WO2017182102A1 - Alliage de coulée sous pression - Google Patents

Alliage de coulée sous pression Download PDF

Info

Publication number
WO2017182102A1
WO2017182102A1 PCT/EP2016/059723 EP2016059723W WO2017182102A1 WO 2017182102 A1 WO2017182102 A1 WO 2017182102A1 EP 2016059723 W EP2016059723 W EP 2016059723W WO 2017182102 A1 WO2017182102 A1 WO 2017182102A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
alloy according
ppm
die
weight
Prior art date
Application number
PCT/EP2016/059723
Other languages
German (de)
English (en)
Inventor
Stuart Wiesner
Original Assignee
Rheinfelden Alloys Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55794875&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017182102(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Rheinfelden Alloys Gmbh & Co. Kg filed Critical Rheinfelden Alloys Gmbh & Co. Kg
Priority to CN201680084625.8A priority Critical patent/CN109072353A/zh
Priority to MX2018012786A priority patent/MX2018012786A/es
Priority to US16/094,324 priority patent/US20190119791A1/en
Priority to CA3021397A priority patent/CA3021397C/fr
Priority to KR1020187032871A priority patent/KR102609410B1/ko
Publication of WO2017182102A1 publication Critical patent/WO2017182102A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C

Definitions

  • the invention relates to a diecasting alloy based on aluminum and silicon, in particular for use in light vehicle structural parts.
  • the alloy according to the invention takes account of the ever increasing demands for lightweight construction in the automotive industry.
  • the use of a material with higher strength allows the designer to realize thinner-walled and thus lighter structures. In this way, a further step towards low fuel consumption in the automobile can be realized.
  • Alloys of the type AISi 1 0Mg or AISi7Mg are among the most widely used casting alloys in the industry.
  • EP 1 61 2286 B1 discloses an AISi alloy which has high elongation values already in the cast state without further heat treatment. With this alloy it is possible to obtain good values for the yield strength and the tensile strength of castings as cast, so that the alloy is particularly suitable for the production of safety components in the automotive industry. In this alloy known from the prior art, it has been found that by the addition of Molybdenum or a combined addition of molybdenum and zirconium would provide the desired levels of tensile strength and yield strength.
  • EP0687742 B1 also discloses a die-cast alloy based on aluminum-silicon, which is used in particular in safety components in the automotive industry. Unlike the alloy of EP 1 6 1 2286 B 1, the produced die castings are subjected to a heat treatment. In the case of this alloy, it has been found that the achieved increased strength values depend to a large extent on the magnesium content and this content therefore has to be tolerated very closely in the production.
  • the object is to develop a high-strength aluminum die-casting alloy which exhibits improved mechanical properties in terms of tensile strength, yield strength and elongation at break.
  • the alloy according to the invention is said to have good castability, no increased tendency to adhere, no increased risk of cracking due to hot cracking and no restriction with regard to mold filling capability.
  • the alloy may contain at least 50% secondary metal (recyling material).
  • this object is achieved by a diecasting alloy based on aluminum-silicon, consisting of:
  • the alloy according to the invention contains 0, 1, 5-0, 5% by weight of iron.
  • the alloy according to the invention contains 0.05 to 0, 20 wt .-% molybdenum. In a further embodiment, the alloy according to the invention contains from 0.05 to 0.20% by weight of zirconium.
  • the alloy 60-1 according to the invention contains 20 ppm of gallium.
  • the alloy according to the invention contains 0.3 to 0.5% by weight of manganese.
  • the alloy according to the invention contains 0, 2 to 0.4% by weight of zinc.
  • the alloy according to the invention contains 0, 1 to 0, 25% by weight of copper. In a further embodiment, the alloy according to the invention contains 8, 5 to 1, 0.0% by weight of silicon.
  • the alloy according to the invention contains from 0.3 to 0.4% by weight of magnesium.
  • the diecasting alloy according to the invention is preferably used for pressure casting of crash-relevant or strength-relevant structural parts in the automotive industry.
  • the appropriate strength of an aluminum die casting alloy is achieved in addition to the choice of combination of alloying elements by a targeted heat treatment.
  • the alloy according to the invention is subjected to a T6 heat treatment comprising solution heat treatment, air quenching or water quenching and heat aging. It was found that high yield strengths of just over 200 / mm 2 can be achieved compared with the alloy of EP 0 687 942 B1.
