WO2017171366A1 - 항복강도와 연성이 우수한 고강도 냉연강판, 도금강판 및 이들의 제조방법 - Google Patents

항복강도와 연성이 우수한 고강도 냉연강판, 도금강판 및 이들의 제조방법 Download PDF

Info

Publication number
WO2017171366A1
WO2017171366A1 PCT/KR2017/003351 KR2017003351W WO2017171366A1 WO 2017171366 A1 WO2017171366 A1 WO 2017171366A1 KR 2017003351 W KR2017003351 W KR 2017003351W WO 2017171366 A1 WO2017171366 A1 WO 2017171366A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
rolled steel
cold rolled
ductility
Prior art date
Application number
PCT/KR2017/003351
Other languages
English (en)
French (fr)
Inventor
이규영
이원휘
이세웅
류주현
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201780020986.0A priority Critical patent/CN108884536A/zh
Priority to EP17775790.3A priority patent/EP3438315A4/en
Priority to US16/079,722 priority patent/US20190071745A1/en
Priority to JP2018550600A priority patent/JP2019512608A/ja
Publication of WO2017171366A1 publication Critical patent/WO2017171366A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a high-strength cold-rolled steel sheet, a plated steel sheet, and a method for manufacturing the same, which have excellent yield strength and ductility, which can be preferably used as materials for electronic products and materials for vehicles including cars, trains and ships.
  • the metamorphic steel is classified into so-called DP (Dual Phase) steel, Transformation Induced Plasticity (TRIP) steel, and Complex Phase (CP) steel.
  • DP Dual Phase
  • TRIP Transformation Induced Plasticity
  • CP Complex Phase
  • Each of these steels has mechanical properties, that is, according to the type and fraction of the parent phase and the second phase.
  • the level of tensile strength and elongation will be different, especially in the case of TRIP steel containing residual austenite, the balance between tensile strength and elongation (TS x El) shows the highest value.
  • CP steel of the metamorphic structure steel as described above is lower than the other steels, and is limited to simple processing such as roll forming, and high ductility DP steel and TRIP steel are applied to cold press forming.
  • Patent Document 1 proposes a method for producing a high strength steel sheet having excellent workability by using annealing twice, and after heating to an austenite single phase during the first annealing, the temperature is 20 ° C / sec or more to a temperature of Ms or more and Bs or less.
  • the process of cooling at the average cooling rate and the second phase annealing at the second annealing suggest that the final structure contains more than 50% of sour bainite and 3 ⁇ 30% of retained austenite. Doing.
  • patent document 2 although the process is the same as patent document 1, when it heats to austenite single phase at the time of primary annealing, it performs the process of cooling at the average cooling rate of 20 degree-C / sec or more to the temperature below Ms point, and at the time of secondary annealing, By applying two-phase annealing, it suggests that the final tissue contains more than 50% of martensite and 3 ⁇ 20% of retained austenite.
  • Patent Documents 1 and 2 have the advantage of improving the elongation flange and ductility at the same time, but the disadvantage of adding the process cost by performing annealing twice and the high temperature annealing during the first annealing of the steel containing a large amount of Si and Mn There is a disadvantage that it is impossible to continuously work the same kind of material by causing the dent in the annealing furnace. In addition, there is a disadvantage in that the important shape is poor in the press-molding material by cooling at a fast average cooling rate of 20 ° C./sec or more after the austenite heat treatment at the time of primary annealing.
  • TWIP winning Induced Plasticity
  • TWIP steel disclosed in Patent Literature 3, the balance between tensile strength and elongation (TS ⁇ El) is 50,000 MPa% or more, which shows very excellent material properties.
  • the content of C is 0.4% by weight
  • the content of Mn is required at least about 25% by weight
  • the content of C is 0.6% by weight
  • the content of Mn is about 20%. If it is not satisfied, the austenite phase that causes twinning in the mother phase is not secured stably, and epsilon martensite ( ⁇ ) of HCP structure and martensite ( ⁇ ) of BCT structure are extremely detrimental to workability.
  • the TWIP steel to which the alloying component is added in a large amount is not only difficult to process such as casting and rolling due to the problems resulting from the alloying component, but also has a problem in that the manufacturing cost is greatly increased economically.
