WO2017175737A1 - バイオマス炭化物の冷却装置 - Google Patents

バイオマス炭化物の冷却装置 Download PDF

Info

Publication number
WO2017175737A1
WO2017175737A1 PCT/JP2017/014002 JP2017014002W WO2017175737A1 WO 2017175737 A1 WO2017175737 A1 WO 2017175737A1 JP 2017014002 W JP2017014002 W JP 2017014002W WO 2017175737 A1 WO2017175737 A1 WO 2017175737A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
solid fuel
less
water
immersion
Prior art date
Application number
PCT/JP2017/014002
Other languages
English (en)
French (fr)
Inventor
茂也 林
龍海 田野
直秀 藤本
大輔 真木
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to CA3020513A priority Critical patent/CA3020513A1/en
Priority to US16/090,515 priority patent/US20190112530A1/en
Priority to AU2017247757A priority patent/AU2017247757B2/en
Priority to KR1020187031771A priority patent/KR20180133445A/ko
Priority to NZ747132A priority patent/NZ747132B2/en
Priority to JP2018510601A priority patent/JP7080168B2/ja
Priority to RU2018138556A priority patent/RU2746733C2/ru
Priority to MYPI2018001688A priority patent/MY189949A/en
Publication of WO2017175737A1 publication Critical patent/WO2017175737A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B39/00Cooling or quenching coke
    • C10B39/04Wet quenching
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B39/00Cooling or quenching coke
    • C10B39/16Cooling or quenching coke combined with sorting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B45/00Other details
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/08Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form in the form of briquettes, lumps and the like
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • C10L5/442Wood or forestry waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • C10L9/086Hydrothermal carbonization
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D7/00Devices using evaporation effects without recovery of the vapour
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/02Combustion or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/06Heat exchange, direct or indirect
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/18Spraying or sprinkling
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/32Molding or moulds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/361Briquettes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a biomass carbide cooling device.
  • Patent Document 1 biocoke having excellent strength is obtained by semi-carbonizing by pulverizing biomass under pressure while heating.
  • Patent Document 1 has a problem that the cooling efficiency is low because it is cooled in a pressurized state after molding and is naturally cooled by the atmosphere. Even if cooling by water cooling is performed to improve the cooling efficiency, water cooling in a pressurized state is difficult, and bio coke is biomass formed after pulverization, so that a part thereof is pulverized and handling becomes difficult. In particular, in the unsteady state where heating is not performed, the molded bio-coke may collapse and the equipment may be blocked. Or, for simplification, when carbonized (heated) and then cooled in a water tank or the like, the biomass solid fuel floats because of its low specific gravity, and the recovery becomes complicated.
  • the present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to reduce equipment blockage while improving the efficiency of cooling a semi-carbonized biomass molded body.
  • a carbonization furnace for carbonizing a biomass molded body to obtain a biomass carbide provided on the downstream side of the carbonization furnace, classifying means for classifying the biomass carbide, provided on the downstream side of the classification means, and classified Cooling means for cooling the biomass carbide
  • the biomass molded body is a molded body obtained by pulverizing raw material biomass and then molding, wherein the cooling means sprays the biomass carbide by watering. It is characterized by cooling.
  • the present invention is to reduce equipment blockage while improving the efficiency of cooling a semi-carbonized biomass molded body.
  • FIG. 26A is a schematic diagram of the present invention
  • FIG. 27 is a process flow.
  • the biomass solid fuel obtained by the fuel production process 100 of FIG. 27 becomes a product through the classification process 200 and the cooling process 300.
  • a biomass solid fuel is produced using a known method.
  • the raw material biomass is subjected to the crushing and crushing step 110 and then molded in the molding step 120, and then heated in the heating step 130 using the kiln 1 of FIG. 26A.
  • a binder such as a binder is not added, and the molding is simply performed by compressing and pressurizing the biomass powder.
  • An unheated biomass molded body (White Pellet: hereinafter referred to as WP) immediately after the molding step 120 is low in strength because it is simply pressure-molded biomass powder, and is easily pulverized during handling. Moreover, it expands and collapses due to water absorption.
  • the biomass molded body is heated (low-temperature carbonization) at 150 to 400 ° C. in the heating process 130 (kiln 1), so that the shape and shape of the molded body are maintained, while maintaining strength and water resistance.
  • a biomass solid fuel (Pelletizing Before Torrefaction: hereinafter referred to as PBT) is produced. Details of the fuel manufacturing process 100 will be described later.
  • the classification process 200 and the cooling process 300 are performed using the vibration conveyor 2 of FIG. 26A.
  • the vibration conveyor 2 is divided into two sections by a partition plate 24, and becomes a classification unit 21 and a cooling unit 22, respectively.
  • the PBT discharged from the kiln 1 is transported by the vibration of the flat plate 22b and the PBT sequentially supplied from the kiln 1, and is discharged as a product through the classification unit 21 and the cooling unit 22.
  • the vibration conveyor 2 of FIG. 26A is inclined, the horizontal conveyor which does not incline may be sufficient.
  • the PBT and the fine powder are classified (classifying step 200) by vibrating the PBT on the sieve 21a.
  • the cooling unit 22 has a sprinkler 22a and a vibrating flat plate 22b, and the sprinkler 22a sprinkles water on the flat plate 22b.
  • Cooling (cooling process 300) is performed by spraying water on the PBT on the flat plate 22b and discharged as a product.
  • the cooling may be only watering, or an air nozzle or the like may be provided in addition to the watering part 22a and air cooling may be used in combination. Further, the watering nozzle may be a two-fluid nozzle of air + water.
  • the flat plate 22b is a smooth plate having no holes or irregularities, and a metal plate or a resin plate is used. By using a smooth plate, the PBT in the cooling unit 22 becomes slippery, and the movement in the cooling unit 22 becomes smooth.
  • the classification unit 21 and the cooling unit 22 are separated by the partition plate 24, the water that has sprinkled into the cooling unit 22 is reduced from entering the classification unit 21. Thereby, the water absorption of the fine powder classified in the classification part 21 is suppressed, and the obstruction
  • thermometer 11 is provided at the exit of the kiln 1, and the control unit 30 executes or stops watering based on the measured temperature.
  • the thermometer 11 may be at any other position as long as the temperature of the kiln 1 can be measured.
  • PBT having strength and water resistance is obtained only by heating WP with kiln 1, but when the temperature of kiln 1 is below a predetermined value, unheated WP or heating is not performed. Since it is insufficient, a biomass molded body in which strength and water resistance are not ensured is discharged from the kiln 1.
  • the water sprinkling unit 22 expands and collapses due to water absorption due to insufficient water resistance, causing equipment blockage.
  • the controller 30 determines that the temperature is insufficient for PBT production and stops the watering of the watering part 22a. Therefore, even if it is a case where WP and PBT with insufficient heating are discharged when the temperature of the kiln 1 is low, collapse in the sprinkling part 22 can be suppressed and equipment blockage can be reduced.
  • FIG. 28 is a flowchart for continuing / stopping watering based on temperature, and is executed by the control unit 30.
  • step S1 the kiln 1 outlet temperature T is measured by the thermometer 11.
  • step S2 it is determined whether or not the measured temperature T is equal to or lower than a predetermined value ⁇ . If YES, the watering is stopped in step S3, and if NO, the watering is executed in step S4.
  • the WP in the kiln 1 is stopped when the kiln 1 is stopped and the temperature becomes lower than a predetermined value, the WP remains in the kiln 1. In this case, even if the temperature is low, carbonization of WP proceeds and a large amount of pyrolysis gas is generated, which is complicated because a separate gas treatment is required. Moreover, excessively carbonized WP has a small residual amount of volatile matter and is disadvantageous as a fuel, and this also needs to be treated separately, which further increases man-hours. Therefore, the conveyance stop in the kiln 1 is not preferable.
  • the thermometer 11 directly measures the temperature of the PBT at the kiln 1 outlet, not the atmosphere temperature at the kiln 1 outlet.
  • PBT solid fuel
  • PBT solid fuel
  • the thermometer 11 only needs to be able to directly measure the temperature of the PBT at the outlet of the kiln 1, and may be a contact thermometer or a non-contact thermometer such as an infrared ray.
  • a kiln 1 carbonization furnace that carbonizes a biomass molded body to obtain biomass carbide (PBT), and a classification unit 21 (classification means) that is provided downstream of the kiln 1 and classifies biomass carbide (PBT).
  • a cooling unit 22 cooling means that is provided downstream of the classification unit 21 and cools the classified biomass carbide (PBT).
  • the biomass molded body was a molded body obtained by pulverizing the raw material biomass and then molded, and the cooling unit 22 cooled the biomass carbide (PBT) by watering.
  • biomass carbide When the biomass carbide is cooled by immersion in water, it is difficult to handle because the biomass carbide floats on the water and diffuses into the water surface. On the other hand, even in the case of cooling by watering, the molded biomass is easily pulverized because it forms a pulverized product. If watered as it is, biomass powder may absorb water and the equipment may be blocked. Therefore, blockage can be avoided by watering after classification.
  • air cooling and watering may be used in combination, or a two-fluid nozzle of air + water may be used.
  • the cooling unit 22 includes a vibrating flat plate 22b (flat plate) and a sprinkling unit 22a that sprinkles water on the flat plate 22b.
  • the flat plate 22b is a metal plate or a resin plate, and biomass carbide ( PBT) was transported.
  • Biomass carbide partially collapses during transportation, so that a small amount of biomass carbide remains after classification. Smaller diameters are more likely to adhere to each other by watering, and handling during transportation tends to be complicated.
  • the biomass carbide sprayed by the resistance of the irregularities of the net accumulates, and the conveyance becomes inefficient and there is a risk of blockage. Therefore, by using a metal plate or a resin plate having a low sliding resistance with the biomass carbide, it is possible to reduce the resistance during conveyance and perform efficient conveyance.
  • a control unit 30 (control means) is provided to stop watering of the watering unit 22a.
  • the kiln 1 In the unsteady state such as when starting and stopping, the kiln 1 is at a low temperature below a predetermined value (low temperature that is insufficient for PBT production), so that unmolded biomass (WP) or carbonization is insufficient and strength and water resistance Biomass compacts that are inferior in properties are discharged, but they swell and collapse due to watering, and there is a risk of equipment blockage. Therefore, watering can be stopped and blockage can be prevented.
  • WP unmolded biomass
  • thermometer 11 is capable of directly measuring the temperature of biomass carbide (PBT).
  • PBT solid fuel
  • PBT solid fuel
  • WP water resistance
  • strength can be obtained by carbonizing WP at a predetermined temperature or higher, while excessive carbonization deteriorates the calorie yield. Therefore, by directly measuring the temperature of the PBT, it becomes possible to perform carbonization with high accuracy, and it is possible to obtain water resistance and strength while ensuring a heat yield.
  • a separation part 24 that separates the classification part 22 and the cooling part 23 was provided. By separating these, water intrusion into the classification unit 22 can be reduced, and accumulation and blockage during classification can be suppressed.
  • a classification process and a cooling process may be performed using a system as shown in FIG. 26B.
  • This system 402 includes a vibration sieve device 403A and a cooling vibration conveyor 403B.
  • the vibration sieve device 403A and the cooling vibration conveyor 403B are configured separately, and the vibration sieve device 403A is arranged on the upstream side in the PBT transport direction, and the cooling vibration conveyor 403B is arranged on the downstream side. Note that the description of the functions and structures common to the configuration in FIG. 26A will be omitted to avoid redundant description.
  • the vibration sieve device 403A has a classification unit 421 provided with a sieve 421a.
  • PBT is supplied from a rotary kiln (not shown in FIG. 26B) as in the configuration of FIG. 26A.
  • the PBT is conveyed while being vibrated on the sieve 421a, whereby the PBT and fine powder are classified (classifying step).
  • the vibration sieve device 403A in the figure is inclined, it may be a horizontal one that does not incline.
  • the size of the screen 421a may be appropriately changed according to a desired value. Those that have collapsed during manufacture or small PBT that do not reach a predetermined size fall under this sieve 421a and are processed separately. The PBT remaining on the sieve 421a is discharged from the discharge portion 421b of the vibration sieve device 403A.
  • the cooling vibration conveyor 403B has a cooling unit 422 provided with a sprinkling unit 422a, a vibrating flat plate 422b, and the like, and PBT from the vibration sieve device 403A is supplied onto the flat plate 422b.
  • the cooling vibration conveyor 403B also includes a control unit that controls the operation of the watering unit 422a and the like, as in the configuration of FIG. 26A.
  • the flat plate 422b is a smooth plate having no holes or irregularities, and a metal plate or a resin plate is used. By using a smooth plate, the PBT becomes slippery and the movement is smooth.
  • the cooling vibration conveyor 403B in the figure is inclined, it may be a horizontal one that is not inclined.
  • cooling may be only watering or air cooling may be used in combination.
  • the watering nozzle may be a two-fluid nozzle of air + water.
  • Biomass solid fuel is a molding obtained by crushing biomass after crushing, compressing and molding biomass that has become scrap or powder to form a lump, and a heating process that heats the lump after the forming process Spent solids are used as fuel (corresponding to PBT described later). Since this biomass solid fuel does not require a steam explosion process and a binder, an increase in cost can be suppressed.
  • the block obtained by the molding process and before the heating step is also referred to as “unheated block”. This unheated lump corresponds to the above-mentioned WP.
  • the biomass used as a raw material may be woody or grassy, and the tree species and parts are not particularly limited.
  • examples include bark, walnut shell, sago palm, EFB (empty fruit bunch of palm oil processing residue), meranti, rubber tree and the like, and may be one kind or a mixture of two or more kinds.
  • a block is formed using a known molding technique.
  • the lump is preferably a pellet or briquette and can be of any size.
  • the heating step the molded lump is heated.
  • the biomass solid fuel obtained after the heating step preferably has an immersion water COD (chemical oxygen demand) of 3000 ppm or less when immersed in water.
  • the biomass solid fuel preferably has a COD ratio represented by (COD of biomass solid fuel after heating step / COD of unheated biomass solid fuel) of 0.98 or less.
  • COD chemical oxygen demand
  • COD chemical oxygen demand of immersion water when biomass solid fuel is immersed in water
  • COD refers to the preparation of an immersion water sample for COD measurement in 1973. This is the COD value analyzed according to JIS K0102 (2010) -17, in accordance with the Agency Notification No. 13 (b) Method for testing metals contained in industrial waste.
  • the biomass solid fuel obtained after the heating step preferably has a grindability index (HGI) based on JIS M 8801 of 15 or more and 60 or less, and more preferably 20 or more and 60 or less.
  • HGI grindability index
  • the BET specific surface area is preferably from 0.15 to 0.8 m 2 / g, more preferably from 0.15 to 0.7 m 2 / g.
  • the equilibrium moisture after immersion in water is preferably 15 to 65 wt%, and more preferably 15 to 60 wt%.
  • Biomass solid fuel has a fuel ratio (fixed carbon / volatile content) of 0.2 to 0.8, an anhydrous base high calorific value of 4800 to 7000 (kcal / kg), and a molar ratio O / C of oxygen O to carbon C.
  • the molar ratio H / C of hydrogen H to carbon C is 0.8 to 1.3.
  • the biomass solid fuel can be obtained, for example, by adjusting the species of biomass used as a raw material, its part, the heating temperature in the heating step, and the like.
  • the industrial analysis values, elemental analysis values, and higher calorific values in this specification are based on JIS M 8812, 8813, and 8814.
  • the method for producing a biomass solid fuel includes a molding step of forming biomass powder of crushed and pulverized biomass to obtain an unheated lump, and a heating step of heating the unheated lump to obtain a heated solid.
  • the heating temperature in the heating step is preferably 150 ° C. to 400 ° C. By setting the temperature of the heating step within this range, a biomass solid fuel having the above characteristics can be obtained.
  • the heating temperature is appropriately determined depending on the shape and size of the biomass as a raw material and the lump, but is preferably 150 to 400 ° C, more preferably 200 to 350 ° C. More preferably, it is 230 to 300 ° C. More preferably, it is 250 to 290 ° C.
  • the heating time in the heating step is not particularly limited, but is preferably 0.2 to 3 hours.
  • the particle size of the biomass powder is not particularly limited, but is about 100 to 3000 ⁇ m on average, preferably 400 to 1000 ⁇ m on average.
  • the measuring method of the particle size of biomass powder may use a well-known measuring method. As will be described later, in biomass solid fuel (PBT), the connection or adhesion between biomass powders is maintained by solid crosslinking, so the particle size of biomass powders is not particularly limited as long as it can be molded. In addition, since the fine pulverization causes a cost increase, a known range may be used as long as the particle size is in a range where both cost and moldability are compatible.
  • B / A 0.7 to 1 where A is the bulk density of the unheated mass before the heating step and B is the bulk density of the heated solid after the heating step.
  • the value of the bulk density A is not particularly limited as long as it is a known range in which biomass powder is molded to obtain an unheated lump. Moreover, since the bulk density changes depending on the type of raw material biomass, it may be set as appropriate.
  • H2 / H1 1.1 to 2.5, where HGI of the unheated mass (hard glove grindability index of JIS M8801) is H1, and HGI of the heated solid is H2.
  • the characteristics of the biomass solid fuel may be determined within a suitable range depending on the species of biomass used as a raw material.
  • One example will be described below, but the present invention is not limited to these tree species and combinations thereof.
  • preferable ranges are shown for the types of biomass raw materials used in the present invention, the properties of the obtained solid fuel (corresponding to PBT described later), and the production method thereof.
  • COD is preferably 1000 ppm or less, more preferably 900 ppm or less, further preferably 800 ppm or less, and the COD ratio is preferably 0.80 or less, more preferably 0.70 or less, and even more preferably 0.68 or less.
  • the equilibrium moisture after immersion in water is preferably 15 wt% to 45 wt%, more preferably 18 wt% to 35 wt%, and further preferably 18 wt% to 32 wt%.
  • the BET specific surface area is 0.25m 2 /g ⁇ 0.8m 2 / g, more preferably 0.28m 2 /g ⁇ 0.6m 2 / g, 0.32m 2 / g ⁇ More preferably, it is 0.5 m 2 / g.
  • HGI is preferably 20 to 60, more preferably 20 to 55, and still more preferably 22 to 55.
  • the HGI of coal (bituminous coal) suitable as a boiler fuel for power generation is around 50, and the closer to around 50 is preferable, considering that it is mixed and ground with coal.
  • the HGI ratio (described later) is preferably 1.0 to 2.5.
  • the fuel ratio is preferably 0.2 to 0.8, more preferably 0.2 to 0.7, and still more preferably 0.2 to 0.65.
  • the anhydrous base high calorific value is preferably 4800 to 7000 kcal / kg, more preferably 4900 to 7000 kcal / kg, and further preferably 4950 to 7000 kcal / kg.
  • the molar ratio O / C of oxygen O to carbon C is preferably 0.1 to 0.62, more preferably 0.1 to 0.61, and further preferably 0.1 to 0.60.
  • the molar ratio H / C between hydrogen H and carbon C is preferably 0.8 to 1.3, more preferably 0.85 to 1.3, and even more preferably 0.9 to 1.3.
  • the heating temperature in the heating step is preferably 200 to 350 ° C, more preferably 210 to 330 ° C, and further preferably 220 to 300 ° C.
  • solid fuel B a biomass solid fuel (hereinafter sometimes referred to as solid fuel B) when the raw material is European red pine are as follows.
  • COD is preferably 900 ppm or less, more preferably 800 ppm or less, further preferably 700 ppm or less, and the COD ratio is preferably 0.75 or less, more preferably 0.68 or less, and even more preferably 0.64 or less.
  • the equilibrium moisture after immersion in water is preferably 15 wt% to 45 wt%, more preferably 18 wt% to 40 wt%, and even more preferably 18 wt% to 31 wt%.
  • the BET specific surface area is 0.30m 2 /g ⁇ 0.7m 2 / g, more preferably 0.30m 2 /g ⁇ 0.6m 2 / g, 0.30m 2 / g ⁇ More preferably, it is 0.5 m 2 / g.
  • HGI is preferably 25 to 60, more preferably 30 to 55, and even more preferably 35 to 55.
  • the HGI ratio (described later) is preferably 1.0 to 2.5.
  • the fuel ratio is preferably 0.2 to 0.8, more preferably 0.2 to 0.7, and still more preferably 0.2 to 0.65.
  • the anhydrous base high calorific value is preferably 4950 to 7000 kcal / kg, more preferably 5000 to 7000 kcal / kg, and further preferably 5100 to 7000 kcal / kg.
  • the molar ratio O / C of oxygen O to carbon C is preferably 0.1 to 0.60, more preferably 0.2 to 0.60, and still more preferably 0.3 to 0.60.
  • the molar ratio H / C between hydrogen H and carbon C is preferably 0.8 to 1.3, more preferably 0.85 to 1.3, and even more preferably 0.9 to 1.3.
  • the heating temperature in the heating step is preferably 200 to 350 ° C., more preferably 220 to 300 ° C., and further preferably 240 to 290 ° C.
  • solid fuel C As one aspect of the present invention, the properties of a biomass solid fuel (hereinafter sometimes referred to as solid fuel C) when the raw material is an almond old tree are as follows.
