WO2017198037A1 - 基于AoA的UWB定位*** - Google Patents

基于AoA的UWB定位*** Download PDF

Info

Publication number
WO2017198037A1
WO2017198037A1 PCT/CN2017/081564 CN2017081564W WO2017198037A1 WO 2017198037 A1 WO2017198037 A1 WO 2017198037A1 CN 2017081564 W CN2017081564 W CN 2017081564W WO 2017198037 A1 WO2017198037 A1 WO 2017198037A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving
aoa
module
uwb
positioning system
Prior art date
Application number
PCT/CN2017/081564
Other languages
English (en)
French (fr)
Inventor
王强
张润玺
何弢
廖文龙
张建飞
赵磊
黄定
刘力源
Original Assignee
安徽酷哇机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽酷哇机器人有限公司 filed Critical 安徽酷哇机器人有限公司
Publication of WO2017198037A1 publication Critical patent/WO2017198037A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/04Position of source determined by a plurality of spaced direction-finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/50Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems the waves arriving at the antennas being pulse modulated and the time difference of their arrival being measured

Definitions

  • the invention relates to the field of sensor measurement, and in particular to an AoA-based Ultra Wideband (UWB) positioning system.
  • UWB Ultra Wideband
  • the more commonly used local positioning method is based on the Received Signal Strength (RSS) positioning method based on the Arrival of Angle (AoA) positioning method, based on the Time of Arrive (TOA) positioning method and A positioning method based on Time Difference Of Arrive (TDOA).
  • RSS Received Signal Strength
  • AoA Arrival of Angle
  • TOA Time of Arrive
  • TDOA Time Difference Of Arrive
  • the advantage of the positioning method based on received signal strength is the low cost of the hardware, because most buildings have a Wireless Local Area Network (WLAN), but the signal strength based positioning accuracy is low, and it is easy to be surrounded by the surrounding area. Environmental interference.
  • WLAN Wireless Local Area Network
  • TOA-based ultrasonic positioning has a long history. Compared with signal intensity based positioning, the accuracy of TOA-based ultrasonic positioning is better (about 10 cm), but there are also shortcomings such as short measuring range and poor directivity.
  • An AoA-based UWB positioning system includes: a transmitting module, a plurality of receiving modules, and a signal processing module; wherein the transmitting module is configured to transmit a signal; and the plurality of receiving modules are configured to receive a transmitting module
  • the signal processing module is configured to calculate an angle of the transmitting point and the plurality of receiving points according to the AoA algorithm, and obtain a positional relationship between the transmitting point and the receiving point after being fused.
  • the transmitting module comprises: one UWB transmitting unit and one antenna; the plurality of receiving modules can form a plurality of receiving mechanisms, and each receiving mechanism comprises: at least two sets of UWB receiving units and at least two sets of antennas.
  • the plurality of receiving modules comprise a total of N sets of UWB receiving units and M sets of antennas, wherein N and M are natural numbers greater than or equal to 2, and N is less than or equal to M; at a certain time, the N sets of UWB receiving units are Any one of the UWB receiving units can be connected to the M group antenna through the radio frequency switch and not yet connected by the UWB receiving unit. Connect any of the connected antennas.
  • a time interval is set, and L UWB receiving units are respectively connected to the L group antennas in one time interval to form a receiving module, and L is a natural number greater than or equal to 2 and less than or equal to M or N; get The receiving mechanism of different combinations.
  • the signal processing module comprises an AoA algorithm module, a data filtering module and a weighted averaging module;
  • the AoA algorithm module is configured to calculate an angle of arrival between a transmitting module and a receiving module
  • the data filtering sub-module is configured to perform filtering processing on multiple sets of AoA data received by the receiving module
  • the weighted average sub-module is configured to perform weighted averaging processing on multiple sets of AoA data measured by multiple receiving modules on the same receiving point to obtain an AoA value at the receiving point.
  • the data filtering sub-module performs a filtering process, that is, sorts the first n times of AoA data of a receiving module, and takes an intermediate value as the AoA result of the filtering.
  • the weighted average processing of the weighted average sub-module wherein the determination of the weight is mainly based on the following:
  • the plurality of receiving modules comprise two UWB receiving chips and four antennas; the four antennas are distributed on four squares of one square to form a square antenna array, and each receiving chip can be controlled by the control of the radio frequency switch. Any two antennas in the root antenna are connected. This makes it possible to obtain a combination of the four modes.
  • only two adjacent antennas can be respectively connected to two UWB receiving chips, and constitute a set of receiving modules for AoA measurement.
  • the side length of the square is equal to half the wavelength used by the UWB radio frequency signal.
  • the present invention has the following beneficial effects:
  • the present invention can position a target with high precision, and the positioning accuracy based on the angle does not change with the change of the distance.
  • the present invention can accurately locate even if there is occlusion between the target and the reference during the positioning process.
  • the invention adopts the switch switching scheme to effectively reduce the number of UWB receiving units, thereby reducing the cost.
  • 1 is a schematic view showing the distribution of an antenna in the present invention
  • FIG. 2 is a schematic diagram of an antenna switching process
  • FIG. 3 is a schematic diagram showing an angle of a receiving node of an antenna array in a transmitting phase
  • FIG. 4 is a schematic diagram of a delay relationship between adjacent antennas
  • the basic principle of the invention is to provide a target transmitting module and a receiving module, the receiving module comprising a receiving module and an antenna array.
  • the antenna arrays are distributed in a square shape.
  • the receiving module includes two signal receiving chips, and the four switching units can be combined by the signal switching module for receiving signals. After the received signal is processed, the AoA calculation is performed, and the angle between the receiving module and the transmitting module is finally calculated.
  • the local positioning system is the first AoA-based UWB positioning system.
  • the signal transmitting module includes a UWB signal transmitting module.
  • the receiving module includes at least two signal receiving modules.
  • the signal receiving module includes at least two signal receiving units.