  • Patent Document 4 discloses a method of constituting a main structure with residual austenite and martensite (Quenching and Partitioning Process (Q & P)), as shown in the report using the non-patent document (Non-Patent Document 1). If the low 0.2% level, yield strength is low around 400MPa, and the elongation obtained in the final product is only similar to the existing TRIP steel. In addition, a method of significantly increasing yield strength by deriving an alloy amount of carbon and manganese has been derived, but in this case, there is a disadvantage in that weldability is poor due to the addition of excessive alloying components.
  • Patent Document 5 has also proposed a method of improving the final physical properties by controlling the microstructure before the two times annealing process Q & P heat treatment.
  • Patent Document 5 has also proposed a method of improving the final physical properties by controlling the microstructure before the two times annealing process Q & P heat treatment.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2002-309334
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2002-302734
  • Patent Literature 3 Korean Laid-Open Patent Publication No. 1994-0002370
  • Patent Document 4 US Patent Publication No. 2006-0011274
  • Patent Document 5 Korean Unexamined Patent Publication No. 2015-0130612
  • Non-Patent Document 1 ISIJ International, Vol. 51, 2011, p. 137-144
  • high-strength cold rolled steel has low alloy cost compared to TWIP steel, secures high yield strength and ductility required for automotive structural member materials, and does not cause dent in annealing furnace during operation.
  • a plated steel sheet and a method of manufacturing the same In order to provide a steel sheet, a plated steel sheet and a method of manufacturing the same.
  • the microstructure has an area fraction of 5% or less of polygonal ferrite having a ratio of short axis and long axis exceeding 0.4, a fraction of 70% or less of needle ferrite having a ratio of short axis and long axis 0.4 or less, 0.6-25% of needle retained austenite, and Including the remaining martensite,
  • the present invention relates to a high strength cold rolled steel sheet having excellent yield strength and ductility having an internal oxidation depth of 1 ⁇ m or less from the surface.
  • Another aspect of the present invention relates to a high strength plated steel sheet having excellent yield strength and ductility in which one of a hot dip galvanized layer, an alloyed hot dip galvanized layer, an aluminum-silicon plated layer, and a zinc-magnesium-aluminum plated layer is formed on a surface of the cold rolled steel sheet.
  • Another aspect of the present invention comprises the steps of heating the steel slab satisfying the above-described alloy composition to 1000 ⁇ 1300 °C;
  • the second annealing step of cooling at an average cooling rate of less than 20 °C / second to a temperature of less than 500 °C to maintain for at least 1 second and then cooled. It relates to a high strength cold rolled steel sheet excellent in yield strength and ductility.
  • Another aspect of the present invention further includes the step of forming one of a hot dip galvanized layer, an alloyed hot dip galvanized layer, an aluminum-silicon plating layer and a zinc-magnesium-aluminum plating layer on the surface of the cold rolled steel sheet after the second annealing step. It relates to a method for producing a high strength coated steel sheet excellent in yield strength and ductility.
  • the present invention provides a high-strength cold rolled steel sheet, plated steel sheet and a method of manufacturing a high tensile strain strength of 780MPa or more superior to the high-ductile transformation tissue steel such as DP steel or TRIP steel and Q & P steel subjected to Q & P heat treatment. It can also produce and provide stably without producing dent defects during production.
  • the ultra-high strength steel sheet of the present invention is likely to be utilized for the weight reduction of materials for electronic products and materials for vehicles including automobiles, trains and ships.
  • Figure 1 shows an example of the annealing process according to the present invention, (a) the first annealing process and (b) the second annealing process.
  • Figure 2 shows the internal oxidation depth and formation after hot rolling of (a) Inventive Example 2 and (b) Comparative Example 5.
  • the present inventors have deeply studied the effect of the phase composition obtained by the first annealing performed before the second annealing in the two annealing process on the final physical properties. It has been found that the yield strength and ductility of the final product can be improved by forming it.
