WO2017181764A1 - 一种精密控制6英寸碳化硅单晶生长温场的方法 - Google Patents

一种精密控制6英寸碳化硅单晶生长温场的方法 Download PDF

Info

Publication number
WO2017181764A1
WO2017181764A1 PCT/CN2017/074053 CN2017074053W WO2017181764A1 WO 2017181764 A1 WO2017181764 A1 WO 2017181764A1 CN 2017074053 W CN2017074053 W CN 2017074053W WO 2017181764 A1 WO2017181764 A1 WO 2017181764A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
heating
silicon carbide
coil
carbide single
Prior art date
Application number
PCT/CN2017/074053
Other languages
English (en)
French (fr)
Inventor
刘欣宇
张云伟
靳丽婕
何丽娟
陈颖超
徐妙玲
季莎
卢小东
崔志勇
孙安信
胡羽中
Original Assignee
北京世纪金光半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京世纪金光半导体有限公司 filed Critical 北京世纪金光半导体有限公司
Publication of WO2017181764A1 publication Critical patent/WO2017181764A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers

Definitions

  • the invention relates to the field of semiconductor growth technology, in particular to a method for precisely controlling the growth temperature field of a 6 inch silicon carbide single crystal.
  • the silicon carbide single crystal grows in a confined space.
  • the powder source is continuously consumed, the thickness of the single crystal is gradually increased, and the distance between the front surface of the crystal growth and the powder source is continuously reduced, that is, the growth line is constantly changing, the temperature gradient and the growth atmosphere. There have also been changes. With the further consumption of the silicon carbide powder source, if the temperature gradient is not well controlled, the grown single crystal is prone to polymorphism or surface carbonization.
  • the electromagnetic wave entering the conductor decays exponentially with distance.
  • the amplitude at which it is reduced is reduced to 1/e of the initial amplitude. Therefore, the magnetic field is much larger than the electric field in a good conductor.
  • most of the heating power is consumed within a penetration depth ⁇ , with only a small fraction occurring outside of 2 ⁇ .
  • 55 mm. Since the 6-inch single crystal has a diameter of about 150 mm, the normal heating power is substantially attenuated when it reaches the center, so the temperature field must be redesigned to accommodate the growth of a 6-inch silicon carbide single crystal.
  • the integrated coil can not regulate the temperature field in time and effectively, and it is easy to produce multi-type or single-crystal surface carbonization. Therefore, it is difficult for the existing growth process to grow a high quality silicon carbide single crystal having a thickness of more than 30 mm.
  • a method for precisely controlling the growth temperature field of a 6-inch silicon carbide single crystal comprising: a single crystal furnace for growing a silicon carbide single crystal, the single crystal furnace comprising a heating cylinder for heating the crucible and heating of the induction heating heating cylinder Coil
  • the method comprises the following steps:
  • Step 1) designing the heating coil based on an induction heating method the heating coil is composed of a plurality of coil units arranged in an axial direction, and each coil unit is connected with an independent control device;
  • Step 2) by controlling the heating parameters of each coil unit, the heat generation of each part of the heating tube is changed, thereby Precisely control the temperature field in the cavity of the single crystal furnace, and always keep the front edge of the crystal growth in the temperature zone suitable for its growth, and finally obtain the silicon carbide single crystal.
  • the number of turns of each of the coil units is determined, and the pitch of the heating coils is the same.
  • each of the coil units is single or multiple turns.
  • the heating coil is a water-cooled tubular copper coil.
  • each of the coil units is connected with an independent control power source, or all coil units are connected to the same power source, and each coil unit is connected with a respective branch line controller, and the power of each coil unit is independently controlled by the branch line controller.
  • the invention independently controls the temperature field of each position by segmentation, strictly controls the high temperature region to the desired growth point during the movement process, realizes the growth of the high quality 6 inch silicon carbide single crystal, reduces energy consumption waste, and does not need to confront Lifting and rotating simplifies the mechanical structure of the single crystal furnace, and the temperature field control method is not limited to the growth of silicon carbide single crystal.
  • Figure 1 is a schematic view showing the structure of a single crystal furnace system of the present invention.
  • a method for precisely controlling the growth temperature field of a 6-inch silicon carbide single crystal in the present embodiment is provided with a single crystal furnace for growing a silicon carbide single crystal, the single crystal furnace comprising: 2.
  • the crystal and the crucible 2 are placed in the heating cylinder 1, and the heating cylinder 1 is covered with the heat insulating structure 3.
  • the heating coil 6 is used in conjunction with the heating cylinder 1, and the heating cylinder 1 is inductively heated.
  • the height of the heating cylinder 1 is close to the height of the induction coil 6.
  • the heating coil 6 is a water-cooled tubular copper coil.
  • the method comprises the following steps:
  • Step 1) Design a heating coil 6 based on an induction heating method, the heating coil 6 is composed of a plurality of coil units arranged in an axial direction, each coil unit is connected with an independent control power source 7, and each coil is independently controlled by the control power source 7.
  • Step 2 By controlling the heating parameters of each coil unit, the heat generation of each part of the heating tube 1 is changed, thereby precisely controlling the temperature field in the single crystal furnace chamber, and maintaining the front edge of the silicon carbide crystal growth at a temperature suitable for its growth. In the region, a silicon carbide single crystal is finally obtained.
  • each coil unit is determined, and the pitch of the heating coil 6 is the same.
  • Each coil unit is single or multiple turns. All coil units are connected to the same power source, and each coil unit is connected with a respective branch line controller, and the power of each coil unit is independently controlled by the branch line controller.
  • the heating coil 6 is divided into three segments of coil units A, B, and C, and the first segment of the coil unit A and the third segment of the coil unit C are both 4 turns, and the second is The segment coil unit C is 7 turns.
  • the graphite ⁇ 2 resistivity ⁇ 2.9 ⁇ 10 -5 ⁇ ⁇ m
  • the current frequency f 2 is 1.3 KHz