  • the signal transmitting module is mounted on the portable module. The system then calculates the direction angle or position between the portable module and the receiving module based on the local positioning algorithm.
  • the local positioning system uses multiple sets of AoA data at the same point for data filtering to obtain a more accurate azimuth.
  • An AoA-based UWB positioning system includes: a signal transmitting module for transmitting a signal; a plurality of signal receiving modules for receiving a signal transmitted by the transmitting module, and using the AoA algorithm by the received signal Calculate the angle between the transmitting point and the receiving point; a data fusion algorithm is used to fuse multiple measurement results to obtain a fused AoA result.
  • the signal transmitting module includes a UWB transmitting unit and an antenna
  • the signal receiving module includes at least two UWB receiving units and at least two sets of antennas.
  • the multiple combined signal receiving module is connected to the N sets of UWB signal receiving units and the M sets of antennas. At one time interval, the selected L UWB receiving units are connected to the selected L group antennas to form a receiving unit. Therefore, the receiving system has a total Different receiving units.
  • the data fusion algorithm includes data filtering and weighted averaging.
  • the plurality of sets of data received by the different receiving units are respectively subjected to filtering processing, and then the angle of arrival between the transmitting module and the receiving module is calculated.
  • the multi-group AoA data measured at the same point is weighted averaged to finally obtain the AoA value at one point.
  • the filter used in the filtering process is an averaging filter.
  • the weights are assigned according to the received signal strength.
  • the UWB receiving module includes two UWB receiving chips.
  • the UWB receiving module includes four antennas, and the four antennas are distributed on four end points of a square to form a square antenna array.
  • Each receiving chip can be connected to two antennas by the control of the RF switch.
  • In the square antenna array only two adjacent antennas can form a group of receiving units, and signal reception is performed by being connected to the two receiving chips.
  • the UWB transmitting module can be packaged in a portable module of a wristband but not limited to a wristband.
  • FIG. 1 an antenna array 10 and a radio frequency switch 11 for performing antenna switching are included.
  • Figure 2 shows the antenna switching process, which includes four phases:
  • the third RF switch 216 at this stage is turned on, and the first antenna 210 is connected to the first signal processing chip.
  • the second RF switch 215 controls the fourth RF switch 217 to be turned on, and the second antenna 211 is connected to the second signal processing chip.
  • the first antenna 210 and the second antenna 211 constitute a receiving module, and according to the received signal, an AoA data is obtained by the data fusion algorithm.
  • the first RF switch 224 at this stage controls the third RF switch 226 to be turned on
  • the first antenna 220 is connected to the first signal processing chip
  • the second RF switch 225 controls the fourth RF switch 227 to be turned on.
  • the four antennas 223 are connected to the second signal processing chip.
  • the first antenna 220 and the second antenna 221 form a receiving module, and according to the received signal, an AoA data is obtained by the data fusion algorithm.
  • the first RF switch 234 at this stage controls the third RF switch 236 to be turned on
  • the third antenna 232 is connected to the first signal processing chip
  • the second RF switch 235 controls the fourth RF switch 237 to be turned on.
  • the line 233 is connected to the second signal processing chip, and the third antenna 232 and the fourth 233 constitute a receiving module, and according to the received signal, an AoA data is obtained by the data fusion algorithm.
  • the first RF switch 244 of this stage controls the third RF switch 246 to be turned on
  • the third antenna 242 is connected to the first signal processing chip
  • the second RF switch 245 controls the fourth RF switch 247 to be turned on.
  • the two antennas 241 are connected to the second signal processing chip, and the third antenna 242 and the second antenna 241 form a receiving module, and according to the received signal, an AoA data is obtained by the data fusion algorithm.
  • AoA is a signal parameter containing the location information of the target node
  • the angle between the antenna array and the target point can be calculated by using the amount of time difference between the signal and the antenna, as shown in FIG.
  • each set of antenna arrays of the present invention includes two antennas, as shown in FIG.
  • the signal arrival delay between adjacent antennas can be calculated by the following formula:
  • is the time delay
  • l the distance between adjacent antennas
  • is the AoA angle
  • c the speed of light
  • the data received by the receiving unit needs to be subjected to data filtering. If the signal is not occluded during transmission to the antenna, then the FP_RSSI (shortest path signal strength) received by the antenna is not much different from the received total signal strength (RSSI). However, when the signal is blocked by an obstacle during transmission, the FP_RSSI is much smaller than the RSSI, so in the measurement process, it is judged whether the signal is occluded by judging the difference in intensity between the two signals. Since in a group of antenna combinations, if the signal received by one antenna is blocked and the signal received by the other antenna is normal, the calculated AoA angle will have a large error. In the present invention, the data measured by such a combination is rejected.
  • RSSI received total signal strength
  • the system of the present invention has an averaging filter for filtering out signal interference, which is a more accurate measurement result.
  • a receiving combination will receive 10 sets of signals, and calculate the AoA angle respectively, and then average the 10 sets of calculation results to obtain the final measurement result of the current measurement combination. In the same way, each measurement gets its final measurement result.
  • the measurement result of each reception combination is obtained by weighted averaging to obtain the final measurement result.
  • the weighted average weights are assigned based on the received signal strength (RSSI) for each receive combination.
  • RSSI received signal strength
  • the weight of the measurement data of the combination receiving the lower signal strength is lower, and the weight of the measurement data of the combination receiving the higher signal strength is higher.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供了一种基于AoA的UWB定位***,包括发射模块、多个接收模块以及信号处理模块;其中,所述发射模块用于发射信号;所述多个接收模块用于接收发射模块发射的信号,所述信号处理模块用于根据AoA算法计算发射模块与多个接收模块的角度,并融合后得到发射模块与接收模块的位置关系。本发明能够精确的对目标点进行360度全向定位,即使在目标点与接收点被遮挡的情况下,也能取得很好的定位效果。