  • the high-strength cold-rolled steel sheet having excellent yield strength and ductility which is an aspect of the present invention, is% by weight, carbon (C): 0.1-0.3%, silicon (Si): 0.1-2.0%, aluminum (Al): 0.005-1.5%, Manganese (Mn): 1.5 ⁇ 3.0%, Phosphorus (P): 0.04% or less (excluding 0%), Sulfur (S): 0.015% or less (excluding 0%), Nitrogen (N): 0.02% or less (0 %, Excluding antimony (Sb): 0.01 ⁇ 0.1%, the remaining Fe and inevitable impurities, the sum of Si and Al (Si + Al, wt%) satisfies 1 ⁇ 3.5%, the microstructure 5% or less of polygonal ferrite with an area fraction of 0.4 or less in the ratio of short axis and long axis, 70% or less of acicular ferrite with a ratio of 0.4 or less in the minor axis and long axis,
  • the content of each component means weight% unless otherwise specified.
  • Carbon (C) is an effective element for reinforcing steel, and is an important element added in the present invention for stabilizing residual austenite and securing strength.
  • it is preferable to add 0.1% or more, but if the content exceeds 0.3%, there is a problem that not only the risk of cast defect occurs, but also the weldability is greatly reduced. Therefore, the content of C in the present invention is preferably limited to 0.1 ⁇ 0.3%.
  • Silicon (Si) is an element that suppresses the precipitation of carbides in ferrite, promotes diffusion of carbon in the ferrite into austenite, and consequently contributes to stabilization of residual austenite.
  • Aluminum (Al) is an element that deoxidizes by combining with oxygen in the steel, and for this purpose, it is preferable to maintain the content of 0.005% or more.
  • Al contributes to stabilization of retained austenite through suppression of carbide formation in ferrite as in Si.
  • the content of Al in the present invention is preferably limited to 0.005 ⁇ 1.5%.
  • both Si and Al are elements that contribute to stabilization of retained austenite, and in order to achieve this effectively, the sum of Si and Al content (Si + Al, wt%) satisfies 1.0 to 3.5%. Do.
  • Manganese (Mn) is an element effective in forming and stabilizing residual austenite while controlling the transformation of ferrite. If the Mn content is less than 1.5%, a large amount of ferrite transformation occurs, making it difficult to secure the target strength.On the other hand, when the Mn content exceeds 3.0%, the phase transformation is too delayed when the second Q & P heat treatment is performed. As a large amount is formed, there is a problem that it is difficult to secure the intended ductility. Therefore, the content of Mn in the present invention is preferably limited to 1.5 ⁇ 3.0%.
  • Antimony (Sb) has an effect of inhibiting internal concentration after hot rolling by inhibiting surface concentration of Si and Al and movement of element oxide through grain boundary segregation, and for the same reason due to surface concentration of Si and Al during annealing. It suppresses oxidation and improves the surface quality of plating. However, if the content is less than 0.01%, the effect of inhibiting internal oxidation is not sufficient, and the internal oxidation depth of the final product may exceed 1 ⁇ m from the surface, and if the content exceeds 0.1%, alloying of the galvanized layer May cause delays.
  • Phosphorus (P) can obtain a solid solution effect and stabilize the residual austenite, but if the content exceeds 0.04%, there is a problem that the weldability is lowered and the risk of brittleness of the steel is increased. Therefore, in the present invention, the content of P may be 0.04% or less, more preferably 0.02% or less.
  • S Sulfur
  • the S content is advantageously limited to 0%, but it is inevitably contained in the manufacturing process, so it is important to manage the upper limit, and if the content exceeds 0.015%, the ductility and weldability of the steel sheet may be impaired. This is high. Therefore, the present invention is preferably limited to 0.015% or less.
  • N Nitrogen
  • N is an effective element for stabilizing austenite, but if the content exceeds 0.02%, the risk of brittleness of steel increases, and the quality of performance is increased as AlN is excessively precipitated by reacting with Al. There is a problem of deterioration. Therefore, in the present invention, it is preferable to limit the content of N to 0.02% or less.
  • the cold rolled steel sheet of the present invention may further include at least one of Ti, Nb, V, Zr, and W in order to improve the strength, in addition to the above components.
