WO2017198209A1 - 组合机器人及其巡航路径生成方法 - Google Patents

组合机器人及其巡航路径生成方法 Download PDF

Info

Publication number
WO2017198209A1
WO2017198209A1 PCT/CN2017/085030 CN2017085030W WO2017198209A1 WO 2017198209 A1 WO2017198209 A1 WO 2017198209A1 CN 2017085030 W CN2017085030 W CN 2017085030W WO 2017198209 A1 WO2017198209 A1 WO 2017198209A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
robot
combined
obstacle
combination
Prior art date
Application number
PCT/CN2017/085030
Other languages
English (en)
French (fr)
Inventor
汤进举
Original Assignee
科沃斯机器人股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科沃斯机器人股份有限公司 filed Critical 科沃斯机器人股份有限公司
Priority to EP17798772.4A priority Critical patent/EP3460614B1/en
Priority to US16/303,093 priority patent/US11014236B2/en
Publication of WO2017198209A1 publication Critical patent/WO2017198209A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4061Steering means; Means for avoiding obstacles; Details related to the place where the driver is accommodated
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection

Definitions

  • the invention relates to a combined robot and a cruise path generating method thereof, and belongs to the technical field of small household appliance manufacturing.
  • the mobile robot Since the mobile robot is widely used for its control and flexibility, the existing self-mobile robot has a single function and cannot meet the user's high intelligence, versatility and high efficiency for the self-mobile robot. In view of this, the combination robot emerges at the historic moment. . Since the combined robot is formed by a combination of a self-moving robot and a functional module, and the functional modules may be a combination of one or more, it is bound to increase the height of the self-moving robot.
  • the walking path of the combined robot is usually based on the working map formed by the motion scanning of the mobile robot in the working environment, and the optimal path is calculated based on the calculation.
  • the combined robot Since the height of the combined robot is greater than the height of the self-moving robot, when the walking according to the previous optimal path, the position that the self-moving robot can pass, perhaps due to the change of the actual environment height or size, or the occurrence of temporary obstacles, the combined robot cannot by.
  • the functional modules connected in the self-mobile robot have special requirements on the work area, such as the security module, the operation control of the special and important areas cannot be realized by walking according to the optimal path. Therefore, it is urgent to develop a cruise path generation method suitable for a combined robot.
  • the technical problem to be solved by the present invention is to provide a combined robot and a cruise path generating method thereof according to the deficiencies of the prior art, by artificially adjusting the planned path, and according to the actual path formed by the obstacle avoidance during walking.
  • the path is updated to generate the final walking path of the combined robot in a combination of multiple paths, ensuring that the walking of the combined robot is more efficient, reliable and convenient, and improving work efficiency.
  • a combined robot cruise path generating method comprising a self-mobile robot and a functional module connected thereto, comprising the following steps:
  • Step 100 Providing or generating a work map of the self-mobile robot
  • Step 200 Mark a target point on the work map
  • Step 300 According to the location of the target point in the work map, plan a running path from the starting point to the target point, and generate a planning path;
  • Step 400 The combined robot starts walking according to the planned path, and determines whether it is in the walking process. Obstacle encountered: if yes, adjust the path and update the planned path according to the walking path to form the actual path; otherwise, walk directly to form the actual path;
  • Step 500 Save the actual path as a cruise path of the combined robot.
  • the user can control the combination robot through the user terminal.
  • the adjustment path specifically includes:
  • Step 410 Determine whether the obstacle is a positive obstacle, and if so, the combined robot stops to be converted into a user operation obstacle avoidance, after completing the obstacle avoidance, continue to walk toward the target point; otherwise, proceed to step 420;
  • Step 420 Determine whether the obstacle is a side obstacle. If yes, the combined robot automatically fine-tunes, and after completing the fine adjustment, continues to walk toward the target point; otherwise, directly walks to form an actual path.
  • the step of continuing to the target point in the step 410 specifically includes: the position of the combined robot after the user manually operates the obstacle avoidance is the current position, and calculating the optimal position of the current position to return to the planned path. And continuing to walk back to the planned path according to the traveling direction of the optimal path.
  • the step of continuing to the target point in the step 410 specifically includes: the position of the combined robot after the user manually operates the obstacle avoidance is the current position, and calculating the optimal path of the current position to the target point, And continuing to walk toward the target point according to the traveling direction of the optimal path.
  • the step 100 further includes transmitting the provided or generated work map to the user terminal for retention, and the user can manipulate the combined robot through the user terminal.
  • step 300 of planning the running path from the starting point to the target point further includes: generating an optimal path, and the user manually determining whether the optimal path needs to be modified, and if yes, the user is at the terminal. After the path adjustment is directly performed, the process proceeds to step 400. Otherwise, the process proceeds directly to step 400.
  • the user terminal is configured with an application program for controlling the adjustment of the walking path of the combined robot.
  • the step 300 is to plan the running path from the starting point to the target point, and further includes: the user passing the user terminal The path is planned in a way that is directly depicted on the display.
  • the optimal path is the shortest path.
  • an alarm is first sent to remind the user that the walking is interrupted by the optimal path.
  • the obstacle described in the step 400 is a temporary obstacle.
  • the present invention also provides a combination robot comprising a self-moving robot and a functional module connected in combination to the self-mobile robot, wherein the self-mobile robot or the functional module is provided with a storage unit;
  • the combined robot includes a non-combined mode and a combined mode, when the mobile robot works alone, a combination mode, when the mobile robot is connected with the function module, is a combined mode; in the non-combined mode, providing or generating a work map of the self-mobile robot, marking the target point on the work map, according to the target Pointing the position in the work map, planning the running path from the starting point to the target point, and generating a planning path; in the combined mode, the combined robot walks in the working area according to the planned path, encountering obstacles during walking After the obstacle avoidance is adjusted, the planned path is updated, stored in the storage unit, and a cruise path is formed.
  • the combination robot further includes a user terminal that can interact with the combined robot information, and the user can adjust obstacle avoidance through the user terminal when encountering an obstacle during walking.
  • the function module is a combination of a security module, a humidification module and a purification module, or a plurality of sub-modules.
  • the user terminal includes a mobile device, remote control or tablet that is capable of wirelessly communicating with the combination robot.
  • the self-mobile robot is a sweeping robot.
  • the present invention provides a combined robot and a cruise path generating method thereof, which can adjust the planned path according to the artificial adjustment of the planned path and the actual path formed by the obstacle avoidance during walking.
  • the combined way to generate the final walking path of the combined robot ensures that the walking of the combined robot is more effective, reliable and convenient, and improves work efficiency.
  • FIG. 1 is a flow chart of a method for generating a cruise path of a combined robot according to the present invention
  • FIG. 2 is a schematic view showing the overall structure of the combination robot of the present invention.