Description

基于AoA的UWB定位*** 技术领域
本发明涉传感测量领域,具体地,涉及一种基于AoA的超宽带通信(Ultra Wideband,UWB)定位***。
背景技术
近年来,出现多种用于局部和室内定位的***和算法。目前比较常用的局部定位方法有基于接收信号强度(Received Signal Strength,RSS)的定位方法基于到达角(Arrival of Angle,AoA)的定位方法,基于到达时间(Time Of Arrive,TOA)的定位方法和基于到达时间差(Time Differential Of Arrive,TDOA)的定位方法。基于接收信号强度的定位方法的优势在于硬件的低成本,因为绝大多数的建筑物里面装有无线局域网(Wireless Local Area Network,WLAN),然而基于信号强度的定位精度较低,同时容易受到周围环境的干扰。
利用基于TOA的超声波定位已经有很长的历史。相比于基于信号强度的定位,基于TOA的超声波定位的精度更好(大约10厘米),但是也存在测量量程短,方向性差的缺陷。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种基于UWB的AoA定位***。
根据本发明提供的基于AoA的UWB定位***,包括:发射模块、多个接收模块以及信号处理模块;其中,所述发射模块用于发射信号;所述多个接收模块用于接收发射模块发射的信号,所述信号处理模块用于根据AoA算法计算发射点与多个接收点的角度,并融合后得到发射点与接收点的位置关系。
优选地,所述发射模块包括:一个UWB发射单元和一个天线;多个接收模块能够组成若干个接收机制,每个接收机制包括:至少两组UWB接收单元和至少两组天线。
优选地,假设多个接收模块总共包括N组UWB接收单元和M组天线,其中N、M为大于等于2的自然数,N小于等于M;在某一时刻内,所述N组UWB接收单元中的任意一个UWB接收单元能够通过射频开关与M组天线中还未被UWB接收单元连 接的任意一个天线相连。
优选地,设定一个时间间隔,在一个时间间隔内分别选择L个UWB接收单元与L组天线相连并组成一个接收模块,L为大于等于2并且小于等于M或者N的自然数;根据排列组合能够得到
Figure PCTCN2017081564-appb-000001
个不同组合方式的接收机制。
优选地,信号处理模块包括AoA算法模块,数据滤波模块和加权平均模块;
所述AoA算法模块用于计算发射模块与接收模块之间的到达角度;
所述数据滤波子模块用于对接收模块接收到的多组AoA数据进行滤波处理;
所述加权平均子模块用于对同一个接收点上多个接收模块测量的多组AoA数据进行加权平均处理,得到该接收点上的AoA数值。
优选地,所述数据滤波子模块进行中滤波处理,即:对某一接受模块前n次AoA数据进行排序,取中间值作为本次滤波后的AoA结果。
优选地,所述加权平均子模块的加权平均处理,其中权值的确定主要依据如下:
1)接受信号强度与第一路径接受信号强度的差值;差值越大,信号受到的干扰越强,权值越小;
2)发射点与当前接受模块的夹角的绝对值;夹角的绝对值越大,则认为数据越不可靠,权值越小。
优选地,多个接受模块包含2块UWB接收芯片、4根天线;所述4根天线分布于一个正方形的四个端点上构成正方形天线阵列,通过射频开关的控制,每个接收芯片能够与4根天线中的任两根天线相连。由此能够得到四种方式的组合。
优选地,在正方形天线阵列中,只有相邻的两根天线能够分别与两个UWB接收芯片相连,并组成一组接收模块用于AoA测量。
优选地,在正方形天线阵列中,正方形的边长等于UWB射频信号所采用的波长的一半。
与现有技术相比,本发明具有如下的有益效果:
1、本发明能够高精度的对目标进行定位,基于角度的定位精度不随距离的变化而变化。
2、本发明在定位过程中即使目标与基准物之间存在遮挡也能进行准确定位。
3、本发明采用开关切换的方案可以有效减少UWB接受单元的数量,从而降低成本。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明中天线分布示意图;
图2为天线切换过程示意图;
图3为天线阵列在发射阶段时接收节点的角度示意图;
图4为相邻天线之间的延迟关系示意图;
图中:
10-天线阵列;
11-射频开关;
12-闭合的射频通路
210-阶段1中的第一天线;
211-阶段1中的第二天线;
212-阶段1中的第三天线;
213-阶段1中的第四天线;
214-阶段1中的第一射频开关;
215-阶段1中的第二射频开关;
216-阶段1中的第三射频开关;
217-阶段1中的第四射频开关;
220-阶段2中的第一天线;
221-阶段2中的第二天线;
222-阶段2中的第三天线;
223-阶段2中的第四天线;
224-阶段2中的第一射频开关;
225-阶段2中的第二射频开关;
226-阶段2中的第三射频开关;
227-阶段2中的第四射频开关;
230-阶段3中的第一天线;
231-阶段3中的第二天线;
232-阶段3中的第三天线;
233-阶段3中的第四天线;
234-阶段3中的第一射频开关;
235-阶段3中的第二射频开关;
236-阶段3中的第三射频开关;
237-阶段3中的第四射频开关;
240-阶段4中的第一天线;
241-阶段4中的第二天线;
242-阶段4中的第三天线;
243-阶段4中的第四天线;
244-阶段4中的第一射频开关;
245-阶段4中的第二射频开关;
246-阶段4中的第三射频开关;
247-阶段4中的第四射频开关。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
