 is greater than 0 degrees. And less than 90 degrees.
  • the width of the fourth sub-pixel region 4 in the second direction is b4, and the following relationship is satisfied:
  • H4 (L2-b4) ⁇ tan( ⁇ 4).
  • ⁇ 1, ⁇ 2, ⁇ 3 are not equal to each other.
  • At least two of ⁇ 1, ⁇ 2, and ⁇ 3 are equal to each other.
  • ⁇ 4 is not equal to any of ⁇ 1, ⁇ 2, and ⁇ 3.
  • ⁇ 4 is equal to at least one of ⁇ 1, ⁇ 2, and ⁇ 3.
  • the height h5 of the fifth deposition wall 501 and the height h6 of the sixth deposition wall 601 are greater than the heights h1 and 2 of the first deposition wall 101.
  • the height h2 of the deposition wall 102, the first deposition wall 101 and the fifth deposition wall 501 have inner sidewalls in the same plane, and the second deposition wall 201 and the sixth deposition wall 601 have the same plane. Inner side wall inside.
  • the deposition mask may include two pairs of fifth deposition walls 501 and sixth deposition walls 601, a first pair of fifth deposition walls 501 and sixth deposition walls 601, and The second pair of the fifth deposition wall 501 and the sixth deposition wall 601 are respectively located on opposite sides of the pair of first deposition walls 101 and second deposition walls 201, respectively.
  • the deposition mask may further include two pairs of seventh deposition walls 701 and eighth deposition walls 801 disposed at a distance from the fourth distance L4 in the second direction, opposite and parallel.
  • the first pair of the seventh deposition wall 701 and the eighth deposition wall 801 and the second pair of the seventh deposition wall 701 and the eighth deposition wall 801 are respectively located opposite to the pair of the third deposition wall 301 and the fourth deposition wall 401 side.
  • the height h7 of the seventh deposition wall 701 and the height h8 of the eighth deposition wall 801 need to satisfy the following relationship:
  • the first deposition wall 101 may be offset from the fifth deposition wall 501 toward the outside of the pixel region in the first direction by the width b2 of the second sub-pixel region 2, and the second deposition wall 201 may be opposite to the sixth
  • the deposition wall 601 is offset from the outer side of the pixel region by the width b1 of the first sub-pixel region 1 in the first direction
  • the third deposition wall 301 may be offset to the outside of the pixel region in the second direction with respect to the seventh deposition wall 701.
  • the width b4 of the sub-pixel region 4, the fourth deposition wall 401 may be offset from the eighth deposition wall 801 in the second direction toward the outside of the pixel region by the width b3 of the third sub-pixel 3.
  • the first to eighth deposition walls may have the same height.
  • the first direction may be orthogonal to the second direction.
  • the deposition mask may be formed of a photoresist material.
  • the material of the deposition mask may be selected from one or more of photosensitive polyimide, polyacrylate, phenolic resin, epoxy resin.
  • the substrate may be a TFT panel.
  • the OLED pixel structure of the embodiment of the present disclosure As shown in FIGS. 1, 2, 9 to 11, 12A-12C, the OLED pixel structure of the embodiment of the present disclosure,
  • the first sub-pixel region 1, the second sub-pixel region 2, and the third sub-pixel region 3 are aligned, and the first sub-pixel region 1 and the second sub-pixel region 2 are aligned in the first direction and both intersect in the first direction.
  • the second directions extend parallel to each other, and the third sub-pixel region 3 is located at one end of the first and second sub-pixel regions in the second direction and extends in the first direction.
  • a pixel structure according to an embodiment of the present disclosure may be formed without using a mask that requires precise alignment.
  • the OLED pixel structure may further include a fourth sub-pixel region 4 located in the first sub-pixel region and the second sub-pixel region. The other end in the second direction and extending in the first direction, the third sub-pixel region 3 and the fourth sub-pixel region 4 are aligned with each other in the second direction.
  • the material of the fourth sub-pixel region 4 may be the same as the material of one of the first to third sub-pixel regions.
  • the material of the fourth sub-pixel region 4 may be the same as the material of the third sub-pixel region 3.
  • the two sides of the third sub-pixel region 3 in the first direction may be respectively associated with the first sub-pixel region 1 and the second sub-pixel.
  • the outer sides of the pixel region 2 in the first direction are aligned.
  • the two sides of the fourth sub-pixel region 4 in the first direction may be respectively in the first direction with the first to third sub-pixel regions.
  • the outer sides are aligned.
  • the outer side of the third sub-pixel region 3 in the second direction and the outer side of the fourth sub-pixel region 4 in the second direction may be Offset the width of the third sub-pixel region 3 and the fourth sub-pixel region 4 with respect to the two outer sides of the pair of first sub-pixel regions 1 and the second sub-pixel region 2 in the second direction, respectively Width, and the outer side of the first sub-pixel area 1 in the first direction and the outer side of the second sub-pixel area 2 in the first direction are respectively opposite to the pair of third sub-pixel areas 3 and The two outer sides of the fourth sub-pixel region 4 in the first direction are outwardly offset from the width of the first sub-pixel region 1 and the width of the second sub-pixel region 2.
  • the first direction may be orthogonal to the second direction.
  • the materials of the first to fourth sub-pixel regions may be OLEDs.
  • Organic luminescent layer material may be OLEDs.
  • the width b of each sub-pixel region ranges from 1 to 200 ⁇ m; in still another embodiment, the width b of each sub-pixel region ranges from 5 to 50 ⁇ m; in still another embodiment, The width b of each sub-pixel region is in the range of 15 ⁇ m.
  • the material deposition angle ⁇ of each sub-pixel region ranges from 1 to 89 degrees; in still another embodiment, the deposition angle ⁇ ranges from 15 to 60 degrees; In the example, the angle of deposition ⁇ is in the range of 30 degrees.
  • the distance L1 between the deposition walls 101 and 201 may be equal to the distance L3 between the deposition walls 501 and 601, which may be in the range of 2 to 400 ⁇ m; alternatively, the range is 12 to 105 ⁇ m; alternatively, the value is 35 ⁇ m;
  • the distance L2 between the deposition walls 301 and 401 may be in the range of 3 to 600 ⁇ m; alternatively, the range is 18 to 160 ⁇ m; alternatively, the value is 50 ⁇ m.
  • the deposition wall heights h1, h2 may have a range of 0.02 to 10000 ⁇ m based on the above numerical values or ranges of values and the above formulas (1) - (8); in one embodiment, the deposition wall heights h1, h2 range from 1.8 to 95 ⁇ m; In one embodiment, the deposition wall heights h1, h2 are 11 ⁇ m; the deposition wall heights h3, h4, h5, h6 may have a range of 0.05 to 34000 ⁇ m; in yet another embodiment, the deposition wall heights h3, h4, h5, The h6 range is 4.8 to 165 ⁇ m; in still another embodiment, the deposition wall heights h3, h4, h5, and h6 are 20 ⁇ m.
  • the values of L2 and L4 may be 65 ⁇ m, and the values of h3, h4, h5, and h6 may be 37 ⁇ m, and the remaining values and ranges may be represented by FIG. Layouts have the same values and ranges.
  • L1, L2, L3, and L4 may have a range of 4 to 800 ⁇ m, an optional range of 20 to 200 ⁇ m, and an optional value of 60 ⁇ m;
  • the first to eighth deposition walls may have the same height, which is in the range of 0.07 to 45000 ⁇ m, an optional range of 5.4 to 346 ⁇ m, and an optional value of 34 ⁇ m.
  • each sub-pixel material can be easily and accurately deposited (particularly Ground, organic light-emitting layer) to form a pixel region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

涉及用于OLED的像素布图的掩膜结构、OLED面板及其制作方法。用于OLED面板的像素布图的掩膜结构,包括:位于基板上的包围每个像素区域的图案化的沉积掩膜,沉积掩膜包括在第一方向上相对设置的成对的第一沉积壁(101)和第二沉积壁(201),与第一方向相交的第二方向上相对设置的成对的第三沉积壁(301)和第四沉积壁(401),以及在第一方向上相对设置的成对的第五沉积壁(501)和第六沉积壁(601),像素布图包括与第二沉积壁相邻的第一子像素区(1)、与第一沉积壁相邻的第二子像素区(2)以及与第四沉积壁相邻的第三子像素区(3)。