  • FIG 3 is a schematic view of a walking path of the combination robot of the present invention.
  • FIG. 1 is a flow chart of a method for generating a cruise path of a combined robot according to the present invention.
  • the present invention provides a method for generating a combined robot cruise path.
  • the cruise path does not mean that the combined robot necessarily has a cruise function, that is, the cruise path can be regarded as a defined one.
  • a new walking path that can be called repeatedly.
  • the combination robot includes a self-mobile robot and a functional module connected thereto, and includes the following steps:
  • Step 100 Providing or generating a work map of the self-mobile robot
  • Step 200 Mark a target point on the work map
  • Step 300 According to the location of the target point in the work map, plan a running path from the starting point to the target point, and generate a planning path;
  • Step 400 The combined robot starts walking according to the planned path, and determines whether an obstacle is encountered during walking: if yes, adjust the path, and update the planned path according to the walking path to form an actual path; otherwise, directly walk Form an actual path;
  • Step 500 Save the actual path as a cruise path of the combined robot.
  • the user can control the combination robot through the user terminal.
  • the adjustment path specifically includes:
  • Step 410 Determine whether the obstacle is a positive obstacle, and if so, the combined robot stops to be converted into a user operation obstacle avoidance, after completing the obstacle avoidance, continue to walk toward the target point; otherwise, proceed to step 420;
  • Step 420 Determine whether the obstacle is a side obstacle. If yes, the combined robot automatically fine-tunes, and after completing the fine adjustment, continues to walk toward the target point; otherwise, directly walks to form an actual path.
  • the step of continuing to the target point in the step 410 specifically includes: the position of the combined robot after the user manually operates the obstacle avoidance is the current position, and calculating the optimal position of the current position to return to the planned path. And continuing to walk back to the planned path according to the traveling direction of the optimal path.
  • the step of continuing to the target point in the step 410 specifically includes: the position of the combined robot after the user manually operates the obstacle avoidance is the current position, and calculating the optimal path of the current position to the target point, And continuing to walk toward the target point according to the traveling direction of the optimal path.
  • the step 100 further includes transmitting the provided or generated work map to the user terminal for retention, and the user can manipulate the combined robot through the user terminal.
  • step 300 of planning the running path from the starting point to the target point further includes: generating an optimal path, and the user manually determining whether the optimal path needs to be modified, and if yes, the user is at the terminal. After the path adjustment is directly performed, the process proceeds to step 400. Otherwise, the process proceeds directly to step 400.
  • the user terminal is configured with an application program for controlling the adjustment of the walking path of the combined robot.
  • the step 300 is to plan the running path from the starting point to the target point, and further includes: the user passing the user terminal The path is planned in a way that is directly depicted on the display.
  • the optimal path is the shortest path.
  • an alarm is first sent to remind the user that the walking is interrupted by the optimal path.
  • the obstacle described in the step 400 is a temporary obstacle.
  • the present invention further provides a combination robot A, which includes a self-mobile robot 10 and a function module 20 coupled to the self-mobile robot 10, the self-mobile robot 10 or
  • the function module 20 is provided with a storage unit (not shown).
  • the combined robot includes a non-combined mode and a combined mode. When the mobile robot is working alone, it is a non-combined mode.
  • the combined mode When the mobile robot and the functional module are combined and connected together, the combined mode; in the non-combined mode, the provided or Generating a work map of the self-mobile robot, marking a target point on the work map, and planning a running path from the starting point to the target point according to the position of the target point in the work map, and generating a planning path; in the combined mode, The combined robot walks in the working area according to the planned path, encounters an obstacle during the walking process, updates the planned path after adjusting the obstacle avoidance, saves in the storage unit and forms a cruise path.
  • the combination robot further includes a user terminal that can interact with the combined robot information, and the user can adjust obstacle avoidance through the user terminal when encountering an obstacle during walking.
  • the function module 20 may be a combination of a security module, a humidification module, and a purification module, or a plurality of sub-modules, according to different needs of the user.
  • the user terminal includes a mobile device, remote control or tablet that is capable of wirelessly communicating with the combination robot.
  • the self-mobile robot 10 is a sweeping robot.
  • FIG. 3 is a schematic view of a walking path of the combination robot of the present invention. As shown in FIG. 1 and FIG. 2 and in conjunction with FIG. 3, the working process of the present invention will be described in detail below with reference to specific embodiments.
  • the working environment of the combination robot A is the room S, and the components constituting the combination robot S include a cleaning robot and a humidification module and a security module connected thereto.
  • the task that the combined robot A needs to accomplish is to move along the diagonal of the room S from the X point to the Y point.
  • the planned route D is calculated, when the combined robot A walks to the D1 position. Due to the height problem, it is impossible to pass through the obstacle M. Then, the user remotely avoids obstacles by the combination robot A through the terminal, and moves along the path G to the point F, at which time the obstacle M has been avoided.
  • the combination robot A continues to go from the F point to the Y point at this time, which can be completed in two ways: The first method is to calculate the shortest distance from the current point F to the planned path D, that is, return along the path H, and then continue along the planning. Path D completes the walk to point Y; the second method is to directly calculate the distance from the current point F to point Y, and follow the actual path I to point F. Then, the cruise path of the combination robot A may include the paths D, G, and I; or, the paths D, G, H, and J may be included.
  • the user needs to combine the robot A to start the security while humidifying Module, monitor whether the child in the entertainment corner P is safe, can directly draw or drag the planning path D into paths B and C through the application built in the user terminal, and complete the child's Security monitoring, the cruise path includes two sections B and C.
  • the cruise path generation method of the combined robot is completed based on the self-mobile robot 10 that can be constructed.
  • the walking path of the combined robot needs to be set according to the position of the target point.
  • the combined robot can either automatically generate the planned path, or the user can manually draw the path on the mobile device linked to the combined robot, and in any case, the user can modify the existing path on the mobile device.
  • the user can manually control the combined robot to avoid obstacles and automatically generate a new path by remote control.
  • the final path formed by combining the one or more paths described above forms the walking path of the combined robot and records it.
  • the combination robot can then cruise the work environment in accordance with the travel path.
  • the present invention provides a combined robot and a cruise path generating method thereof, which can adjust the planned path according to the artificial adjustment of the planned path and the actual path formed by the obstacle avoidance during walking.
  • the combined way to generate the final walking path of the combined robot ensures that the walking of the combined robot is more effective, reliable and convenient, and improves work efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