  • COD is preferably 2100 ppm or less, more preferably 2000 ppm or less, further preferably 1500 ppm or less, and the COD ratio is preferably 0.80 or less, more preferably 0.75 or less, and further preferably 0.55 or less.
  • the equilibrium moisture after immersion in water is preferably 25 wt% to 60 wt%, more preferably 30 wt% to 50 wt%, and even more preferably 30 wt% to 45 wt%.
  • the BET specific surface area is 0.20m 2 /g ⁇ 0.70m 2 / g, more preferably 0.22m 2 /g ⁇ 0.65m 2 / g, 0.25m 2 / g ⁇ More preferably, it is 0.60 m 2 / g.
  • HGI is preferably 15 to 60, more preferably 18 to 55, and still more preferably 20 to 55.
  • the HGI ratio (described later) is preferably 1.0 to 2.0.
  • the fuel ratio is preferably 0.2 to 0.8, more preferably 0.25 to 0.7, and further preferably 0.30 to 0.65.
  • the anhydrous base high calorific value is preferably 4800 to 7000 kcal / kg, more preferably 4800 to 6500 kcal / kg, and further preferably 4900 to 6500 kcal / kg.
  • the molar ratio O / C of oxygen O to carbon C is preferably 0.10 to 0.70, more preferably 0.20 to 0.60, and still more preferably 0.30 to 0.60.
  • the molar ratio H / C of hydrogen H to carbon C is preferably 0.8 to 1.3, more preferably 0.85 to 1.3, and still more preferably 0.9 to 1.20.
  • the heating temperature in the heating step is preferably 200 to 350 ° C., more preferably 220 to 300 ° C., and further preferably 240 to 290 ° C.
  • solid fuel D A mixture of almond shells and old almond wood: solid fuel D
  • the properties of a biomass solid fuel (hereinafter sometimes referred to as solid fuel D) when the raw material is a mixture of almond shells and almond old wood are as follows.
  • COD is preferably 2500 ppm or less, more preferably 2000 ppm or less, further preferably 1500 ppm or less, and the COD ratio is preferably 0.75 or less, more preferably 0.68 or less, and further preferably 0.50 or less.
  • the equilibrium moisture after immersion in water is preferably 15 wt% to 50 wt%, more preferably 20 wt% to 40 wt%, and even more preferably 20 wt% to 35 wt%.
  • the BET specific surface area is 0.20m 2 /g ⁇ 0.70m 2 / g, more preferably 0.27m 2 /g ⁇ 0.70m 2 / g, 0.30m 2 / g ⁇ More preferably, it is 0.60 m 2 / g.
  • HGI is preferably 20 to 60, more preferably 20 to 55, and still more preferably 23 to 55.
  • the HGI ratio (described later) is preferably 1.0 to 2.0.
  • the fuel ratio is preferably 0.2 to 0.8, more preferably 0.30 to 0.7, and still more preferably 0.35 to 0.65.
  • the anhydrous base high calorific value is preferably 4800 to 7000 kcal / kg, more preferably 4800 to 6500 kcal / kg, and further preferably 4900 to 6300 kcal / kg.
  • the molar ratio O / C of oxygen O to carbon C is preferably 0.10 to 0.70, more preferably 0.20 to 0.60, and still more preferably 0.30 to 0.55.
  • the molar ratio H / C between hydrogen H and carbon C is preferably 0.8 to 1.3, more preferably 0.8 to 1.25, and even more preferably 0.85 to 1.20.
  • the heating temperature in the heating step is preferably 200 to 350 ° C., more preferably 220 to 300 ° C., and further preferably 240 to 290 ° C.
  • Solid Fuel E As one aspect of the present invention, the properties of a biomass solid fuel (hereinafter sometimes referred to as solid fuel E) when the raw material is an acacia xylem are as follows.
  • COD is preferably 950 ppm or less, more preferably 850 ppm or less, further preferably 800 ppm or less, and the COD ratio is preferably 0.95 or less, more preferably 0.85 or less, and even more preferably 0.80 or less.
  • the equilibrium moisture after immersion in water is preferably 20 wt% to 60 wt%, more preferably 20 wt% to 55 wt%, and even more preferably 23 wt% to 53 wt%.
  • the BET specific surface area is 0.40m 2 /g ⁇ 0.70m 2 / g, more preferably 0.50m 2 /g ⁇ 0.70m 2 / g, 0.55m 2 / g ⁇ More preferably, it is 0.70 m 2 / g.
  • the fuel ratio is preferably 0.2 to 0.6, more preferably 0.2 to 0.5, and still more preferably 0.2 to 0.4.
  • the anhydrous base high calorific value is preferably 4800 to 7000 kcal / kg, more preferably 4800 to 6000 kcal / kg, and further preferably 4800 to 5500 kcal / kg.
  • the molar ratio O / C of oxygen O to carbon C is preferably 0.40 to 0.70, more preferably 0.45 to 0.70, and still more preferably 0.48 to 0.65.
  • the molar ratio H / C between hydrogen H and carbon C is preferably 0.8 to 1.3, more preferably 1.0 to 1.3, and even more preferably 1.1 to 1.3.
  • the heating temperature in the heating step is preferably 200 to 350 ° C., more preferably 220 to 300 ° C., and further preferably 240 to 290 ° C.
  • COD is preferably 2500 ppm or less, more preferably 2000 ppm or less, further preferably 1200 ppm or less, and the COD ratio is preferably 0.30 or less, more preferably 0.20 or less, and further preferably 0.15 or less.
  • the equilibrium moisture after immersion in water is preferably 15 wt% to 50 wt%, more preferably 20 wt% to 45 wt%, and even more preferably 25 wt% to 40 wt%.
  • the BET specific surface area is 0.35m 2 /g ⁇ 0.55m 2 / g, more preferably 0.40m 2 /g ⁇ 0.55m 2 / g, 0.40m 2 / g ⁇ More preferably, it is 0.50 m 2 / g.
  • the fuel ratio is preferably 0.4 to 0.8, more preferably 0.42 to 0.75, and still more preferably 0.45 to 0.75.
  • the anhydrous base high calorific value is preferably 4800 to 7000 kcal / kg, more preferably 5000 to 7000 kcal / kg, and further preferably 5200 to 6500 kcal / kg.
  • the molar ratio O / C of oxygen O to carbon C is preferably 0.25 to 0.60, more preferably 0.30 to 0.60, and still more preferably 0.30 to 0.55.
  • the molar ratio H / C between hydrogen H and carbon C is preferably 0.8 to 1.3, more preferably 0.8 to 1.2, and still more preferably 0.9 to 1.2.
  • the heating temperature in the heating step is preferably 200 to 350 ° C., more preferably 220 to 300 ° C., and further preferably 240 to 290 ° C.
  • solid fuel G (Almond shell and walnut shell mixture: solid fuel G)
  • the properties of a biomass solid fuel (hereinafter sometimes referred to as solid fuel G) when the raw material is a mixture of almond shells and walnut shells are as follows.
  • COD is preferably 2500 ppm or less, more preferably 2100 ppm or less, further preferably 1500 ppm or less, and the COD ratio is preferably 0.65 or less, more preferably 0.55 or less, and further preferably 0.45 or less.
  • the equilibrium moisture after immersion in water is preferably 20 wt% to 45 wt%, more preferably 20 wt% to 40 wt%, and even more preferably 25 wt% to 35 wt%.
  • the BET specific surface area is 0.15m 2 /g ⁇ 0.35m 2 / g, more preferably 0.19m 2 /g ⁇ 0.33m 2 / g, 0.20m 2 / g ⁇ More preferably, it is 0.30 m 2 / g.
  • the HGI is preferably 18 to 60, more preferably 20 to 60.
  • the HGI ratio is preferably 1.0 or more.
  • the fuel ratio is preferably 0.2 to 0.7, more preferably 0.25 to 0.65, and further preferably 0.28 to 0.60.
  • the anhydrous base high calorific value is preferably 4800 to 7000 kcal / kg, more preferably 4800 to 6000 kcal / kg, and further preferably 5000 to 6000 kcal / kg.
  • the molar ratio O / C of oxygen O to carbon C is preferably 0.30 to 0.65, more preferably 0.40 to 0.70, and still more preferably 0.40 to 0.60.
  • the molar ratio H / C between hydrogen H and carbon C is preferably 0.8 to 1.3, more preferably 0.9 to 1.25, and even more preferably 0.9 to 1.2.
  • the heating temperature in the heating step is preferably 200 to 350 ° C., more preferably 220 to 300 ° C., and further preferably 240 to 290 ° C.
  • Solid fuel H As one aspect of the present invention, the properties of a biomass solid fuel (hereinafter sometimes referred to as solid fuel H) when the raw material is sago palm are as follows.
  • COD is preferably 2000 ppm or less, more preferably 1600 ppm or less, further preferably 800 ppm or less, and the COD ratio is preferably 0.85 or less, more preferably 0.60 or less, and further preferably 0.4 or less.
  • the equilibrium moisture after immersion in water is preferably 20 wt% to 35 wt%, more preferably 20 wt% to 33 wt%, and even more preferably 22 wt% to 30 wt%.
  • the BET specific surface area is 0.15m 2 /g ⁇ 0.35m 2 / g, more preferably 0.18m 2 /g ⁇ 0.33m 2 / g, 0.18m 2 / g ⁇ More preferably, it is 0.30 m 2 / g.
  • the HGI is preferably 20 to 60, more preferably 25 to 55, and even more preferably 30 to 55.
  • the HGI ratio is preferably 1.0 to 2.5, more preferably 1.3 to 2.3, and still more preferably 1.5 to 2.2.
  • the fuel ratio is preferably 0.2 to 0.8, more preferably 0.25 to 0.8, and even more preferably 0.5 to 0.8.
  • the anhydrous base high calorific value is preferably 4800 to 7000 kcal / kg, more preferably 4900 to 6500 kcal / kg, and further preferably 5000 to 6000 kcal / kg.
  • the molar ratio O / C of oxygen O to carbon C is preferably 0.20 to 0.65, more preferably 0.20 to 0.60, and still more preferably 0.2 to 0.55.
  • the molar ratio H / C of hydrogen H to carbon C is preferably 0.8 to 1.3, more preferably 0.85 to 1.3, and still more preferably 0.85 to 1.2.
  • the heating temperature in the heating step is preferably 200 to 350 ° C., more preferably 220 to 300 ° C., and further preferably 240 to 290 ° C.
  • EFB Solid Fuel I
  • solid fuel I the properties of biomass solid fuel (hereinafter sometimes referred to as solid fuel I) when the raw material is EFB (empty fruit bunch of palm oil processing residue) are as follows.
  • COD is preferably 2350 ppm or less, more preferably 2300 ppm or less, further preferably 2000 ppm or less, and the COD ratio is preferably 0.98 or less, more preferably 0.96 or less, and further preferably 0.85 or less.
  • the equilibrium moisture after immersion in water is preferably 23 wt% to 45 wt%, more preferably 20 wt% to 40 wt%, and even more preferably 20 wt% to 35 wt%.
  • the BET specific surface area is 0.25m 2 /g ⁇ 0.65m 2 / g, more preferably 0.30m 2 /g ⁇ 0.60m 2 / g, 0.35m 2 / g ⁇ More preferably, it is 0.55 m 2 / g.
  • the fuel ratio is preferably 0.25 to 0.8, more preferably 0.30 to 0.8, and still more preferably 0.36 to 0.8.
  • the anhydrous base high calorific value is preferably 4800 to 7000 kcal / kg, more preferably 4900 to 7000 kcal / kg, and further preferably 5000 to 7000 kcal / kg.
  • the molar ratio O / C of oxygen O to carbon C is preferably 0.15 to 0.65, more preferably 0.15 to 0.60, and still more preferably 0.15 to 0.55.
  • the molar ratio H / C between hydrogen H and carbon C is preferably 0.5 to 1.3, more preferably 0.55 to 1.3, and even more preferably 0.6 to 1.2.
  • the heating temperature in the heating step is preferably 200 to 350 ° C., more preferably 220 to 300 ° C., and further preferably 240 to 260 ° C.
  • Solid fuel J As one aspect of the present invention, the properties of a biomass solid fuel (hereinafter sometimes referred to as solid fuel J) when the raw material is meranti are as follows.
  • COD is preferably 330 ppm or less, more preferably 320 ppm or less, further preferably 300 ppm or less, and the COD ratio is preferably 0.98 or less, more preferably 0.95 or less, and even more preferably 0.90 or less.
  • the equilibrium moisture after immersion in water is preferably 15 wt% to 30 wt%, more preferably 15 wt% to 27 wt%, and even more preferably 18 wt% to 25 wt%.
  • the fuel ratio is preferably 0.2 to 0.6, more preferably 0.2 to 0.5, and further preferably 0.2 to 0.45.
  • the anhydrous base high calorific value is preferably 4800 to 7000 kcal / kg, more preferably 4800 to 6500 kcal / kg, and further preferably 4800 to 6000 kcal / kg.
  • the molar ratio O / C of oxygen O to carbon C is preferably 0.3 to 0.60, more preferably 0.35 to 0.60, and still more preferably 0.40 to 0.60.
  • the molar ratio H / C between hydrogen H and carbon C is preferably 0.9 to 1.2, more preferably 0.95 to 1.2, and even more preferably 1.0 to 1.2.
  • the heating temperature in the heating step is preferably 200 to 350 ° C., more preferably 220 to 300 ° C., and further preferably 230 to 290 ° C.
  • the fuel ratio is preferably 0.2 to 0.8, more preferably 0.2 to 0.7.
  • the anhydrous base high calorific value is preferably 4800 to 7000 kcal / kg.
  • the molar ratio O / C of oxygen O to carbon C is preferably 0.1 to 0.7.
  • the molar ratio H / C between hydrogen H and carbon C is preferably 0.8 to 1.3.
  • the heating temperature in the heating step is preferably 200 to 350 ° C., more preferably 220 to 300 ° C., and further preferably 230 to 290 ° C.
  • the present inventors in the order of the process of performing the heating process of heating the unheated lump after the molding process, the components derived from biomass that is the raw material without using a binder. It is speculated that a biomass solid fuel with high water resistance can be produced that is used to maintain the connection or adhesion between biomass powders and does not collapse even when immersed in water. As a result of the analysis by the present inventors, the following knowledge about the mechanism by which the biomass solid fuel acquires water resistance was obtained.
  • the present inventors have prepared three types of biomass solid fuels having different production methods, specifically, unheated solid fuel obtained by molding pulverized biomass (White Pellet: hereinafter sometimes referred to as WP), and pulverization.
  • the solid fuel (Pelletizing Before Torrefaction: hereinafter sometimes referred to as PBT) obtained by molding and heating the formed biomass is subjected to FT-IR analysis, GC-MS analysis, SEM observation, etc. The mechanism of water resistance of the fuel was analyzed. Note that no binder is used in either WP or PBT.
  • abietic acid etc. terpenes such as abietic acid and its derivatives
  • FIG. 18 is a diagram showing a mechanism (estimation) of solid bridge development in PBT.
  • biomass powder in which the liquid due to melting of abietic acid is pulverized as the temperature rises (consolidated by molding after pulverization, Elution into the gap between adjacent biomass powders, evaporation of abietic acid and thermal decomposition occur, and the hydrophobic substance adheres to the gap between the biomass powders to develop crosslinking (solid crosslinking).
  • attachment of biomass powder is maintained by the abietic acid derived from the biomass etc. which are raw materials, without adding a binder. Therefore, it is considered that the biomass powders are connected or adhered to each other to suppress water entry and improve water resistance.
  • Abietic acid or a derivative thereof has a melting point of about 139 to 142 ° C and a boiling point of about 250 ° C. Therefore, it is inferred that heating causes abietic acid or the like to melt near the melting point to cause liquid crosslinking, and abietic acid or the like thermally decomposes near the boiling point to develop solid crosslinking.
  • Terpenes such as abietic acid are generally contained in biomass (Hokkaido Prefectural Forest Products Experiment Station Monthly Report No. 171, April 1966, Japan Wood Conservation Society “Wood Preservation” Vol. 34-2 (2008), etc.) . Although there is a slight difference in content depending on the type of biomass ("Use of essential oil", Oohiro Goro, Report of the 6th Research Subcommittee of the Japan Wood Society, Table 1, Table 1 of the Japan Wood Society 1999), etc. ⁇ Example A> to ⁇ In all of Examples I>, since water resistance (not disintegrated even after immersion in water, see Table 6) is exhibited by heating at 230 ° C. or higher, water resistance is generally increased by heating at least 230 ° C. to 250 ° C. for biomass in general. It is considered to be granted.
  • FIG. 19 to 22 are diagrams showing the results of FT-IR analysis of biomass solid fuel.
  • the raw material was European red pine of Example B below, which was obtained by analyzing a solid fuel (PBT) obtained by heating at 250 ° C., which was formed into a pellet after pulverization. The same raw material is pulverized and unheated after molding (WP) is also shown.
  • PBT solid fuel
  • WP unheated after molding
  • the amount of COOH groups is WP> PBT
  • the amount of C ⁇ C bonds is PBT> WP.
  • the COOH group elution amount in the acetone extract (FIG. 21) is WP> PBT, indicating that PBT has few hydrophilic COOH groups.
  • PBT has more C ⁇ C bonds than WP. Therefore, it turns out that PBT is excellent in water resistance.
  • FIG. 23 is a diagram showing the results of GC-MS analysis of an acetone extract.
  • the raw material is the European red pine of Example B as in FIGS. 19 to 22 above, and the solid fuel (PBT) heated at 250 ° C. after being crushed and formed into pellets and unheated (WP) are used. It was.
  • PBT solid fuel
  • the amount of elution of abietic acid, which is a kind of terpene, into acetone is less than that of WP, and abietic acid is melted by heating to form a liquid bridge, and then volatilization of abietic acid, etc. This is considered to indicate that a solid bridge is formed.
  • PBT also improves the strength of solid fuel due to the development of solid cross-linking, and has good grindability without adding a binder by heating at least 230 ° C to 250 ° C as well as water resistance (HGI, grinding speed described later). And it is inferred that good handling properties (a pulverization test described later) can be obtained. Furthermore, as described above, COD is reduced in PBT. This is because the tar content of the biomass raw material is volatilized by heating, and at the same time, the solid fuel surface of PBT is covered with solidified abietic acid, and the solid fuel surface is hydrophobic. This is considered to be because the elution of tar remaining in the biomass raw material is suppressed.
  • Example A (Examples A-1 to A-6)
  • the biomass was crushed and then pulverized, and a biomass solid fuel A (PBT) was obtained through a molding process for molding the pulverized biomass and a subsequent heating process.
  • No binder is used in any step.
  • a raw material biomass a mixture of 40% by weight of rice pine, 58% by weight of rice bran, 1% by weight of cedar, and 1% by weight of rice bran was used. In the molding process of each example, it was molded into a pellet shape having a diameter of 8 mm.
  • Comparative Example A is an unheated biomass solid fuel (WP) that has been molded after crushing and pulverization and has not undergone a heating step. In Comparative Example A, no binder is used. The raw material biomass is the same as in Example A-1. The properties of the solid fuel of Comparative Example A are also shown in Table 1.
  • HGI is based on JIS M 8801, and the higher the value, the better the grindability.
  • Table 1 also shows the results of the higher calorific value (anhydrous basis), the fuel ratio calculated based on the industrial analysis value (air-dry basis), and the elemental analysis value (air-dry basis), and the oxygen O obtained based on this. , Carbon C, and hydrogen H, respectively.
  • FIG. 1 shows the correlation between the heating temperature in the heating step and the COD (chemical oxygen demand) and pH of the immersion water when the obtained biomass solid fuel is immersed in water (the pH will be described later).
  • the preparation of the immersion water sample for COD measurement was conducted according to JIS K0102 (2010) -17 according to the test method of metals, etc. contained in the environmental waste notification No. 13 (ii) industrial waste in 1973.
  • the COD of Comparative Example A is a high value of about 1200 ppm.
  • biomass solid fuel heated at 230 ° C. or higher had a COD of 800 ppm or less, indicating that tar content was low. Therefore, it has been shown that the biomass solid fuels of Examples A-1 to A-6 are fuels that have less tar content and excellent handling properties even during outdoor storage. Note that the COD of the biomass solid fuels of Examples A-1 to A-6 heated at 230 ° C. or higher decreased as the heating temperature increased. This is because the COD value is reduced due to volatilization of tar content and the like accompanying heating.
  • FIG. 2 shows the correlation between the heating temperature in the heating step, the pulverization property (HGI) of the obtained biomass solid fuel A, and the pulverization rate (described later), and the biomass solid fuels of Comparative Example A and Examples A-1 to A-6 It is a figure shown about.
  • HGI pulverization property
  • the pulverization speed in FIG. 2 was measured by measuring the weight (g / min) per unit time by measuring the weight of a 700 cc sample that was pulverized by a ball mill and passing through a 150 ⁇ m sieve as the sample after pulverization. Is.
  • the ball mill is compliant with JIS M4002, and is used in a cylindrical container having an inner diameter of 305 mm ⁇ axial length of 305 mm.
  • the standard grade ball bearings defined in JIS B1501 ( ⁇ 36.5 mm ⁇ 43, ⁇ 30.2 mm ⁇ 67, ⁇ 24.4 mm ⁇ 10 pieces, ⁇ 19.1 mm ⁇ 71 pieces, ⁇ 15.9 mm ⁇ 94 pieces), and rotated at a speed of 70 rpm for measurement.
  • the pulverization rate is improved by heating, and the pulverization rate is rapidly increased particularly by heating at 230 ° C. or higher. It can be said that the pulverization rate of the biomass solid fuel A is increased and the pulverization rate is improved by elution and solidification of organic components such as tar accompanying heating. Therefore, even if the heating temperature in the heating step is 150 ° C. or higher and lower than 230 ° C., it is presumed that the HGI and the pulverization rate are improved as compared with the non-heated Comparative Example A.
  • Table 2 shows the cumulative ratio under sieving of the biomass solid fuel A subjected to the pulverization test
  • FIG. 3 shows the particle size distribution.
  • a pulverization test was performed. A 1 kg sample was placed in a resin bag from a height of 8.6 m and dropped 20 times, and then a rotational strength test was performed based on JIS Z 8841 to measure the particle size distribution. The obtained particle size distribution is shown in FIG. If the 2 mm sieve product in the sample particle size distribution is 30 wt% or less, and the 0.5 mm sieve product is 15 wt% or less, it is assumed that the particle size can be handled in transportation, storage, and the like. From Table 2 and FIG. 3, the sample particle size after the rotational strength test became finer as the solid temperature increased, but all the samples cleared the above-mentioned evaluation criteria, suggesting that they can be handled without problems. It was done.
  • Table 3 and FIG. 4 show the results of an immersion test of biomass solid fuel A in water.
  • the solid fuel of each Example and Comparative Example was immersed in water, taken out after a predetermined time shown in Table 3 and FIG. 4, wiped off the moisture, and the solid moisture was measured.
  • the solid fuel of Comparative Example A (WP) was disintegrated by immersion in water, and measurement of solid moisture was impossible.
  • the water content reached equilibrium in about 10 hours after immersion, and the equilibrium water content was about 27 wt%.
  • the water content reached equilibrium after about 100 hours, and the equilibrium water content was about 25 wt%.
  • Examples A-3 to A-5 were also equilibrated at a water content of about 23 wt% after about 100 hours.
  • Example A-6 also almost reached equilibrium after about 100 hours, and the equilibrium water content was about 28 wt% (the fluctuation is larger than in Examples A-3 to A-5, but is considered to be due to variations in raw materials). .
  • These results are thought to be because the surface of the biomass solid fuel changed to hydrophobic due to elution and solidification of organic components such as tar with heating.
  • Examples A-1 to A-6 (PBT) are stored outdoors. As a solid fuel, there are advantageous characteristics as a solid fuel.
  • FIG. 5 shows the results of measurement of solid strength before and after immersion in water (based on JIS Z 8841 rotational strength test method) for Examples A-1 to A-6 and Comparative Example A.
  • Comparative Example A collapsed after being immersed in water, and thus the rotational strength after immersion was not measurable.
  • Examples A-1 to A-6 (PBT) those obtained by wiping off the surface moisture of the solid fuel that reached the equilibrium moisture and drying it at 35 ° C. for 22 hours using a constant temperature dryer were used.
  • FIG. 6 is a diagram showing the results of measuring the mechanical durability before and after immersion in water.