  • the alloy according to the invention is time-stable after T6 heat treatment, i. there is no self-curing.
  • the alloy according to the invention may be subjected to a T7 heat treatment.
  • the alloy composition according to the invention it is possible to achieve improved values for tensile strength, the yield strength and the elongation at break in die cast parts in the material state T6 or T7.
  • the choice of the content of copper was from 0.1 to 0.5% by weight, preferably from 0.1 to 0.25% by weight, for the improvement the mechanical characteristics of the alloy is responsible.
  • the introduction of copper during melting should be avoided since copper has an adverse effect on the corrosion resistance.
  • the composition of the inventive alloy was chosen so that the formation of corrosion-promoting phases such. B. Al 2 Cu is avoided.
  • a salt spray alternating test (ISO 9227) and an intercrystalline corrosion test (ASTM G 1 1 0-92) were used to check the corrosion tendency. It could a comparable corrosion resistance as that of the already used in the automotive alloy of EP1 61 2286 B 1, but the copper content expressly to max. 0. 1 wt.% Copper limited.
  • Other elements that improve the mechanical properties, in particular the elongation, are the choice of molybdenum content and the addition of zirconium. The addition of at least 0.08% zirconium causes an increase in the expansion values without a decrease in the strength of the material. This effect is achieved by a high-melting phase. In this context, the time factor plays a special role. The size and characteristics of high-melting phases are always dependent on the solidification conditions.
  • the solidification usually begins in the casting chamber, continues during the mold filling and often ends in thick-walled areas only after the component removal.
  • the alloy according to the invention has been developed for these processes. Only in the die casting process do the precipitates have the right size and characteristics to show optimum material characteristics after a T6 heat treatment. If molybdenum is added at the same time, these two elements act together and, in addition, an increase in strength is achieved. Increasing these elements beyond 0.2% has no positive effect on the characteristics of the material.
  • the slightly increased iron content is taken into account by reducing the manganese content, otherwise there is a risk of sludge formation in the holding furnace at the casting machine.
  • the tendency of the alloy to adhere decreases, since both iron and manganese have a positive effect and the reduction of Mn is more than compensated for by the Fe content.
  • the MnFe ratio prevents the formation of so-called beta phases, ie plate-shaped AlMnFeSi precipitates, which significantly reduces the ductility of the material.
  • Such excretions are known under the microscope as so-called.
  • Iron needles The alpha-AlM nFeSi precipitates are formed very finely in the inventive alloy by the addition of the elements Mo, Zr and Ga, so that their harmful effect on Dehnhong and corrosion tendency can be minimized.
  • strontium or sodium leads to a finely crystalline precipitation of the silicon, which results in the formation of a refined eutectic, and also has a positive influence on the strength and elongation of the alloy according to the invention.
  • Grain refining is preferably carried out in the case of the alloy according to the invention.
  • the alloy may preferably be supplied with 1 to 30 ppm of phosphorus.
  • the alloy may also contain titanium and boron for grain refining, the addition of titanium and boron via a master alloy with 1 to 2% by weight of Ti and 1 to 2% by weight of B, residual aluminum.
  • the aluminum master alloy contains 1, 3 to 1, 8 wt .-% Ti and 1, 3 to 1, 8 wt .-% B and has a Ti / B weight ratio of about 0.8 to 1, 2 on.
  • the Content of the master alloy in the alloy according to the invention is preferably adjusted to 0.05 to 0.5 wt .-%.
  • the weldability could be checked in TIG welding tests.
  • punch rivet tests the alloy according to the invention was rivet free of cracks despite its high strength.
  • compositions of an exemplary alloy of EP0687742 B 1 (alloy 1) and two embodiments (alloys A, B) of the inventive alloy are compared.
  • the statements are in wt .-%.
  • the mechanical characteristics (R m , R p0 .2 and A 5 ) were measured on 3 mm die-cast plates.
  • the same T6 heat treatment with air quenching and applied with water quenching The average value of approx. 30 train tests is shown in each case.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Extrusion Of Metal (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