一种组合机器人(A)及其巡航路径生成方法,组合机器人(A)包括自移动机器人(10),巡航路径生成方法包括:提供或生成自移动机器人(10)的工作地图(S100);在工作地图上标注目标点(S200);根据目标点在工作地图中的位置,生成规划路径(D)(S300);组合机器人(A)按照规划路径(D)开始行走,并判断是否在行走过程中遇到障碍物(M)(S400):如果是,则根据与障碍物(M)相遇的相对位置选择不同的路径调整方式,并根据行走路径更新规划路径(D)形成实际路径;否则直接行走形成实际路径;保存实际路径,作为组合机器人(A)的巡航路径(S500)。组合机器人(A)的巡航路径生成方法能以多种路径组合的方式生成最终的行走路径,确保了组合机器人(A)的行走更加有效、可靠和便捷,提高工作效率。

Description

组合机器人及其巡航路径生成方法 技术领域
本发明涉及一种组合机器人及其巡航路径生成方法,属于小家电制造技术领域。
背景技术
自移动机器人以其控制方便行动灵活得到广泛应用,但现有的自移动机器人功能单一,无法满足用户对自移动机器人高智能、多功能和高效能的需求,有鉴于此,组合机器人应运而生。由于组合机器人是通过自移动机器人和功能模块组合连接而成,而且所述的功能模块可能为一种或多种的组合,势必会增加自移动机器人的高度。而组合机器人的行走路径通常是基于自移动机器人在工作环境中运动扫描形成的工作地图,并在其基础上计算规划出最优路径。由于组合机器人的高度大于自移动机器人的高度,当按照之前最优路径行走时,自移动机器人能够通过的地方,也许由于实际环境高矮或大小的变化,或者临时障碍物的出现,使组合机器人无法通过。同时,如果组合连接在自移动机器人上的功能模块对作业区域有特殊要求,例如:安防模块,则无法通过按照最优路径行走的方式实现对特殊、重要区域的作业控制。因此,亟待研发一种适用于组合机器人的巡航路径生成方法。
发明内容
本发明所要解决的技术问题在于针对现有技术的不足,提供一种组合机器人及其巡航路径生成方法,通过对规划路径的人为调整,并根据行走时对障碍物躲避所形成的实际路径对规划路径进行更新,以多种路径组合的方式生成组合机器人最终的行走路径,确保了组合机器人的行走更加有效、可靠和便捷,提高工作效率。
本发明所要解决的技术问题是通过如下技术方案实现的:
一种组合机器人巡航路径生成方法,所述组合机器人包括自移动机器人和与其组合连接的功能模块,包括如下步骤:
步骤100:提供或生成所述自移动机器人的工作地图;
步骤200:在所述工作地图上标注目标点;
步骤300:根据目标点在工作地图中的位置,规划自起点到目标点的运行路径,生成规划路径;
步骤400:所述组合机器人按照所述规划路径开始行走,并判断是否在行走过程 中遇到障碍物:如果是,则调整路径,并根据行走路径更新所述规划路径形成实际路径;否则直接行走形成实际路径;
步骤500:保存所述实际路径,作为组合机器人的巡航路径。
为了方便操作,用户能够通过用户终端操控所述组合机器人,在所述步骤400中遇到障碍物时,调整路径具体包括:
步骤410:判断障碍物是否为正面障碍物,如果是,组合机器人停机转换为用户操作避障,完成避障后,继续向目标点行走;否则进入步骤420;
步骤420:判断障碍物是否为侧面障碍物,如果是,组合机器人自动微调,完成微调后,继续向目标点行走;否则,直接行走形成实际路径。
进一步地,所述步骤410中的继续向目标点行走具体包括:所述组合机器人在用户手动操作成功避障后所在的位置为当前位置,计算所述当前位置回到所述规划路径的最优路径,并按照所述最优路径的行走方向回到所述规划路径继续行走。
或者,所述步骤410中的继续向目标点行走具体包括:所述组合机器人在用户手动操作成功避障后所在的位置为当前位置,计算所述当前位置到所述目标点的最优路径,并按照所述最优路径的行走方向朝所述目标点继续行走。
所述组合机器人配备有用户终端时,所述步骤100还进一步包括将提供或生成的所述工作地图发送给所述用户终端留存,用户可以通过所述用户终端操控所述组合机器人。
另外,所述步骤300所述规划自起点到目标点的运行路径,还包括:生成最优路径,且用户人为判断是否需要对所述最优路径进行修改,如果是,则用户在所述终端上直接进行路径调整后,进入步骤400,否则,直接进入步骤400。