Description

用于OLED面板的像素布图的掩膜结构、OLED面板及其制作方法
相关申请的交叉引用
本申请要求于2016年6月2日递交的中国专利申请第201610390355.5号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种用于OLED面板的像素布图的掩膜结构、OLED面板及其制作方法。
背景技术
与液晶显示器(LCD)不同,有机电致发光显示器为自发光型,不需要背光,因此可实现重量减轻和尺寸微小化。并且,有机电致发光显示器具有低驱动电压、高发光效率和宽视角等特点,受到广泛关注。
有机电致发光显示器包括用于显示图像的多个有机发光显示(OLED)器件。每个OLED包括阳极、有机发光层和阴极。阳极和阴极向有机发光层提供空穴和电子,空穴和电子在有机发光层中复合而形成激子,在激子降到底部稳态时,产生预定波长的光。根据有机发光层的材料特性而产生具有与例如红色、绿色和蓝色对应的波长的光。
在有机电致发光显示器中,应针对每个像素对每个实现红色(R)、绿色(G)和蓝色(B)的有机发光层进行布图,以实现全色显示。制造OLED器件的现有技术,包括真空沉积、喷射印刷(jet-printing)、喷嘴印刷(nozzle-printing)、激光烧蚀、激光诱导热成像等等。在这些方法当中,真空沉积工艺产生具有最佳特性的器件。然而,真空沉积需要精细金属掩模板(FMM)来产生高分辨率显示所需要的布图。FMM具有多生产成本高、拉伸和维护困难等问题,并且FMM在沉积开始之前需要与基板进行精确的对准。对于大尺寸基板而言,对准非常困难,在需要高分辨率 的情况下尤其困难。并且,对准工艺还要求向蒸发腔增加复杂的附件来处理该对准工艺。
发明内容
在本公开的第一方面,本公开实施例提供一种用于OLED面板的像素布图的掩膜结构,包括:
位于基板上的包围每个像素区域的图案化的沉积掩膜,所述沉积掩膜包括在第一方向上相对设置的成对的第一沉积壁和第二沉积壁,与第一方向相交的第二方向上相对设置的成对的第三沉积壁和第四沉积壁,以及在第一方向上相对设置的成对的第五沉积壁和第六沉积壁,
所述像素布图包括与所述第二沉积壁相邻的第一子像素区、与所述第一沉积壁相邻的第二子像素区以及与所述第四沉积壁相邻的第三子像素区。
在本公开的一个实施例中,所述像素布图还包括与所述第三沉积壁相邻的第四子像素区。
在本公开的一个实施例中,所述第一沉积壁和所述第二沉积壁在第一方向上相距第一距离L1,所述第三沉积壁和所述第四沉积壁在第二方向上相距第二距离L2,所述第五沉积壁和所述第六沉积壁在第一方向上相距第三距离L3,
其中在沿所述第一方向切割而得到的切面中,从所述第一子像素区的内侧边缘到所述第一沉积壁的顶部的连线与所述基板成角度α1,从所述第二子像素区的内侧边缘到所述第二沉积壁的顶部的连线与所述基板成角度α2,并且在沿所述第二方向切割而得到的切面中,从所述第三子像素区的内侧边缘到所述第三沉积壁的顶部的连线与所述基板成角度α3,其中α1、α2、α3都大于0度且小于90度,
其中,第一沉积壁的高度h1、第二沉积壁的高度h2,第三沉积壁的高度h3、第四沉积壁的高度h4、第五沉积壁的高度h5、第六沉积壁的高度h6,满足以下关系:
h5>L3×tan(α1);
h6>L3×tan(α2)。
在本公开的一个实施例中,所述像素布图包括与所述第三沉积壁(在沿所述第二方向切割而得到的切面中,从所述第四子像素区的内侧边缘到所述第四沉积壁的顶部的连线与所述基板成角度α4,其中α4大于0度且小于90度。
在本公开的一个实施例中,α1、α2、α3中至少两者彼此相等。
在本公开的一个实施例中,α4与α1、α2、α3中至少一者相等。
在本公开的一个实施例中,所述第五沉积壁的高度h5和第六沉积壁的高度h6大于所述第一沉积壁的高度h1和第二沉积壁的高度h2,所述第一沉积壁与所述第五沉积壁具有位于同一平面内的内侧壁,所述第二沉积壁与所述第六沉积壁具有位于同一平面内的内侧壁。
在本公开的一个实施例中,所述沉积掩膜包括两对第五沉积壁和第六沉积壁,所述第五沉积壁和所述第六沉积壁的第一对以及所述第五沉积壁和所述第六沉积壁的第二对分别位于成对的所述第一沉积壁和所述第二沉积壁的相反两侧,所述沉积掩膜还包括在第二方向上相距第四距离L4、相对设置的两对第七沉积壁和第八沉积壁,所述第七沉积壁和所述第八沉积壁的第一对以及第七沉积壁和所述第八沉积壁的第二对分别位于成对的所述第三沉积壁和所述第四沉积壁的相反两侧,
第七沉积壁的高度h7和第八沉积壁的高度h8,满足以下关系:
h7>L4×tan(α3);
h8>L4×tan(α4),
其中,所述第一沉积壁相对于所述第五沉积壁沿所述第一方向向所述像素区域的外侧偏移第二子像素区的宽度b2,所述第二沉积壁相对于所述第六沉积壁沿所述第一方向向所述像素区域的外侧偏移第一子像素区的宽度b1,所述第三沉积壁相对于所述第七沉积壁沿所述第二方向向所述像素区域的外侧偏移第四子像素区的宽度b4,所述第四沉积壁相对于所述第八沉积壁沿所述第二方向向所述像素区域的外侧偏移第三子像素的宽度 b3。
在本公开的一个实施例中,所述第一沉积壁到所述第八沉积壁具有相同的高度。
在本公开的一个实施例中,所述沉积掩膜的材料选自光敏性聚酰亚胺、聚丙烯酸酯、酚醛树脂、环氧树脂中的一种或多种。
在本公开的一个实施例中,所述第一沉积壁的高度h1、所述第二沉积壁的高度h2的范围为0.02~10000μm,所述第三沉积壁的高度h3、所述第四沉积壁的高度h4、所述第五沉积壁的高度h5、所述第六沉积壁的高度h6的范围为0.05~34000μm。
在本公开的一个实施例中,所述第一沉积壁的高度h1、所述第二沉积壁的高度h2的范围为1.8~95μm,所述第三沉积壁的高度h3、所述第四沉积壁的高度h4、所述第五沉积壁的高度h5、所述第六沉积壁的高度h6的范围为4.8~165μm。
在本公开的一个实施例中,所述第一沉积壁、所述第二沉积壁、所述第三沉积壁、所述第四沉积壁、所述第五沉积壁、所述第六沉积壁、所述第七沉积壁、所述第八沉积壁中的每一个的高度的范围为0.07~45000μm。
在本公开的一个实施例中,所述第一沉积壁、所述第二沉积壁、所述第三沉积壁、所述第四沉积壁、所述第五沉积壁、所述第六沉积壁、所述第七沉积壁、所述第八沉积壁中的每一个的高度的范围为5.4~346μm。
在本公开的第二方面,本公开实施例提供一种OLED面板,包括像素结构,所述像素结构,包括:
第一子像素区、第二子像素区、第三子像素区,第一子像素区和第二子像素区在第一方向上对齐且都沿与第一方向相交的第二方向彼此平行地延伸,第三子像素区位于第一和第二子像素区在第二方向上的一端且沿第一方向延伸。
在本公开的一个实施例中,所述像素结构还包括:
第四子像素区,其位于第一子像素区和第二子像素区在第二方向上的另一端且沿第一方向延伸,所述第三子像素区和所述第四子像素区在第二 方向上彼此对齐。
在本公开的一个实施例中,所述第三子像素区在第一方向上的两个边分别与第一子像素区和第二子像素区在第一方向上的外侧边对齐。
在本公开的一个实施例中,所述第四子像素区在第一方向上的两个边分别与第一到第三子像素区在第一方向上的外侧边对齐。
在本公开的一个实施例中,所述第三子像素区在第二方向上的外侧边和所述第四子像素区在第二方向上的外侧边分别相对于成对的第一子像素区和第二子像素区在第二方向上的两个外侧边向外偏移所述第三子像素区的宽度和所述第四子像素区的宽度,并且第一子像素区在第一方向上的外侧边和所述第二子像素区在第一方向上的外侧边分别相对于成对的第三子像素区和第四子像素区在第一方向上的两个外侧边向外偏移所述第一子像素区的宽度和所述第二子像素区的宽度。
在本公开的一个实施例中,所述OLED面板还包括:
包围所述像素结构的图案化的沉积掩膜,所述沉积掩膜包括在第一方向上相对设置的成对的第一沉积壁和第二沉积壁,在与第一方向相交的第二方向上相对设置的成对的第三沉积壁和第四沉积壁,以及在第一方向上相对设置的成对的第五沉积壁和第六沉积壁,其中
所述第一子像素区与所述第二沉积壁相邻,所述第二子像素区与所述第一沉积壁相邻,第三子像素区与所述第四沉积壁相邻。