本发明的基本原理是:设置一个目标发射模块和一个接收模块,所述接收模块包括接收模块和天线阵列。所述天线阵列成正方形分布。所述接收模块包括两个信号接收芯片,通过信号切换模块可以组合出四组接收单元用于接收信号。接收到的信号进行处理后进行AoA计算,最终计算出所述接收模块与所述发射模块之间的角度。所述局部定位***是第一种基于AoA的UWB定位***。所述信号发射模块包括一个UWB信号发射模块。所述接收模块包括至少两个信号接收模块。所述信号接收模块包括至少两个信号接收单元。所述信号发射模块安装与便携式模块上。然后,***会基于局部定位算法计算出所述便携式模块与接收模块之间的方向角或位置。所述局部定位***会利用同一点的多组AoA数据进行数据滤波,从而得出一个更加准确的方位角。
根据本发明提供的基于AoA的UWB定位***包括:用于发射信号的信号发射模块;多个信号接收模块用于接收发射模块发射的信号,并通过接收的信号,利用AoA算法 计算出发射点与接收点的角度;一个数据融合算法,用于融合多个测量结果,从而得到一个融合后的AoA结果。
所述信号发射模块包括UWB发射单元和天线,所述信号接收模块包括至少两个UWB接收单元和至少两组天线。
所述多组合信号接收模块为N组UWB信号接收单元和M组天线相连。在一个时间间隔,选中的L个UWB接收单元与选中的L组天线相连组成一个接收单元。因此,所述接收***共有
Figure PCTCN2017081564-appb-000002
个不同的接收单元。
所述数据融合算法包括数据滤波和加权平均。通过不同接收单元接收到的多组数据分别进行滤波处理,然后计算发射模块与接收模块之间的到达角度。在同一个点测量的多组AoA数据进行加权平均,最终得到一个点上的AoA数值。
滤波处理所使用的滤波器为均值滤波器。
权重根据接收的信号强度不同进行分配。
所述UWB接收模块包括2块UWB接收芯片。
所述UWB接收模块包括4根天线,所述4根天线分布于一个正方形的四个端点上构成正方形天线阵列。通过射频开关的控制,每个接收芯片可以与两根天线相连。在正方形天线阵列中,只有临近的两根天线可以组成一组接收单元,并通过与所述两个接收芯片相连进行信号接收。
更进一步地,UWB发射模块能够封装在手环但不仅限于手环的便携模块中。
在本实施例中,如图1所示,包括天线阵列10、用于进行天线切换的射频开关11。具体地,图2给出了天线切换过程,包括四个阶段:
在第一个阶段,此阶段的第三射频开关216导通,第一天线210与第一信号处理芯片相连。同时,第二射频开关215控制第四射频开关217导通,第二天线211与第二信号处理芯片相连。此时,第一天线210和第二天线211组成接收模块,根据接收到的信号,通过所述数据融合算法得到一个AoA数据。
在第二个阶段,此阶段的第一射频开关224控制第三射频开关226导通,第一天线220与第一信号处理芯片相连,第二射频开关225控制第四射频开关227导通,第四天线223与第二信号处理芯片相连,第一天线220和第二天线221组成接收模块,根据接收到的信号,通过所述数据融合算法得到一个AoA数据。
在第三个阶段,此阶段的第一射频开关234控制第三射频开关236导通,第三天线232与第一信号处理芯片相连,第二射频开关235控制第四射频开关237导通,第四天 线233与第二信号处理芯片相连,第三天线232和第四233组成接收模块,根据接收到的信号,通过所述数据融合算法得到一个AoA数据。
在第四个阶段,此阶段的第一射频开关244控制第三射频开关246导通,第三天线242与第一信号处理芯片相连,第二射频开关245控制第四射频开关247导通,第二天线241与第二信号处理芯片相连,第三天线242和第二天线241组成接收模块,根据接收到的信号,通过所述数据融合算法得到一个AoA数据。
由于AoA是一个包含目标节点位置信息的信号参数,所以可以利用信号到达天线的额时间差计算出天线阵列和目标点之间的夹角,如图3所示。
更进一步地,本发明的每组天线阵列包含两根天线,如图4所示。相邻天线之间的信号到达延迟可以通过如下公式计算:
Figure PCTCN2017081564-appb-000003
式中,τ为时间延迟,l相邻天线的距离,α为AoA角度,c为光速。
具体地,通过接收单元接收到的数据需要经过数据滤波。如果信号在传输到天线的过程中没有遮挡,那么天线接收到的FP_RSSI(最短路径信号强度)和接收到的总信号强度(RSSI)相差不大。但是,当信号在传输过程中受到障碍物的遮挡时,所述FP_RSSI会远远小于所述RSSI,所以在测量过程中,通过判断两个信号之间强度的差异大小,判断信号是否被遮挡。由于在一组天线组合中,如果一根天线接收到的信号被遮挡而另一根天线接收的信号正常,那么计算出的AoA角度会有较大的误差。在本发明中,这样的组合所测得的数据会进行剔除。
具体地,本发明中的***具有均值滤波器用于滤除信号干扰,是测量结果更加准确。在一个滤波周期内,一个接收组合会接收10组信号,并分别计算出AoA角度,然后将这10组计算结果进行平均,得到最终的本组测量组合的测量结果。同理,每个测量得到所属的最终测量结果。
具体地,每个接收组合的测量结果通过加权平均得到最终的测量结果。加权平均的权重根据每个接收组合接收到的信号强度(RSSI)进行分配。接收到信号强度较低的组合的测量数据的权重较低,接收到信号强度较高的组合的测量数据的权重较高。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (10)