为了便于控制,所述用户终端上对应设置有用于控制调整组合机器人行走路径的应用程序,所述步骤300所述规划自起点到目标点的运行路径,还包括:用户通过在所述用户终端的显示器上直接描绘的方式对路径进行规划。
需要说明的是,所述最优路径为最短路径。
另外,所述步骤410中,在所述组合机器人停机转换为用户手动操作避障之前,先报警以提醒用户以所述最优路径行走发生中断。
所述步骤400中所述的障碍物为临时障碍物。
本发明还提供一种组合机器人,所述组合机器人包括自移动机器人及组合连接在所述自移动机器人上的功能模块,所述自移动机器人上或所述功能模块上设有存储单元;所述组合机器人包括非组合模式和组合模式,当自移动机器人单独工作时,为非 组合模式,当自移动机器人与功能模块组合连接在一起时,为组合模式;在非组合模式下,提供或生成所述自移动机器人的工作地图,在所述工作地图上标注目标点,根据目标点在工作地图中的位置,规划自起点到目标点的运行路径,生成规划路径;在组合模式下,所述组合机器人按照规划路径在所述工作区域内行走,在行走过程中遇到障碍物,调整避障后对所述规划路径进行更新,保存在所述存储单元并形成巡航路径。
所述组合机器人还包括可与所述组合机器人信息交互的用户终端,在行走过程中遇到障碍物时,用户能够通过所述用户终端调整避障。
根据用户的不同需求,所述功能模块为安防模块、加湿模块和净化模块其中一种子模块或多种子模块组合而成。
为了便于操作,所述用户终端包括能够与所述组合机器人无线通讯的移动设备、遥控器或平板电脑。
在本发明的实施例中,所述自移动机器人为扫地机器人。
综上所述,本发明提供一种组合机器人及其巡航路径生成方法,通过对规划路径的人为调整,并根据行走时对障碍物躲避所形成的实际路径对规划路径进行更新,以多种路径组合的方式生成组合机器人最终的行走路径,确保了组合机器人的行走更加有效、可靠和便捷,提高工作效率。
下面结合附图和具体实施例,对本发明的技术方案进行详细地说明。
附图说明
图1为本发明组合机器人巡航路径生成方法的流程图;
图2为本发明组合机器人的整体结构示意图;
图3为本发明组合机器人行走路径示意图。
具体实施方式
图1为本发明组合机器人巡航路径生成方法的流程图。如图1所示,本发明提供一种组合机器人巡航路径生成方法,需要注意的是,该巡航路径并不意味着组合机器人必然具有巡航功能,也即是说,该巡航路径可以视作为定义一条可以被重复调用的新的行走路径。所述组合机器人包括自移动机器人和与其组合连接的功能模块,包括如下步骤:
步骤100:提供或生成所述自移动机器人的工作地图;
步骤200:在所述工作地图上标注目标点;
步骤300:根据目标点在工作地图中的位置,规划自起点到目标点的运行路径,生成规划路径;
步骤400:所述组合机器人按照所述规划路径开始行走,并判断是否在行走过程中遇到障碍物:如果是,则调整路径,并根据行走路径更新所述规划路径形成实际路径;否则直接行走形成实际路径;
步骤500:保存所述实际路径,作为组合机器人的巡航路径。
为了方便操作,用户能够通过用户终端操控所述组合机器人,在所述步骤400中遇到障碍物时,调整路径具体包括:
步骤410:判断障碍物是否为正面障碍物,如果是,组合机器人停机转换为用户操作避障,完成避障后,继续向目标点行走;否则进入步骤420;
步骤420:判断障碍物是否为侧面障碍物,如果是,组合机器人自动微调,完成微调后,继续向目标点行走;否则,直接行走形成实际路径。
进一步地,所述步骤410中的继续向目标点行走具体包括:所述组合机器人在用户手动操作成功避障后所在的位置为当前位置,计算所述当前位置回到所述规划路径的最优路径,并按照所述最优路径的行走方向回到所述规划路径继续行走。
或者,所述步骤410中的继续向目标点行走具体包括:所述组合机器人在用户手动操作成功避障后所在的位置为当前位置,计算所述当前位置到所述目标点的最优路径,并按照所述最优路径的行走方向朝所述目标点继续行走。
所述组合机器人配备有用户终端时,所述步骤100还进一步包括将提供或生成的所述工作地图发送给所述用户终端留存,用户可以通过所述用户终端操控所述组合机器人。