在本公开的一个实施例中,所述第一沉积壁和所述第二沉积壁在第一方向上相距第一距离L1,所述第三沉积壁和所述第四沉积壁在第二方向上相距第二距离L2,所述第五沉积壁和所述第六沉积壁在第一方向上相距第三距离L3,
在沿所述第一方向切割而得到的切面中,从所述第一子像素区的内侧边缘到所述第一沉积壁的顶部的连线与所述基板成角度α1,从所述第二子像素区的内侧边缘到所述第二沉积壁的顶部的连线与所述基板成角度α2,并且在沿所述第二方向切割而得到的切面中,从所述第三子像素区的内侧边缘到所述第三沉积壁的顶部的连线与所述基板成角度α3,其中α1、α2、 α3都大于0度且小于90度,并且
其中,第一沉积壁的高度h1、第二沉积壁的高度h2、第三沉积壁的高度h3、第四沉积壁的高度h4、第五沉积壁的高度h5、第六沉积壁的高度h6,满足以下关系:
h5>L3×tan(α1);
h6>L3×tan(α2)。
在本公开的一个实施例中,所述沉积掩膜包括两对第五沉积壁和第六沉积壁,所述第五沉积壁和所述第六沉积壁的第一对以及所述第五沉积壁和所述第六沉积壁的第二对分别位于成对的所述第一沉积壁和所述第二沉积壁的相反两侧,所述沉积掩膜还包括在第二方向上相距第四距离L4、相对设置的两对第七沉积壁和第八沉积壁,所述第七沉积壁和所述第八沉积壁的第一对以及第七沉积壁和所述第八沉积壁的第二对分别位于成对的所述第三沉积壁和所述第四沉积壁的相反两侧,
第七沉积壁的高度h7和第八沉积壁的高度h8,满足以下关系:
h7>L4×tan(α3);
h8>L4×tan(α4),
其中,所述第一沉积壁相对于所述第五沉积壁沿所述第一方向向所述像素区域的外侧偏移第二子像素区的宽度b2,所述第二沉积壁相对于所述第六沉积壁沿所述第一方向向所述像素区域的外侧偏移第一子像素区的宽度b1,所述第三沉积壁相对于所述第七沉积壁沿所述第二方向向所述像素区域的外侧偏移第四子像素区的宽度b4,所述第四沉积壁相对于所述第八沉积壁沿所述第二方向向所述像素区域的外侧偏移第三子像素区的宽度b3。
在本公开的一个实施例中,所述第一沉积壁、所述第二沉积壁、所述第三沉积壁、所述第四沉积壁、所述第五沉积壁、所述第六沉积壁、所述第七沉积壁、所述第八沉积壁具有相同的高度。
在本公开的一个实施例中,第一沉积壁的高度h1、第二沉积壁的高度h2的范围为0.02~10000μm,第三沉积壁的高度h3、第四沉积壁的高度h4、 第五沉积壁的高度h5、第六沉积壁的高度h6的范围为0.05~34000μm。
在本公开的一个实施例中,第一沉积壁的高度h1、第二沉积壁的高度h2的范围为1.8~95μm,第三沉积壁的高度h3、第四沉积壁的高度h4、第五沉积壁的高度h5、第六沉积壁的高度h6的范围为4.8~165μm。
在本公开的一个实施例中,所述第一沉积壁、所述第二沉积壁、所述第三沉积壁、所述第四沉积壁、所述第五沉积壁、所述第六沉积壁、所述第七沉积壁、所述第八沉积壁的每一个的高度的范围为0.07~45000μm。
在本公开的一个实施例中,所述第一沉积壁、所述第二沉积壁、所述第三沉积壁、所述第四沉积壁、所述第五沉积壁、所述第六沉积壁、所述第七沉积壁、所述第八沉积壁的每一个的高度的范围为5.4~346μm。
在本公开的第三方面,本公开实施例提供一种OLED面板制作方法,包括:
在基板上形成包围每个像素区域的图案化的沉积掩膜,所述沉积掩膜包括在第一方向上相对设置的成对的第一沉积壁和第二沉积壁,在与第一方向相交的第二方向上相对设置的成对的第三沉积壁和第四沉积壁,以及在第一方向上相对设置的成对的第五沉积壁和第六沉积壁;以及
沿第一方向面向所述第二沉积壁将第一子像素材料倾斜沉积到与所述第二沉积壁相邻的第一子像素区,沿第一方向面向所述第一沉积壁将第二子像素材料倾斜沉积到与所述第一沉积壁相邻的第二子像素区,沿第二方向面向所述第四沉积壁将第三子像素材料倾斜沉积到与所述第四沉积壁相邻的第三子像素区。
在本公开的一个实施例中,所述方法还包括:
沿第二方向面向所述第三沉积壁将第四子像素材料倾斜沉积到与所述第三沉积壁相邻的第四子像素区。
在本公开的一个实施例中,所述第一沉积壁和所述第二沉积壁在第一方向上相距第一距离L1,所述第三沉积壁和所述第四沉积壁在第二方向上相距第二距离L2,所述第五沉积壁和所述第六沉积壁在第一方向上相距第三距离L3,
所述第一、第二、第三子像素材料的倾斜沉积角分别为α1、α2、α3,其中α1、α2、α3分别为第一、第二、第三子像素材料的沉积方向与所述基板所成的角度并且都大于0度且小于90度,
第一沉积壁的高度h1、第二沉积壁的高度h2、第三沉积壁的高度h3、第四沉积壁的高度h4、第五沉积壁的高度h5、第六沉积壁的高度h6,满足以下关系:
h5>L3×tan(α1);
h6>L3×tan(α2)。
在本公开的一个实施例中,所述第四子像素材料的倾斜沉积角为α4,其中α4为第四子像素材料的沉积方向与所述基板所成的角度并且大于0度且小于90度。
在本公开的一个实施例中,α1、α2、α3中至少两者彼此相等。
在本公开的一个实施例中,α4与α1、α2、α3中至少一者相等。
在本公开的一个实施例中,所述第五沉积壁的高度h5和第六沉积壁的高度h6大于所述第一沉积壁的高度h1和第二沉积壁的高度h2,所述第一沉积壁与所述第五沉积壁具有位于同一平面内的内侧壁,所述第二沉积壁与所述第六沉积壁具有位于同一平面内的内侧壁。
在本公开的一个实施例中,所述沉积掩膜包括两对第五沉积壁和第六沉积壁,所述第五沉积壁和所述第六沉积壁的第一对以及所述第五沉积壁和所述第六沉积壁的第二对分别位于成对的所述第一沉积壁和所述第二沉积壁的相反两侧,所述沉积掩膜还包括在第二方向上相距第四距离L4、相对且平行设置的两对第七沉积壁和第八沉积壁,所述第七沉积壁和所述第八沉积壁的第一对以及第七沉积壁和所述第八沉积壁的第二对分别位于成对的所述第三沉积壁和所述第四沉积壁的相反两侧,
第七沉积壁的高度h7和第八沉积壁的高度h8,满足以下关系:
h7>L4×tan(α3);
h8>L4×tan(α4),
其中,所述第一沉积壁相对于所述第五沉积壁沿所述第一方向向所述 像素区域的外侧偏移第二子像素区的宽度b2,所述第二沉积壁相对于所述第六沉积壁沿所述第一方向向所述像素区域的外侧偏移第一子像素区的宽度b1,所述第三沉积壁相对于所述第七沉积壁沿所述第二方向向所述像素区域的外侧偏移第四子像素区的宽度b4,所述第四沉积壁相对于所述第八沉积壁沿所述第二方向向所述像素区域的外侧偏移第三子像素的宽度b3。
在本公开的一个实施例中,所述第一沉积壁、所述第二沉积壁、所述第三沉积壁、所述第四沉积壁、所述第五沉积壁、所述第六沉积壁、所述第七沉积壁、所述第八沉积壁具有相同的高度。
在本公开的一个实施例中,所述沉积掩膜的材料选自光敏性聚酰亚胺、聚丙烯酸酯、酚醛树脂、环氧树脂中的一种或多种。
在本公开的一个实施例中,所述第一沉积壁的高度h1、所述第二沉积壁的高度h2的范围为0.02~10000μm,所述第三沉积壁的高度h3、所述第四沉积壁的高度h4、所述第五沉积壁的高度h5、所述第六沉积壁的高度h6的范围为0.05~34000μm。
在本公开的一个实施例中,所述第一沉积壁的高度h1、所述第二沉积壁的高度h2的范围为1.8~95μm,所述第三沉积壁的高度h3、所述第四沉积壁的高度h4、所述第五沉积壁的高度h5、所述第六沉积壁的高度h6的范围为4.8~165μm。
在本公开的一个实施例中,所述第一沉积壁、所述第二沉积壁、所述第三沉积壁、所述第四沉积壁、所述第五沉积壁、所述第六沉积壁、所述第七沉积壁、所述第八沉积壁中的每一个的高度的范围为0.07~45000μm。
在本公开的一个实施例中,所述第一沉积壁、所述第二沉积壁、所述第三沉积壁、所述第四沉积壁、所述第五沉积壁、所述第六沉积壁、所述第七沉积壁、所述第八沉积壁中的每一个的高度的范围为5.4~346μm。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述 中所需要使用的附图作一简单地介绍。显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开的一个实施例在进行沉积以提供对OLED面板的像素布图期间可以用作嵌入掩膜的沉积掩膜的形状的立体示意图;