  • Titanium (Ti), niobium (Nb), vanadium (V), zirconium (Zr), and tungsten (W) are effective elements for precipitation strengthening and grain refinement of steel sheets. There is a problem that is difficult to do. On the other hand, if the content exceeds 0.1% in the case of Ti, Nb, V and Zr, 0.5% in the case of W, the above-mentioned effect is saturated, there is a problem that the manufacturing cost increases significantly, and precipitates are formed excessively, rather There is a problem that ductility is greatly reduced.
  • cold rolled steel sheet of the present invention may further include one or more of Mo, Ni, Cu and Cr.
  • Molybdenum (Mo), nickel (Ni), copper (Cu) and chromium (Cr) are the elements contributing to the stabilization of residual austenite, and these elements are combined with C, Si, Mn, and Al to stabilize austenite. Contribute. If the content of these elements is more than 1.0% for Mo, Ni and Cr, 0.5% for Cu, there is a problem that the manufacturing cost is excessively increased, it is preferable to control not to exceed the content.
  • Ni is more preferably added together at this time.
  • cold rolled steel sheet of the present invention may further include one or more of Ca, Bi and B.
  • Calcium (Ca) is an element that is advantageous for improving workability by controlling the form of sulfide. When the content exceeds 0.01%, the above-mentioned effect is saturated, and therefore it is preferably included at 0.01% or less.
  • Bismuth (Bi) is an element that has an effect of inhibiting the movement of surface oxide elements such as Si and Al through grain boundary segregation to improve plating surface quality. When the content exceeds 0.1%, the above-mentioned effect is saturated, It is preferably included in 0.1% or less.
  • Boron (B) has the effect of suppressing soft ferrite transformation at high temperature by improving the hardenability by the composite effect with Mn, Cr, etc., but when the content exceeds 0.01%, excessive B is concentrated on the steel surface during plating. Since it may cause deterioration of adhesion, it is preferable to include the content in 0.01% or less.
  • the remaining component of the present invention is iron (Fe).
  • iron Fe
  • impurities which are not intended from raw materials or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art of ordinary steel manufacturing, not all of them are specifically mentioned herein.
  • Cold rolled steel sheet of the present invention that satisfies the composition of the above-mentioned composition is 5% or less polygonal ferrite having a small area ratio of 0.4 and less than 0.4%, and needle-like ferrite having a ratio of 0.4 or less of a short axis and a long axis in a microstructure.
  • Retained austenite contains 0.6-25% and the remaining martensite.
  • Polygonal ferrite having a ratio between the short axis and the long axis exceeding 0.4 is limited to 5% or less because it serves to lower the yield strength of the present invention applied to structural members, etc., and the acicular ferrite and residual austenite having a short axis and long axis ratio of 0.4 or less are used.
  • the main structure of the present invention is an organization advantageous for securing strength and ductility.
  • the retained austenite is an essential structure for advantageously securing a balance between strength and ductility, but when the fraction is too excessive to exceed 25% (the upper limit), carbon is dispersed and diffused, and thus stabilization of the retained austenite is not sufficient. there is a problem. Therefore, it is preferable that the fraction of retained austenite in the present invention satisfies 25% or less.
  • the lower limit is based on the residual austenite fraction of 0.6% or more which should preferably be secured after the first annealing in the present invention.
  • the steel sheet of the present invention preferably has an internal oxidation depth of 1 ⁇ m or less from the surface together with the characteristics of the microstructure.
  • Sb is basically contained 0.01 ⁇ 0.1%, the element is due to the combination of the surface concentrated elements such as Mn, Si, Al and oxygen diffuse into the steel during cooling and winding after hot finishing rolling
  • the internal oxidation layer formed after hot rolling may undergo cracking of the internal oxidation layer through subsequent pickling and cold rolling processes, which causes dent defects in the steel sheet due to dropping and adhesion to rolls in the annealing furnace during subsequent annealing operations. .
  • These dent defects inferior to the surface quality of subsequent annealing coils, including the corresponding product coils, making normal product production difficult.
  • the above problems may occur when the internal oxidation depth of the final cold rolled steel sheet is greater than 1 ⁇ m.
  • the lower the internal oxidation the more advantageous it is to suppress the dent defect
  • the lower limit of the internal oxidation depth is not particularly limited, and includes zero.