  1. 一种基于AoA的UWB定位***,其特征在于,包括:发射模块、多个接收模块以及信号处理模块;其中,所述发射模块用于发射信号;所述多个接收模块用于接收发射模块发射的信号,所述信号处理模块用于根据AoA算法计算发射模块与多个接收模块的角度,并融合后得到发射模块与多个接收模块的位置关系。
  2. 根据权利要求1所述的基于AoA的UWB定位***,其特征在于,所述发射模块包括:一个UWB发射单元和一个天线;多个接收模块能够组成若干个接受机制,每个接收机制包括:至少两组UWB接收单元和至少两组天线。
  3. 根据权利要求2所述的基于AoA的UWB定位***,其特征在于,假设多个接收模块总共包括N组UWB接收单元和M组天线,其中N、M为大于等于2的自然数,N小于等于M;在某一时刻内,所述N组UWB接收单元中的任意一个UWB接收单元能够通过射频开关与M组天线中还未被UWB接收单元连接的任意一个天线相连。
  4. 根据权利要求3所述的基于AoA的UWB定位***,其特征在于,设定一个时间间隔,在一个时间间隔内分别选择L个UWB接收单元与L组天线相连并组成一个接收模块,L为大于等于2并且小于等于M或者N的自然数;根据排列组合能够得到
    Figure PCTCN2017081564-appb-100001
    个不同组合方式的接收机制。
  5. 根据权利要求4所述的基于AoA的UWB定位***,其特征在于,信号处理模块包括AoA算法模块,数据滤波模块和加权平均模块;
    所述AoA算法模块用于计算发射模块与接收模块之间的到达角度;
    所述数据滤波子模块用于对接收模块接收到的多组AoA数据进行滤波处理;
    所述加权平均子模块用于对同一个接收点上多个接收模块测量的多组AoA数据进行加权平均处理,得到该接收点上的AoA数值。
  6. 根据权利要求5所述的基于AoA的UWB定位***,其特征在于,所述数据滤波子模块进行中滤波处理,即:对某一接受模块前n次AoA数据进行排序,取中间值作为本次滤波后的AoA结果。
  7. 根据权利要求5所述的基于AoA的UWB定位***,其特征在于,所述加权平均子模块的加权平均处理,其中权值的确定主要依据如下:
    1)接受信号强度与第一路径接受信号强度的差值;差值越大,信号受到的干扰越强,权值越小;
    2)发射点与当前接受模块的夹角的绝对值;夹角的绝对值越大,则认为数据越不可靠,权值越小。
  8. 根据权利要求2所述的基于AoA的UWB定位***,其特征在于,多个接受模块包含2块UWB接收芯片、4根天线;所述4根天线分布于一个正方形的四个端点上构成正方形天线阵列,通过射频开关的控制,每个接收芯片能够与4根天线中的任两根天线相连。
  9. 根据权利要求8所述的基于AoA的UWB定位***,其特征在于,在正方形天线阵列中,只有相邻的两根天线能够分别与两个UWB接收芯片相连,并组成一组接收模块用于AoA测量。
  10. 根据权利要求8所述的基于AoA的UWB定位***,其特征在于,在正方形天线阵列中,正方形的边长等于UWB射频信号所采用的波长的一半。
PCT/CN2017/081564 2016-05-17 2017-04-24 基于AoA的UWB定位*** WO2017198037A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610329457.6A CN106019221B (zh) 2016-05-17 2016-05-17 基于AoA的UWB定位***
CN201610329457.6 2016-05-17