  • the mechanical durability DU is expressed by the following formula in accordance with American agricultural industry standard ASAE S 269.4 and German industrial standard DIN EN 15210-1. Measured based on In the formula, m0 is the sample weight before the rotation treatment, m1 is the sample weight on the sieve after the rotation treatment, and a sieve using a plate sieve with a circular hole diameter of 3.15 mm was used.
  • Example A-2 The evaluation was based on the “Spontaneous ignition test” of the “UN Test and Criteria Manual: Dangerous Goods Shipment and Storage Regulations 16th edition”. A measurement was made to determine whether 1 to 2 cm 3 of the biomass solid fuel (heating temperature 250 ° C.) of Example A-2 was dropped from a height of 1 m onto an inorganic heat insulating board and ignited within 5 minutes after dropping or within 5 minutes after dropping. I went twice. None of the six tests ignited, and Example A-2 (PBT) was determined not to fall under Container Class I in the United Nations Test and Criteria Manual.
  • FIG. 7 is a graph showing the measurement result of the BET specific surface area of the solid fuel A.
  • the sample was adjusted to 2 to 6 mm as a pretreatment. After being cut and filled into a container, vacuum deaeration was performed at 100 ° C. for 2 hours to obtain a BET specific surface area. Nitrogen gas was used as the adsorption gas.
  • FIG. 7 shows that the BET specific surface area increases with increasing heating temperature, and that pores develop with heating (pyrolysis).
  • FIG. 8 shows the average pore diameter on the surface of the solid fuel A
  • FIG. 9 shows the total pore volume. Both the average pore diameter and the total pore volume were measured using the same apparatus as the BET specific surface area.
  • the “pore” here is a pore having a diameter of 2 nm to 100 nm. Since the average pore diameter decreases with increasing heating temperature in Example A-2 and later, it shows that many fine pores are generated. This is believed to be due to cellulose degradation.
  • FIG. 10 shows the yield (solid yield and heat yield) of biomass solid fuel A after the heating step.
  • the solid yield is the weight ratio before and after heating
  • the heat yield is the calorific value ratio before and after heating. Note that, as described above, holding at the target temperature (heating temperature) of each example is not performed (the same applies to Examples B to K below).
  • biomass solid fuel A with reduced COD, improved grindability, reduced water absorption, improved solid strength, and improved yield is obtained at low cost. It was shown that
  • Natural exothermic index (SCI) ⁇ O2 adsorption amount * O2 adsorption heat * (1/100) ⁇ + ⁇ CO generation amount * (CO production heat + (1/2) * H2O production heat * H / C) * (1/100) ⁇ + ⁇ CO2 generation amount * (CO2 generation heat + (1/2) * H2O generation heat * H / C) * (1/100) ⁇ (1)
  • the adsorption amount, generation amount, and H / C in the solid fuel of Example A-2 are as follows.
  • FIG. 11 also shows SCI of bituminous coal in Table 4.
  • the horizontal axis in FIG. 11 is arrival-based moisture, and the SCI of bituminous coal in FIG. 11 is prepared by adding moisture to the bituminous coal shown in Table 4 and preparing four types of samples each having different moisture. The SCI is calculated.
  • the biomass solid fuel (PBT) of the present invention has a lower SCI (spontaneously exothermic) than bituminous coal and is comparable to high moisture bituminous coal. SCI (spontaneously exothermic). Thereby, it can be said that the biomass solid fuel A (PBT) is a good fuel with reduced risk of ignition during handling.
  • FIGS. 15 to 17 are cross-sectional SEM photographs before and after immersion in water in Comparative Example A (WP), FIG. 15 is before immersion, FIG. 16 is after immersion for 2 seconds, and FIG. 17 is after immersion for 20 seconds.
  • the cross section after immersion is a cross section obtained by cutting the solid fuel after immersion for 2 seconds or 20 seconds. The magnification and scale are shown below each photo.
  • Comparative Example A Comparative Example A (FIGS. 15 to 17)
  • the pores are enlarged after immersion in water. Since this is a molded product of biomass in which Comparative Example A (WP) is pulverized as described above, it is presumed that the biomass was absorbed by water soaking and pores (gap between biomass powders) were enlarged. Accordingly, it is considered that the pulverized biomass is separated from each other by further intrusion of moisture into the enlarged pores, and the solid fuel itself collapses (see FIG. 4).
  • WP Comparative Example A
  • Example A-2 solid bridges develop between the biomass powders by heating, the hydrophobicity is improved and it is difficult to absorb water, and it is presumed that there is little change due to immersion. Therefore, even after immersion, since the connection or adhesion between the pulverized biomass by solid crosslinking is maintained, it is unlikely to collapse as in Comparative Example A. Therefore, in the heated solid fuels of Examples A-1 to A-6 (PBT), as shown in FIG. 4, biomass solids in which collapse due to rain water or the like is suppressed and handling properties during outdoor storage are ensured. Fuel has been obtained.
  • Example B-1 to Example B-4 PBT
  • the temperature was raised to the target temperature (heating temperature described in Table 5) in the same manner as in Example A except that European red pine was used as the raw material biomass. did.
  • Tables 5 and 6 show properties of the solid biomass fuel B (Example B-1 to Example B-4) obtained after the heating step.
  • Comparative example B (WP) was shown in the same manner.
  • Example A no binder is used in any of Examples B-1 to B-4 and Comparative Example B. Since the moisture after immersion in water is after immersion for 100 hours or more (168 hours in Example B), it is considered that the moisture in the solid fuel B has substantially reached equilibrium.
  • the measuring method of each property of the biomass solid fuel is the same as in Example A above.
  • the ball mill grindability described in Table 6 was measured as follows.
  • the pulverization time of each biomass solid fuel B was 20 minutes, and the weight ratio under a 150 ⁇ m sieve after 20 minutes was used as a pulverization point.
  • the ball mill uses what conforms to JIS M4002, and uses a standard class ball bearing ( ⁇ 36.5 mm ⁇ 43, ⁇ 30.2 mm ⁇ 67, ⁇ 36.5 mm ⁇ 67 ⁇ 24.4 mm ⁇ 10 pieces, ⁇ 19.1 mm ⁇ 71 pieces, ⁇ 15.9 mm ⁇ 94 pieces), and rotated at a speed of 70 rpm for measurement. The higher the value, the better the grindability. It was confirmed that the pulverization point increased as the heating temperature increased.
  • Comparative Example B disintegrated immediately after being immersed in water.
  • the biomass powders were kept connected or adhered to each other even after being immersed in water (168 hours) and did not collapse.
  • the solid shape was maintained after immersion, so that moisture measurement was possible and the expression of water resistance could be confirmed.
  • pulverization is improved and COD is reduced as compared with Comparative Example B.
  • Example B-3 is particularly excellent from the viewpoint of water resistance (moisture after immersion), and the biomass solid fuels of Examples B-2 and B-3 exhibit particularly excellent physical properties from the viewpoint of yield.
  • Example B-2 is a fuel having excellent water resistance and pulverization properties and reduced COD based on the development of solid bridges.
  • Example C The raw material biomass was heated to the target temperature (heating temperature described in Table 5) and heated (Example C-1 to Example C-4: PBT) in the same manner as in Example A, except that almond old wood was used. .
  • the ball mill grindability was measured by the same method as in Example B above.
  • Tables 5 and 6 show properties of the biomass solid fuel C obtained after the heating step.
  • the water after immersion in water is considered to be balanced because it is after immersion for 100 hours or longer (168 hours in Example C).
  • Comparative example C (WP) was shown in the same manner. In Examples C-1 to C-4 and Comparative Example C, no binder is used.
  • Comparative Example C disintegrated immediately after being immersed in water.
  • the connection or adhesion between the biomass powders is maintained even after being immersed in water, and the water resistance is improved without being destroyed.
  • improvement in grindability and reduction in COD are shown.
  • Example C-2, Example C-3 and Example C-4 are excellent, and from the viewpoint of thermal yield, Example C-1, Example C-2 and Example C- 3 is excellent.
  • the HGI of Example C-1 is lower than that of Comparative Example C, but this is considered to be due to variations in raw materials and measurement errors, and it is estimated that there is at least an HGI equivalent to or higher than that of Comparative Example C. .
  • Example D The raw material biomass was heated to the target temperature (heating temperature described in Table 5) and heated (Example D-1) in the same manner as in Example A, except that (30 wt% almond shell + 70 wt% almond old wood) was used.
  • the ball mill grindability was measured by the same method as in Example B above.
  • Tables 5 and 6 show properties of the biomass solid fuel D obtained after the heating step.
  • the water after immersion in water is assumed to be balanced after immersion for 100 hours or more (168 hours in Example D). The same applies to Comparative Example D (WP). In Examples D-1 to D-4 and Comparative Example D, no binder is used.
  • Comparative Example D disintegrated immediately after being immersed in water.
  • Examples D-1 to D-4 even after immersion in water, the connection or adhesion between the biomass powders is maintained, so that they do not collapse and the water resistance is improved.
  • improvement in grindability and reduction in COD are shown.
  • Examples D-2, D-3, and D-4 are excellent from the viewpoint of COD
  • Examples D-1, D-2, and D-3 are particularly excellent from the viewpoint of thermal yield. showed that.
  • Example E> The temperature was increased to the target temperature (heating temperature described in Table 5) in the same manner as in Example A, except that Acacia xylem was used as the raw material biomass, the biomass was molded into a tablet shape, and a ⁇ 70 mm tubular furnace was used as the heating device. Warmed and heated (Example E-1 to Example E-3: PBT). Properties of the biomass solid fuel E obtained after the heating step are shown in Tables 5 and 6. The water after immersion in water is considered to be balanced after immersion for 100 hours or more (168 hours in Example E). The same applies to Comparative Example E (WP). In Examples E-1 to E-3 and Comparative Example E, no binder is used.
  • Example E the pH was measured by immersing the solid fuel at a solid-liquid ratio of 1:13.
  • the immersion time of Comparative Example E in Table 6 indicates that the pH was measured, that is, the pH after 96 hours had elapsed after Comparative Example E was immersed.
  • Example E Comparative Example E disintegrated immediately after immersion in water, but Examples E-1 to E-3 maintained water resistance without disintegration because the connection or adhesion between the biomass powders was maintained.
  • Examples E-2 and E-3 are excellent from the viewpoint of water resistance (water after immersion in water), and Examples E-1 and E-2 are excellent from the viewpoint of heat yield.
  • PBT heated at 240 to 270 ° C. is presumed to have formed the above-mentioned solid crosslinks, and is considered to have excellent water resistance, COD, pulverization properties, and the like. Further, the heat yield of Example E-1 exceeds 100%, but this is due to variations in raw materials and measurement errors.
  • Example F The temperature was raised to the target temperature (heating temperature described in Table 5) and heated (Example F-1 to Example F-4: PBT) in the same manner as in Example E except that acacia bark was used as the raw material biomass.
  • Tables 5 and 6 show the properties of the solid biomass fuel F obtained after the heating step.
  • the water after immersion in water is considered to be balanced after immersion for 100 hours or more (168 hours or more in Example F).
  • Comparative Example F WP
  • no binder is used.
  • Example F the pH was measured by immersing the solid fuel at a solid-liquid ratio of 1:13.
  • the immersion time of Comparative Example F in Table 6 indicates that the pH was measured, that is, the pH after 96 hours had elapsed after Comparative Example F was immersed.
  • Examples F-2, F-3, and F-4 are excellent from the viewpoint of COD and water resistance (moisture after immersion in water), and Examples F-1, F-2, and F are preferable from the viewpoint of thermal yield. -3 is excellent.
  • Example G> The temperature was raised to the target temperature (heating temperature described in Table 5) in the same manner as in Example A except that (70 wt% almond shell + 30 wt% walnut shell) was used as the raw material biomass and a ⁇ 70 mm tubular furnace was used as the heating device. And heated (Example G-1 to Example G-4: PBT). Properties of the biomass solid fuel G obtained after the heating step are shown in Tables 5 and 6. Water after immersion in water is considered to be in equilibrium after being immersed for 100 hours or longer (144 hours or longer in Example G). The same applies to Comparative Example G (WP). In Examples G-1 to G-4 and Comparative Example G, no binder is used.
  • Example G disintegrated immediately after being immersed in water, but Examples G-1 to G-4 maintained the connection or adhesion between the biomass powders and exhibited water resistance without disintegration.
  • Examples G-2, G-3, and G-4 are excellent from the viewpoint of COD and water resistance (moisture after immersion in water), and Examples G-1 and G-2 and G are preferable from the viewpoint of thermal yield. -3 is excellent.
  • the thermal yield of Example G-2 exceeds 100%, but this is due to variations in raw materials and measurement errors.
  • Example H The sample was heated to the target temperature (heating temperature described in Table 5) and heated (Example H-1 to Example H-4: PBT) in the same manner as in Example A, except that sago palm was used as the raw material biomass.
  • the ball mill grindability was measured by the same method as in Example B above. Properties of the biomass solid fuel H obtained after the heating step are shown in Tables 5 and 6.
  • the water after immersion in water is considered to be balanced after immersion for 100 hours or more (168 hours in Example H).
  • Comparative Example H (WP) In Examples H-1 to H-4 and Comparative Example H, no binder is used.
  • the immersion time of Comparative Example H in Table 6 indicates that the pH was measured, that is, the pH after 24 hours had elapsed after Comparative Example H was immersed.
  • Example H-1 to H-4 maintained water resistance without disintegration because the connection or adhesion between biomass powders was maintained.
  • Example H-2, Example H-3, and Example H-4 are excellent from the viewpoint of COD, pH (slightly low) and water resistance (moisture after immersion in water), and Example H-1 and Example from the viewpoint of thermal yield H-2, example H-3, is excellent.
  • Example I> The sample was heated to the target temperature (heating temperature described in Table 5) and heated (Example I-1) in the same manner as in Example A, except that EFB (empty fruit bunch of palm oil processing residue) was used as the raw material biomass.
  • Example I-3 heated at 270 ° C. and Example I-4 heated at 300 ° C. was measured by the following method.
  • a sample of 50 g is filled in a 1,000 cc polypropylene container, and is rotated with a MISUGI mixing man SKH-15DT at 60 rpm for 30 minutes (total 1,800 revolutions).
  • m0 is the sample weight before the rotation treatment
  • m1 is the sample weight on the sieve after the rotation treatment.
  • Comparative Example I disintegrated immediately after immersion in water, but Examples I-1 to I-4 maintained the connection or adhesion between biomass powders and exhibited water resistance without disintegration.
  • Examples I-2, I-3, and I-4 are excellent from the viewpoint of COD and water resistance (moisture after immersion in water), and Examples I-1, I-2, and I are excellent from the viewpoint of thermal yield. -3 is excellent.
  • Example J The sample was heated to the target temperature (heating temperature described in Table 5) and heated (Example J-1, Example J-2: PBT) in the same manner as in Example A except that Meranti was used as the raw material biomass. Properties of the biomass solid fuel J obtained after the heating step are shown in Tables 5 and 6. The water after immersion in water is considered to be balanced after immersion for 100 hours or more (168 hours in Example J). The same applies to Comparative Example J (WP). In all of Examples J-1, J-2, and Comparative Example J, no binder is used.
  • Example K The sample was heated to the target temperature (heating temperature described in Table 5) and heated (Example K) in the same manner as in Example A, except that a rubber tree was used as the raw material biomass and a ⁇ 70 mm tubular furnace was used as the heating device. -1).
  • Table 5 shows properties of the biomass solid fuel K obtained after the heating step. The same applies to Comparative Example K (WP). In any case, no binder is used.
  • Example K-1 As for the comparative example K, it is expected to collapse by immersion in water as in the other examples.
  • Example K-1 the formation of the above-mentioned solid bridge is expected to improve water resistance, pulverization, reduce COD, etc. without being disintegrated even when immersed in water.
  • Example K-1 is heated at 270 ° C., but the same effect can be estimated for a heating temperature of 230 to 270 ° C. as described above.
  • the pellet diameters before and after immersion were measured by the same electronic caliper and measurement method as those in Table 7.
  • Table 8 shows the measurement results.
  • the measured value of the pellet diameter is an average value of 10 randomly selected in each of Examples A-1 to A-6.
  • Tables 7 and 8 show that the expansion rate decreases as the temperature of the heating process increases. It is presumed that the expansion is suppressed by the formation of solid crosslinks accompanying heating. Although the radial expansion coefficient in Table 8 is higher than the length expansion coefficient in Table 7, this is because the immersion time is longer in Table 7, and because Example A is a pellet, it is mainly consolidated in the radial direction. Therefore, it is considered that the expansion also increases in the radial direction.
  • the expansion coefficient is 10% or less even in Example A-1 having the largest radial expansion coefficient.
  • the diameter and length expansion coefficient is preferably 10% or less, and more preferably 7% or less.
  • the volume expansion coefficient is preferably 133% or less, and more preferably 123% or less.
  • Example B is a pellet, and the diameter expansion coefficient calculated using the pellet diameter before immersion (initial dimension in Table 6) and the pellet diameter after immersion (dimension after immersion in Table 6) based on the formula (2) is It was 15% or less (hereinafter, the expansion coefficient of the diameter after Example B uses the formula (2)).
  • the expansion coefficient of the diameter after Example B uses the formula (2).
  • the radial expansion coefficient is preferably 20% or less, and more preferably 10% or less.
  • the volume expansion coefficient is preferably 173% or less, and more preferably 133% or less.
  • Example C is also a pellet, and the volume expansion coefficient is 123% or less on the assumption that the diameter expansion coefficient before and after immersion is 7.2% or less and the length expansion coefficient is 7.2% at the maximum. Similarly, the volume expansion coefficient is calculated).
  • the diameter expansion coefficient in Example C is preferably 13% or less, and more preferably 7% or less.
  • the volume expansion coefficient is preferably 144% or less, and more preferably 123% or less.
  • Example D pellet
  • the expansion coefficient before and after immersion is 8.8% or less, and the volume expansion coefficient based on it is 129% or less.
  • the diameter expansion coefficient in Example D is preferably 10% or less, and more preferably 8% or less.
  • the volume expansion coefficient is preferably 133% or less, and more preferably 126% or less.
  • Example E has a tablet shape, the diameter ( ⁇ ) expansion coefficient is 2.5% or less, the height (H) expansion coefficient is 40% or less, and the volume expansion coefficient is 147% or less.
  • the radial expansion coefficient is preferably 5% or less, and more preferably 2.3% or less.
  • the height expansion coefficient is preferably 50% or less, and more preferably 20% or less.
  • the volume expansion rate is preferably 165% or less, and more preferably 126% or less.
  • Example F has a diameter expansion coefficient of 4.0% or less, a height expansion coefficient of 15% or less, and a volume expansion coefficient of 124% or less. Note that the height after immersion in Example F-3 is considered to be a measurement error or individual variation.
  • the expansion coefficient is preferably 5% or less, and more preferably 3% or less.
  • the height expansion coefficient is preferably 40% or less, and more preferably 10% or less.
  • the volume expansion coefficient is preferably 154% or less, and more preferably 117% or less.
  • the expansion coefficient before and after immersion is 8.8% or less, and the volume expansion coefficient based on it is 129% or less.
  • the expansion coefficient is preferably 10% or less, and more preferably 8% or less.
  • the volume expansion coefficient is preferably 133% or less, and more preferably 126% or less.
  • Example H pellet
  • the expansion coefficient before and after immersion is 6.9% or less, and the volume expansion coefficient based on it is 122% or less.
  • the radial expansion coefficient is preferably 10% or less, and more preferably 7% or less.
  • the volume expansion coefficient is preferably 133% or less, and more preferably 123% or less.
  • Example I pellets
  • the expansion coefficient before and after immersion is 4.1% or less, and the volume expansion coefficient based on it is 113% or less.
  • the expansion coefficient is preferably 10% or less, and more preferably 5% or less.
  • the volume expansion rate is preferably 133% or less, and more preferably 116% or less.
  • Example J the diameter expansion coefficient before and after immersion is 5.4% or less, and the volume expansion coefficient based on it is 117% or less.
  • the expansion coefficient is preferably 20% or less, and more preferably 10% or less.
  • the volume expansion coefficient is preferably 173% or less, and more preferably 133% or less.
  • the solid fuel (PBT) of the present invention using biomass as a raw material preferably has an expansion coefficient of 40% or less before and after immersion (including diameter and height). Is preferably about 275% or less. More preferably, the expansion coefficient of diameter and length is 30% or less, and the volume expansion coefficient is about 220% or less. More preferably, the expansion coefficient of diameter and length is 20% or less, and the volume expansion coefficient is about 173% or less. More preferably, the expansion coefficient of diameter and length is 10% or less, and the volume expansion coefficient is about 133% or less.
  • the expansion rate after immersion in water is within a certain range, it is indicated that the biomass solid fuel (PBT) does not collapse even by immersion and has water resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Wood Science & Technology (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Processing Of Solid Wastes (AREA)
  • Coke Industry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