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种精密控制6英寸碳化硅单晶生长温场的方法,配备一碳化硅单晶生长用单晶炉:该方法包括:步骤1)基于感应加热法设计加热线圈(6),该加热线圈(6)由轴向排布的若干段线圈单元组合而成,每段线圈单元连接有独立控制装置;步骤2)通过控制每段线圈单元的加热参数,使发热筒(1)各部分的发热量发生改变,从而精确控制单晶炉腔内温度场,始终保持晶体生长的前沿处于适合其生长的温区,最终得到碳化硅单晶。通过分段独立控制各位置温场,在坩埚运动过程中严格将高温区域控制在所需的生长点上,实现优质6英寸碳化硅单晶的生长,降低能耗浪费,而且无需对坩埚进行提拉和旋转,简化了单晶炉的机械结构,该温场控制方法不局限于碳化硅单晶生长。

Description

一种精密控制6英寸碳化硅单晶生长温场的方法 技术领域
本发明涉及半导体生长技术领域,特别是一种精密控制6英寸碳化硅单晶生长温场的方法。
背景技术
碳化硅单晶生长处于一个密闭空间,生长过程中粉源不断消耗,单晶厚度逐渐增加,晶体生长前沿面与粉源之间的距离不断缩小,即生长线一直在变化,温度梯度和生长气氛亦发生改变。随着碳化硅粉源的进一步消耗,如果温度梯度控制不好,生长出的单晶就容易产生多型或者出现表面碳化的现象。
根据电磁场的“集肤效应”,在非优良的导体中,进入导体的电磁波随距离按指数衰减。在距离
Figure PCTCN2017074053-appb-000001
处的振幅减小到初始振幅的1/e。因此,在优良导体中磁场远大于电场。在圆柱体表面,大部分的加热功率消耗在一倍穿透深度δ之内,仅仅一小部分发生在2δ之外。对石墨坩埚,取石墨坩埚电阻率为ρ=2.9×10-5Ω·m,相对磁导率取μr=1,磁导率μm=μrμ0=μ0=4Π×10-7,f(f=ω/2п,ω为加热电流角频率,f为加热电流频率)为2.5KHz,则δ=55mm。由于6英寸单晶直径约150mm,正常加热功率到达中心时基本已衰减完毕,因此必须重新设计温场以适应6英寸碳化硅单晶生长。
目前面对由晶体生长前沿面与粉源间距引起的温度梯度变化,一体式线圈不能及时有效地调控温场,容易产生多型或单晶表面碳化。因此,现有的生长工艺很难生长出厚度大于30毫米的高质量碳化硅单晶。针对这一技术难题,我们对单晶炉、线圈进行改造,以适应6英寸晶体生长。
发明内容
针对现有技术中存在的现有碳化硅生长的场温控制缺陷,本发明的目的在于提供一种可精密控制6英寸碳化硅单晶生长温场的方法。
为了实现上述目的,本发明的技术方案如下:
一种精密控制6英寸碳化硅单晶生长温场的方法,为该方法配备一碳化硅单晶生长用单晶炉,该单晶炉包括用于加热坩埚的发热筒和感应加热发热筒的加热线圈;
该方法包括如下步骤:
步骤1)基于感应加热法设计所述加热线圈,该加热线圈由轴向排布的若干段线圈单元组合而成,每段线圈单元连接有独立控制装置;