另外,所述步骤300所述规划自起点到目标点的运行路径,还包括:生成最优路径,且用户人为判断是否需要对所述最优路径进行修改,如果是,则用户在所述终端上直接进行路径调整后,进入步骤400,否则,直接进入步骤400。
为了便于控制,所述用户终端上对应设置有用于控制调整组合机器人行走路径的应用程序,所述步骤300所述规划自起点到目标点的运行路径,还包括:用户通过在所述用户终端的显示器上直接描绘的方式对路径进行规划。
需要说明的是,所述最优路径为最短路径。
另外,所述步骤410中,在所述组合机器人停机转换为用户手动操作避障之前,先报警以提醒用户以所述最优路径行走发生中断。
所述步骤400中所述的障碍物为临时障碍物。
图2为本发明组合机器人的整体结构示意图。如图2所示,本发明还提供一种组合机器人A,所述组合机器人包括自移动机器人10及组合连接在所述自移动机器人10上的功能模块20,所述自移动机器人10上或所述功能模块20上设有存储单元(图中未示出)。所述组合机器人包括非组合模式和组合模式,当自移动机器人单独工作时,为非组合模式,当自移动机器人与功能模块组合连接在一起时,为组合模式;在非组合模式下,提供或生成所述自移动机器人的工作地图,在所述工作地图上标注目标点,根据目标点在工作地图中的位置,规划自起点到目标点的运行路径,生成规划路径;在组合模式下,所述组合机器人按照规划路径在所述工作区域内行走,在行走过程中遇到障碍物,调整避障后对所述规划路径进行更新,保存在所述存储单元并形成巡航路径。
所述组合机器人还包括可与所述组合机器人信息交互的用户终端,在行走过程中遇到障碍物时,用户能够通过所述用户终端调整避障。
根据用户的不同需求,所述功能模块20可以为安防模块、加湿模块和净化模块其中一种子模块或多种子模块组合而成。
为了便于操作,所述用户终端包括能够与所述组合机器人无线通讯的移动设备、遥控器或平板电脑。
在本发明的实施例中,所述自移动机器人10为扫地机器人。
图3为本发明组合机器人行走路径示意图。如图1、图2并结合图3所示,以下结合具体实施例对本发明的工作过程进行详细地说明。
如图3所示,组合机器人A的工作环境就是房间S,构成该组合机器人S的组成部分包括了扫地机器人和连接在其上的加湿模块和安防模块。组合机器人A需要完成的任务是沿房间S的对角线,从X点运动到Y点进行加湿,按照扫地机器人保存的工作地图计算出的是规划路线D,当组合机器人A行走到D1位置时,由于高度问题,无法从障碍物M处通过。于是,用户通过终端对组合机器人A进行遥控避障,沿着路径G运动到F点,此时已经避开障碍物M。组合机器人A此时从F点继续走到Y点,可以通过两种方式来完成:方式一是计算从当前F点返回到规划路径D的最短距离,即:沿路径H返回,随后继续沿规划路径D完成到Y点的行走;方式二是直接计算从当前F点到Y点的距离,并按照实际路径I走到F点。那么,组合机器人A的巡航路径可以包括路径D、G和I;或者,可以包括路径D、G、H和J。除此之外,在房间S中,还有一个孩子的娱乐角P,用户需要组合机器人A在加湿的同时,启动安防 模块,监控下在娱乐角P的孩子是否安全,可以通过内置在用户终端上的应用程序,直接手动描绘或拖拽规划路径D成路径B和C,在给房间S加湿的同时完成对孩子的安全监控,巡航路径包括了B、C两段。
总之,本发明所提供的组合机器人的巡航路径生成方法是基于可以建图的自移动机器人10来完成的。在自移动机器人10建好的工作地图基础上,根据目标点的位置需要设置组合机器人的行走路径。组合机器人既可以自动生成规划路径,又或者可以由用户手动在与组合机器人链接的移动设备上绘制路径,并且在任意情况下,用户都可以在移动设备上修改已有路径。在此基础上,当组合机器人在按照规划路径行走移动的过程中遇到障碍物时,用户可以通过遥控的方式手动控制组合机器人躲避障碍物并自主生成新的路径。将上述一种或多种路径组合在一起所形成的最终路径便形成组合机器人的行走路径并保存记录下来。组合机器人随后可以按照该行走路径在工作环境中巡航作业。
综上所述,本发明提供一种组合机器人及其巡航路径生成方法,通过对规划路径的人为调整,并根据行走时对障碍物躲避所形成的实际路径对规划路径进行更新,以多种路径组合的方式生成组合机器人最终的行走路径,确保了组合机器人的行走更加有效、可靠和便捷,提高工作效率。