  • the cold rolled steel sheet of the present invention that satisfies the alloy composition and the microstructure described above has a tensile strength of 780 MPa or more, excellent yield strength and ductility, and can prevent excellent dent defects during annealing, thereby ensuring excellent productivity.
  • the cold rolled steel sheet according to the present invention is manufactured through the manufacturing process described below, wherein the microstructure after the first annealing process, that is, the microstructure before the second annealing process should contain more than 0.6% acicular residual austenite, The remainder preferably consists of one or more of bainite, martensite and tempered martensite.
  • residual austenite is contained less than 0.6% after the first annealing process, the yield strength is lowered and the elongation is lowered. Because there is a problem. Therefore, it is preferable that residual austenite is 0.6% or more.
  • YSxEl (MPa%) of the final annealing product exhibits excellent properties of 16,000 or more. Therefore, it is more preferable to secure 1.5% or more of retained austenite after primary annealing.
  • Another aspect of the present invention is a high-strength plated steel sheet having excellent yield strength and ductility, wherein one of a hot dip galvanized layer, an alloyed hot dip galvanized layer, an aluminum-silicon plated layer, and a zinc-magnesium-aluminum plated layer is formed on the surface of the cold rolled steel sheet of the present invention. Formed.
  • a method of manufacturing a high strength cold rolled steel sheet having excellent yield strength and ductility may be manufactured by heating, hot rolling, winding, cold rolling, and annealing a steel slab satisfying the alloy composition described above.
  • the conditions of each of the above steps will be described in detail.
  • a step of heating and homogenizing the steel slab prior to performing the hot rolling, it is preferable to undergo a step of heating and homogenizing the steel slab, more preferably, in a temperature range of 1000 to 1300 ° C.
  • the temperature is less than 1000 °C during the heating, a problem that the rolling load is rapidly increased, while the temperature exceeds 1300 °C not only increases the energy cost, but also causes a problem of excessive amount of surface scale. Therefore, it is preferable to perform the heating process of a steel slab at 1000-1300 degreeC in this invention.
  • the heated steel slab is hot rolled to produce a hot rolled steel sheet, wherein hot finish rolling is preferably performed at 800 to 950 ° C.
  • the hot finish rolling temperature during hot rolling in the present invention is preferably limited to 800 ⁇ 950 °C.
  • the hot rolled steel sheet manufactured according to the above is wound, and at this time, the winding temperature is preferably 750 ° C. or lower, and more preferably 650 ° C. or lower for suppressing the internal oxide layer.
  • the winding temperature is too high during winding, excessively scale occurs on the surface of the hot-rolled steel sheet, causing surface defects and deteriorating plating property.
  • the steel containing a large amount of Mn, Si, Al, etc. as in the present invention it may promote internal oxidation to cause dent defects in a subsequent annealing process. Therefore, it is good to perform a winding process at 750 degreeC or less, More preferably, it is 650 degrees C or less.
  • the lower limit of the coiling temperature is not particularly limited, but it is more preferably carried out at Ms ⁇ 750 °C in consideration of the difficulty of subsequent cold rolling due to too high hot-rolled sheet strength by the production of martensite.
  • the wound hot rolled steel sheet is pickled to remove the oxide layer, and then cold rolled to produce a cold rolled steel sheet in order to match the shape and thickness of the steel sheet.
  • general general annealing in order to prevent the formation of coarse grains during recrystallization, it is common to set a lower limit of the cold reduction rate.
  • the primary annealing is performed before the final annealing as in the present invention, the above problems do not occur. There is no restriction on the rolling reduction rate during cold rolling.
  • Annealing Phase First Annealing Stage and Secondary Annealing Stage
  • 5% or less of polygonal ferrite having a ratio of short axis and long axis exceeding 0.4 by area fraction as a final microstructure 70% or less of acicular ferrite having a ratio of short axis and long axis 0.4 or less, and 0.6-25% of retained austenite And the remaining martensite, and for producing a cold rolled steel sheet having an internal oxidation depth of 1 ⁇ m or less from the surface, it is important to control the subsequent annealing process to obtain such a cold rolled steel sheet.