步骤2)通过控制每段线圈单元的加热参数,使发热筒各部分的发热量发生改变,从而 精确控制单晶炉腔内温度场,始终保持晶体生长的前沿处于适合其生长的温区,最终得到碳化硅单晶。
进一步,根据场温控制需求,确定每段所述线圈单元的匝数,且所述加热线圈的匝间距相同。
进一步,每段所述线圈单元为单匝或者多匝。
进一步,所述加热线圈为水冷管式铜线圈。
进一步,每段所述线圈单元连接有独立控制电源,或者所有线圈单元连接同一电源,每段线圈单元连接有各自的分线控制器,由所述分线控制器独立控制每段线圈单元的功率。
本发明通过分段独立控制各位置温场,在坩埚运动过程中严格将高温区域控制在所需的生长点上,实现优质6英寸碳化硅单晶的生长,降低能耗浪费,而且无需对坩埚进行提拉和旋转,简化了单晶炉的机械结构,该温场控制方法不局限于碳化硅单晶生长。
附图说明
图1为本发明的单晶炉***的结构示意图。
具体实施方式
下面结合附图,对本发明的具体实施方式作详细说明。
如图1所示本实施例中的一种精密控制6英寸碳化硅单晶生长温场的方法,为该方法配备一碳化硅单晶生长用单晶炉,该单晶炉包括:包括:坩埚2、发热筒1、保温结构3和加热线圈6,其中,坩埚2优选为石墨坩埚,在坩埚2的底部装有一定量的碳化硅料源5,在坩埚2盖的内侧粘结有碳化硅籽晶,坩埚2置于发热筒1内,发热筒1四周包覆有保温结构3,加热线圈6与发热筒1配合使用,感应加热发热筒1,发热筒1的高度接近于感应线圈6的高度,加热线圈6为水冷管式铜线圈。
该方法包括如下步骤:
步骤1)基于感应加热法设计加热线圈6,该加热线圈6由轴向排布的若干段线圈单元组合而成,每段线圈单元连接有独立控制电源7,由控制电源7独立控制每段线圈单元的功率;或者所有线圈单元连接同一电源,每段线圈单元连接有各自的分线控制器,由分线控制器独立控制每段线圈单元的功率。
步骤2)通过控制每段线圈单元的加热参数,使发热筒1各部分的发热量发生改变,从而精确控制单晶炉腔内温度场,始终保持碳化硅晶体生长的前沿处于适合其生长的温区,最终得到碳化硅单晶。
其中,根据场温控制需求,确定每段线圈单元的匝数,且加热线圈6的匝间距相同。每段线圈单元为单匝或者多匝。所有线圈单元连接同一电源,每段线圈单元连接有各自的分线控制器,由所述分线控制器独立控制每段线圈单元的功率。
图1中以15匝的加热线圈6为例,将加热线圈6分为3段线圈单元A、B、C,第一段线 圈单元A和第三段线圈单元C均为4匝,中间第二段线圈单元C为7匝。取石墨坩埚2电阻率为ρ=2.9×10-5Ω·m,相对磁导率取μr=1,磁导率μm=μrμ0=μ0=4Π×10-7,则加热电流频率f2为1.3KHz,f1=f3=0.43KHz。则通过严格控制生长点温度,达到生长优质碳化硅单晶的目的。
上述示例只是用于说明本发明,本发明的实施方式并不限于这些示例,本领域技术人员所做出的符合本发明思想的各种具体实施方式都在本发明的保护范围之内。