Claims (15)

  1. 一种组合机器人巡航路径生成方法,所述组合机器人包括自移动机器人和与其组合连接的功能模块,其特征在于,包括如下步骤:
    步骤100:提供或生成所述自移动机器人的工作地图;
    步骤200:在所述工作地图上标注目标点;
    步骤300:根据目标点在工作地图中的位置,规划自起点到目标点的运行路径,生成规划路径;
    步骤400:所述组合机器人按照所述规划路径开始行走,并判断是否在行走过程中遇到障碍物:如果是,则调整路径,并根据行走路径更新所述规划路径形成实际路径;否则直接行走形成实际路径;
    步骤500:保存所述实际路径,作为组合机器人的巡航路径。
  2. 如权利要求1所述的方法,其特征在于,用户能够通过用户终端操控所述组合机器人,在所述步骤400中遇到障碍物时,调整路径具体包括:
    步骤410:判断障碍物是否为正面障碍物,如果是,组合机器人停机转换为用户操作避障,完成避障后,继续向目标点行走;否则进入步骤420;
    步骤420:判断障碍物是否为侧面障碍物,如果是,组合机器人自动微调,完成微调后,继续向目标点行走;否则,直接行走形成实际路径。
  3. 如权利要求2所述的方法,其特征在于,所述步骤410中的继续向目标点行走具体包括:所述组合机器人在用户手动操作成功避障后所在的位置为当前位置,计算所述当前位置回到所述规划路径的最优路径,并按照所述最优路径的行走方向回到所述规划路径继续行走。
  4. 如权利要求2所述的方法,其特征在于,所述步骤410中的继续向目标点行走具体包括:所述组合机器人在用户手动操作成功避障后所在的位置为当前位置,计算所述当前位置到所述目标点的最优路径,并按照所述最优路径的行走方向朝所述目标点继续行走。
  5. 如权利要求1所述的方法,其特征在于,所述组合机器人配备有用户终端时,所述步骤100还包括将提供或生成的所述工作地图发送给所述用户终端留存,用户可以通过所述用户终端操控所述组合机器人。
  6. 如权利要求5所述的方法,其特征在于,所述步骤300所述规划自起点到目标点的运行路径,还包括:生成最优路径,且用户人为判断是否需要对所述最优路径进行修改,如果是,则用户在所述终端上直接进行路径调整后,进入步骤400,否则,直接进入步骤400。
  7. 如权利要求5所述的方法,其特征在于,所述用户终端上对应设置有用于控制调整组合机器人行走路径的应用程序,所述步骤300所述规划自起点到目标点的运行路径,还包括:用户通过在所述用户终端的显示器上直接描绘的方式对路径进行规划。
  8. 如权利要求3、4或6任一项所述的方法,其特征在于,所述最优路径为最短路径。
  9. 如权利要求2所述的方法,其特征在于,所述步骤410中,在所述组合机器人停机转换为用户手动操作避障之前,先报警以提醒用户以所述最优路径行走发生中断。
  10. 如权利要求1所述的方法,其特征在于,所述步骤400中所述的障碍物为临时障碍物。
  11. 一种组合机器人,其特征在于,所述组合机器人(A)包括自移动机器人(10)及组合连接在所述自移动机器人上的功能模块(20),所述自移动机器人上或所述功能模块上设有存储单元;
    所述组合机器人包括非组合模式和组合模式,当自移动机器人单独工作时,为非组合模式,当自移动机器人与功能模块组合连接在一起时,为组合模式;
    在非组合模式下,自移动机器人对工作区域建立工作地图,保存在所述存储单元并将所述工作地图预存并发送给用户终端留存;
    在组合模式下,所述组合机器人按照规划路径在所述工作区域内行走,在行走过程中遇到障碍物,调整避障后对所述规划路径进行更新,保存在所述存储单元并形成巡航路径。
  12. 如权利要求11所述的组合机器人,其特征在于,所述组合机器人还包括可与所述组合机器人信息交互的用户终端,在行走过程中遇到障碍物时,用户能够通过所述用户终端调整避障。
  13. 如权利要求12所述的组合机器人,其特征在于,所述功能模块(200)为安防模块、加湿模块和净化模块其中一种子模块或多种子模块组合而成。
  14. 如权利要求13所述的组合机器人,其特征在于,所述用户终端包括能够与所述组合机器人无线通讯的移动设备、遥控器或平板电脑。
  15. 如权利要求11所述的组合机器人,其特征在于,所述自移动机器人为扫地机器人。
PCT/CN2017/085030 2016-05-19 2017-05-19 组合机器人及其巡航路径生成方法 WO2017198209A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17798772.4A EP3460614B1 (en) 2016-05-19 2017-05-19 Combined robot and cruising path generation method therefor
US16/303,093 US11014236B2 (en) 2016-05-19 2017-05-19 Combined robot and cruise path generating method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610339870.0A CN107402567A (zh) 2016-05-19 2016-05-19 组合机器人及其巡航路径生成方法
CN201610339870.0 2016-05-19

Publications (1)

Publication Number Publication Date
WO2017198209A1 true WO2017198209A1 (zh) 2017-11-23

Family

ID=60325707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085030 WO2017198209A1 (zh) 2016-05-19 2017-05-19 组合机器人及其巡航路径生成方法

Country Status (4)