バイオマス成型体を炭化してバイオマス炭化物を得る炭化炉と、前記炭化炉の下流側に設けられ、前記バイオマス炭化物を分級する分級手段と、前記分級手段の下流側に設けられ、分級された前記バイオマス炭化物を冷却する冷却手段とを備え、前記バイオマス成型体は、原料のバイオマスを粉砕した後成型して得られた成型体であって、前記冷却手段は、散水により前記バイオマス炭化物を冷却する。

Description

バイオマス炭化物の冷却装置
 本発明は、バイオマス炭化物の冷却装置に関する。
 従来、特許文献1にあっては、粉砕されたバイオマスを加熱しながら加圧成形することにより半炭化し、強度に優れたバイオコークスを得ている。
特許4088933
 しかしながら上記特許文献1にあっては、成形後は加圧状態で冷却され、また大気による自然冷却であるため冷却効率が低いという問題があった。冷却効率向上のため水冷による冷却を行うとしても、加圧状態での水冷は困難であるとともに、バイオコークスは粉砕後成形されたバイオマスであるため一部が粉化してハンドリングが困難になる。とりわけ加熱が行われない非定常状態の場合、成形されたバイオコークスが崩壊して設備が閉塞するおそれがある。あるいは単純化のため炭化(加熱)後に水槽等に入れて冷却する場合、バイオマス固体燃料は比重が軽いため浮いてしまい回収が煩雑となる。
 本発明は上記問題を解決するためになされたものであり、その目的とするところは、半炭化されたバイオマス成型体の冷却を効率化しつつ、設備閉塞を低減することにある。
 本発明では、バイオマス成型体を炭化してバイオマス炭化物を得る炭化炉と、前記炭化炉の下流側に設けられ、前記バイオマス炭化物を分級する分級手段と、前記分級手段の下流側に設けられ、分級された前記バイオマス炭化物を冷却する冷却手段とを備え、前記バイオマス成型体は、原料のバイオマスを粉砕した後成型して得られた成型体であって、前記冷却手段は、散水により前記バイオマス炭化物を冷却することを特徴とする。
 本発明によれば、半炭化されたバイオマス成型体の冷却を効率化しつつ、設備閉塞を低減することにある。
バイオマス固体燃料の固体温度-COD、pHを示す図である。 加熱工程における固体温度と、得られたバイオマス固体燃料の粉砕性、および粉砕速度との相関を示す図である。 粉化試験を行ったバイオマス固体燃料の粒度分布を示す図である。 バイオマス固体燃料の水中浸漬試験結果(固体水分)を示す図である。 水中浸漬前後の固体強度(回転強度)を示す図である。 水中浸漬前後の固体強度(機械的耐久性)を示す図である。 固体燃料のBET比表面積を示す図である。 固体燃料表面の平均細孔直径を示す図である。 固体燃料表面の全細孔容積を示す図である。 バイオマス固体燃料の収率を示す図である。 バイオマス固体燃料の自然発熱性指数(SCI)を示す図である。 例A-2における水中浸漬前の断面写真である。 例A-2における水中浸漬(2秒)後の断面写真である。 例A-2における水中浸漬(20秒)後の断面写真である。 比較例Aにおける水中浸漬前の断面写真である。 比較例Aにおける水中浸漬(2秒)後の断面写真である。 比較例Aにおける水中浸漬(20秒)後の断面写真である。 PBTにおける固架橋発達のメカニズム(推定)を示す図である。 バイオマス固体燃料のペレットの外表面のFT-IR分析の結果を示す図である。 バイオマス固体燃料のペレットの断面中心のFT-IR分析の結果を示す図である。 バイオマス固体燃料のアセトン抽出液のFT-IR分析の結果を示す図である。 バイオマス固体燃料のアセトン抽出後の固体のFT-IR分析の結果を示す図である。 バイオマス固体燃料のアセトン抽出液のGC-MS分析の結果を示す図である。 例Bにおいて生理食塩水に浸漬した後のペレットの形状を示す図である。 例Bにおいて生理食塩水に浸漬する前と後のナトリウムの分布を示す図である。 バイオマス炭化物の冷却設備を示す概略図である。 バイオマス炭化物の冷却設備の他の例を示す概略図である 本発明のプロセスフローを示す図である。 制御フローを示す図である。
 [実施形態]
 図26Aは本発明の概略図、図27はプロセスフローである。図27の燃料製造工程100によって得られたバイオマス固体燃料は、分級工程200及び冷却工程300を経て製品となる。
 燃料製造工程100では公知の手法を用いてバイオマス固体燃料が製造される。原料のバイオマスは破砕、粉砕工程110を経た後成型工程120において成型された後、加熱工程130において図26Aのキルン1を用いて加熱される。成型工程120においてはバインダー等の結合剤は添加されず、単にバイオマス粉を圧縮、加圧することで成型される。
 成型工程120を経た直後の未加熱のバイオマス成型体(White Pellet:以下WPと記載)は、単にバイオマス粉を加圧成型したのみであるため強度が低く、ハンドリング中に粉化しやすい。また吸水により膨張して崩壊してしまう。
 本発明の燃料製造工程100においては、加熱工程130(キルン1)でバイオマス成型体を150~400℃で加熱(低温炭化)することで、成型体としての形状を保持しつつ、強度及び耐水性を有するバイオマス固体燃料(Pelletizing Before Torrefaction:以下PBTと記載)が製造される。なおこの燃料製造工程100の詳細は後述する。
 分級工程200及び冷却工程300は図26Aの振動コンベア2を用いて行われる。振動コンベア2は仕切り板24により2つの区画に隔成されており、それぞれ分級部21および冷却部22となる。キルン1から排出されたPBTは、平板22bの振動およびキルン1から順次供給されるPBTに押し出されることで搬送され、分級部21及び冷却部22を経て製品として排出される。なお図26Aの振動コンベア2は傾斜しているが、傾斜しない水平のものであってもよい。
 分級部21ではPBTを篩21aの上で振動させることで、PBTと微粉との分級(分級工程200)が行われる。篩21aの目の大きさは所望の値に応じて適宜変更してもよい。製造中に崩壊したものや所定の大きさに届かない小さなPBTはこの篩21a下に落下して別途処理される。篩21a上に残ったPBTは冷却部22へ移動する。
 冷却部22は散水部22aおよび振動する平板22bを有し、散水部22aは平板22b上に散水を行う。この平板22b上のPBTに対し散水することで冷却(冷却工程300)が行われ、製品として排出される。なお冷却は散水だけであってもよいし、散水部22aに加えて空気ノズル等を設け、空気による冷却を併用してもよい。さらに散水ノズルを空気+水の2流体ノズルとしても良い。
 平板22bは孔や凹凸のない平滑な板であって、金属板または樹脂板が用いられる。平滑な板とすることで冷却部22内のPBTが滑りやすくなり、冷却部22内での移動がスムーズとなる。
 また、分級部21と冷却部22との間は仕切り板24によって隔成されるため、冷却部22内に散水された水の分級部21への進入が低減される。これにより分級部21内で分級された微粉の吸水が抑制され、分級部21における閉塞を低減することができる。
 キルン1の出口には温度計11が設けられ、制御部30は測定された温度に基づき散水を実行または停止する。なお温度計11はキルン1の温度が計測可能な位置であれば他の位置でもよい。
 本発明においてはWPをキルン1で加熱することで初めて強度および耐水性が付与されたPBTが得られるものであるが、キルン1の温度が所定値以下の場合、未加熱のWP、あるいは加熱が不十分なため強度、耐水性が確保されないバイオマス成型体がキルン1から排出されることとなる。それらが振動コンベア2に供給されると、散水部22では耐水性不足のため吸水により膨張・崩壊し、設備閉塞の原因となる。
 したがって温度計11で測定された温度が所定値を下回った場合、PBT製造に不十分な低温と判断して制御部30は散水部22aの散水を停止する。これによりキルン1の温度が低い際にWPや加熱が不十分なPBTが排出された場合であっても、散水部22における崩壊を抑制して設備閉塞を低減することができる。
 図28は温度に基づく散水続行/停止のフローチャートであり、制御部30により実行される。ステップS1では温度計11によりキルン1出口温度Tを測定する。ステップS2では計測された温度Tが所定値α以下か否かを判断し、YESであればステップS3において散水を停止し、NOであればステップS4において散水を実行する。
 とりわけ、キルン1の起動時や非定常時等、温度が低い状況ではキルン1から未加熱のWPまたは加熱が不十分なバイオマス成型体が排出されるため、散水を停止することにより崩壊および設備閉塞を抑制することが可能となる。
 キルン1が停止して所定値以下の低温となった際にキルン1内におけるWPの搬送をストップすると、キルン1内にWPが残存する。その場合、仮に低温であってもWPの炭化が進行して熱分解ガスが大量に発生し、ガスの別途処理が必要となるため煩雑である。また過度に炭化されたWPは揮発分の残存量が少なく燃料としては不利であり、こちらも別途処理する必要があるため更に工数が増大してしまう。したがってキルン1内での搬送停止は好ましくない。
 一方低温時にWPの供給を遮断した場合であっても、キルン1内での搬送を継続すると未炭化のWPあるいは加熱が不十分なバイオマス成型体が排出されてしまう。したがって低温時であっても搬送は停止しないことで、熱分解ガスの大量発生や過度な炭化を回避するとともに、排出されたWPへの散水を停止して閉塞を抑制するものである。
 なお、温度計11はキルン1出口の雰囲気温度ではなく、キルン1出口におけるPBTの温度を直接計測する。本発明ではWPを所定温度以上で炭化することで耐水性及び強度を持つPBT(固体燃料)を得るものであるが、過度な温度上昇は必要以上に炭化を進行させて熱量収率を悪化させるため、燃料特性が劣ることとなる。熱量収率を最大限に確保しつつ耐水性、強度を発現させるためにはシビアな温度管理が必要となるため、PBTの温度を直接計測することで高精度な炭化を行うものである。温度計11はキルン1出口におけるPBTの温度を直接計測可能なものであればよく、接触式温度計であってもよいし、赤外線等の非接触式温度計であってもよい。
 [効果]
 (1)バイオマス成型体を炭化してバイオマス炭化物(PBT)を得るキルン1(炭化炉)と、キルン1の下流側に設けられ、バイオマス炭化物(PBT)を分級する分級部21(分級手段)と、分級部21の下流側に設けられ、分級されたバイオマス炭化物(PBT)を冷却する冷却部22(冷却手段)とを備え、
 バイオマス成型体は、原料のバイオマスを粉砕した後成型して得られた成型体であって、冷却部22は、散水によりバイオマス炭化物(PBT)を冷却することとした。
 バイオマス炭化物を水中浸漬により冷却する場合、バイオマス炭化物が水に浮いて水面に拡散するためハンドリングが困難である。一方散水により冷却する場合であっても、バイオマス成型体は粉砕物を成型しているため再度粉化しやすく、そのまま散水するとバイオマスの粉が吸水し、設備が閉塞するおそれがある。そのため分級した後に散水することで閉塞を回避することができる。散水に加え、空気冷却と散水を併用してもよいし、空気+水の2流体ノズルとしてもよい。
 (2)冷却部22は、振動する平板22b(平板)と、この平板22b上に散水する散水部22aと、を有し、平板22bは金属板または樹脂板であって、振動によりバイオマス炭化物(PBT)を搬送することとした。
 バイオマス炭化物(PBT)は搬送中に一部が崩壊するため、分級後も小径のバイオマス炭化物が一定程度残存する。小径であるほど散水により互いに付着しやすく、搬送時のハンドリングが煩雑となりやすい。ここで排水を考慮してバイオマス炭化物を網上で冷却する場合、網の凹凸の抵抗により散水されたバイオマス炭化物が堆積し、搬送が非効率となって閉塞のおそれがある。したがってバイオマス炭化物との摺動抵抗の少ない金属板または樹脂板とすることにより、搬送時の抵抗を低減して効率的な搬送を行うことができる。
 (3)キルン1の出口温度が所定値以下の場合、散水部22aの散水を停止する制御部30(制御手段)を設けた。起動時、停止時等の非定常状態ではキルン1が所定値以下の低温(PBT製造に不十分な低温)であるため、未炭化のバイオマス成型体(WP)あるいは炭化が不十分で強度や耐水性に劣るバイオマス成型体が排出されるが、これらは散水により膨潤・崩壊し、設備閉塞のおそれがある。そのため散水を停止して閉塞を防止することができる。
 (4)温度計11は、バイオマス炭化物(PBT)の温度を直接計測可能であることとした。所定温度以上でWPを炭化することで耐水性及び強度を持つPBT(固体燃料)が得られる一方、過度な炭化は熱量収率を悪化させる。そのためPBTの温度を直接計測することにより、高精度な炭化を行うことが可能となり、熱量収率を確保しつつ耐水性、強度を得ることができる。
 (5)分級部22と冷却部23とを隔成する隔成部24を設けた。これらを隔成することで、分級部22への散水の侵入を低減して分級時の堆積及び閉塞を抑制することができる。
 上述した態様における振動コンベア2に代えて、図26Bに示すようなシステムを用いて分級工程及び冷却工程を実施するようにしてもよい。このシステム402は、振動篩装置403Aと冷却振動コンベア403Bとを備えている。振動篩装置403Aおよび冷却振動コンベア403Bは別体に構成されており、振動篩装置403AがPBTの搬送方向上流側に、冷却振動コンベア403Bが下流側に配置されている。なお、図26Aの構成と共通する機能や構造に関しては、重複した説明を回避するため、説明を省略するものとする。
 振動篩装置403Aは、篩421aが設けられた分級部421を有している。篩421a上に対しては、図26Aの構成と同様、ロータリーキルン(図26Bでは不図示)からPBTが供給される。PBTは、篩421aの上で振動させられながら搬送されることによって、PBTと微粉との分級(分級工程)が行われる。なお、図の振動篩装置403Aは傾斜しているが、傾斜しない水平のものであってもよい。
 篩421aの目の大きさに関し、所望の値に応じて適宜変更してもよいことは上述した実施形態と同様である。製造中に崩壊したものや所定の大きさに届かない小さなPBTはこの篩421a下に落下して別途処理される。篩421a上に残ったPBTは、振動篩装置403Aの排出部421bから排出される。
 冷却振動コンベア403Bは、散水部422aおよび振動する平板422b等が設けられた冷却部422を有しており、平板422b上に、振動篩装置403AからのPBTが供給される。図示は省略するが、冷却振動コンベア403Bは、図26Aの構成と同様、散水部422a等の動作制御を行う制御部も備えている。平板422bは、一例として、孔や凹凸のない平滑な板であって、金属板または樹脂板が用いられる。平滑な板とすることでPBTが滑りやすくなり移動がスムーズとなる。なお、図の冷却振動コンベア403Bは傾斜しているが、傾斜しない水平のものであってもよい。
 なお、この例においても、冷却は散水だけであってもよいし、空冷を併用してもよい。散水ノズルを空気+水の2流体ノズルとしても良い。また、上述した態様と同様、キルン1の温度計11(図26A参照)で測定された温度が所定値を下回った場合に、散水部422aによる散水が停止するように制御されることが一形態において好ましい。図26Bとして開示された技術的事項は、本発明の趣旨を逸脱しない限り、他の態様として開示された内容と組合せ可能であることまたは置換可能であることに留意されたい。
 なお、上述の燃料製造工程100において製造されるバイオマス固体燃料(PBT)の製造方法について以下のとおり詳述する。
[燃料製造工程におけるバイオマス固体燃料(PBT)の製造]
 バイオマス固体燃料は、バイオマスを破砕後粉砕し、屑または粉状となったバイオマスを圧縮・成型して塊状物とする成型工程、成型工程後の塊状物を加熱する加熱工程を経て得られた成型済固体物を燃料とするものである(後述のPBTに相当)。このバイオマス固体燃料は、水蒸気爆砕の工程、およびバインダーを要しないため、コストアップを抑制することができる。なお、本明細書においては、成型工程により得られ、加熱工程前の塊状物のことを「未加熱塊状物」とも記載する。この未加熱塊状物とは上述のWPに相当する。
 原料となるバイオマスは木質系及び草木系であればよく、樹種および部位等は特に限定されないが、例えば、米松、米栂、杉、桧、欧州アカマツ、アーモンド古木、アーモンド殻、アカシア木部、アカシアバーク、胡桃殻、サゴヤシ、EFB(パーム油加工残渣の空果房)、メランティ、ゴムの木等が挙げられ、これらのうち1種であっても2種以上の混合物であってもよい。
 成型工程では、公知の成型技術を用いて塊状物とする。塊状物はペレットまたはブリケットであることが好ましく、大きさは任意である。加熱工程では、成型された塊状物を加熱する。
 加熱工程後に得られたバイオマス固体燃料は、水中に浸漬した際の浸漬水のCOD(化学的酸素要求量)が、3000ppm以下であることが好ましい。また、バイオマス固体燃料は、(加熱工程後のバイオマス固体燃料のCOD/未加熱のバイオマス固体燃料のCOD)で表されるCOD比が、0.98以下であることが好ましい。ここで、バイオマス固体燃料を水中に浸漬した際の浸漬水のCOD(化学的酸素要求量)(単に、「COD」とも記載する)とは、COD測定用浸漬水試料の調製を昭和48年環境庁告示第13号(イ)産業廃棄物に含まれる金属等の検定方法に従って行い、JIS K0102(2010)-17によって分析したCOD値のことをいう。
 また、加熱工程後に得られたバイオマス固体燃料は、JIS M 8801に基づく粉砕性指数(HGI)が、15以上60以下であることが好ましく、より好ましくは20以上60以下である。また、BET比表面積が0.15~0.8m/gであることが好ましく、0.15~0.7m/gであることがより好ましい。また、水中浸漬後の平衡水分が15~65wt%であることが好ましく、15~60wt%であることがより好ましい。
 バイオマス固体燃料は、燃料比(固定炭素/揮発分)が0.2~0.8、無水ベース高位発熱量が4800~7000(kcal/kg)、酸素Oと炭素Cのモル比O/Cが0.1~0.7、水素Hと炭素Cのモル比H/Cが0.8~1.3にある。バイオマス固体燃料の物性値が該範囲内にあることにより、貯蔵時の排水中のCODを低減しつつ粉化を低減し、貯蔵時のハンドリング性を向上させることができる。バイオマス固体燃料は、例えば、原料として用いるバイオマスの樹種、その部位、加熱工程における加熱温度等を調整することにより得ることができる。なお本明細書における工業分析値、元素分析値、高位発熱量はJIS M 8812、8813、8814に基づく。
 バイオマス固体燃料の製造方法は、破砕及び粉砕されたバイオマスのバイオマス粉を成型して未加熱塊状物を得る成型工程と、未加熱塊状物を加熱し、加熱済固体物を得る加熱工程とを有し、加熱工程における加熱温度は、150℃~400℃であることが好ましい。加熱工程の温度をこの範囲とすることで、上記の特性を有するバイオマス固体燃料が得られる。この加熱温度は原料となるバイオマスおよび塊状物の形状、大きさによって適宜決定されるが、150~400℃が好ましく200~350℃がより好ましい。さらに好ましくは230~300℃である。250~290℃であればなお好ましい。また、加熱工程における加熱時間は、特に限定されないが、0.2~3時間が好ましい。バイオマス粉の粒径は、特に限定されないが、平均で約100~3000μm、好ましくは平均で400~1000μmである。なお、バイオマス粉の粒径の測定方法は公知の測定方法を用いてよい。後述のとおりバイオマス固体燃料(PBT)においては固架橋によりバイオマス粉同士の接続または接着が維持されるため、成型可能な範囲であればバイオマス粉同士の粒径は特に限定しない。また微粉砕はコストアップ要因となるため、コストと成型性を両立可能な範囲の粒径であれば公知の範囲でよい。
 加熱工程前の未加熱塊状物の嵩密度をA、加熱工程後の加熱済固体物の嵩密度をBとすると、B/A=0.7~1であることが好ましい。嵩密度Aの値はバイオマス粉を成型して未加熱塊状物を得られる公知の範囲であれば特に限定されない。また原料バイオマスの種類によっても嵩密度は変化するため適宜設定されてよい。また、未加熱塊状物のHGI(JIS M8801のハードグローブ粉砕性指数)をH1、前記加熱済固体物のHGIをH2とすると、H2/H1=1.1~2.5であることが好ましい。B/AとH2/H1のいずれかまたは両方の値がこの範囲となるように加熱を行うことで、貯蔵時の排水中のCODを低減しつつ粉化を低減し、貯蔵時のハンドリング性を向上させたバイオマス固体燃料を得ることができる。
 なお、バイオマス固体燃料の特性は、原料として用いるバイオマスの樹種によって、好適な範囲を定めてもよい。以下、その一例を記載するが、本発明はこれらの樹種およびその組み合わせに限定されるものではない。以下、本発明で用いたバイオマス原料の種類と得られた固体燃料(後述のPBTに相当)の性状、およびその製造方法について、好ましい範囲をそれぞれ示す。
 [原料バイオマスの種類と固体燃料の性状]
 (米松、米栂、杉、および桧:固体燃料A)
 本発明の一態様として、原料が米松、米栂、杉、および桧から選ばれる少なくとも1種を含む場合のバイオマス固体燃料(以下、固体燃料Aと記載することがある)の性状は以下のとおりである。
 CODについては1000ppm以下が好ましく、900ppm以下がより好ましく、800ppm以下がさらに好ましく、COD比は、0.80以下が好ましく、0.70以下がより好ましく、0.68以下がさらに好ましい。
 水中浸漬後の平衡水分(後述)については15wt%~45wt%であることが好ましく、18wt%~35wt%であることがより好ましく、18wt%~32wt%であることがさらに好ましい。
 BET比表面積は0.25m/g~0.8m/gであることが好ましく、0.28m/g~0.6m/gであることがより好ましく、0.32m/g~0.5m/gであることがさらに好ましい。
 HGIについては20~60が好ましく、20~55がより好ましく、22~55がさらに好ましい。発電用のボイラ燃料として好適な石炭(瀝青炭)のHGIが50前後であり、石炭と混合粉砕されることを考慮すると50前後に近接するほど好ましい。HGI比(後述)については1.0~2.5が好ましい。
 燃料比については0.2~0.8が好ましく、0.2~0.7がより好ましく、0.2~0.65がさらに好ましい。
 無水ベース高位発熱量は4800~7000kcal/kgが好ましく、4900~7000kcal/kgがより好ましく、4950~7000kcal/kgがさらに好ましい。
 酸素Oと炭素Cのモル比O/Cは0.1~0.62が好ましく、0.1~0.61がより好ましく、0.1~0.60がさらに好ましい。
 水素Hと炭素Cのモル比H/Cは0.8~1.3が好ましく、0.85~1.3がより好ましく、0.9~1.3がさらに好ましい。
 以上、固体燃料Aの性状における好ましい範囲を記載した。
 また固体燃料Aを製造する際、加熱工程における加熱温度は、200~350℃が好ましく、210~330℃がより好ましく、220~300℃がさらに好ましい。
 (欧州アカマツ:固体燃料B)
 本発明の一態様として、原料が欧州アカマツである場合のバイオマス固体燃料(以下、固体燃料Bと記載することがある)の性状は以下のとおりである。
 CODについては900ppm以下が好ましく、800ppm以下がより好ましく、700ppm以下がさらに好ましく、COD比は、0.75以下が好ましく、0.68以下がより好ましく、0.64以下がさらに好ましい。
 水中浸漬後の平衡水分については15wt%~45wt%であることが好ましく、18wt%~40wt%であることがより好ましく、18wt%~31wt%であることがさらに好ましい。
 BET比表面積は0.30m/g~0.7m/gであることが好ましく、0.30m/g~0.6m/gであることがより好ましく、0.30m/g~0.5m/gであることがさらに好ましい。
 HGIについては25~60が好ましく、30~55がより好ましく、35~55がさらに好ましい。HGI比(後述)については1.0~2.5が好ましい。
 燃料比については0.2~0.8が好ましく、0.2~0.7がより好ましく、0.2~0.65がさらに好ましい。
 無水ベース高位発熱量は4950~7000kcal/kgが好ましく、5000~7000kcal/kgがより好ましく、5100~7000kcal/kgがさらに好ましい。
 酸素Oと炭素Cのモル比O/Cは0.1~0.60が好ましく、0.2~0.60がより好ましく、0.3~0.60がさらに好ましい。
 水素Hと炭素Cのモル比H/Cは0.8~1.3が好ましく、0.85~1.3がより好ましく、0.9~1.3がさらに好ましい。
 以上、固体燃料Bの性状における好ましい範囲を記載した。
 また固体燃料Bを製造する際、加熱工程における加熱温度は、200~350℃が好ましく、220~300℃がより好ましく、240~290℃がさらに好ましい。
 (アーモンド古木:固体燃料C)
 本発明の一態様として、原料がアーモンド古木である場合のバイオマス固体燃料(以下、固体燃料Cと記載することがある)の性状は以下のとおりである。