  • a conventional annealing heat treatment including austempering or Q & P heat treatment is performed after cold rolling.
  • a low temperature structure containing at least 0.6% acicular residual austenite is ensured, and then heated and maintained at a temperature in the range of Ac1 to Ac3 during the second annealing.
  • Yield strength and ductility increase as the amount of residual austenite obtained after the first annealing increases, and when YSxEl (MPa%) of the final annealing product is more than 16,000 when securing the residual austenite of 1.5% or more after the first annealing, It is more preferable to secure 1.5% or more of retained austenite after primary annealing because it exhibits physical properties.
  • the primary annealing heat treatment for annealing the cold rolled steel sheet thus prepared at a temperature of Ac3 or more and cooling at an average cooling rate of 25 ° C / sec or less (see FIG. 1A).
  • the cooling rate is limited to ensure that the retained austenite is 0.6% or more, and when cooled to 25 ° C / sec or less, it is possible to more stably retain the retained austenite by dynamic partitioning. Residual austenite of more than% can be secured. Dynamic partitioning means that the alloying elements are redistributed between phases during cooling at high temperatures.
  • the fifth heat treatment represents a typical austempering heat treatment, and the average cooling rate is very slow.
  • the microstructure of the cold rolled steel sheet subjected to the first annealing heat treatment should contain at least 0.6% of retained austenite, and the formation of the soft polygonal ferrite inhibits the obtaining of the final final annealing structure during the subsequent annealing heat treatment.
  • the rest may be secured by any of low temperature microstructure bainite or martensite and tempered martensite.
  • the heat treatment condition is to ensure the excellent yield strength and ductility of the cold rolled steel sheet manufactured by austempering or Q & P process in the final annealing process, if the needle-like residual austenite is less than 0.6% after the first annealing process This is because the yield strength is lowered and the elongation is lowered.
  • the heating in the range of Ac1 ⁇ Ac3 is to ensure the stability of austenite through the distribution of the alloying element to austenite during annealing, to ensure the retained austenite in the final structure at room temperature, It is easy to ensure needle-like structure by acicular-type residual austenite formed after the primary annealing heat treatment from maintaining at the temperature.
  • the cooling temperature is preferably set to 500 ° C. or lower, because the austenite phase is transformed into pearlite when kept at a temperature above 500 ° C. for a long time, thereby making it difficult to secure residual austenite. Therefore, it is preferable to heat up to a temperature of 500 ° C. or lower for a long time and inevitably increase the temperature to 500 ° C. or higher during the melt alloying heat treatment, but the melt alloying heat treatment within 1 minute does not significantly degrade the properties of the present invention steel. .
  • the slow cooling section may be passed immediately after the annealing, but the microstructure and physical properties of the present invention may be secured by minimizing the transformation of polygonal ferrite into the slow cooling section. Can be.
  • the present invention is a conventional austempering by securing a needle-like microstructure at the time of secondary annealing by heating and maintaining a low-temperature tissue containing 0.6% or more of needle-like retained austenite in the Ac1 ⁇ Ac3 range, High yield strength and ductility can be secured compared to the physical properties obtained from Q & P process and general two-anneal heat treatment which does not secure residual austenite during the first annealing.
  • another aspect of the present invention is a method of manufacturing a high strength coated steel sheet excellent in yield strength and ductility further comprises the step of forming a plating layer on the surface of the cold rolled steel sheet after the second annealing step.
  • the forming of the plating layer may be performed by immersion in a hot dip galvanizing bath to form a hot dip galvanizing layer or alloying the formed hot dip galvanizing layer to form an alloyed hot dip galvanizing layer.
  • the aluminum-silicon plating layer or the zinc-magnesium-aluminum plating layer may be formed by immersion in the aluminum-silicon or zinc-magnesium-aluminum melting pot.