Claims (5)

  1. 一种精密控制6英寸碳化硅单晶生长温场的方法,其特征在于,为该方法配备一碳化硅单晶生长用单晶炉,该单晶炉包括用于加热坩埚的发热筒和感应加热发热筒的加热线圈;
    该方法包括如下步骤:
    步骤1)基于感应加热法设计所述加热线圈,该加热线圈由轴向排布的若干段线圈单元组合而成,每段线圈单元连接有独立控制装置;
    步骤2)通过控制每段线圈单元的加热参数,使发热筒各部分的发热量发生改变,从而精确控制单晶炉腔内温度场,始终保持晶体生长的前沿处于适合其生长的温区,最终得到碳化硅单晶。
  2. 如权利要求1所述的精密控制6英寸碳化硅单晶生长温场的方法,其特征在于,根据场温控制需求,确定每段所述线圈单元的匝数,且所述加热线圈的匝间距相同。
  3. 如权利要求1所述的精密控制6英寸碳化硅单晶生长温场的方法,其特征在于,每段所述线圈单元为单匝或者多匝。
  4. 如权利要求1所述的精密控制6英寸碳化硅单晶生长温场的方法,其特征在于,所述加热线圈为水冷管式铜线圈。
  5. 如权利要求1所述的精密控制6英寸碳化硅单晶生长温场的方法,其特征在于,每段所述线圈单元连接有独立控制电源,或者所有线圈单元连接同一电源,每段线圈单元连接有各自的分线控制器,由所述分线控制器独立控制每段线圈单元的功率。
PCT/CN2017/074053 2016-04-19 2017-02-20 一种精密控制6英寸碳化硅单晶生长温场的方法 WO2017181764A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610245235.6 2016-04-19
CN201610245235.6A CN105696079A (zh) 2016-04-19 2016-04-19 一种精密控制6英寸碳化硅单晶生长温场的方法

Publications (1)

Publication Number Publication Date
WO2017181764A1 true WO2017181764A1 (zh) 2017-10-26

Family

ID=56217189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074053 WO2017181764A1 (zh) 2016-04-19 2017-02-20 一种精密控制6英寸碳化硅单晶生长温场的方法

Country Status (2)

Country Link
CN (1) CN105696079A (zh)
WO (1) WO2017181764A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105696079A (zh) * 2016-04-19 2016-06-22 北京世纪金光半导体有限公司 一种精密控制6英寸碳化硅单晶生长温场的方法
CN107770890A (zh) * 2017-10-30 2018-03-06 扬中市惠丰包装有限公司 节电型加热器
CN109666970A (zh) * 2019-02-28 2019-04-23 中国科学院半导体研究所 基于物理气相传输法的温度场控制装置及温控方法
CN111945218B (zh) * 2019-05-17 2021-11-16 北京北方华创微电子装备有限公司 坩埚高温线的高度控制***和方法、生长炉