 CODについては2100ppm以下が好ましく、2000ppm以下がより好ましく、1500ppm以下がさらに好ましく、COD比は、0.80以下が好ましく、0.75以下がより好ましく、0.55以下がさらに好ましい。
 水中浸漬後の平衡水分については25wt%~60wt%であることが好ましく、30wt%~50wt%であることがより好ましく、30wt%~45wt%であることがさらに好ましい。
 BET比表面積は0.20m/g~0.70m/gであることが好ましく、0.22m/g~0.65m/gであることがより好ましく、0.25m/g~0.60m/gであることがさらに好ましい。
 HGIについては15~60が好ましく、18~55がより好ましく、20~55がさらに好ましい。HGI比(後述)については1.0~2.0が好ましい。
 燃料比については0.2~0.8が好ましく、0.25~0.7がより好ましく、0.30~0.65がさらに好ましい。
 無水ベース高位発熱量は4800~7000kcal/kgが好ましく、4800~6500kcal/kgがより好ましく、4900~6500kcal/kgがさらに好ましい。
 酸素Oと炭素Cのモル比O/Cは0.10~0.70が好ましく、0.20~0.60がより好ましく、0.30~0.60がさらに好ましい。
 水素Hと炭素Cのモル比H/Cは0.8~1.3が好ましく、0.85~1.3がより好ましく、0.9~1.20がさらに好ましい。
 以上、固体燃料Cの性状における好ましい範囲を記載した。
 また固体燃料Cを製造する際、加熱工程における加熱温度は、200~350℃が好ましく、220~300℃がより好ましく、240~290℃がさらに好ましい。
 (アーモンド殻とアーモンド古木の混合物:固体燃料D)
 本発明の一態様として、原料がアーモンド殻とアーモンド古木の混合物である場合のバイオマス固体燃料(以下、固体燃料Dと記載することがある)の性状は以下のとおりである。
 CODについては2500ppm以下が好ましく、2000ppm以下がより好ましく、1500ppm以下がさらに好ましく、COD比は、0.75以下が好ましく、0.68以下がより好ましく、0.50以下がさらに好ましい。
 水中浸漬後の平衡水分については15wt%~50wt%であることが好ましく、20wt%~40wt%であることがより好ましく、20wt%~35wt%であることがさらに好ましい。
 BET比表面積は0.20m/g~0.70m/gであることが好ましく、0.27m/g~0.70m/gであることがより好ましく、0.30m/g~0.60m/gであることがさらに好ましい。
 HGIについては20~60が好ましく、20~55がより好ましく、23~55がさらに好ましい。HGI比(後述)については1.0~2.0が好ましい。
 燃料比については0.2~0.8が好ましく、0.30~0.7がより好ましく、0.35~0.65がさらに好ましい。
 無水ベース高位発熱量は4800~7000kcal/kgが好ましく、4800~6500kcal/kgがより好ましく、4900~6300kcal/kgがさらに好ましい。
 酸素Oと炭素Cのモル比O/Cは0.10~0.70が好ましく、0.20~0.60がより好ましく、0.30~0.55がさらに好ましい。
 水素Hと炭素Cのモル比H/Cは0.8~1.3が好ましく、0.8~1.25がより好ましく、0.85~1.20がさらに好ましい。
 以上、固体燃料Dの性状における好ましい範囲を記載した。
 また固体燃料Dを製造する際、加熱工程における加熱温度は、200~350℃が好ましく、220~300℃がより好ましく、240~290℃がさらに好ましい。
 (アカシア木部:固体燃料E)
 本発明の一態様として、原料がアカシア木部である場合のバイオマス固体燃料(以下、固体燃料Eと記載することがある)の性状は以下のとおりである。
 CODについては950ppm以下が好ましく、850ppm以下がより好ましく、800ppm以下がさらに好ましく、COD比は、0.95以下が好ましく、0.85以下がより好ましく、0.80以下がさらに好ましい。
 水中浸漬後の平衡水分については20wt%~60wt%であることが好ましく、20wt%~55wt%であることがより好ましく、23wt%~53wt%であることがさらに好ましい。
 BET比表面積は0.40m/g~0.70m/gであることが好ましく、0.50m/g~0.70m/gであることがより好ましく、0.55m/g~0.70m/gであることがさらに好ましい。
 燃料比については0.2~0.6が好ましく、0.2~0.5がより好ましく、0.2~0.4がさらに好ましい。
 無水ベース高位発熱量は4800~7000kcal/kgが好ましく、4800~6000kcal/kgがより好ましく、4800~5500kcal/kgがさらに好ましい。
 酸素Oと炭素Cのモル比O/Cは0.40~0.70が好ましく、0.45~0.70がより好ましく、0.48~0.65がさらに好ましい。
 水素Hと炭素Cのモル比H/Cは0.8~1.3が好ましく、1.0~1.3がより好ましく、1.1~1.3がさらに好ましい。
 以上、固体燃料Eの性状における好ましい範囲を記載した。
 また固体燃料Eを製造する際、加熱工程における加熱温度は、200~350℃が好ましく、220~300℃がより好ましく、240~290℃がさらに好ましい。
 (アカシアバーク:固体燃料F)
 本発明の一態様として、原料がアカシアバークである場合のバイオマス固体燃料(以下、固体燃料Fと記載することがある)の性状は以下のとおりである。
 CODについては2500ppm以下が好ましく、2000ppm以下がより好ましく、1200ppm以下がさらに好ましく、COD比は、0.30以下が好ましく、0.20以下がより好ましく、0.15以下がさらに好ましい。
 水中浸漬後の平衡水分については15wt%~50wt%であることが好ましく、20wt%~45wt%であることがより好ましく、25wt%~40wt%であることがさらに好ましい。
 BET比表面積は0.35m/g~0.55m/gであることが好ましく、0.40m/g~0.55m/gであることがより好ましく、0.40m/g~0.50m/gであることがさらに好ましい。
 燃料比については0.4~0.8が好ましく、0.42~0.75がより好ましく、0.45~0.75がさらに好ましい。
 無水ベース高位発熱量は4800~7000kcal/kgが好ましく、5000~7000kcal/kgがより好ましく、5200~6500kcal/kgがさらに好ましい。
 酸素Oと炭素Cのモル比O/Cは0.25~0.60が好ましく、0.30~0.60がより好ましく、0.30~0.55がさらに好ましい。
 水素Hと炭素Cのモル比H/Cは0.8~1.3が好ましく、0.8~1.2がより好ましく、0.9~1.2がさらに好ましい。
 以上、固体燃料Fの性状における好ましい範囲を記載した。
 また固体燃料Fを製造する際、加熱工程における加熱温度は、200~350℃が好ましく、220~300℃がより好ましく、240~290℃がさらに好ましい。
 (アーモンド殻と胡桃殻の混合物:固体燃料G)
 本発明の一態様として、原料がアーモンド殻と胡桃殻の混合物である場合のバイオマス固体燃料(以下、固体燃料Gと記載することがある)の性状は以下のとおりである。
 CODについては2500ppm以下が好ましく、2100ppm以下がより好ましく、1500ppm以下がさらに好ましく、COD比は、0.65以下が好ましく、0.55以下がより好ましく、0.45以下がさらに好ましい。
 水中浸漬後の平衡水分については20wt%~45wt%であることが好ましく、20wt%~40wt%であることがより好ましく、25wt%~35wt%であることがさらに好ましい。
 BET比表面積は0.15m/g~0.35m/gであることが好ましく、0.19m/g~0.33m/gであることがより好ましく、0.20m/g~0.30m/gであることがさらに好ましい。
 HGIは18~60が好ましく、20~60であればさらに好ましい。HGI比は1.0以上が好ましい。
 燃料比については0.2~0.7が好ましく、0.25~0.65がより好ましく、0.28~0.60がさらに好ましい。
 無水ベース高位発熱量は4800~7000kcal/kgが好ましく、4800~6000kcal/kgがより好ましく、5000~6000kcal/kgがさらに好ましい。
 酸素Oと炭素Cのモル比O/Cは0.30~0.65が好ましく、0.40~0.70がより好ましく、0.40~0.60がさらに好ましい。
 水素Hと炭素Cのモル比H/Cは0.8~1.3が好ましく、0.9~1.25がより好ましく、0.9~1.2がさらに好ましい。
 以上、固体燃料Gの性状における好ましい範囲を記載した。
 また固体燃料Gを製造する際、加熱工程における加熱温度は、200~350℃が好ましく、220~300℃がより好ましく、240~290℃がさらに好ましい。
 (サゴヤシ:固体燃料H)
 本発明の一態様として、原料がサゴヤシである場合のバイオマス固体燃料(以下、固体燃料Hと記載することがある)の性状は以下のとおりである。
 CODについては2000ppm以下が好ましく、1600ppm以下がより好ましく、800ppm以下がさらに好ましく、COD比は、0.85以下が好ましく、0.60以下がより好ましく、0.4以下がさらに好ましい。
 水中浸漬後の平衡水分については20wt%~35wt%であることが好ましく、20wt%~33wt%であることがより好ましく、22wt%~30wt%であることがさらに好ましい。
 BET比表面積は0.15m/g~0.35m/gであることが好ましく、0.18m/g~0.33m/gであることがより好ましく、0.18m/g~0.30m/gであることがさらに好ましい。
 HGIは20~60が好ましく、25~55であればさらに好ましく、30~55であればさらに好ましい。HGI比は1.0~2.5が好ましく、1.3~2.3がより好ましく、1.5~2.2がさらに好ましい。
 燃料比については0.2~0.8が好ましく、0.25~0.8がより好ましく、0.5~0.8がさらに好ましい。
 無水ベース高位発熱量は4800~7000kcal/kgが好ましく、4900~6500kcal/kgがより好ましく、5000~6000kcal/kgがさらに好ましい。
 酸素Oと炭素Cのモル比O/Cは0.20~0.65が好ましく、0.20~0.60がより好ましく、0.2~0.55がさらに好ましい。
 水素Hと炭素Cのモル比H/Cは0.8~1.3が好ましく、0.85~1.3がより好ましく、0.85~1.2がさらに好ましい。
 以上、固体燃料Hの性状における好ましい範囲を記載した。
 また固体燃料Hを製造する際、加熱工程における加熱温度は、200~350℃が好ましく、220~300℃がより好ましく、240~290℃がさらに好ましい。
 (EFB:固体燃料I)
 本発明の一態様として、原料がEFB(パーム油加工残渣の空果房)である場合のバイオマス固体燃料(以下、固体燃料Iと記載することがある)の性状は以下のとおりである。
 CODについては2350ppm以下が好ましく、2300ppm以下がより好ましく、2000ppm以下がさらに好ましく、COD比は、0.98以下が好ましく、0.96以下がより好ましく、0.85以下がさらに好ましい。
 水中浸漬後の平衡水分については23wt%~45wt%であることが好ましく、20wt%~40wt%であることがより好ましく、20wt%~35wt%であることがさらに好ましい。
 BET比表面積は0.25m/g~0.65m/gであることが好ましく、0.30m/g~0.60m/gであることがより好ましく、0.35m/g~0.55m/gであることがさらに好ましい。
 燃料比については0.25~0.8が好ましく、0.30~0.8がより好ましく、0.36~0.8がさらに好ましい。
 無水ベース高位発熱量は4800~7000kcal/kgが好ましく、4900~7000kcal/kgがより好ましく、5000~7000kcal/kgがさらに好ましい。
 酸素Oと炭素Cのモル比O/Cは0.15~0.65が好ましく、0.15~0.60がより好ましく、0.15~0.55がさらに好ましい。
 水素Hと炭素Cのモル比H/Cは0.5~1.3が好ましく、0.55~1.3がより好ましく、0.6~1.2がさらに好ましい。
 以上、固体燃料Iの性状における好ましい範囲を記載した。
 また固体燃料Iを製造する際、加熱工程における加熱温度は、200~350℃が好ましく、220~300℃がより好ましく、240~260℃がさらに好ましい。
 (メランティ:固体燃料J)
 本発明の一態様として、原料がメランティである場合のバイオマス固体燃料(以下、固体燃料Jと記載することがある)の性状は以下のとおりである。
 CODについては330ppm以下が好ましく、320ppm以下がより好ましく、300ppm以下がさらに好ましく、COD比は、0.98以下が好ましく、0.95以下がより好ましく、0.90以下がさらに好ましい。
 水中浸漬後の平衡水分については15wt%~30wt%であることが好ましく、15wt%~27wt%であることがより好ましく、18wt%~25wt%であることがさらに好ましい。
 燃料比については0.2~0.6が好ましく、0.2~0.5がより好ましく、0.2~0.45がさらに好ましい。
 無水ベース高位発熱量は4800~7000kcal/kgが好ましく、4800~6500kcal/kgがより好ましく、4800~6000kcal/kgがさらに好ましい。
 酸素Oと炭素Cのモル比O/Cは0.3~0.60が好ましく、0.35~0.60がより好ましく、0.40~0.60がさらに好ましい。
 水素Hと炭素Cのモル比H/Cは0.9~1.2が好ましく、0.95~1.2がより好ましく、1.0~1.2がさらに好ましい。
 以上、固体燃料Jの性状における好ましい範囲を記載した。
 また固体燃料Jを製造する際、加熱工程における加熱温度は、200~350℃が好ましく、220~300℃がより好ましく、230~290℃がさらに好ましい。
 (ゴムの木:固体燃料K)
 本発明の一態様として、原料がゴムの木である場合のバイオマス固体燃料(以下、固体燃料Kと記載することがある)の性状は以下のとおりである。
 燃料比については0.2~0.8が好ましく、0.2~0.7がより好ましい。無水ベース高位発熱量は4800~7000kcal/kgが好ましい。
 酸素Oと炭素Cのモル比O/Cは0.1~0.7が好ましい。水素Hと炭素Cのモル比H/Cは0.8~1.3が好ましい。
 以上、固体燃料Kの性状における好ましい範囲を記載した。
 また固体燃料Jを製造する際、加熱工程における加熱温度は、200~350℃が好ましく、220~300℃がより好ましく、230~290℃がさらに好ましい。
 本発明者らは、バイオマス固体燃料の製造方法において、成型工程の後、未加熱塊状物を加熱する加熱工程を行うという工程の順序により、バインダーを使用することなく原料であるバイオマス由来の成分を用いてバイオマス粉同士の接続または接着が維持され、水中浸漬によっても崩壊することがない耐水性の高いバイオマス固体燃料を製造することができると推察している。本発明者らの解析により、バイオマス固体燃料が耐水性を獲得するメカニズムについて下記の知見が得られた。
 本発明者らは、製造方法の異なる3種類のバイオマス固体燃料、具体的には、粉砕されたバイオマスを成型した未加熱の固体燃料(White Pellet:以下WPと記載することがある)、および粉砕されたバイオマスを成型した後加熱して得られた固体燃料(Pelletizing Before Torrefaction:以下PBTと記載することがある)について、FT-IR分析、GC-MS分析、SEMによる観察等を行い、バイオマス固体燃料の耐水性のメカニズムについて解析を行った。なおWP、PBTいずれにおいてもバインダーは使用されない。
 まず、各固体燃料のアセトン抽出物についてFT-IRにより分析したところ、加熱工程を経て得られるPBTは、未加熱のWPに比べて親水性のCOOH基の含有量は少ないが、C=C結合の含有量が多いことから、加熱によりバイオマスを構成する成分の化学構造が変化して疎水性になっているが示唆された。
 さらに、各固体燃料のアセトン抽出成分についてGC-MS分析を行ったところ、アビエチン酸とその誘導体(以下、「アビエチン酸等」とも呼ぶ)等のテルペン類が加熱により熱分解することが、バイオマス固体燃料の耐水性に関与していることが示唆された。アビエチン酸等は、マツ等に含まれるロジンの主成分である。
 図18はPBTにおける固架橋発達のメカニズム(推定)を示す図である。PBTの場合は、成型工程後の加熱工程において、温度上昇にしたがいアビエチン酸の溶融による液が粉砕されたバイオマス(以下バイオマス粉と記載することがある)同士の間隙(粉砕後成型により圧密され、隣接するバイオマス粉の間隙)に溶出し、さらにアビエチン酸の蒸発と熱分解がおこり、疎水物が上記バイオマス粉同士の間隙に固着して架橋(固架橋)が発達する。これにより、バインダーを添加することなく、原料であるバイオマス由来のアビエチン酸等によりバイオマス粉同士の接続または接着が維持される。よってバイオマス粉同士が接続または接着されて水の進入を抑制し、耐水性が向上すると考えられる。
 一方、WPの場合は単にバイオマス粉を成型したに留まるのみで加熱を行わないため、上記PBTのようにバイオマス粉同士の固架橋が存在しない。WPを構成する生のバイオマス粉の表面には上述のとおり親水性のCOOH基等が多く存在するため水の浸入が容易であり、侵入した水がバイオマス粉同士の間隙を大きく広げ、成型したペレット等が崩壊しやすくなってしまう。
 また、バイオマス粉を加熱した後に成型した固体燃料(Pelletizing After Torrefaction:以下PATと記載することがある)の場合、加熱により個々のバイオマス粉そのものはアビエチン酸等の溶出により表面が疎水性になるが、あくまでも加熱により疎水性になった後に粉砕して成型を行うため、PBTのようにバイオマス粉同士の架橋は形成されないと考えられる。したがって成型前に加熱を行うPATでは、圧密されたバイオマス粉同士の間隙に容易に水が浸入し、PBTに比べて耐水性が劣るものと推察される。
 アビエチン酸またはその誘導体の融点は約139~142℃であり、沸点は約250℃である。よって、加熱により融点付近でアビエチン酸等が溶融して液架橋がおこり、沸点付近でアビエチン酸等が熱分解して固架橋が発達するものと推察される。
 なおアビエチン酸を始めとするテルペン類はバイオマス一般に含まれている(北海道立林産試験場月報 171号 1966年4月、公益社団法人日本木材保存協会「木材保存」Vol.34‐2(2008)等)。バイオマスの種類によって若干含有量に差はあるものの(『精油の利用』大平辰朗 日本木材学会第6期研究分科会報告書p72 第1表日本木材学会1999 年 等)、下記<例A>~<例I>ではいずれも230℃以上の加熱により耐水性(水中浸漬後でも崩壊しない、表6参照)の発現がみられるため、バイオマス一般について少なくとも230℃以上~250℃以上の加熱により耐水性が付与されるものと考えられる。
 図19~図22はバイオマス固体燃料のFT-IR分析の結果を示す図である。原料は下記例Bの欧州アカマツであって、粉砕後ペレット状に成型したものを250℃で加熱した固体燃料(PBT)を分析したものである。また同じ原料を粉砕し、成型後未加熱のもの(WP)についても併せて示す。ペレットの外表面(図19)、断面中心(図20)いずれにおいてもCOOH基の量はWP>PBTであり、C=C結合の量はPBT>WPである。またアセトン抽出液(図21)へのCOOH基溶出量はWP>PBTであり、PBTは親水性のCOOH基が少ないことが示される。さらにアセトン抽出後の固体(図22)ではPBTのほうがWPよりもC=C結合が多い。したがってPBTのほうが耐水性に優れることが分かる。
 図23はアセトン抽出液のGC-MS分析の結果を示す図である。原料は上記図19~図22と同様に例Bの欧州アカマツであって、粉砕後ペレット状に成型したものを250℃で加熱した固体燃料(PBT)、および未加熱のもの(WP)を用いた。図23に記載のとおりPBTにおいてはテルペン類の一種であるアビエチン酸等のアセトンへの溶出量がWPよりも少なく、加熱によりアビエチン酸が溶融して液架橋を形成した後、アビエチン酸等の揮発によって固架橋が形成されたことを示すと考えられる。
 またPBTでは固架橋の発達により固体燃料の強度が向上し、耐水性同様に少なくとも230℃以上~250℃以上の加熱によって、バインダーを添加することなく良好な粉砕性(後述のHGI、粉砕速度)及び良好なハンドリング性(後述の粉化試験)が得られると推察される。さらにPBTでは前述のとおりCODが低減されるが、これは加熱によってバイオマス原料のタール分が揮発すると同時に、PBTの固体燃料表面が固化したアビエチン酸等によって被覆され、さらに固体燃料表面が疎水性となってバイオマス原料内に残存するタール分の溶出が抑制されるためと考えられる。
<例A>
 (例A-1~A-6)
 バイオマスを破砕後粉砕し、粉砕されたバイオマスを成型する成型工程およびその後の加熱工程を経てバイオマス固体燃料A(PBT)を得た。いずれの工程においてもバインダーは使用されない。原料のバイオマスとして、米松40重量%、米栂58重量%、杉1重量%、桧1重量%の混合物を用いた。各例の成型工程においては、直径8mmのペレット形状に成型した。各実施例における加熱工程ではφ600mm電気式バッチ炉にそれぞれの原料を4kg投入し、2℃/minの昇温速度で各実施例における目標温度(表1における加熱温度)まで昇温させ、加熱した。以下、目標温度と加熱温度は同一のものを指す。各例A-1~A-6いずれにおいても目標温度(加熱温度)における保持は行っていない(以下の例B~例Kも同様)。例A-1~A-6の加熱工程における加熱温度と、加熱工程後に得られたバイオマス固体燃料Aの性状を表1に示す。
 (比較例A)
 比較例Aは破砕、粉砕後に成型したのみで加熱工程を経ていない、未加熱のバイオマス固体燃料(WP)である。比較例Aについてもバインダーは不使用である。原料のバイオマスは、例A-1と同様である。比較例Aの固体燃料の性状についても表1に示す。
 表1において、上記のとおりHGIはJIS M 8801に基づくものであり、高いほど粉砕性が良好であることを示す。また、表1には高位発熱量(無水ベース)、工業分析値(気乾ベース)に基づき算出された燃料比、および元素分析値(気乾ベース)の結果とこれに基づき得られた酸素O、炭素C、水素Hのモル比をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000001
 上記実施例および比較例で得られた各バイオマス固体燃料について、さらに下記の分析を行った。
 [COD]
 図1は加熱工程における加熱温度と、得られたバイオマス固体燃料を水中に浸漬した際の浸漬水のCOD(化学的酸素要求量)およびpHの相関を示すものである(pHについては後述)。COD測定用浸漬水試料の調製は、昭和48年環境庁告示第13号(イ)産業廃棄物に含まれる金属等の検定方法に従い、CODはJIS K0102(2010)-17によって分析した。
 図1から、比較例A(WP:成型したのみで加熱工程を経ていないバイオマス固体燃料)のCODは約1200ppmと高い値となっている。これに対し、230℃以上で加熱されたバイオマス固体燃料はCODが800ppm以下となり、タール分の溶出が低いことが示された。したがって、例A-1~A-6のバイオマス固体燃料は、屋外貯蔵時においてもタール分の溶出が少なくハンドリング性に優れた燃料であることが示されている。なお、230℃以上で加熱された例A-1~A-6のバイオマス固体燃料のCODは加熱温度が高くなるにつれて減少しているが、これは加熱に伴うタール分等の揮発によってCOD値が減少することを示すと推察されるため、加熱温度が230℃未満の場合、すなわち加熱温度が150℃以上230℃未満であっても比較例Aと比べて低いCOD値となることが推測される。
 [pH]
 例A-1~A-6および比較例Aの固体燃料を固液比1:3で浸漬し、pHを測定した。図1から、例A-2および例A-3については若干値が低くなるものの、全ての例A-1~A-6において概ねpHは6前後であり、加熱前の比較例Aと比べて特に変化はないことが示される。したがって、例A-1~A-6を屋外貯蔵した際に出る排水のpHについては特に問題ないことが示される。
 [粉砕性]
 図2は加熱工程における加熱温度と、得られたバイオマス固体燃料Aの粉砕性(HGI)、および粉砕速度(後述)の相関を、比較例Aおよび例A-1~A-6のバイオマス固体燃料について示す図である。
 表1および図2から明らかなとおり、例A-1~A-6では加熱により性状が変化し、比較例A(WP:成型後、未加熱のバイオマス固体燃料)よりもHGI(JIS M 8801に基づく)の値が上昇している。一般的な石炭(瀝青炭)のHGIは50前後であり、例A-1~A-6の粉砕特性は、比較例Aよりも石炭に近接した良好なものといえる。