图2是根据本公开的另一实施例在进行沉积以提供对OLED面板的像素布图期间可以用作嵌入掩膜的沉积掩膜的形状的立体示意图;
图3是根据本公开的实施例在倾斜角α1下从第一子像素材料源沉积第一子像素区的材料的示意图;
图4是根据本公开的实施例在倾斜角α2下从第二子像素材料源沉积第二子像素区的材料的示意图;
图5是示出在从第一子像素材料源沉积第一子像素区的材料期间第三子像素区受到保护的示意图;
图6是示出在从第二子像素材料源沉积第二子像素区的材料期间第三子像素区受到保护的示意图;
图7是根据本公开的实施例在倾斜角α3下从第三子像素材料源沉积第三子像素区的材料的示意图;
图8是根据本公开的实施例在倾斜角α4下从第四子像素材料源沉积第四子像素区的材料的示意图;
图9是根据本公开的一个实施例在沉积完成后的由三个子像素区形成的像素区域的平面图;
图10是根据本公开的另一实施例在沉积完成后的由四个子像素区形成的像素区域的平面图;
图11是根据本公开的再一实施例在沉积完成后的由四个子像素区形成的像素区域的平面图;
图12A是根据本公开的一个实施例在沉积完成后的OLED显示面板上的像素阵列的平面图,其中每个像素区域由三个子像素区形成;
图12B是根据本公开的另一实施例在沉积完成后的OLED显示面板上 的像素阵列的平面图,其中每个像素区域由四个子像素区形成;以及
图12C是根据本公开的再一实施例在沉积完成后的OLED显示面板上的像素阵列的平面图,其中每个像素区域由四个子像素区形成。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
另外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性、或者固定相应部件的相对位置、或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。
下面参照图1-12对本公开的示例性实施例进行说明。
如图1-8所示,在OLED面板的OLED器件的有机材料沉积之前,通过例如旋涂和随后的光刻蚀刻在诸如TFT面板的基板顶上形成沉积掩膜。沉积掩膜被形成为使得在像素区域周围形成沉积壁,如图1和2所示。即,在基板上形成包围每个像素区域的图案化的沉积掩膜。具体而言,该沉积掩膜包括在第一方向上相距第一距离L1、相对且平行设置的成对的第一沉积壁101和第二沉积壁201,在与第一方向相交的第二方向上相距第二距离L2、相对且平行设置的成对的第三沉积壁301和第四沉积壁401,以及在第一方向上相距第三距离L3、相对且平行设置的成对的第五沉积壁501和第六沉积壁601。
在相关附图中,使用实线双箭头表示第一方向,并使用虚线双箭头表示与第一方向相交的第二方向。
第一方向可以与第二方向成任何角度。在一个示例性实施例中,第一方向与第二方向正交。
本领域技术人员公知,像素是在图案化的发光显示器结构中能够发射光的重复单元。每个像素的结构可以由一个或多个子像素构成。例如,在全色器件中,每个像素可以由三个或更多个子像素构成。
在如图1所示的一个示例性实施例中,所形成的沉积掩膜包围每个像素区域,并且每个像素区域包括将要在接下来的步骤中形成的三个子像素区1~3。
在如图2所示的一个示例性实施例中,所形成的沉积掩膜包围每个像素区域,并且每个像素区域包括将要在接下来的步骤中形成的四个子像素区1~4。
沉积掩膜可以由光敏材料形成。在示例性实施例中,沉积掩膜可以由光致抗蚀剂形成。利用光致抗蚀剂形成沉积掩膜,可以使用成熟的光刻工艺将沉积掩膜层形成为具有所需的图案。
在示例性实施例中,沉积掩膜的材料可以选自光敏性聚酰亚胺、聚丙烯酸酯、酚醛树脂、环氧树脂中的一种或多种。举例而言,光敏性聚酰亚胺可以为聚甲基戊二酰亚胺(PMGI)、Toray制造的PW-1000、PW-1200、PW-1500等。
所述基板可以为任何适合制造OLED面板器件的基板。在示例性实施例中,所述基板可以为TFT面板。
在基板上形成包围每个像素区域的图案化的沉积掩膜之后,如图3-7所示,沿第一方向面向第二沉积壁201以角度α1将来自第一材料源102的第一子像素材料倾斜沉积到与第二沉积壁201相邻的第一子像素区1(图3),沿第一方向面向第一沉积壁101以角度α2将来自第二材料源202的第二子像素材料倾斜沉积到与第一沉积壁101相邻的第二子像素区2(图4),沿第二方向面向第四沉积壁401以角度α3将来自第三材料源302的第三子像素材料倾斜沉积到与第四沉积壁401相邻的第三子像素区3(图7),其中α1、α2、α3分别为第一子像素、第二子像素、第三子像素材料的沉积方向与基板所成的角度并且都大于0度且小于90度,第一子像素、第二子像素、第三子像素材料彼此不同。
如图3所示,沿第一方向面向第二沉积壁201以角度α1将来自第一材料源102的第一子像素材料倾斜沉积到第一子像素区1。在来自第一材料源102的材料的沉积期间,沉积壁101在沉积壁101与沉积壁201之间形成被遮挡的区域,但沉积壁101的高度被选择为使得应沉积第一子像素材料的区域(第一子像素区1)未被遮挡,从而仅在与第二沉积壁201相邻的第一子像素区1中沉积第一子像素材料。该被遮挡的区域与第一沉积壁101相邻。第一沉积壁101的高度为h1,第一沉积壁101和第二沉积壁201相距的距离为L1,第一子像素区1的沿第一方向的宽度为b1。第一沉积壁101的高度h1可以使用下式(1)计算。
h1=(L1-b1)×tan(α1)      …(1)
如图4所示,沿第一方向面向第一沉积壁101以角度α2将来自第二材料源202的第二子像素材料倾斜沉积到第二子像素区2。在来自第二材料源202的材料的沉积期间,沉积壁201在沉积壁201与沉积壁101之间形成被遮挡的区域,但沉积壁201的高度被选择为使得应沉积第二子像素材料的区域(第二子像素区2)未被遮挡,从而仅在与第一沉积壁101相邻的第二子像素区2中沉积第二子像素材料。该被遮挡的区域与第二沉积壁201相邻。第二沉积壁201的高度为h2,第一沉积壁101和第二沉积壁201相距的距离为L1,第二子像素区2的沿第一方向的宽度为b2。第二沉积壁201的高度h2可以使用下式(2)计算。
h2=(L1-b2)×tan(α2)      …(2)
如图5所示,在从第一材料源102沉积第一子像素区1的材料(即,第一子像素材料)的期间,第五沉积壁501和第六沉积壁601保护第三子像素区3。第五沉积壁501和第六沉积壁601相距第三距离L3,其高度分别为h5和h6。从图5可以看出,为了确保第三子像素区3在第一子像素材料的沉积期间受到保护而不在第三子像素区3上沉积任何材料,第五沉积壁501的高度h5需要满足以下关系式(3)。
h5>L3×tan(α1)      …(3)
如图6所示,在从第二材料源202沉积第二子像素区2的材料(即, 第二子像素材料)的期间,第五沉积壁501和第六沉积壁601保护第三子像素区3。从图6可以看出,为了确保第三子像素区3在第二子像素材料的沉积期间受到保护而不在第三子像素区3上沉积任何材料,第六沉积壁601的高度h6需要满足以下关系式(4)。
h6>L3×tan(α2)      …(4)
如图7所示,沿第二方向面向第四沉积壁401以角度α3将来自第三材料源302的第三子像素材料倾斜沉积到第三子像素区3。在来自第三材料源302的材料的沉积期间,沉积壁301在沉积壁301与沉积壁401之间形成被遮挡的区域,但沉积壁301的高度被选择为使得应沉积第三子像素材料的区域(第三子像素区3)未被遮挡,从而仅在与第四沉积壁401相邻的第三子像素区3中沉积第三子像素材料。该被遮挡的区域与第三沉积壁301相邻。第三沉积壁301的高度为h3,第三沉积壁301和第四沉积壁401相距的距离为L2,第三子像素区3的沿第二方向的宽度为b3。第三沉积壁301的高度h3可以使用下式(5)计算。
h3=(L2-b3)×tan(α3)      …(5)
图3-7所示例的实施例中,首先形成第一子像素区1,然后形成第二子像素区2,最后形成第三子像素区3。然而,本公开并不限制各子像素的形成顺序,可以根据实际情况调整各子像素的形成顺序。