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100175614A1 (en) * 2009-01-15 2010-07-15 Sicrystal Ag Thermally insulated configuration and method for producing a bulk sic crystal
EP2415911A1 (en) * 2009-04-03 2012-02-08 Bridgestone Corporation Device for producing single crystal of silicon carbide
CN103732808A (zh) * 2011-07-28 2014-04-16 株式会社电装 碳化硅单晶制造设备
CN105696079A (zh) * 2016-04-19 2016-06-22 北京世纪金光半导体有限公司 一种精密控制6英寸碳化硅单晶生长温场的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3237069B2 (ja) * 1996-09-30 2001-12-10 三菱マテリアル株式会社 SiC単結晶の製造方法
WO2000039372A1 (fr) * 1998-12-25 2000-07-06 Showa Denko K. K. Procede de production d'un monocristal de carbure de silicium
JP4992965B2 (ja) * 2009-12-25 2012-08-08 株式会社デンソー 炭化珪素単結晶の製造装置
CN105200515A (zh) * 2015-09-24 2015-12-30 山东大学 一种用于SiC单晶生长炉的感应线圈及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100175614A1 (en) * 2009-01-15 2010-07-15 Sicrystal Ag Thermally insulated configuration and method for producing a bulk sic crystal
EP2415911A1 (en) * 2009-04-03 2012-02-08 Bridgestone Corporation Device for producing single crystal of silicon carbide
CN103732808A (zh) * 2011-07-28 2014-04-16 株式会社电装 碳化硅单晶制造设备
CN105696079A (zh) * 2016-04-19 2016-06-22 北京世纪金光半导体有限公司 一种精密控制6英寸碳化硅单晶生长温场的方法

Also Published As

Publication number Publication date
CN105696079A (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
WO2017181764A1 (zh) 一种精密控制6英寸碳化硅单晶生长温场的方法
JP5925319B2 (ja) SiC単結晶の製造装置及びSiC単結晶の製造方法
KR20120051894A (ko) 사파이어 잉곳 성장장치
JP6302192B2 (ja) 単結晶の育成装置及び育成方法
CN109280976A (zh) 一种大尺寸高纯碳化硅单晶、单晶衬底及其制备方法
JP2007230846A (ja) 単結晶製造装置用坩堝
CN107604439A (zh) 一种生长大尺寸碳化硅单晶的热场结构
CN207435586U (zh) 一种生长大尺寸碳化硅单晶的热场结构
JP6033650B2 (ja) 単結晶製造装置、および単結晶の製造方法
JP2016037441A (ja) 単結晶の製造方法
JP6121422B2 (ja) 方向性凝固によって結晶性材料を作製するための、追加の側方熱源が備わったシステム
TWI411708B (zh) 非金屬熔融物凝固之方法
CN102277616A (zh) 生产包括硅的半导体晶圆的方法
CN205856655U (zh) 一种碳化硅单晶炉
CN115537927B (zh) 一种制备低基平面位错的碳化硅单晶晶锭生长***及方法
CN204417641U (zh) 可调控SiC晶体生长梯度的水冷装置及晶体生长炉
CN103590109A (zh) 直拉单晶炉磁场装置及使用该磁场装置的拉晶方法
CN210420255U (zh) 晶体生长装置
KR101333791B1 (ko) 단결정 성장장치
JP7056979B2 (ja) 炭化珪素インゴットの製造方法及び炭化珪素インゴット製造用システム
JP2007180132A (ja) サセプタ及びそのサセプタを用いたcvd装置
JP2012236755A (ja) 再使用が可能なシリコン溶融用二重坩堝を備える単結晶シリコンインゴット成長装置
CN209144309U (zh) 一种生长碳化硅单晶的装置
JP2004123510A (ja) 単結晶の製造装置、及びその製造方法
JP2004342450A (ja) 高周波誘導加熱装置及び半導体製造装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785250

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785250

Country of ref document: EP

Kind code of ref document: A1