 また図2における粉砕速度とは、700ccの試料をボールミルで粉砕後に150μm篩を通過したものを粉砕後の試料として重量を測定することで、単位時間当たりの粉砕重量(g/min)を測定したものである。なお、ボールミルはJIS M4002に準拠したものを用い、内径305mm×軸方向長さ305mmの円筒容器にJIS B1501に規定された並級ボールベアリング(Φ36.5mm×43個、Φ30.2mm×67個、Φ24.4mm×10個、Φ19.1mm×71個、Φ15.9mm×94個)を入れて70rpmの速度で回転させて測定した。加熱により粉砕速度が向上し、特に230℃以上での加熱により粉砕速度が急上昇している。加熱に伴うタール等有機成分の溶出・固化により、バイオマス固体燃料Aの粉砕性が上昇し、粉砕速度が向上したものと言える。したがって、加熱工程における加熱温度が150℃以上230℃未満であっても、未加熱の比較例Aと比べてHGIおよび粉砕速度が向上するものと推察される。
 [粉化試験]
 表2は粉化試験を行ったバイオマス固体燃料Aの篩下積算割合、図3はその粒度分布図である。ペレットのハンドリング特性を評価するために、粉化試験を実施した。サンプル1kgを8.6mの高さから樹脂製の袋に入れて20回落下させた後、JIS Z 8841に基づき回転強度試験を行い、粒度分布を測定した。得られた粒度分布を図3に示す。サンプル粒度分布における2mm篩下品が30wt%以下、および0.5mm篩下品が15wt%以下であれば搬送、貯蔵等におけるハンドリングが可能な粒度であるとみなすものとする。表2および図3より、回転強度試験後のサンプル粒度は固体温度が高くなるにつれて細かくなったが、いずれのサンプルにおいても上述の評価基準をクリアしており、問題無くハンドリング可能であることが示唆された。
Figure JPOXMLDOC01-appb-T000002
 [水中浸漬]
 表3および図4はバイオマス固体燃料Aの水中浸漬試験結果である。各実施例および比較例の固体燃料を水中に浸し、表3および図4に示す所定時間経過後に取り出して水分を拭き取って固体水分を測定した。比較例A(WP)の固体燃料は水中浸漬によって崩壊し、固体水分の測定は不可能であった。これに対し、例A-1の固体燃料では浸漬後約10時間で水分量が平衡に達し、平衡水分量は約27wt%であった。また、例A-2の固体燃料では約100時間経過後に水分量が平衡に達し、平衡水分は約25wt%であった。例A-3~A-5についても約100時間後に水分量約23wt%で平衡となった。例A-6も約100時間経過後にほぼ平衡に達し、平衡水分量は約28wt%であった(例A-3~A-5よりも振れが大きいが、原料のばらつきによるものと考えられる)。これらの結果は、加熱に伴うタール等有機成分の溶出・固化により、バイオマス固体燃料の表面が疎水性に変化したためと考えられ、例A-1~A-6(PBT)は屋外貯蔵されることが多い固体燃料として有利な特性を示している。
Figure JPOXMLDOC01-appb-T000003
 [水中浸漬前後の固体強度]
 (回転強度)
 図5は例A-1~A-6および比較例Aについて、水中浸漬前後の固体強度(JIS Z 8841 回転強度試験方法 に基づく)を測定した結果である。上述のとおり比較例A(WP)については水中浸漬後崩壊したため、浸漬後の回転強度は測定不可能であった。例A-1~A-6(PBT)については、平衡水分に達した固体燃料の表面水分を拭き取った後、恒温乾燥機にて35℃で22時間乾燥させたものを使用した。加熱工程を経た例A-1~A-6(PBT)の強度はほとんど低下しておらず、水中浸漬前の比較例A(WP)と比べても粉化が発生しにくく、ハンドリング性を維持できるものと言える。
 (機械的耐久性)
 図6は水中浸漬前後の機械的耐久性を測定した結果を示す図である。例A-1~A-6、比較例Aの固体燃料について、アメリカ農業工業者規格ASAE S 269.4、およびドイツ工業規格DIN EN 15210-1に準拠して機械的耐久性DUを以下の式に基づいて測定した。式中、m0は回転処理前の試料重量、m1は回転処理後の篩上試料重量であり、篩は円孔径3.15mmの板ふるいを用いた。
      DU=(m1/m0)×100
 回転強度と同様、機械的耐久性についても加熱工程を経た例A-1~A-6(PBT)の強度はほとんど低下しておらず、水中浸漬前の比較例A(WP)と比べても粉化が発生しにくく、ハンドリング性を維持できることが示されている。
 [自然発火性]
 「国連試験および判定基準マニュアル:危険物船舶運送及び貯蔵規則16訂版」の「自然発火性試験」に基づき評価を行った。例A-2のバイオマス固体燃料(加熱温度250℃)1~2cmを1mの高さから無機質断熱板上に落下させ、落下途中又は落下後5分以内に発火するか否かの測定を6回行った。6回の試験いずれも発火せず、例A-2(PBT)は上記国連試験および判定基準マニュアルの容器等級Iに該当しないと判定された。
 [自己発熱性]
 自然発火性と同様、「危険物船舶運送及び貯蔵規則16訂版」の「自己発火性試験」に基づき評価を行った。試料容器(一辺が10cmのステンレス網立方体)に例A-2のバイオマス固体燃料(加熱温度250℃)を充填し、恒温槽内部に吊り下げ、140℃の温度で24時間連続して物質の温度を測定した。発火又は200℃を超える温度上昇の認められた物質は、自己発熱性物質と認め、更に一辺が2.5cmの試料容器を使用し同様の試験を行い、発火又は60℃を超える温度上昇の有無を確認した。試験結果に基づき、例A-2(PBT)は自己発熱性物質に該当しないと判定された。
 [細孔径分布]
 (BET比表面積)
 図7は固体燃料AのBET比表面積の測定結果を示す図である。例A-1~A-6および比較例Aの固体燃料につき、自動比表面積/細孔径分布測定装置(日本ベル(株)製BELSORP-min II)を用い、前処理として試料を2~6mmにカットして容器内に充填した後に、100℃で2時間真空脱気してBET比表面積を求めた。なお吸着ガスには窒素ガスを用いた。図7から、加熱温度の上昇に伴ってBET比表面積は増加しており、加熱(熱分解)にともなって細孔が発達していくことが示される。
 (平均細孔直径、全細孔容積)
 図8は固体燃料A表面の平均細孔直径、図9は全細孔容積を示す図である。平均細孔直径、全細孔容積いずれもBET比表面積と同じ装置を用いて測定した。なお、ここでいう「細孔」とは直径2nm~100nmの孔とする。平均細孔直径は例A-2以降で加熱温度の上昇にともなって減少していることから、細かな細孔が多数生成していくことを示している。これはセルロースの分解に起因すると考えられる。
 [収率]
 図10は加熱工程を経た後のバイオマス固体燃料Aの収率(固体収率および熱収率)である。固体収率は加熱前後の重量比、熱収率は加熱前後の発熱量比である。なお上述のとおり各実施例の目標温度(加熱温度)における保持は行っていない(以下の例B~例Kも同様)。
 以上の例A-1~A-6の結果から、本発明によるとCODの低減、粉砕性向上、吸水低減、固体強度向上、収率向上を図ったバイオマス固体燃料A(PBT)を、低コストで得られることが示された。
 [自然発熱性]
 例A-2の固体燃料につき以下の方法で自然発熱性を測定した。試料1kgを容器に装入し、80℃の恒温槽中に反応器を入れて、試料に空気を流して得られたガスのO2、CO、CO2濃度を測定した。加熱前後の濃度から試料の加熱に基づくO2吸着量、CO発生量、CO2発生量を計算し、以下の式(1)に基づき自然発熱性指数(SCI)を算出する。
  自然発熱性指数(SCI)
= {O2吸着量*O2吸着熱*(1/100)}+{CO発生量*(CO生成熱+(1/2)*H2O生成熱*H/C)*(1/100)}
+{CO2発生量*(CO2生成熱+ (1/2)*H2O生成熱*H/C)*(1/100)}                            ・・・式(1)
 なお、例A-2の固体燃料における吸着量、発生量、H/Cは以下のとおりである。
  O2吸着量 0.42[ml/kg・min]
  CO発生量 0.03[ml/kg・min]
  CO2発生量 0.02[ml/kg・min]
  H/C(例A-2の固体燃料における水素、炭素のモル比) 1.28[mol/mol](表1参照)
また、式(1)で用いた吸着熱、各生成熱は以下のとおりである。
  O2吸着熱 253[kJ/mol](石炭へのO2吸着熱と同一値)
  CO生成熱 110.5[kJ/mol]
  H2O生成熱 285.83[kJ/mol]
  CO2生成熱 393.5[kJ/mol]
 以上に基づき例A-2にかかる固体燃料のSCIを算出したところ、SCI=1.3であった。なお、バイオマス固体燃料Aは石炭に性状が近接していることから、O2吸着熱は石炭への吸着熱と同一のものを用いた。
 例A-2におけるSCIの算出と同様の方法を用い、例A-1~A-3、A-6および粉化試験(表2、図3参照)後の例A-2についてもSCIを算出した。算出結果を図11に示す。比較のため、図11では表4の瀝青炭のSCIについても示す。なお図11の横軸は到着ベースの水分であり、図11の瀝青炭のSCIは表4に示す瀝青炭に水分を加えてそれぞれ異なる水分を有する4種のサンプルを用意し、この4種のサンプルについてSCIを算出したものである。
 式(1)に示すとおりSCIの値が低いほど自然発熱性も低いといえるため、例A-1~A-3、A-6、および粉化試験後の例A-2(表2および図3参照)と瀝青炭を比較した場合、水分量が同程度であれば、本発明バイオマス固体燃料(PBT)はいずれも瀝青炭よりもSCI(自然発熱性)が低くなり、高水分の瀝青炭と同程度のSCI(自然発熱性)となった。これによりバイオマス固体燃料A(PBT)は、ハンドリング時における発火のおそれが低減された良好な燃料といえる。
Figure JPOXMLDOC01-appb-T000004
 [表面写真]
 図12~図14は例A-2における水中浸漬前後の固体燃料(PBT)の断面SEM写真である。図12は浸漬前、図13は2秒浸漬後、図14は20秒浸漬後である。同様に図15~図17は比較例A(WP)における水中浸漬前後の断面SEM写真であり、図15は浸漬前、図16は2秒浸漬後、図17は20秒浸漬後である。なお例A-2、比較例Aいずれも、浸漬後の断面とは2秒または20秒浸漬後の固体燃料を切断した断面のことである。また、各写真下に倍率およびスケールを示す。
 水中浸漬前後の写真を比較すると、比較例A(図15~図17)では水中浸漬後に細孔が拡大している。これは上述のとおり比較例A(WP)が粉砕されたバイオマスの成型体であるため、浸水によりバイオマスが吸水して細孔(バイオマス粉同士の間隙)が拡大したものと推察される。よって、拡大した細孔に更に水分が浸入することで粉砕されたバイオマス同士が離間し、固体燃料自身が崩壊するものと考えられる(図4参照)。
 これに対し例A-2(図12~図14)の固体燃料表面は水中浸漬後においても細孔があまり拡大しておらず、浸漬による変化が少ない。例A-2では加熱によってバイオマス粉同士に固架橋が発達し、疎水性が向上して吸水しづらくなっており、浸漬による変化が少ないものと推察される。したがって浸漬後であっても固架橋による粉砕されたバイオマス同士の接続または接着が維持されるため、比較例Aのように崩壊することが少ない。よって、加熱を行った例A-1~A-6(PBT)の固体燃料においては、図4で示されるように、雨水等による崩壊が抑制され屋外貯蔵時のハンドリング性が確保されたバイオマス固体燃料が得られている。
 <例B>
 例B-1~例B-4(PBT)においては、原料のバイオマスとして欧州アカマツを用いた以外は、例Aと同様にして目標温度(表5に記載の加熱温度)まで昇温させ、加熱した。加熱工程後に得られたバイオマス固体燃料B(例B-1~例B-4)の性状を表5及び表6に示す。比較例B(WP)についても同様に示した。なお例Aと同様、例B-1~例B-4、比較例Bいずれもバインダーは不使用である。水中浸漬後の水分は100時間以上浸漬後のものであるため(例Bでは168時間)、実質的に固体燃料B内の水分は平衡に達していると看做す。バイオマス固体燃料の各性状の測定方法は、上記例Aと同様である。なお、表6に記載のボールミル粉砕性は、下記のように測定した。
 [ボールミル粉砕性]
 各バイオマス固体燃料Bの粉砕時間を20分として、20分後の150μm篩下の重量比を粉砕ポイントとした。なお、ボールミルはJIS M4002に準拠したものを用い、内径305mm×軸方向長さ305mmの円筒容器にJIS B1501に規定された並級ボールベアリング(Φ36.5mm×43個、Φ30.2mm×67個、Φ24.4mm×10個、Φ19.1mm×71個、Φ15.9mm×94個)を入れて70rpmの速度で回転させて測定した。数値が高い方が粉砕性は向上していることを示す。加熱温度の上昇にともない、粉砕ポイントは上昇することを確認した。
 比較例Bは水中浸漬後直ちに崩壊した。これに対し例B-1、例B-3及びB-4については、いずれも水中浸漬後(168時間)であってもバイオマス粉同士の接続または接着が維持され、崩壊することがなかった。これにより浸漬後も固体形状が維持されため水分測定が可能であり、耐水性の発現が確認できた。また比較例Bと比べて粉砕性が向上し、CODも低減されている。耐水性(浸漬後水分)の観点から例B-3が特に優れており、収率の観点から例B-2、例B-3のバイオマス固体燃料が特に優れた物性を示している。
 また、例B-2についても、固架橋の発達に基づき優れた耐水性及び粉砕性を有し、かつCODが低減された燃料であることが推定される。
 <例C>
 原料のバイオマスとして、アーモンド古木を用いた以外は、例Aと同様にして目標温度(表5に記載の加熱温度)まで昇温させ、加熱した(例C-1~例C-4:PBT)。ボールミル粉砕性については上記例Bと同様の方法で測定した。加熱工程後に得られたバイオマス固体燃料Cの性状を表5及び表6に示す。例Bと同様、水中浸漬後の水分は100時間以上の浸漬後(例Cでは168時間)であるため平衡しているものと看做す。比較例C(WP)についても同様に示した。なお例C-1~例C-4、比較例Cいずれもバインダーは不使用である。
 比較例Cは水中浸漬後直ちに崩壊した。これに対し例C-1~例C-4はいずれも水中浸漬後もバイオマス粉同士の接続または接着が維持され崩壊することがなく、耐水性が向上している。また粉砕性の向上、およびCODの低減等が示される。CODおよび耐水性(浸漬後水分)の観点からは例C-2、例C-3、例C-4が優れ、熱収率の観点からは例C-1、例C-2、例C-3が優れている。なお例C-1のHGIは比較例Cと比べて低下しているが、これは原料のばらつきや測定誤差によるものと考えられ、少なくとも比較例Cと同等以上のHGIがあるものと推定される。
<例D>
 原料のバイオマスとして、(30wt%アーモンド殻+70wt%アーモンド古木)を用いた以外は、例Aと同様にして目標温度(表5に記載の加熱温度)まで昇温させ、加熱した(例D-1~例D-4:PBT)。ボールミル粉砕性については上記例Bと同様の方法で測定した。加熱工程後に得られたバイオマス固体燃料Dの性状を表5及び表6に示す。水中浸漬後の水分は100時間以上の浸漬後(例Dでは168時間)であり、平衡しているものと看做す。また比較例D(WP)についても同様に示した。なお例D-1~例D-4、比較例Dいずれもバインダーは不使用である。
 比較例Dは水中浸漬後直ちに崩壊した。これに対し例D-1~例D-4例はいずれも水中浸漬後であってもバイオマス粉同士の接続または接着が維持されるため崩壊することがなく、耐水性が向上している。また粉砕性の向上、およびCODの低減等が示される。CODの観点からは例D-2、例D-3、例D-4が優れており、熱収率の観点からは例D-1、例D-2、例D-3が特に優れた物性を示した。
<例E>
 原料のバイオマスとしてアカシア木部を用い、バイオマスをタブレット形状に成型し、加熱装置としてφ70mmの管状炉を用いた以外は、例Aと同様にして目標温度(表5に記載の加熱温度)まで昇温させ、加熱した(例E-1~例E-3:PBT)。加熱工程後に得られたバイオマス固体燃料Eの性状を表5及び表6に示す。水中浸漬後の水分は100時間以上の浸漬後(例Eでは168時間)であり、平衡しているものと看做す。また比較例E(WP)についても同様に示す。なお例E-1~例E-3、比較例Eいずれもバインダーは不使用である。例EにおいてpHの測定は、固体燃料を固液比1:13で浸漬して測定した。ここで、表6における比較例Eの浸漬時間はpHを測定した時間、すなわち比較例Eを浸漬して96時間経過後のpHを測定したことを示す。
 比較例Eは水中浸漬後直ちに崩壊したが、例E-1~例E-3はバイオマス粉同士の接続または接着が維持され、崩壊することなく耐水性を示した。耐水性(水中浸漬後水分)の観点からは例E-2,例E-3が優れ、熱収率の観点からは例E-1、例E-2が優れている。なお例Eにおいては240~270℃で加熱したPBTについても上述の固架橋が形成されていると推定され、耐水性、COD、粉砕性等が優れていると考えられる。また例E-1の熱収率が100%を超えているが、原料のばらつきや測定誤差によるものである。
<例F>
 原料のバイオマスとしてアカシアバークを用いた以外は、例Eと同様にして目標温度(表5に記載の加熱温度)まで昇温させ、加熱した(例F-1~例F-4:PBT)。加熱工程後に得られたバイオマス固体燃料Fの性状を表5及び表6に示す。水中浸漬後の水分は100時間以上の浸漬後(例Fでは168時間以上)であり、平衡しているものと看做す。また比較例F(WP)についても同様に示す。なお例F-1~例F-4、比較例Fいずれもバインダーは不使用である。例FにおいてpHの測定は、固体燃料を固液比1:13で浸漬して測定した。ここで、表6における比較例Fの浸漬時間はpHを測定した時間、すなわち比較例Fを浸漬して96時間経過後のpHを測定したことを示す。
 比較例Fは水中浸漬後1時間で崩壊したが、例F-1~例F-4はバイオマス粉同士の接続または接着が維持され、崩壊することなく耐水性を示した。CODおよび耐水性(水中浸漬後水分)の観点からは例F-2,例F-3、例F-4が優れ、熱収率の観点からは例F-1、例F-2、例F-3が優れている。
<例G>
 原料のバイオマスとして(70wt%アーモンド殻+30wt%胡桃殻)を用い、加熱装置としてφ70mmの管状炉を用いた以外は、例Aと同様にして目標温度(表5に記載の加熱温度)まで昇温させ、加熱した(例G-1~例G-4:PBT)。加熱工程後に得られたバイオマス固体燃料Gの性状を表5及び表6に示す。水中浸漬後の水分は100時間以上の浸漬後(例Gでは144時間以上)であり、平衡しているものと看做す。比較例G(WP)についても同様に示す。なお例G-1~例G-4、比較例Gいずれもバインダーは不使用である。
 比較例Gは水中浸漬後直ちに崩壊したが、例G-1~例G-4はバイオマス粉同士の接続または接着が維持され、崩壊することなく耐水性を示した。CODおよび耐水性(水中浸漬後水分)の観点からは例G-2,例G-3、例G-4が優れ、熱収率の観点からは例G-1、例G-2、例G-3が優れている。なお例G-2の熱収率が100%を超えているが、原料のばらつきや測定誤差によるものである。
<例H>
 原料のバイオマスとしてサゴヤシを用いた以外は、例Aと同様にして目標温度(表5に記載の加熱温度)まで昇温させ、加熱した(例H-1~例H-4:PBT)。ボールミル粉砕性については上記例Bと同様の方法で測定した。加熱工程後に得られたバイオマス固体燃料Hの性状を表5及び表6に示す。水中浸漬後の水分は100時間以上の浸漬後(例Hでは168時間)であり、平衡しているものと看做す。比較例H(WP)についても同様に示す。なお例H-1~例H-4、比較例Hいずれもバインダーは不使用である。表6における比較例Hの浸漬時間はpHを測定した時間、すなわち比較例Hを浸漬して24時間経過後のpHを測定したことを示す。
 比較例Hは水中浸漬後3時間で崩壊したが、例H-1~例H-4はバイオマス粉同士の接続または接着が維持され、崩壊することなく耐水性を示した。COD、pH(やや低い)および耐水性(水中浸漬後水分)の観点からは例H-2,例H-3、例H-4が優れ、熱収率の観点からは例H-1、例H-2、例H-3が優れている。
<例I>
 原料のバイオマスとしてEFB(パーム油加工残渣の空果房)を用いた以外は、例Aと同様にして目標温度(表5に記載の加熱温度)まで昇温させ、加熱した(例I-1~例I-4:PBT)。加熱工程後に得られたバイオマス固体燃料Iの性状を表5及び表6に示す。水中浸漬後の水分は100時間以上の浸漬後(例Iでは168時間)であり、平衡しているものと看做す。比較例I(WP)についても同様に示す。なお例I-1~例I-4、比較例Iいずれもバインダーは不使用である。
 なお、270℃で加熱した例I-3、300℃で加熱した例I-4についての水中浸漬前後の機械的耐久性については、以下の方法により測定した。試料50gを1,000ccのポリプロピレン製容器に充填し、MISUGI製まぜまぜマンSKH-15DTにて、60rpmで30分(計1,800回転)回転させる。回転後のサンプルを円孔径3.15mm篩にて篩分けし、下式:
  DU=(m1/m0)×100
により機械的耐久性(DU)を算出した。式中、m0は回転処理前の試料重量、m1は回転処理後の篩上試料重量である。
 比較例Iは水中浸漬後直ちに崩壊したが、例I-1~例I-4はバイオマス粉同士の接続または接着が維持され、崩壊することなく耐水性を示した。CODおよび耐水性(水中浸漬後水分)の観点からは例I-2,例I-3、例I-4が優れ、熱収率の観点からは例I-1、例I-2、例I-3が優れている。
<例J>
 原料のバイオマスとしてメランティを用いた以外は、例Aと同様にして目標温度(表5に記載の加熱温度)まで昇温させ、加熱した(例J-1、例J-2:PBT)。加熱工程後に得られたバイオマス固体燃料Jの性状を表5及び表6に示す。水中浸漬後の水分は100時間以上の浸漬後(例Jでは168時間)であり、平衡しているものと看做す。比較例J(WP)についても同様に示す。なお例J-1、例J-2、および比較例Jいずれもバインダーは不使用である。
 比較例Jは水中浸漬後直ちに崩壊したが、例J-1、例J-2はバイオマス粉同士の接続または接着が維持され、崩壊することなく耐水性を示した。CODについても優れた結果を示した。
<例K>
 原料のバイオマスとしてゴムの木を用い、加熱装置としてφ70mmの管状炉を用いた以外は、例Aと同様にして目標温度(表5に記載の加熱温度)まで昇温させ、加熱した(例K-1)。加熱工程後に得られたバイオマス固体燃料Kの性状を表5に示す。比較例K(WP)についても同様に示す。いずれもバインダーは不使用である。
 比較例Kについても、他の例と同様に水中浸漬により崩壊することが予想される。一方、例K-1については、上記固架橋の形成により水中浸漬によっても崩壊することなく、耐水性、粉砕性の向上およびCODの低減等が見込まれる。例K-1は270℃で加熱しているが、上記同様に230~270℃の加熱温度についても同様の効果が推定される。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
<吸水分布>
 PATとPBTの耐水性を比較するため、これらバイオマス固体燃料について、食塩水を用いて、吸水後のナトリウムの分布を調べた。PATの試料としては、原料の欧州アカマツを250℃で加熱した後直径6mmのペレットに成型した固体燃料を用いた。PBTの試料としては、原料の欧州アカマツを直径6mmのペレットに成型した後250℃で加熱した固体燃料(固体燃料B)を用いた。PBTとPATを0.9wt%の生理食塩水に5日間浸漬した。その結果、ペレット外観は図24に示したとおり、PBTはペレット形状を保持した(図24の左)が、PATは大きく崩壊した(図24の右)。また、PATおよびPBTを、それぞれ、生理食塩水に浸漬する前と0.9wt%の生理食塩水に5日間浸漬後について、その断面をEPMA(Electron Probe MicroAnalyser)分析にかけ、Na分布を比較した。Na分布は、PBTはペレット表面にとどまり内部に浸透していないのに対し、PATでは内部にまで広く分布していた(図25参照)。これはPBTの方がPATより生理食塩水の浸入が少ないことを意味する。この結果からも、PBTは隣接するバイオマス粉同士の間隙を抽出成分の熱分解物が固架橋し、疎水性になったために水の侵入を防いでいるのに対し、PATでは、バイオマス粉同士の間隙に水が浸入できるため水がペレット内部にまで浸透し、バイオマス粉同士の間隙を押し広げた結果、崩壊に至ったと推察される。
 [水中浸漬前後の膨張率]
 例A-1、A-3の固体燃料につき水中浸漬前後のペレット長さを測定した。ペレット長さについては、浸漬前のペレットを10個選択し、電子ノギス(ミツトヨ製:CD-15CX、繰り返し精度は0.01mmであり小数点2桁の部分を四捨五入した。)により測定するとともに、同じペレットを72時間水中浸漬させた後、再度電子ノギスにより長さを測定した。なお浸漬前後いずれにおいてもペレット端が斜めの場合は最も先端部分までを長さとして計測した。計測結果を表7に示す。表7に示すとおり、例A-1のペレット長さは平均で4.6%、例A-3は平均で0.2%増加した。
Figure JPOXMLDOC01-appb-T000007
※表7では、同一のサンプルが同一の行に対応していない。
 