用于形成第一子像素区1、第二子像素区2、第三子像素区3的倾斜角度可以根据实际需要来确定。
在一个示例性实施例中,上述倾斜角α1、α2、α3可以彼此不相等。在另一个示例性实施例中,上述α1、α2、α3中至少两者彼此相等。这样,可以根据像素设计以及具体的工艺条件和需要来调整α1、α2、α3中的每一个,这可以更灵活地实现子像素材料的沉积。
在一个示例性实施例中,上述α1、α2、α3可以彼此相等。在这种情况下,在沉积完一种像素材料、准备沉积下一种子像素材料时,可以仅使材料容器与基板中的一方相对于另一方旋转,以固定的同一角度α沉积各子像素材料,从而简化生产工艺。
在一个示例性实施例中,如图1所示,使用常规三个子像素设计,其中三个子像素被沉积壁101、201、301、401、501和601包围,这三个子像素形成一个像素。例如,每个子像素可以为蓝色、红色或绿色。
在一个示例性实施例中,如图2所示,一个像素也可以由四个子像素形成,四个子像素被沉积壁101、201、301、401、501和601包围,这四个子像素形成一个像素。可以基于具体的显示设计来选择每个子像素的位置和尺寸。
如图8所示,在该实施例中,当一个像素由四个子像素形成时,可以沿第二方向面向第三沉积壁301以角度α4将来自第四材料源402的第四子像素材料倾斜沉积到第四子像素区4。在来自第四材料源402的材料的沉积期间,沉积壁401在沉积壁301与沉积壁401之间形成被遮挡的区域,但沉积壁401的高度被选择为使得应沉积第四子像素材料的区域(第四子像素区4)未被遮挡,从而仅在与第三沉积壁301相邻的第四子像素区4中沉积第四子像素材料。该被遮挡的区域与第四沉积壁401相邻。第四沉积壁401的高度为h4,第三沉积壁301和第四沉积壁401相距的距离为L2,第四子像素区4的沿第二方向的宽度为b4。第四沉积壁401的高度h4可以使用下式(6)计算。
h4=(L2-b4)×tan(α4)      …(6)
在一个示例性实施例中,第四子像素材料可以与第一至第三子像素材料都不同。例如,该实施例可以被应用于其中包括R(红色)、G(绿色)、B(蓝色)、W(白色)四个子像素的RGBW像素布局中,或者应用于其他需要四个子像素的像素布局中。
在一个示例性实施例中,第四子像素材料可以与其他三个子像素材料之一相同,例如,可以与第三子像素材料相同。从而,可以根据需要进行各种参数的补偿。
在一个示例性实施例中,α4与α1、α2、α3中任一者都不相等。
在另一个示例性实施例中,α4与α1、α2、α3中至少一者相等。
在图1所示例的实施例和图2所示例的实施例中,第五沉积壁501的 高度h5和第六沉积壁601的高度h6大于第一沉积壁的高度h1和第二沉积壁的高度h2,并且,第一沉积壁101与第五沉积壁501具有位于同一平面内的内侧壁,第二沉积壁201与第六沉积壁601具有位于同一平面内的内侧壁。
图9是根据图1所示例的实施例在沉积完成后的像素的平面图;图10是根据图2所示例的实施例在沉积完成后的像素的平面图。
如图9所示,在沉积完成后,第一子像素区1、第二子像素区2、第三子像素区3形成矩形像素区。如图10所示,第一子像素区1、第二子像素区2、第三子像素区3、第四子像素区4也形成矩形像素区。四个子像素区可以彼此不同,或者可以使其中的两者相同。例如,在四子像素布图中,每个像素可以具有第一子像素区1、第二子像素区2和两个第三子像素区3(此时第四子像素区4的材料被第三子像素区3的材料替代)。
下面结合图11描述本公开的另一个示例性实施例。在图11中,沉积壁用粗实线表示。
如图11所示,所述沉积掩膜可以包括两对第五沉积壁501和第六沉积壁601,第五沉积壁501和第六沉积壁601的第一对以及第五沉积壁501和第六沉积壁601的第二对分别位于成对的第一沉积壁101和第二沉积壁201的相反两侧。所述沉积掩膜还包括在第二方向上相距第四距离L4、相对且平行设置的两对第七沉积壁701和第八沉积壁801,第七沉积壁701和第八沉积壁801的第一对以及第七沉积壁701和第八沉积壁801的第二对分别位于成对的第三沉积壁301和第四沉积壁401的相反两侧。
在图11所示的实施例中,与图1和图2所示的实施例相似地,第一到第六沉积壁的高度可以满足上述关系式(1)~(6)。此外,当以角度α3倾斜沉积第三子像素区3的第三子像素材料时,第七沉积壁701的高度h7需要被设计为完全遮挡第三子像素材料;同样,当以角度α4倾斜沉积第四子像素区4的第四子像素材料时,第八沉积壁801的高度h8需要被设计为完全遮挡第四子像素材料。通过与前面针对第五沉积壁和第六沉积壁(图5和图6)的相似的分析,可以确定,第七沉积壁101的高度h7和第 八沉积壁802的高度h8需要满足以下关系式(7)和(8)。
h7>L4×tan(α3)      …(7)
h8>L4×tan(α4)      …(8)
如图11所示,在一个实施例中,第一沉积壁101相对于第五沉积壁501沿第一方向向像素区域的外侧偏移第二子像素区2的宽度b2,第二沉积壁201相对于第六沉积壁601沿第一方向向像素区域的外侧偏移第一子像素区1的宽度b1,第三沉积壁301相对于第七沉积壁701沿第二方向向像素区域的外侧偏移第四子像素区4的宽度b4,第四沉积壁401相对于第八沉积壁801沿第二方向向像素区域的外侧偏移第三子像素3的宽度b3。
在此,“内侧”和“外侧”是相对于OLED面板的每个相应像素区域的内侧和外侧。
此外,需要指出的是,在本公开的附图1、2、9~11中,为了清楚起见,各子像素区与沉积掩膜的各相应沉积壁的内侧壁之间绘制有间隔,但实际上,各子像素区与沉积掩膜的各相应沉积壁的内侧壁之间可以如图3、4、7、8所绘制的那样没有间隔。
在图11所示的实施例中,第一到第八沉积壁可以根据具体的需要而设计其高度。第一到第八沉积壁的高度可以彼此不同,也可以至少两者相同。
在一个实施例中,第一沉积壁到第八沉积壁具有相同的高度。在该实施例中,所有沉积壁具有相同高度,这使得沉积掩膜的形成工艺更加简单,从而降低生产成本。
在所有的子像素区的沉积完成后,可以使用粘性的粘合剂材料或其他手段从基板去除沉积掩膜。例如,可以在沉积掩膜的顶部施加粘合剂膜,然后向上将粘合剂膜与沉积掩膜一起移除,从而使沉积掩膜同时从基板分离。但本公开并不限于此,在最终形成的OLED器件或OLED面板中,沉积掩膜也可以被保留。
图12A是示出在去除沉积掩膜之后,在图9所示的实施例中形成的位于显示面板上的各子像素图案的平面图。在沉积所有的子像素材料之后,该图案化的显示区域包含多个像素,每个像素包括三个子像素。
这里,需要注意,图12A中各像素周边的虚线仅仅是为了区分各像素区域,并不一定代表沉积壁。
图12B是示出在去除沉积掩膜之后,在图10所示的实施例中形成的位于显示面板上的各子像素图案的平面图。在沉积所有的子像素材料之后,该图案化的显示区域包含多个像素,每个像素包括四个子像素。
这里,需要注意,图12B中各像素周边的虚线仅仅是为了区分各像素区域,并不一定代表沉积壁。
图12C是示出在去除沉积掩膜之后,在图11所示的实施例中形成的位于显示面板上的各子像素图案的平面图。在沉积所有的子像素材料之后,该图案化的显示区域包含多个像素,每个像素包括四个子像素。
这里,需要注意,图12C中各子像素周边的实线仅仅是为了区分各子像素区域,并不代表沉积壁。
在本公开实施例中,第一子像素、第二子像素、第三子像素、第四子像素材料可以为OLED的有机发光层材料,或者也可以是在顶发射型OLED面板中为每个颜色提供所需的微腔长度的层。
对沉积掩膜的各沉积壁的厚度和长度没有特别的限制,可以根据具体的像素设计而设定沉积壁的厚度和长度。
本公开实施例还提供了一种用于OLED面板的像素布图的掩膜结构。该掩膜结构可以在上述对OLED面板进行像素布图的方法中使用。
具体地,如图1-11所示,该掩膜结构包括位于基板上的包围每个像素区域的图案化的沉积掩膜,所述沉积掩膜包括:在第一方向上相距第一距离L1、相对且平行设置的成对的第一沉积壁101和第二沉积壁201,与第一方向相交的第二方向上相距第二距离L2、相对且平行设置的成对的第三沉积壁301和第四沉积壁401,以及在第一方向上相距第三距离L3、相对且平行设置的成对的第五沉积壁501和第六沉积壁601。