Publications (1)

Publication Number Publication Date
WO2017198037A1 true WO2017198037A1 (zh) 2017-11-23

Family

ID=57098670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081564 WO2017198037A1 (zh) 2016-05-17 2017-04-24 基于AoA的UWB定位***

Country Status (2)

Country Link
CN (1) CN106019221B (zh)
WO (1) WO2017198037A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110082718A (zh) * 2019-04-24 2019-08-02 华宇智联科技(武汉)有限公司 一种高精度分布式aoa定位***及方法
CN111948604A (zh) * 2019-05-15 2020-11-17 南宁富桂精密工业有限公司 定位***及方法
CN112399557A (zh) * 2020-11-16 2021-02-23 Oppo广东移动通信有限公司 基于uwb的定位电路、电子设备及定位方法
CN115150748A (zh) * 2022-07-06 2022-10-04 华中科技大学 室内定位的方法、***、电子设备和存储介质
WO2022265390A1 (en) * 2021-06-15 2022-12-22 Samsung Electronics Co., Ltd. Method and device for uwb communication
WO2023034151A1 (en) * 2021-08-30 2023-03-09 Meta Platforms Technologies, Llc Systems and methods for ultra-wideband-based angle of approach determination

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106019221B (zh) * 2016-05-17 2019-05-24 安徽酷哇机器人有限公司 基于AoA的UWB定位***
CN106714300A (zh) * 2016-12-16 2017-05-24 青岛安然物联网科技有限公司 UWB和ZigBee综合精确定位***及其工作方法
CN106900056A (zh) * 2016-12-30 2017-06-27 安徽酷哇机器人有限公司 基于多天线的全向射频定位***及方法
CN109387808A (zh) * 2017-08-08 2019-02-26 深圳市润安科技发展有限公司 一种定位待测点的方法及装置
CN107831517B (zh) * 2017-10-18 2021-02-09 国家新闻出版广电总局广播科学研究院 对不明广播电视侵入信号多点协同测向的组合定位方法
US10942249B2 (en) 2017-12-22 2021-03-09 Nxp B.V. Method and system for determining a location of a mobile device
CN109975742B (zh) * 2017-12-28 2020-12-04 北京小米松果电子有限公司 信号发射方向的检测方法、检测装置及可读存储介质
CN110345606A (zh) * 2018-04-03 2019-10-18 青岛海尔空调电子有限公司 空调***控制的方法、装置及计算机可读存储介质
CN110360731A (zh) * 2018-04-03 2019-10-22 青岛海尔空调电子有限公司 空调***控制的方法、装置及计算机可读存储介质
CN110345611B (zh) * 2018-04-03 2020-10-20 青岛海尔空调电子有限公司 空调与环境信息采集模块组网匹配方法、装置及存储介质
CN110345609B (zh) * 2018-04-03 2021-03-23 青岛海尔空调电子有限公司 空调之间组网匹配方法、装置及存储介质
CN110345607A (zh) * 2018-04-03 2019-10-18 青岛海尔空调电子有限公司 空调***以及空调***中的移动控制终端
CN108594171B (zh) * 2018-04-28 2021-06-22 纳恩博(北京)科技有限公司 定位通信设备、定位方法及计算机存储介质
CN110839278B (zh) * 2018-08-17 2021-01-12 ***通信有限公司研究院 一种室内基站及定位方法
CN111220945A (zh) * 2018-11-26 2020-06-02 清研讯科(北京)科技有限公司 测向方法及装置、超宽带测向***
CN110225458B (zh) * 2019-01-14 2020-10-09 北京理工大学 一种基于混合滤波的uwb定位***与方法
CN109874103A (zh) * 2019-04-23 2019-06-11 上海寰创通信科技股份有限公司 一种wifi精确定位设备及方法
CN110380797A (zh) * 2019-07-24 2019-10-25 上海库康科技有限公司 一种全向射频定位***
CN110768681B (zh) * 2019-09-29 2021-07-02 深圳市微能信息科技有限公司 一种基于uwb通信的定位电路、定位***及定位方法
CN111707987B (zh) * 2020-06-23 2023-11-07 杭州中芯微电子有限公司 一种基于单基站的定位***及其方法