L'invention concerne un alliage de coulée sous pression à base d'aluminium et de silicium présentant une composition comprenant : 8,5 à 11,5% en poids de silicium; 0,1 à 0,5% en poids de magnésium; 0,3 à 0,8% en poids de manganèse; 0,02 à 0,5% en poids de fer; 0 005 à 0,5% en poids de zinc; 0,02 à 0,3% en poids de molybdène; 0,1 à 0,5% en poids de cuivre; 0,02 à 0,15% en poids de titane; 0,02 à 0,3% en poids dezirconium, 5 à 250 ppm de phosphore, 10 à 200 ppm de gallium, le reste étant constitué d'aluminium et d'impuretés inévitables. Cet alliage peut être fabriqué avec une proportion de 50 % de produit recyclé.
PCT/EP2016/059723 2016-04-19 2016-05-02 Alliage de coulée sous pression WO2017182102A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680084625.8A CN109072353A (zh) 2016-04-19 2016-05-02 压铸合金
MX2018012786A MX2018012786A (es) 2016-04-19 2016-05-02 Aleacion para vaciado.
US16/094,324 US20190119791A1 (en) 2016-04-19 2016-05-02 Die Casting Alloy
CA3021397A CA3021397C (fr) 2016-04-19 2016-05-02 Alliage de coulee sous pression
KR1020187032871A KR102609410B1 (ko) 2016-04-19 2016-05-02 다이 캐스팅 합금

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16165969.3A EP3235917B1 (fr) 2016-04-19 2016-04-19 Alliage d'aluminium pour moulage sous pression
EP16165969.3 2016-04-19

Publications (1)

Publication Number Publication Date
WO2017182102A1 true WO2017182102A1 (fr) 2017-10-26

Family

ID=55794875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/059723 WO2017182102A1 (fr) 2016-04-19 2016-05-02 Alliage de coulée sous pression

Country Status (7)

Country Link
US (1) US20190119791A1 (fr)
EP (1) EP3235917B1 (fr)
KR (1) KR102609410B1 (fr)
CN (1) CN109072353A (fr)
CA (1) CA3021397C (fr)
MX (1) MX2018012786A (fr)
WO (1) WO2017182102A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021129329A1 (de) 2021-11-11 2023-05-11 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Herstellen einer Aluminium-Legierung sowie Bauteil