如图1、2、9~11所示,所述像素布图包括与第二沉积壁201相邻的第一子像素区1、与第一沉积壁101相邻的第二子像素区2以及与第四沉积壁401相邻的第三子像素区3。如图3和4所示,在沿第一方向切割而 得到的切面中,从第一子像素区1的内侧边缘到第一沉积壁101的顶部的连线与基板成角度α1,从第二子像素区2的内侧边缘到第二沉积壁201的顶部的连线与基板成角度α2。如图7所示,在沿第二方向切割而得到的切面中,从第三子像素区3的内侧边缘到第三沉积壁301的顶部的连线与基板成角度α3。α1、α2、α3都大于0度且小于90度。
如上面详细描述的以及如图3~7所示,第一到第六沉积壁的高度分别为h1、h2、h3、h4、h5、h6,第一子像素区1和第二子像素区2的沿第一方向的宽度分别为b1和b2,第三子像素区3的沿第二方向的宽度为b3,则满足以下关系:
h1=(L1-b1)×tan(α1);
h2=(L1-b2)×tan(α2);
h3=(L2-b3)×tan(α3);
h5>L3×tan(α1);
h6>L3×tan(α2)。
在本公开的一个实施例中,如图2、8、10、11所示,所述像素布图可以还包括与第三沉积壁301相邻的第四子像素区4。如图8所示,在沿第二方向切割而得到的切面中,从第四子像素区4的内侧边缘到第四沉积壁401的顶部的连线与基板成角度α4,其中α4大于0度且小于90度。第四子像素区4的沿第二方向的宽度为b4,则满足以下关系:
h4=(L2-b4)×tan(α4)。
在本公开的一个实施例中,α1、α2、α3彼此不相等。
在本公开的一个实施例中,α1、α2、α3中至少两者彼此相等。
在本公开的一个实施例中,α4与α1、α2、α3中任一者都不相等。
在本公开的一个实施例中,α4与α1、α2、α3中至少一者相等。
在本公开的一个实施例中,如图1、2、9、10所示,第五沉积壁501的高度h5和第六沉积壁601的高度h6大于第一沉积壁101的高度h1和第二沉积壁102的高度h2,第一沉积壁101与第五沉积壁501具有位于同一平面内的内侧壁,第二沉积壁201与第六沉积壁601具有位于同一平面 内的内侧壁。
在本公开的一个实施例中,如图11所示,沉积掩膜可以包括两对第五沉积壁501和第六沉积壁601,第五沉积壁501和第六沉积壁601的第一对以及第五沉积壁501和第六沉积壁601的第二对分别位于成对的第一沉积壁101和第二沉积壁201的相反两侧。沉积掩膜可以还包括在第二方向上相距第四距离L4、相对且平行设置的两对第七沉积壁701和第八沉积壁801。第七沉积壁701和第八沉积壁801的第一对以及第七沉积壁701和第八沉积壁801的第二对分别位于成对的第三沉积壁301和第四沉积壁401的相反两侧。
为了在第三和第四像素区的沉积期间不在第一和第二像素区中沉积任何材料,第七沉积壁701的高度h7和第八沉积壁801的高度h8需要满足以下关系:
h7>L4×tan(α3);
h8>L4×tan(α4)。
如图11所示,第一沉积壁101可以相对于第五沉积壁501沿第一方向向像素区域的外侧偏移第二子像素区2的宽度b2,第二沉积壁201可以相对于第六沉积壁601沿第一方向向像素区域的外侧偏移第一子像素区1的宽度b1,第三沉积壁301可以相对于第七沉积壁701沿第二方向向像素区域的外侧偏移第四子像素区4的宽度b4,第四沉积壁401可以相对于第八沉积壁801沿第二方向向像素区域的外侧偏移第三子像素3的宽度b3。
在本公开的一个实施例中,第一沉积壁到第八沉积壁可以具有相同的高度。
在本公开的一个实施例中,第一方向可以与第二方向正交。
在本公开的一个实施例中,沉积掩膜可以由光致抗蚀剂材料形成。
在本公开的一个实施例中,沉积掩膜的材料可以选自光敏性聚酰亚胺、聚丙烯酸酯、酚醛树脂、环氧树脂中的一种或多种。
在本公开的一个实施例中,基板可以为TFT面板。
如图1、2、9~11、12A-12C所示,本公开实施例的OLED像素结构, 包括第一子像素区1、第二子像素区2、第三子像素区3,第一子像素区1和第二子像素区2在第一方向上对齐且都沿与第一方向相交的第二方向彼此平行地延伸,第三子像素区3位于第一和第二子像素区的在第二方向上的一端且沿第一方向延伸。
根据本公开实施例的像素结构可以在不利用要求精确对准的掩模板的情况下形成。
在本公开的一个实施例中,如图2、10、11、12B、12C所示,该OLED像素结构可以还包括第四子像素区4,其位于第一子像素区和第二子像素区的在第二方向上的另一端且沿第一方向延伸,第三子像素区3和第四子像素区4在第二方向上彼此对齐。
在本公开的一个实施例中,第四子像素区4的材料可以与第一到第三子像素区之一的材料相同。例如,第四子像素区4的材料可以与第三子像素区3的材料相同。
在本公开的一个实施例中,如图1、2、9、10所示,第三子像素区3的在第一方向上的两个边可以分别与第一子像素区1和第二子像素区2的在第一方向上的外侧边对齐。
在本公开的一个实施例中,如图2、10所示,第四子像素区4的在第一方向上的两个边可以分别与第一到第三子像素区的在第一方向上的外侧边对齐。
在本公开的一个实施例中,如图11、12C所示,第三子像素区3的在第二方向上的外侧边和第四子像素区4在第二方向上的外侧边可以分别相对于成对的第一子像素区1和第二子像素区2的在第二方向上的两个外侧边向外偏移第三子像素区3的宽度和第四子像素区4的宽度,并且第一子像素区1的在第一方向上的外侧边和第二子像素区2的在第一方向上的外侧边分别相对于成对的第三子像素区3和第四子像素区4的在第一方向上的两个外侧边向外偏移第一子像素区1的宽度和第二子像素区2的宽度。
在本公开的一个实施例中,第一方向可以与第二方向正交。
在本公开的一个实施例中,第一到第四子像素区的材料可以为OLED 的有机发光层材料。
在本公开的一个实施例中,,各子像素区的宽度b范围为1~200μm;在又一实施例中,各子像素区的宽度b范围为5~50μm;在还一实施例中,各子像素区的宽度b范围为15μm。
在本公开的一个实施例中,各子像素区的材料沉积角α的角度范围为1~89度;在又一实施例中,沉积角α的角度范围为15~60度;在还一实施例中,沉积角α的角度范围为30度。
沉积壁101和201之间的距离L1可以等于沉积壁501和601之间的距离L3,可以在2~400μm的范围内;可选的,范围为12~105μm;可选的,值为35μm;沉积壁301和401之间的距离L2可以在3~600μm的范围内;可选的,范围为18~160μm;可选的,值为50μm。
基于上述数值或数值范围以及上述各式(1)-(8),沉积壁高度h1、h2可以具有0.02~10000μm的范围;在一个实施例中,沉积壁高度h1、h2范围为1.8~95μm;在一个实施例中,沉积壁高度h1、h2值为11μm;沉积壁高度h3、h4、h5、h6可以具有0.05~34000μm的范围;在又一实施例中,沉积壁高度h3、h4、h5、h6范围为4.8~165μm;在还一实施例中,沉积壁高度h3、h4、h5、h6值为20μm。
以上值对于图9所代表的布图是适用的。
对于图10所代表的布图,L2、L4的值可选的可以为65μm,而h3、h4、h5、h6的值可选的可以为37μm,其余的值和范围可以与图9所代表的布图适用的值和范围相同。
对于图11所表示的布图,像素宽度和沉积角与上述分别相同,而L1、L2、L3、L4可以具有4~800μm的范围,可选范围为20~200μm,可选值为60μm;所有的第一到第八沉积壁可以具有相同高度,该高度在0.07~45000μm的范围内,可选范围为5.4~346μm,可选值为34μm。
然而,需要说明的是,这里给出的各参数的范围仅仅是示例性的,并不旨在限制本公开。本领域技术人员可以根据实际需要对上述范围和数值进行适当的修改。
根据本公开实施例,由于不需要使用要求与基板精确对准的精细金属掩模板,即使当母板玻璃的尺寸为第六代以上时,也可以容易地且精确地沉积各子像素材料(特别地,有机发光层)而形成像素区域。
本公开的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (30)