CN113225671A (zh) * 2021-04-15 2021-08-06 深圳市信维通信股份有限公司 Uwb基站及其定位方法
CN113473358A (zh) * 2021-06-21 2021-10-01 Oppo广东移动通信有限公司 一种uwb标签、测量方法及计算机存储介质
CN115278522A (zh) * 2022-07-13 2022-11-01 隔空(上海)智能科技有限公司 Uwb信号入射角处理及定位方法、***、电子设备、介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103002576A (zh) * 2012-10-24 2013-03-27 中国海洋大学 一种基于脉冲幅度比值指纹的天线阵列单基站定位方法
WO2015010734A1 (en) * 2013-07-24 2015-01-29 Beestar Bv Locating a tag in an area
CN104584090A (zh) * 2012-08-29 2015-04-29 高通股份有限公司 使用智能计量器作为可靠的众包代理
CN106019221A (zh) * 2016-05-17 2016-10-12 上海酷哇机器人有限公司 基于AoA的UWB定位***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7463143B2 (en) * 2004-03-15 2008-12-09 Arbioran Methods and systems for gathering market research data within commercial establishments
CN103458503B (zh) * 2013-09-10 2017-01-11 西安嵌牛电子科技有限公司 基于rssi和aoa的单基站三维定位***及定位方法
CN104407322A (zh) * 2014-11-26 2015-03-11 杭州优体科技有限公司 一种多核无线复合定位装置
CN104612682B (zh) * 2014-12-09 2017-11-24 中国矿业大学 一种基于uwb采煤机绝对位置精确校准方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104584090A (zh) * 2012-08-29 2015-04-29 高通股份有限公司 使用智能计量器作为可靠的众包代理
CN103002576A (zh) * 2012-10-24 2013-03-27 中国海洋大学 一种基于脉冲幅度比值指纹的天线阵列单基站定位方法
WO2015010734A1 (en) * 2013-07-24 2015-01-29 Beestar Bv Locating a tag in an area
CN106019221A (zh) * 2016-05-17 2016-10-12 上海酷哇机器人有限公司 基于AoA的UWB定位***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BIAN, RUIXIANG ET AL.: "AN APPROACH FOR IMPROVING LOCALIZATION ACCURACY IN WIRELESS SENSOR NETWORKS", COMPUTER APPLICATIONS AND SOFTWARE, vol. 26, no. 6, 30 June 2009 (2009-06-30), XP055422240 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110082718A (zh) * 2019-04-24 2019-08-02 华宇智联科技(武汉)有限公司 一种高精度分布式aoa定位***及方法
CN110082718B (zh) * 2019-04-24 2023-07-28 武汉大数智联科技有限公司 一种高精度分布式aoa定位***及方法
CN111948604A (zh) * 2019-05-15 2020-11-17 南宁富桂精密工业有限公司 定位***及方法
CN111948604B (zh) * 2019-05-15 2024-05-17 南宁富联富桂精密工业有限公司 定位***及方法
CN112399557A (zh) * 2020-11-16 2021-02-23 Oppo广东移动通信有限公司 基于uwb的定位电路、电子设备及定位方法
CN112399557B (zh) * 2020-11-16 2023-09-08 Oppo广东移动通信有限公司 基于uwb的定位电路、电子设备及定位方法
WO2022265390A1 (en) * 2021-06-15 2022-12-22 Samsung Electronics Co., Ltd. Method and device for uwb communication
WO2023034151A1 (en) * 2021-08-30 2023-03-09 Meta Platforms Technologies, Llc Systems and methods for ultra-wideband-based angle of approach determination
US11899090B2 (en) 2021-08-30 2024-02-13 Meta Platforms Technologies, Llc Systems and methods for ultra-wideband-based angle of approach determination
CN115150748A (zh) * 2022-07-06 2022-10-04 华中科技大学 室内定位的方法、***、电子设备和存储介质