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112391562B (zh) * 2019-11-26 2021-09-21 比亚迪股份有限公司 一种铝合金及其制备方法
JP7282054B2 (ja) * 2020-05-19 2023-05-26 堺アルミ株式会社 低熱膨張アルミニウム合金圧延材およびその製造方法
MX2022014999A (es) * 2020-06-01 2023-02-09 Alcoa Usa Corp Aleaciones de fundicion de al-si-fe.
CN113862530B (zh) * 2020-06-30 2023-04-07 比亚迪股份有限公司 一种铝合金及其制备方法
CN113862531A (zh) * 2020-06-30 2021-12-31 比亚迪股份有限公司 一种铝合金及其制备方法
CN112831695A (zh) * 2020-12-30 2021-05-25 安徽鑫铂铝业股份有限公司 一种高抗拉强度大型车辆铝型材及其制备方法
CN115161521B (zh) * 2022-07-14 2023-09-08 山西瑞格金属新材料有限公司 一种免热处理压铸铝硅锌合金
CN115287485A (zh) * 2022-08-10 2022-11-04 帅翼驰新材料集团有限公司 烘烤后性能可提升的高压铸造铝合金的制作方法
CN115821127A (zh) * 2022-08-10 2023-03-21 帅翼驰新材料集团有限公司 烘烤后性能可提升的高压铸造铝合金
CN115181878B (zh) * 2022-09-14 2022-12-23 苏州慧金新材料科技有限公司 新能源汽车用一体式压铸件铝合金及制备方法和应用
CN115896504B (zh) * 2022-10-27 2023-07-04 广州致远新材料科技有限公司 铝合金材料的制备方法及道闸传动结构件的制备方法
CN115386771B (zh) * 2022-10-27 2023-01-06 广州致远新材料科技有限公司 铝合金材料及道闸传动结构件的压铸方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687742B1 (fr) 1994-06-16 1997-09-10 ALUMINIUM RHEINFELDEN GmbH Alliage pour coulée sous pression
DE102009012073A1 (de) * 2009-03-06 2010-09-09 Daimler Ag Aluminiumgusslegierung
EP1612286B1 (fr) 2004-06-29 2011-07-13 ALUMINIUM RHEINFELDEN GmbH Alliage d'aluminium pour moulage sous pression
EP2735621A1 (fr) 2012-11-21 2014-05-28 Georg Fischer Druckguss GmbH & Co. KG Alliage à coulée sous pression en aluminium
EP2653579B1 (fr) 2012-04-17 2014-10-15 Georg Fischer Druckguss GmbH & Co. KG Alliage d'aluminium

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB605282A (en) 1945-12-01 1948-07-20 Nat Smelting Co Improvements in or relating to aluminium silicon alloys
GB942629A (en) 1961-02-10 1963-11-27 Aluminum Co Of America Improvements in purification of aluminium
US3211547A (en) 1961-02-10 1965-10-12 Aluminum Co Of America Treatment of molten aluminum
US4222830A (en) 1978-12-26 1980-09-16 Aluminum Company Of America Production of extreme purity aluminum
FR2841164B1 (fr) 2002-06-25 2004-07-30 Pechiney Aluminium Piece moulee en alliage d'alluminium a haute resistance au fluage
DE502004009801D1 (de) * 2003-01-23 2009-09-10 Rheinfelden Aluminium Gmbh Druckgusslegierung aus Aluminiumlegierung
DE10351666B3 (de) 2003-11-05 2005-01-27 Erbslöh Aluminium Gmbh Aluminiumprodukt
DE10352932B4 (de) * 2003-11-11 2007-05-24 Eads Deutschland Gmbh Aluminium-Gusslegierung
US20050167012A1 (en) 2004-01-09 2005-08-04 Lin Jen C. Al-Si-Mn-Mg alloy for forming automotive structural parts by casting and T5 heat treatment
WO2009059592A2 (fr) 2007-11-08 2009-05-14 Ksm Castings Gmbh Support d'essieu avant pour véhicules automobiles
WO2009059593A2 (fr) 2007-11-08 2009-05-14 Ksm Castings Gmbh Alliages d'aluminium de fonderie
DE102008046803B4 (de) 2008-09-11 2011-01-27 Audi Ag Aluminiumgusslegierung und Verfahren zur Herstellung eines Gussbauteils
DE102010055011A1 (de) 2010-12-17 2012-06-21 Trimet Aluminium Ag Gut gießbare, duktile AlSi-Legierung und Verfahren zur Herstellung eines Gussteils unter Verwendung der AlSi-Gusslegierung
JP5728580B2 (ja) 2011-07-25 2015-06-03 日本軽金属株式会社 アルミニウム合金板及びアルミニウム合金板の製造方法
DE102011112005A1 (de) 2011-08-29 2013-02-28 Audi Ag Aluminium-Silizium-Legierung
PL2657360T3 (pl) * 2012-04-26 2014-09-30 Audi Ag Stop na bazie Al-Si odlewany pod ciśnieniem, zawierający zwłaszcza aluminium wtórne