  1. 一种用于OLED面板的像素布图的掩膜结构,包括:
    位于基板上的包围每个像素区域的图案化的沉积掩膜,所述沉积掩膜包括在第一方向上相对设置的成对的第一沉积壁和第二沉积壁,与第一方向相交的第二方向上相对设置的成对的第三沉积壁和第四沉积壁,以及在第一方向上相对设置的成对的第五沉积壁和第六沉积壁,
    所述像素布图包括与所述第二沉积壁相邻的第一子像素区、与所述第一沉积壁相邻的第二子像素区以及与所述第四沉积壁相邻的第三子像素区。
  2. 根据权利要求1所述的掩膜结构,其中
    所述像素布图包括与所述第三沉积壁相邻的第四子像素区。
  3. 根据权利要求1或2所述的掩膜结构,其中,
    所述第一沉积壁和所述第二沉积壁在第一方向上相距第一距离L1,所述第三沉积壁和所述第四沉积壁在第二方向上相距第二距离L2,所述第五沉积壁和所述第六沉积壁在第一方向上相距第三距离L3,
    在沿所述第一方向切割而得到的切面中,从所述第一子像素区的内侧边缘到所述第一沉积壁的顶部的连线与所述基板成角度α1,从所述第二子像素区的内侧边缘到所述第二沉积壁的顶部的连线与所述基板成角度α2,并且在沿所述第二方向切割而得到的切面中,从所述第三子像素区的内侧边缘到所述第三沉积壁的顶部的连线与所述基板成角度α3,其中α1、α2、α3都大于0度且小于90度,并且
    其中,第一到第六沉积壁的高度分别为h1、h2、h3、h4、h5、h6,满足以下关系:
    h5>L3×tan(α1);
    h6>L3×tan(α2)。
  4. 根据权利要求2所述的掩膜结构,其中,
    在沿所述第二方向切割而得到的切面中,从所述第四子像素区的内侧边缘到所述第四沉积壁的顶部的连线与所述基板成角度α4,其中α4大于 0度且小于90度。
  5. 根据权利要求3或4所述的掩膜结构,其中,α1、α2、α3中至少两者彼此相等。
  6. 根据权利要求4所述的掩膜结构,其中,α4与α1、α2、α3中至少一者相等。
  7. 根据权利要求3所述的掩膜结构,其中,
    所述第五沉积壁的高度h5和第六沉积壁的高度h6大于所述第一沉积壁的高度h1和第二沉积壁的高度h2,所述第一沉积壁与所述第五沉积壁具有位于同一平面内的内侧壁,所述第二沉积壁与所述第六沉积壁具有位于同一平面内的内侧壁。
  8. 根据权利要求4所述的掩膜结构,其中,
    所述沉积掩膜包括两对第五沉积壁和第六沉积壁,所述第五沉积壁和所述第六沉积壁的第一对以及所述第五沉积壁和所述第六沉积壁的第二对分别位于成对的所述第一沉积壁和所述第二沉积壁的相反两侧,所述沉积掩膜还包括在第二方向上相距第四距离L4、相对设置的两对第七沉积壁和第八沉积壁所述第七沉积壁和所述第八沉积壁的第一对以及第七沉积壁和所述第八沉积壁的第二对分别位于成对的所述第三沉积壁和所述第四沉积壁的相反两侧,
    第七沉积壁和第八沉积壁的高度分别为h7和h8,满足以下关系:
    h7>L4×tan(α3);
    h8>L4×tan(α4),
    其中,所述第一沉积壁相对于所述第五沉积壁沿所述第一方向向所述像素区域的外侧偏移第二子像素区的宽度b2,所述第二沉积壁相对于所述第六沉积壁沿所述第一方向向所述像素区域的外侧偏移第一子像素区的宽度b1,所述第三沉积壁相对于所述第七沉积壁沿所述第二方向向所述像素区域的外侧偏移第四子像素区的宽度b4,所述第四沉积壁相对于所述第八沉积壁沿所述第二方向向所述像素区域的外侧偏移第三子像素区的宽度b3。
  9. 根据权利要求8所述的掩膜结构,其中,所述第一沉积壁到所述第八沉积壁具有相同的高度。
  10. 根据权利要求1或2所述的掩膜结构,其中,所述沉积掩膜的材料选自光敏性聚酰亚胺、聚丙烯酸酯、酚醛树脂、环氧树脂中的一种或多种。
  11. 根据权利要求3所述的掩膜结构,其中,
    h1、h2的范围为1.8~95μm,h3、h4、h5、h6的范围为4.8~165μm。
  12. 根据权利要求9所述的掩膜结构,其中,
    所述第一沉积壁到所述第八沉积壁中的每一个的高度的范围为5.4~346μm。
  13. 一种OLED面板,包括像素结构,所述像素结构包括:
    第一子像素区、第二子像素区、第三子像素区,第一子像素区和第二子像素区在第一方向上对齐且都沿与第一方向相交的第二方向彼此平行地延伸,第三子像素区位于第一子像素区和第二子像素区在第二方向上的一端且沿第一方向延伸。
  14. 根据权利要求13所述的OLED面板,其中所述像素结构还包括:
    第四子像素区,其位于第一子像素区和第二子像素区在第二方向上的另一端且沿第一方向延伸,所述第三子像素区和所述第四子像素区在第二方向上彼此对齐。
  15. 根据权利要求13或14所述的OLED面板,其中
    所述第三子像素区在第一方向上的两个边分别与第一子像素区和第二子像素区在第一方向上的外侧边对齐。
  16. 根据权利要求14所述的OLED面板,其中
    所述第四子像素区在第一方向上的两个边分别与第一子像素区、第二子像素区、第三子像素区在第一方向上的外侧边对齐。
  17. 根据权利要求14所述的OLED面板,其中
    所述第三子像素区在第二方向上的外侧边和所述第四子像素区在第二方向上的外侧边分别相对于成对的第一子像素区和第二子像素区在第 二方向上的两个外侧边向外偏移所述第三子像素区的宽度和所述第四子像素区的宽度,并且第一子像素区的在第一方向上的外侧边和所述第二子像素区的在第一方向上的外侧边分别相对于成对的第三子像素区和第四子像素区的在第一方向上的两个外侧边向外偏移所述第一子像素区的宽度和所述第二子像素区的宽度。
  18. 根据权利要求13或14所述的OLED面板,还包括:
    包围所述像素结构的图案化的沉积掩膜,所述沉积掩膜包括在第一方向上相对设置的成对的第一沉积壁和第二沉积壁,在与第一方向相交的第二方向上相对设置的成对的第三沉积壁(和第四沉积壁,以及在第一方向上相对设置的成对的第五沉积壁和第六沉积壁,其中
    所述第一子像素区与所述第二沉积壁相邻,所述第二子像素区与所述第一沉积壁相邻,第三子像素区与所述第四沉积壁相邻。
  19. 根据权利要求18所述的OLED面板,其中
    所述第一沉积壁和所述第二沉积壁在第一方向上相距第一距离L1,所述第三沉积壁和所述第四沉积壁在第二方向上相距第二距离L2,所述第五沉积壁和所述第六沉积壁在第一方向上相距第三距离L3,
    在沿所述第一方向切割而得到的切面中,从所述第一子像素区的内侧边缘到所述第一沉积壁的顶部的连线与所述基板成角度α1,从所述第二子像素区的内侧边缘到所述第二沉积壁的顶部的连线与所述基板成角度α2,并且在沿所述第二方向切割而得到的切面中,从所述第三子像素区的内侧边缘到所述第三沉积壁的顶部的连线与所述基板成角度α3,其中α1、α2、α3都大于0度且小于90度,并且
    其中,第一到第六沉积壁的高度分别为h1、h2、h3、h4、h5、h6,则满足以下关系:
    h5>L3×tan(α1);
    h6>L3×tan(α2)。
  20. 根据权利要求19所述的OLED面板,其中
    在沿所述第二方向切割而得到的切面中,从所述第四子像素区的内侧 边缘到所述第四沉积壁的顶部的连线与所述基板成角度α4,其中α4大于0度且小于90度。
  21. 根据权利要求20所述的OLED面板,其中
    所述沉积掩膜包括两对第五沉积壁和第六沉积壁,所述第五沉积壁和所述第六沉积壁的第一对以及所述第五沉积壁和所述第六沉积壁的第二对分别位于成对的所述第一沉积壁和所述第二沉积壁的相反两侧,所述沉积掩膜还包括在第二方向上相距第四距离L4、相对设置的两对第七沉积壁和第八沉积壁,所述第七沉积壁和所述第八沉积壁的第一对以及第七沉积壁和所述第八沉积壁的第二对分别位于成对的所述第三沉积壁和所述第四沉积壁的相反两侧,
    第七沉积壁和第八沉积壁的高度分别为h7和h8,满足以下关系:
    h7>L4×tan(α3);
    h8>L4×tan(α4),
    其中,所述第一沉积壁相对于所述第五沉积壁沿所述第一方向向所述像素区域的外侧偏移第二子像素区的宽度b2,所述第二沉积壁相对于所述第六沉积壁沿所述第一方向向所述像素区域的外侧偏移第一子像素区的宽度b1,所述第三沉积壁相对于所述第七沉积壁沿所述第二方向向所述像素区域的外侧偏移第四子像素区的宽度b4,所述第四沉积壁相对于所述第八沉积壁沿所述第二方向向所述像素区域的外侧偏移第三子像素区的宽度b3。
  22. 一种OLED面板制作方法,包括:
    在基板上形成包围每个像素区域的图案化的沉积掩膜,所述沉积掩膜包括在第一方向上相对设置的成对的第一沉积壁和第二沉积壁,在与第一方向相交的第二方向上相对设置的成对的第三沉积壁和第四沉积壁,以及在第一方向上相对设置的成对的第五沉积壁和第六沉积壁;以及
    沿第一方向面向所述第二沉积壁将第一子像素材料倾斜沉积到与所述第二沉积壁相邻的第一子像素区,沿第一方向面向所述第一沉积壁将第二子像素材料倾斜沉积到与所述第一沉积壁相邻的第二子像素区,沿第二 方向面向所述第四沉积壁将第三子像素材料倾斜沉积到与所述第四沉积壁相邻的第三子像素区。
  23. 根据权利要求22所述的OLED面板制作方法,还包括:
    沿第二方向面向所述第三沉积壁将第四子像素材料倾斜沉积到与所述第三沉积壁相邻的第四子像素区。
  24. 根据权利要求22或23所述的OLED面板制作方法,其中:
    所述第一沉积壁和所述第二沉积壁在第一方向上相距第一距离L1,所述第三沉积壁和所述第四沉积壁在第二方向上相距第二距离L2,所述第五沉积壁和所述第六沉积壁在第一方向上相距第三距离L3,
    所述第一、第二、第三子像素材料的倾斜沉积角分别为α1、α2、α3,其中α1、α2、α3分别为第一、第二、第三子像素材料的沉积方向与所述基板所成的角度并且都大于0度且小于90度,
    第一到第六沉积壁的高度分别为h1、h2、h3、h4、h5、h6,满足以下关系:
    h5>L3×tan(α1);
    h6>L3×tan(α2)。
  25. 根据权利要求23所述的OLED面板制作方法,其中
    所述第四子像素材料的倾斜沉积角为α4,其中α4为第四子像素材料的沉积方向与所述基板所成的角度并且大于0度且小于90度。
  26. 根据权利要求24所述的OLED面板制作方法,其中,
    所述第五沉积壁的高度h5和第六沉积壁的高度h6大于所述第一沉积壁的高度h1和第二沉积壁的高度h2,所述第一沉积壁与所述第五沉积壁具有位于同一平面内的内侧壁,所述第二沉积壁与所述第六沉积壁具有位于同一平面内的内侧壁。
  27. 根据权利要求25所述的OLED面板制作方法,其中,
    所述沉积掩膜包括两对第五沉积壁和第六沉积壁,所述第五沉积壁和所述第六沉积壁的第一对以及所述第五沉积壁和所述第六沉积壁的第二对分别位于成对的所述第一沉积壁和所述第二沉积壁的相反两侧,所述沉 积掩膜还包括在第二方向上相距第四距离L4、相对设置的两对第七沉积壁和第八沉积壁,所述第七沉积壁和所述第八沉积壁的第一对以及第七沉积壁和所述第八沉积壁的第二对分别位于成对的所述第三沉积壁和所述第四沉积壁的相反两侧,
    第七沉积壁和第八沉积壁的高度分别为h7和h8,满足以下关系:
    h7>L4×tan(α3);
    h8>L4×tan(α4),
    其中,所述第一沉积壁相对于所述第五沉积壁沿所述第一方向向所述像素区域的外侧偏移第二子像素区的宽度b2,所述第二沉积壁相对于所述第六沉积壁沿所述第一方向向所述像素区域的外侧偏移第一子像素区的宽度b1,所述第三沉积壁相对于所述第七沉积壁沿所述第二方向向所述像素区域的外侧偏移第四子像素区的宽度b4,所述第四沉积壁相对于所述第八沉积壁沿所述第二方向向所述像素区域的外侧偏移第三子像素区的宽度b3。
  28. 根据权利要求27所述的OLED面板制作方法,其中,所述第一沉积壁到所述第八沉积壁具有相同的高度。
  29. 根据权利要求24所述的OLED面板制作方法,其中,
    h1、h2的范围为1.8~95μm,h3、h4、h5、h6的范围为4.8~165μm。
  30. 根据权利要求28所述的OLED面板制作方法,其中,
    所述第一沉积壁到所述第八沉积壁中的每一个的高度的范围为5.4~346μm。
PCT/CN2017/085902 2016-06-02 2017-05-25 用于oled面板的像素布图的掩膜结构、oled面板及其制作方法 WO2017206792A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/737,185 US10510991B2 (en) 2016-06-02 2017-05-25 Mask structure for pixel layout of OLED panel, OLED panel and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610390355.5 2016-06-02
CN201610390355.5A CN105870158B (zh) 2016-06-02 2016-06-02 Oled面板、oled器件制作方法、用于oled的像素布图的掩膜结构