 また、例A-1~例A-6の固体燃料につき、表7の測定と同様の電子ノギスおよび測定方法により浸漬前後のペレット径を測定した。測定結果を表8に示す。なおペレット径の測定値は、各例A-1~例A-6において無作為に選択した10個の平均値である。
Figure JPOXMLDOC01-appb-T000008
 表7、表8から、加熱工程の温度が高くなるほど膨張率が低くなることが示された。加熱に伴う固架橋形成により膨張が抑制されるものと推定される。表7の長さ膨張率よりも表8の径膨張率が高くなっているが、これは表7のほうが浸漬時間が長いこと、また例Aがペレットであるため主として径方向に圧密されており、そのため膨張も径方向が大きくなるためと考えられる。なお表8においては径膨張率が最大の例A-1においても10%以下の膨張率に留まっている。例Aにおいては径および長さ膨張率が10%以下が好ましく、7%以下がより好ましい。体積膨張率は133%以下が好ましく、123%以下がより好ましい。
 上記表7、表8においては例Aの膨張率を示したが、表6に基づき例B~例Jの膨張率を算出する。例Aと同様に下記式(2)を用いて膨張率を算出した。
 膨張率={(浸漬後の値-浸漬前の値)/浸漬前の値}×100・・・(2)
 例Bはペレットであり、式(2)に基づき浸漬前のペレット径(表6における初期寸法)と浸漬後のペレット径(表6における浸漬後の寸法)を用いて算出された径膨張率は15%以下であった(以下例B以降も径膨張率は式(2)を用いる)。例Aと同様にペレットにおいては長さ膨張率<径膨張率と推定されるため、例Bにおける長さ膨張率も最大15%以下と仮定して体積膨張率を算出すると152%以下(浸漬前の体積100%に対する浸漬後の体積。以下例C以降も同様)である。例Bにおいては径膨張率が20%以下が好ましく、10%以下がより好ましい。体積膨張率は173%以下が好ましく、133%以下がより好ましい。
 例Cもペレットであり、浸漬前後の径膨張率は7.2%以下、長さ膨張率も最大7.2%と仮定して体積膨張率は123%以下である(以下ペレットの例についても同様に体積膨張率を算出する)。例Cにおける径膨張率は13%以下が好ましく、7%以下がより好ましい。体積膨張率は144%以下が好ましく、123%以下がより好ましい。
 例D(ペレット)については浸漬前後の径膨張率は8.8%以下、それに基づく体積膨張率は129%以下である。例Dにおける径膨張率は10%以下が好ましく、8%以下がより好ましい。体積膨張率は133%以下が好ましく、126%以下がより好ましい。
 例Eはタブレット形状であり、径(φ)膨張率は2.5%以下、高さ(H)膨張率は40%以下、体積膨張率は147%以下である。径膨張率は5%以下が好ましく、2.3%以下がより好ましい。高さ膨張率は50%以下が好ましく、20%以下がより好ましい。体積膨張率は165%以下が好ましく、126%以下がより好ましい。
 例F(タブレット)については径膨張率が4.0%以下、高さ膨張率は15%以下、体積膨張率が124%以下である。なお例F-3の浸漬後高さは測定誤差または個体ばらつきと考えられる。径膨張率は5%以下が好ましく、3%以下がより好ましい。高さ膨張率は40%以下が好ましく、10%以下がより好ましい。体積膨張率は154%以下が好ましく、117%以下がより好ましい。
 例G(ペレット)については浸漬前後の径膨張率は8.8%以下、それに基づく体積膨張率は129%以下である。径膨張率は10%以下が好ましく、8%以下がより好ましい。体積膨張率は133%以下が好ましく、126%以下がより好ましい。
 例H(ペレット)については浸漬前後の径膨張率は6.9%以下、それに基づく体積膨張率は122%以下である。径膨張率は10%以下が好ましく、7%以下がより好ましい。体積膨張率は133%以下が好ましく、123%以下がより好ましい。
 例I(ペレット)については浸漬前後の径膨張率は4.1%以下、それに基づく体積膨張率は113%以下である。径膨張率は10%以下が好ましく、5%以下がより好ましい。体積膨張率は133%以下が好ましく、116%以下がより好ましい。
 例J(ペレット)については浸漬前後の径膨張率は5.4%以下、それに基づく体積膨張率は117%以下である。径膨張率は20%以下が好ましく、10%以下がより好ましい。体積膨張率は173%以下が好ましく、133%以下がより好ましい。
 以上のとおり、バイオマスを原料とする本発明の固体燃料(PBT)は、浸漬前後の長さ(径、高さを含む)はいずれも40%以下の膨張率であることが好ましく、体積膨張率は約275%以下であることが好ましい。径、長さの膨張率が30%以下、体積膨張率は約220%以下であればなお好ましい。径、長さの膨張率が20%以下、体積膨張率は約173%以下であればより好ましい。径、長さの膨張率が10%以下、体積膨張率は約133%以下であればさらに好ましい。このように水中浸漬後の膨張率が一定の範囲内にあることで、バイオマス固体燃料(PBT)は浸漬によっても崩壊せず、耐水性を有することが示される。
 なお、ゴムの木、アカシア、メランティの各原料について別途PBTを作成して試験を行った。試験結果を下記表9、表10に示す。この表9、表10の試験結果においてはゴムの木を例a、アカシアを例b、メランティを例cと記載する。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
1 炭化炉
2 振動コンベア
11 温度計
21 分級部(分級手段)
22 冷却部(冷却手段)
22a 散水部(散水手段)
22b 平板
24 隔成部
30 制御部(制御手段)
100 燃料製造工程
110 粉砕工程
120 成型工程
130 加熱工程
200 分級工程
300 冷却工程
402 システム
403A 振動篩装置
403B 冷却振動コンベア
421 分級部
421a 篩
421b 排出部
422 冷却部
422a 散水部
422b 平板