Country Link
US (1) US11014236B2 (zh)
EP (1) EP3460614B1 (zh)
CN (1) CN107402567A (zh)
WO (1) WO2017198209A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108742346A (zh) * 2018-06-27 2018-11-06 杨扬 遍历工作环境的方法及建立栅格地图的方法
WO2019214039A1 (zh) * 2018-05-08 2019-11-14 平安科技(深圳)有限公司 一种扫地机器人控制方法、设备、扫地机器人及存储介质
CN111179352A (zh) * 2019-09-09 2020-05-19 浙江国自机器人技术有限公司 一种巡检机器人工作点位的同构定位方法
WO2020140682A1 (zh) * 2019-01-02 2020-07-09 京东方科技集团股份有限公司 与机器人服务有关的方法及相关***、可读存储介质
CN112050813A (zh) * 2020-08-08 2020-12-08 浙江科聪控制技术有限公司 一种用于防暴一区移动机器人的激光导航***

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10850389B2 (en) 2017-05-30 2020-12-01 Arizona Board Of Regents On Behalf Of Arizona State University Systems and methods for a multi-axis robotic platform for studying neuromechanics of an ankle joint
EP3476549A1 (en) * 2017-10-27 2019-05-01 Creaholic SA Hardware module, robotic system, and method for operating the robotic system
JP2019109845A (ja) * 2017-12-20 2019-07-04 東芝ライフスタイル株式会社 自律型電気掃除機
CN108876118B (zh) * 2018-05-31 2020-12-25 北京智行者科技有限公司 一种清扫任务执行方法
CN108897317B (zh) * 2018-06-14 2021-03-26 上海大学 一种自动导引小车agv的路径寻优方法、相关装置及存储介质
CN110766973A (zh) * 2018-07-27 2020-02-07 比亚迪股份有限公司 智能寻车方法、装置、***、服务器和巡航智能设备
CN109048917B (zh) * 2018-09-12 2021-06-29 南方电网电力科技股份有限公司 机器人自动控制方法、装置、设备及计算机可读存储介质
CN109240298B (zh) * 2018-09-27 2020-12-15 北京理工大学 一种基于摄像头及可见光定位的智能***
CN109445438B (zh) * 2018-12-05 2022-03-04 英华达(上海)科技有限公司 基于地图分享的巡航装置的巡航控制方法及***
CN111367301A (zh) * 2018-12-26 2020-07-03 珠海市一微半导体有限公司 扫地机器人的清扫规划方法、***和芯片
CN110044004A (zh) * 2019-04-25 2019-07-23 宁波奥克斯电气股份有限公司 移动空调智能排水控制方法、排水控制装置及移动空调
CN110338708B (zh) * 2019-06-21 2021-04-09 华为技术有限公司 一种扫地机器人的清扫控制方法及设备
US11432694B2 (en) * 2019-07-05 2022-09-06 Lg Electronics Inc. Travel method of intelligent robot cleaner
CN110471409B (zh) * 2019-07-11 2022-12-02 深圳市优必选科技股份有限公司 机器人巡检方法、装置、计算机可读存储介质及机器人
CN110495819B (zh) * 2019-07-24 2021-05-18 华为技术有限公司 机器人的控制方法、机器人、终端、服务器及控制***
CN111930113A (zh) * 2020-06-30 2020-11-13 创新工场(北京)企业管理股份有限公司 一种为自主导航机器人设置行驶路径的方法与装置
CN111938513B (zh) * 2020-06-30 2021-11-09 珠海市一微半导体有限公司 一种机器人越障的沿边路径选择方法、芯片及机器人
CN113359720B (zh) * 2021-05-31 2024-05-24 上海高仙自动化科技发展有限公司 移动设备避障方法、装置、电子设备及计算机可读存储介质
CN115705045A (zh) * 2021-08-03 2023-02-17 北京小米移动软件有限公司 可移动设备的自主巡航方法、装置及可移动设备
CN114055462B (zh) * 2021-09-18 2023-05-16 特斯联科技集团有限公司 巡检机器人及其控制方法
CN114047757B (zh) * 2021-11-05 2023-05-19 季华实验室 一种多agv路径评估规划方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101769754A (zh) * 2010-01-19 2010-07-07 湖南大学 一种基于类三维地图的移动机器人全局路径规划方法
US20110054689A1 (en) * 2009-09-03 2011-03-03 Battelle Energy Alliance, Llc Robots, systems, and methods for hazard evaluation and visualization
US20120189507A1 (en) * 2011-01-24 2012-07-26 Ko Joseph Y Modular automatic traveling apparatus
CN103576686A (zh) * 2013-11-21 2014-02-12 中国科学技术大学 一种机器人自主导引及避障的方法
CN204631616U (zh) * 2015-05-13 2015-09-09 美的集团股份有限公司 机器人
CN105433878A (zh) * 2014-09-24 2016-03-30 三星电子株式会社 机器人清洁器及包括机器人清洁器的机器人清洁***