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687742B1 (fr) 1994-06-16 1997-09-10 ALUMINIUM RHEINFELDEN GmbH Alliage pour coulée sous pression
EP1612286B1 (fr) 2004-06-29 2011-07-13 ALUMINIUM RHEINFELDEN GmbH Alliage d'aluminium pour moulage sous pression
DE102009012073A1 (de) * 2009-03-06 2010-09-09 Daimler Ag Aluminiumgusslegierung
EP2653579B1 (fr) 2012-04-17 2014-10-15 Georg Fischer Druckguss GmbH & Co. KG Alliage d'aluminium
EP2735621A1 (fr) 2012-11-21 2014-05-28 Georg Fischer Druckguss GmbH & Co. KG Alliage à coulée sous pression en aluminium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021129329A1 (de) 2021-11-11 2023-05-11 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Herstellen einer Aluminium-Legierung sowie Bauteil

Also Published As

Publication number Publication date
CA3021397A1 (fr) 2017-10-26
US20190119791A1 (en) 2019-04-25
KR20180132140A (ko) 2018-12-11
CN109072353A (zh) 2018-12-21
KR102609410B1 (ko) 2023-12-01
EP3235917B1 (fr) 2018-08-15
EP3235917A1 (fr) 2017-10-25
MX2018012786A (es) 2019-06-17
CA3021397C (fr) 2023-05-23

Similar Documents

Publication Publication Date Title
EP3235917B1 (fr) Alliage d'aluminium pour moulage sous pression
DE10352932B4 (de) Aluminium-Gusslegierung
DE102013012259B3 (de) Aluminium-Werkstoff mit verbesserter Ausscheidungshärtung, Verfahren zu dessen Herstellung und Verwendung des Aluminium-Werkstoffes
EP3159422B1 (fr) Alliage d'aluminium pour moulage sous pression
EP1612286B1 (fr) Alliage d'aluminium pour moulage sous pression
DE19937184B4 (de) Magnesiumlegierung für Hochtemperatur-Anwendungen
EP1443122B1 (fr) Alliage à coulée d'aluminium
EP3235916B1 (fr) Alliage de moulage
EP2653579B1 (fr) Alliage d'aluminium
AT413035B (de) Aluminiumlegierung
EP3176275B2 (fr) Alliage de coulée sous pression de silicium/aluminium. procédé de fabrication d'un composant coulé sous pression en alliage et composants de carrosserie comprenant un tel composant coulé sous pression
DE60100370T2 (de) Druckgussmagnesiumlegierung
DE202006006518U1 (de) Aluminiumgusslegierung
DE102017114162A1 (de) Hochfeste und hochkriechresistente aluminiumgusslegierungen und hpdc-motorblöcke
DE112018005321T5 (de) Druckguss-aluminiumlegierung und funktionsbauteil unter verwendung dieser
WO2017174185A1 (fr) Alliage d'aluminium destiné notamment à un procédé de coulée, et procédé de fabrication d'une pièce dans un tel alliage d'aluminium
WO2007025528A2 (fr) Alliages d'aluminium coules
DE102006032699B4 (de) Aluminiumlegierung und deren Verwendung für ein Gussbauteil insbesondere eines Kraftwagens
WO2005045081A1 (fr) Alliage d'aluminium, composant realise avec cet alliage et procede de production de ce composant
EP2088216B1 (fr) Alliage d'aluminium
DE2500083A1 (de) Aluminium-knetlegierungen und verfahren zur verarbeitung
EP3670691B1 (fr) Alliage de magnesium et son procédé de fabrication
AT507490A1 (de) Aluminiumlegierung, verfahren zu deren herstellung und deren verwendung
DE102006040720A1 (de) AI-Gusslegierungen
EP3947762A1 (fr) Boulon coulé en continu en alliage à base d'aluminium, profile extrudé et procédé pour leur fabrication

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3021397

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187032871

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16724852

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16724852

Country of ref document: EP

Kind code of ref document: A1