Claims (5)

  1.  バイオマス成型体を炭化してバイオマス炭化物を得る炭化炉と、
     前記炭化炉の下流側に設けられ、前記バイオマス炭化物を分級する分級手段と、
     前記分級手段の下流側に設けられ、分級された前記バイオマス炭化物を冷却する冷却手段と
     を備え、
     前記バイオマス成型体は、原料のバイオマスを粉砕した後成型して得られた成型体であって、
     前記冷却手段は、散水により前記バイオマス炭化物を冷却すること
     を特徴とするバイオマス炭化物の冷却装置。
  2.  請求項1に記載のバイオマス炭化物の冷却装置において、
     前記冷却手段は、振動する平板と、この平板上に散水する散水部と、を有し、
     前記平板は金属板または樹脂板であって、振動により前記バイオマス炭化物を搬送すること
     を特徴とするバイオマス炭化物の冷却装置。
  3.  請求項1または請求項2に記載のバイオマス炭化物の冷却装置において、
     前記炭化炉出口の温度を計測する温度計を設け、
     前記温度計により計測された温度が所定値以下となった場合、前記散水手段を停止する制御手段を設けたこと
     を特徴とするバイオマス炭化物の冷却装置。
  4.  請求項3に記載のバイオマス炭化物の冷却装置において、
     前記温度計は、前記バイオマス炭化物の温度を直接計測可能であること
     を特徴とするバイオマス炭化物の冷却装置。
  5.  請求項1ないし請求項4のいずれか1項に記載のバイオマス炭化物の製造装置において、
     前記分級手段と前記冷却手段とを隔成する隔成部を設けたこと
     を特徴とするバイオマス炭化物の冷却装置。
PCT/JP2017/014002 2016-04-06 2017-04-03 バイオマス炭化物の冷却装置 WO2017175737A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA3020513A CA3020513A1 (en) 2016-04-06 2017-04-03 Cooling apparatus for carbonized biomass
US16/090,515 US20190112530A1 (en) 2016-04-06 2017-04-03 Cooling apparatus for carbonized biomass
AU2017247757A AU2017247757B2 (en) 2016-04-06 2017-04-03 Cooling apparatus for carbonized biomass
KR1020187031771A KR20180133445A (ko) 2016-04-06 2017-04-03 바이오매스 탄화물의 냉각 장치
NZ747132A NZ747132B2 (en) 2016-04-06 2017-04-03 Cooling apparatus for carbonized biomass
JP2018510601A JP7080168B2 (ja) 2016-04-06 2017-04-03 炭化物の製造装置
RU2018138556A RU2746733C2 (ru) 2016-04-06 2017-04-03 Аппаратура для охлаждения карбонизированной биомассы
MYPI2018001688A MY189949A (en) 2016-04-06 2017-04-03 Cooling apparatus for carbonized biomass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-076234 2016-04-06
JP2016076234 2016-04-06

Publications (1)

Publication Number Publication Date
WO2017175737A1 true WO2017175737A1 (ja) 2017-10-12

Family

ID=60000491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014002 WO2017175737A1 (ja) 2016-04-06 2017-04-03 バイオマス炭化物の冷却装置

Country Status (8)

Country Link
US (1) US20190112530A1 (ja)
JP (1) JP7080168B2 (ja)
KR (1) KR20180133445A (ja)
AU (1) AU2017247757B2 (ja)
CA (1) CA3020513A1 (ja)
MY (1) MY189949A (ja)
RU (1) RU2746733C2 (ja)
WO (1) WO2017175737A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110375516A (zh) * 2019-07-17 2019-10-25 安徽鼎梁科技能源股份有限公司 一种生物质颗粒冷却器
WO2020184698A1 (ja) * 2019-03-13 2020-09-17 日本製紙株式会社 固体燃料の製造方法
WO2020184699A1 (ja) * 2019-03-13 2020-09-17 日本製紙株式会社 固体燃料の製造方法
WO2020203163A1 (ja) * 2019-03-29 2020-10-08 日本製紙株式会社 固体燃料の製造方法
WO2020229824A1 (en) 2019-05-13 2020-11-19 Hamer, Christopher Process for producing solid biomass fuel
WO2021024001A1 (en) 2019-08-08 2021-02-11 Hamer, Christopher Process for producing solid biomass fuel
WO2021156628A1 (en) 2020-02-06 2021-08-12 Hamer, Christopher Process for producing solid biomass fuel
GB202117376D0 (en) 2021-12-01 2022-01-12 Bai hong mei Process for producing solid biomass fuel
WO2022079427A1 (en) 2020-10-12 2022-04-21 Hamer, Christopher Process for producing solid biomass fuel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966485A (ja) * 1982-10-08 1984-04-14 Mitsubishi Chem Ind Ltd 赤熱コ−クスの処理方法
JPH06256781A (ja) * 1993-03-10 1994-09-13 Fuji Shikan Kk 炭およびその製造方法
JP2004204045A (ja) * 2002-12-25 2004-07-22 Iseki & Co Ltd 有機廃棄物等の炭化装置
WO2006078023A1 (ja) * 2005-01-24 2006-07-27 Osaka Industrial Promotion Organization バイオマス固形物及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU365363A1 (ru) * 1971-03-16 1973-01-08 Способ получения карбонизированного лигнина
US4100032A (en) * 1977-07-25 1978-07-11 Husky Industries Inc. Process for carbonizing lignite coal
DE19522320C1 (de) * 1995-06-20 1996-08-22 Joseph E Doumet Verfahren und Vorrichtung zum Abkühlen und Verfestigen von glühendflüssiger Hochofenschlacke
EP1219697A4 (en) * 1999-08-04 2006-02-08 Jfe Steel Corp METHOD FOR THE TREATMENT OF COMBUSTIBLE WASTE
CN1890349A (zh) * 2003-12-08 2007-01-03 株式会社Ipb 活性炭制造用碳化装置
JP4265422B2 (ja) * 2004-01-30 2009-05-20 Jfeスチール株式会社 コークス炉装入用石炭の製造方法
KR101182642B1 (ko) * 2009-07-09 2012-09-14 손민일 탄화 고체연료 및 그 제조방법
DE102009055976A1 (de) * 2009-11-27 2011-06-01 Choren Industries Gmbh Vorrichtung und Verfahren zur Erzeugung eines Synthesegases aus Biomasse durch Flugstrom-Vergasung
JP5966485B2 (ja) * 2012-03-22 2016-08-10 いすゞ自動車株式会社 エンジンの暖機装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966485A (ja) * 1982-10-08 1984-04-14 Mitsubishi Chem Ind Ltd 赤熱コ−クスの処理方法
JPH06256781A (ja) * 1993-03-10 1994-09-13 Fuji Shikan Kk 炭およびその製造方法
JP2004204045A (ja) * 2002-12-25 2004-07-22 Iseki & Co Ltd 有機廃棄物等の炭化装置
WO2006078023A1 (ja) * 2005-01-24 2006-07-27 Osaka Industrial Promotion Organization バイオマス固形物及びその製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184698A1 (ja) * 2019-03-13 2020-09-17 日本製紙株式会社 固体燃料の製造方法
WO2020184699A1 (ja) * 2019-03-13 2020-09-17 日本製紙株式会社 固体燃料の製造方法
JP7473529B2 (ja) 2019-03-13 2024-04-23 日本製紙株式会社 固体燃料の製造方法
WO2020203163A1 (ja) * 2019-03-29 2020-10-08 日本製紙株式会社 固体燃料の製造方法
JP7474750B2 (ja) 2019-03-29 2024-04-25 日本製紙株式会社 固体燃料の製造方法
WO2020229824A1 (en) 2019-05-13 2020-11-19 Hamer, Christopher Process for producing solid biomass fuel
CN110375516A (zh) * 2019-07-17 2019-10-25 安徽鼎梁科技能源股份有限公司 一种生物质颗粒冷却器
WO2021024001A1 (en) 2019-08-08 2021-02-11 Hamer, Christopher Process for producing solid biomass fuel
WO2021156628A1 (en) 2020-02-06 2021-08-12 Hamer, Christopher Process for producing solid biomass fuel
WO2022079427A1 (en) 2020-10-12 2022-04-21 Hamer, Christopher Process for producing solid biomass fuel
GB202117376D0 (en) 2021-12-01 2022-01-12 Bai hong mei Process for producing solid biomass fuel
WO2023099900A1 (en) 2021-12-01 2023-06-08 Hamer, Christopher Process for producing solid biomass fuel

Also Published As

Publication number Publication date
KR20180133445A (ko) 2018-12-14
AU2017247757B2 (en) 2020-02-20
NZ747132A (en) 2021-11-26
RU2018138556A3 (ja) 2020-05-12
RU2018138556A (ru) 2020-05-12
CA3020513A1 (en) 2017-10-12
JP7080168B2 (ja) 2022-06-03
RU2746733C2 (ru) 2021-04-19
JPWO2017175737A1 (ja) 2019-02-14
AU2017247757A1 (en) 2018-11-01
MY189949A (en) 2022-03-22
US20190112530A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP7289800B2 (ja) バイオマス固体燃料
WO2017175737A1 (ja) バイオマス炭化物の冷却装置
JP7267382B2 (ja) バイオマス固体燃料
JP2023025203A (ja) バイオマス固体燃料
JP6407506B2 (ja) 固形燃料の製造方法及び固形燃料
JPWO2012023479A1 (ja) 固体燃料、およびその製造方法、製造装置
Obidziñski Pelletization of biomass waste with potato pulp content
JP6161242B2 (ja) 混合燃料の製造方法
JP7490444B2 (ja) バイオマス固形燃料の製造方法
JP5642131B2 (ja) 乾燥可燃物質の製造方法
JP5284939B2 (ja) 固体燃料
JP6243982B2 (ja) 混合燃料用の成型物の製造方法
JP6271832B2 (ja) 固形燃料の製造方法
NZ747132B2 (en) Cooling apparatus for carbonized biomass
JP6283724B2 (ja) 混合燃料の製造方法
JP6283727B2 (ja) 混合燃料の製造方法
Ali et al. Torrefaction and Process Energy Budget Analysis of Powdered, De‐oiled, and In Situ Transesterified Flaxseed Cakes for Energy Generation
RU2793126C1 (ru) Способ изготовления топливного брикета и топливный брикет
JP6283722B2 (ja) 混合燃料の製造方法
JP6283726B2 (ja) 混合燃料の製造方法
JP6283721B2 (ja) 混合燃料の製造方法
Lee et al. Effects of the torrefaction process on the fuel characteristics Larix kaempferi C
JP6283723B2 (ja) 混合燃料の製造方法
CA2857797A1 (en) Bio fuel from waste wood production and delivery system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018510601

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 3020513

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017247757

Country of ref document: AU

Date of ref document: 20170403

Kind code of ref document: A

Ref document number: 20187031771

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779115

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17779115

Country of ref document: EP

Kind code of ref document: A1