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0168189B1 (ko) 1995-12-01 1999-02-01 김광호 로보트의 환경인식장치 및 그 제어방법
JP4157731B2 (ja) * 2002-07-01 2008-10-01 日立アプライアンス株式会社 ロボット掃除機及びロボット掃除機制御プログラム
US8965578B2 (en) 2006-07-05 2015-02-24 Battelle Energy Alliance, Llc Real time explosive hazard information sensing, processing, and communication for autonomous operation
US8234068B1 (en) * 2009-01-15 2012-07-31 Rockwell Collins, Inc. System, module, and method of constructing a flight path used by an avionics system
DE102009052629A1 (de) 2009-11-10 2011-05-12 Vorwerk & Co. Interholding Gmbh Verfahren zur Steuerung eines Roboters
CN103092205A (zh) 2013-02-18 2013-05-08 福建师范大学 一种基于预设运动路径的移动机器人及其控制方法
US9229453B1 (en) * 2014-08-29 2016-01-05 GM Global Technology Operations LLC Unified motion planner for autonomous driving vehicle in avoiding the moving obstacle
US9227632B1 (en) * 2014-08-29 2016-01-05 GM Global Technology Operations LLC Method of path planning for evasive steering maneuver
US20160357262A1 (en) * 2015-06-05 2016-12-08 Arafat M.A. ANSARI Smart vehicle
US9836056B2 (en) * 2015-06-05 2017-12-05 Bao Tran Smart vehicle
US9711050B2 (en) * 2015-06-05 2017-07-18 Bao Tran Smart vehicle
US20160357187A1 (en) * 2015-06-05 2016-12-08 Arafat M.A. ANSARI Smart vehicle
WO2018175349A1 (en) * 2017-03-19 2018-09-27 Zunum Aero, Inc. Hybrid-electric aircraft, and methods, apparatus and systems for facilitating same
US10816993B1 (en) * 2019-11-23 2020-10-27 Ha Q Tran Smart vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110054689A1 (en) * 2009-09-03 2011-03-03 Battelle Energy Alliance, Llc Robots, systems, and methods for hazard evaluation and visualization
CN101769754A (zh) * 2010-01-19 2010-07-07 湖南大学 一种基于类三维地图的移动机器人全局路径规划方法
US20120189507A1 (en) * 2011-01-24 2012-07-26 Ko Joseph Y Modular automatic traveling apparatus
CN103576686A (zh) * 2013-11-21 2014-02-12 中国科学技术大学 一种机器人自主导引及避障的方法
CN105433878A (zh) * 2014-09-24 2016-03-30 三星电子株式会社 机器人清洁器及包括机器人清洁器的机器人清洁***
CN204631616U (zh) * 2015-05-13 2015-09-09 美的集团股份有限公司 机器人

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3460614A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019214039A1 (zh) * 2018-05-08 2019-11-14 平安科技(深圳)有限公司 一种扫地机器人控制方法、设备、扫地机器人及存储介质
CN108742346A (zh) * 2018-06-27 2018-11-06 杨扬 遍历工作环境的方法及建立栅格地图的方法
WO2020140682A1 (zh) * 2019-01-02 2020-07-09 京东方科技集团股份有限公司 与机器人服务有关的方法及相关***、可读存储介质
US11687095B2 (en) 2019-01-02 2023-06-27 Boe Technology Group Co., Ltd. Method, related system, and readable storage medium related to robot service
CN111179352A (zh) * 2019-09-09 2020-05-19 浙江国自机器人技术有限公司 一种巡检机器人工作点位的同构定位方法
CN111179352B (zh) * 2019-09-09 2023-06-16 浙江国自机器人技术有限公司 一种巡检机器人工作点位的同构定位方法
CN112050813A (zh) * 2020-08-08 2020-12-08 浙江科聪控制技术有限公司 一种用于防暴一区移动机器人的激光导航***
CN112050813B (zh) * 2020-08-08 2022-08-02 浙江科聪控制技术有限公司 一种用于防暴一区移动机器人的激光导航***

Also Published As

Publication number Publication date
EP3460614B1 (en) 2022-08-24
CN107402567A (zh) 2017-11-28
US11014236B2 (en) 2021-05-25
EP3460614A4 (en) 2019-08-21
US20190314987A1 (en) 2019-10-17
EP3460614A1 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
WO2017198209A1 (zh) 组合机器人及其巡航路径生成方法
US10874045B2 (en) Robotic mowing of separated lawn areas
WO2017198207A1 (zh) 自移动机器人及地图构建方法、组合机器人地图调用方法
WO2018171735A1 (zh) 应用于移动设备的虚拟墙***及其实现方法
WO2017088811A1 (zh) 自移动机器人及其行走模式转换方法和行走方法
WO2016074628A1 (zh) 自移动机器人构建地图的方法及利用该地图的作业方法
CN109892311A (zh) 一种用于果园作业的自主导航喷药机器人及其工作方法
US20070219667A1 (en) Home network system and method for an autonomous mobile robot to travel shortest path
CN107976998A (zh) 一种割草机器人地图创建与路径规划***及方法
TW201434546A (zh) 一種沿邊導航向中擴展的清潔機器人的清潔方法
CN108575095B (zh) 自移动设备及其定位***、定位方法和控制方法
CN105684630A (zh) 一种远程控制智能草坪艺术修整机
CN110507246B (zh) 避障回充方法及具有激光雷达的清洁设备避障回充***
TW202121091A (zh) 移動機器人
CN105786000B (zh) 一种机器人在规划路径上的定位方法及定位***
CN108363395A (zh) 一种agv自主避障的方法
JP2004133882A (ja) 自律性マルチプラットフォーム・ロボットシステム
CN114740849B (zh) 基于行人步行决策规则的移动机器人自主导航方法及装置
WO2023035601A1 (zh) 一种机器人行走路径规划方法及其机器人、存储介质
CN116149314A (zh) 机器人全覆盖作业方法、装置及机器人
CN210494423U (zh) 具有智能导航功能的轮椅
TWI737348B (zh) 載具系統
WO2024104381A1 (en) Carpet cleaning method based on user editing, device, and computer-readable storage medium
Wang Research and Design of Intelligent Anti-epidemic Disinfection Robot Based on ROS
CN117873059A (zh) 建立工作区域地图的方法和自动机器人

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017798772

Country of ref document: EP

Effective date: 20181219