Publications (1)

Publication Number Publication Date
WO2017206792A1 true WO2017206792A1 (zh) 2017-12-07

Family

ID=56676587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085902 WO2017206792A1 (zh) 2016-06-02 2017-05-25 用于oled面板的像素布图的掩膜结构、oled面板及其制作方法

Country Status (3)

Country Link
US (1) US10510991B2 (zh)
CN (1) CN105870158B (zh)
WO (1) WO2017206792A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870158B (zh) * 2016-06-02 2019-04-26 京东方科技集团股份有限公司 Oled面板、oled器件制作方法、用于oled的像素布图的掩膜结构
CN106373982B (zh) * 2016-09-06 2017-11-24 京东方科技集团股份有限公司 显示基板及其制作方法、以及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367391A (zh) * 2013-06-28 2013-10-23 京东方科技集团股份有限公司 像素界定层及其制作方法、显示基板及显示装置
CN103378126A (zh) * 2012-04-24 2013-10-30 三星显示有限公司 有机发光二极管显示器及其制造方法
CN103529614A (zh) * 2013-10-30 2014-01-22 北京京东方光电科技有限公司 阵列基板、显示装置及其驱动方法
CN105870158A (zh) * 2016-06-02 2016-08-17 京东方科技集团股份有限公司 Oled面板、oled器件制作方法、用于oled的像素布图的掩膜结构
CN205645820U (zh) * 2016-06-02 2016-10-12 京东方科技集团股份有限公司 Oled面板以及用于oled的像素布图的掩膜结构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8421966B2 (en) * 2010-09-21 2013-04-16 Au Optronics Corporation Liquid crystal display comprising red, green, blue, and yellow sub-pixels having chromaticity on a CIE1931 chromaticity diagram wherein the sub-pixels have different areas
US9583034B2 (en) * 2010-10-15 2017-02-28 Lg Display Co., Ltd. Subpixel arrangement structure for display device
JP6433266B2 (ja) * 2014-11-28 2018-12-05 株式会社ジャパンディスプレイ 表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378126A (zh) * 2012-04-24 2013-10-30 三星显示有限公司 有机发光二极管显示器及其制造方法
CN103367391A (zh) * 2013-06-28 2013-10-23 京东方科技集团股份有限公司 像素界定层及其制作方法、显示基板及显示装置
CN103529614A (zh) * 2013-10-30 2014-01-22 北京京东方光电科技有限公司 阵列基板、显示装置及其驱动方法
CN105870158A (zh) * 2016-06-02 2016-08-17 京东方科技集团股份有限公司 Oled面板、oled器件制作方法、用于oled的像素布图的掩膜结构
CN205645820U (zh) * 2016-06-02 2016-10-12 京东方科技集团股份有限公司 Oled面板以及用于oled的像素布图的掩膜结构

Also Published As

Publication number Publication date
US20180175331A1 (en) 2018-06-21
US10510991B2 (en) 2019-12-17
CN105870158B (zh) 2019-04-26
CN105870158A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
JP6993804B2 (ja) マスク組立体、表示装置の製造装置、表示装置の製造方法、及び表示装置
CN109427855B (zh) 显示设备和制造显示设备的方法
CN109616500B (zh) 有机发光二极管面板及其制备方法、显示装置
WO2018161809A1 (zh) Oled阵列基板及其制造方法和显示装置
WO2017117999A1 (zh) 金属掩模板及其制作方法
WO2016004698A1 (zh) Oled显示器件及其制备方法、显示装置和蒸镀用掩模板
WO2018086370A1 (zh) 有机电致发光器件基板、显示装置及制造方法
WO2019127685A1 (zh) 显示面板制备方法、显示面板及显示装置
KR20130044118A (ko) 유기 el 표시 패널, 표시 장치, 및 유기 el 표시 패널의 제조 방법
WO2020042806A1 (zh) 显示基板、显示装置及显示基板的制造方法
KR20070101842A (ko) 유기 전계 발광 장치 및 그의 제조 방법
WO2018045799A1 (zh) 显示基板及其制作方法、以及显示装置
JP6329711B1 (ja) 有機el表示装置および有機el表示装置の製造方法
US10991884B2 (en) Mask plate, OLED display substrate, display device and manufacturing method thereof
WO2020224010A1 (zh) Oled 显示面板及其制备方法
WO2019105084A1 (zh) 像素界定层、显示基板、显示装置、喷墨打印方法
JP2011054290A (ja) 蒸着マスク及びその製造方法並びに自発光表示装置の製造方法
TWI757990B (zh) 透明顯示面板及其製造方法
WO2019064420A1 (ja) 蒸着マスク及び蒸着マスクの製造方法
WO2016004711A1 (en) Organic electroluminescence display panel
TW201839972A (zh) 畫素結構
US9269752B2 (en) Organic electroluminescence display
WO2020155464A1 (zh) 显示面板及其制备方法、电子装置
WO2017206792A1 (zh) 用于oled面板的像素布图的掩膜结构、oled面板及其制作方法
WO2016043175A1 (ja) 有機エレクトロルミネッセンス装置および有機エレクトロルミネッセンス装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15737185

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17805737

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17805737

Country of ref document: EP

Kind code of ref document: A1