Also Published As

Publication number Publication date
CN106019221A (zh) 2016-10-12
CN106019221B (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
WO2017198037A1 (zh) 基于AoA的UWB定位***
EP2374018B1 (en) Wireless localization techniques in lighting systems
Hood et al. Estimating DoA from radio-frequency RSSI measurements using an actuated reflector
CN104619020B (zh) 基于rssi和toa测距的wifi室内定位方法
CN104780506B (zh) 一种基于置信水平的加权三边定位方法
CN108535687A (zh) 基于tof和rssi信息融合的室内无线定位方法
CN109212471A (zh) 一种定位基站、***和方法
CN106900056A (zh) 基于多天线的全向射频定位***及方法
CN103874020B (zh) 非直达径环境下单接收器的超宽带定位方法
KR101984105B1 (ko) 위상비교 방식을 이용한 2차원 방향탐지 오차 추정 시스템 및 그 방법
CN111757256A (zh) 室内定位方法及装置
CN106714298A (zh) 一种基于天线阵列的无线定位方法
CN112788533A (zh) 一种融合5g通信和uwb的室内定位方法、装置和***
Passafiume et al. An enhanced triangulation algorithm for a distributed RSSI-DoA positioning system
CN106888504B (zh) 基于fm与dtmb信号的室内位置指纹定位方法
CN116782379A (zh) 一种基于低功耗蓝牙和超宽带技术的联合室内定位方法
CN107801168A (zh) 一种室外自适应的被动式目标的定位方法
CN109246601B (zh) 一种无线网络的定位方法及装置
CN110658491A (zh) 测向***、测向方法、定位***及定位方法
CN110907925B (zh) 一种高频地波雷达双站模型下的权重定位方法
Moschevikin et al. The impact of nlos components in time-of-flight networks for indoor positioning systems
Malajner et al. Angle of arrival estimation using a single omnidirectional rotatable antenna
CN109856597B (zh) 一种新体制超视距短波定位***及定位方法
Kallel et al. RSSI based Localization in realistic environment
CN207675951U (zh) 室内gnss天线阵列和定位***

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798601

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17798601

Country of ref document: EP

Kind code of ref document: A1