  • Ingots having a thickness of 90 mm and a width of 175 mm having the composition shown in Table 1 were prepared by vacuum melting, and then heated at 1200 ° C. for 1 hour to homogenize, followed by hot finish rolling at 900 ° C. or higher of Ar 3 or higher, and 630 ° C. After cooling to and loaded into a furnace preheated to 630 ° C. and maintained for 1 hour, hot rolling was simulated by furnace cooling. Thereafter, the hot rolled sheet was cold rolled at a cold reduction rate of 50 to 60%, and then subjected to annealing heat treatment under the conditions shown in Table 2 to produce a final cold rolled steel sheet, yield strength and tensile strength of each cold rolled steel sheet. The results of measuring the strength and the elongation are shown in Table 2 together.
  • Bs (Bainite transformation start temperature), Ms (Martensitic transformation start temperature), Ac1 (Austenite appearance temperature at elevated temperature), Ac3 (Austenitic single-phase heat treatment temperature at the end of the ferrite at elevated temperature)
  • Ms Martensitic transformation start temperature
  • Ac1 Austenite appearance temperature at elevated temperature
  • Ac3 Austenitic single-phase heat treatment temperature at the end of the ferrite at elevated temperature
  • Example 2 of Comparative Example 1 in which the microstructure is a cold rolled structure after primary annealing, final annealing (secondary annealing) is performed without cold annealing.
  • the other examples showed the microstructure obtained by performing the primary annealing in the austenitic single-phase zone and cooling.
  • the cooling temperature below Ms expressed in the column next to the final annealing temperature indicates the temperature cooled in the range of Ms to Mf during Q & P heat treatment
  • the reheating temperature indicates the heat treatment temperature elevated for secondary redistribution.
  • the embodiment in which the two temperatures are represented as none is an example in which the overaging treatment of the general annealing process is applied, not Q & P, and shows the heat treatment temperature in the heat expressed as the overaging temperature. Examples in which the Q & P heat treatment was performed are distinguished from each other by marking none in the heat of the overaging temperature.
  • Comparative Example 2 (Fig. 1 (a) 1) was cooled to room temperature through water cooling (average cooling rate 1000 °C / sec or more), and further cooled by using liquid nitrogen.
  • Comparative Example 3 (Fig. 1 (a) 2) was cooled to room temperature through water cooling (average cooling rate 1000 °C / sec or more).
  • Comparative Example 4 (FIG. 1 (a) 3) was cooled through Mist cooling (average cooling rate 180 °C / sec).
  • Inventive Example 1 (FIG. 1 (a) 4) was cooled to room temperature at a cooling rate of 25 ° C / sec.
  • Inventive Example 2 (Fig. 1 (a) 5) was cooled by applying austempering as shown in No. 5 of Fig. 1A.
  • Comparative Example 1 In order to confirm the yield strength improvement rate of Comparative Example 1, Comparative Examples 2 to 4 and Inventive Examples 1 to 2, which differed in cooling conditions after the first annealing, did not perform annealing twice with respect to Invention Steel 1, The yield strength improvement rate was measured based on the product of elongation and the product of tensile strength and elongation, the ratio of yield strength and tensile strength, and Comparative Example 1. In addition, the yield strength improvement rate after the second annealing according to the amount of acicular residual austenite after the first annealing is shown in a graph.
  • Comparative Examples 2 to 4 and Inventive Examples 1 to 2 both of which were subjected to annealing, improved yield strength, and the product of yield strength and elongation was also improved. As the fraction of austenite increases, the yield strength and the product of yield strength and elongation are more pronounced.
  • Inventive Example 3 using Inventive Steel 2 has a lower carbon strength than Invented Steel 1, but a low tensile strength, but still shows a high yield ratio.
  • Inventive Example 4 using Inventive Steel 3 had a low yield ratio due to the introduction of ferrite due to the addition of a large amount of Al.
  • TSxEl exhibited excellent properties of 20,000 MPa% or more by securing 1.3% of acicular retained austenite before the second annealing.
  • Comparative Example 6 using Comparative Steel 2 was difficult to secure the tensile strength criteria limited in the present invention because the amount of carbon added is very low, Comparative Example 7 using Comparative Steel 3 was excellent in strength due to the addition of a large amount of Mn, but the elongation is lowered This cursor TSxEl was less than 20,000 MPa%.
  • Comparative steel 1 has a similar component system except that invention steel 1 and Sb are not added.
  • Comparative Example 5 using Comparative Steel 1 there is almost no difference in physical properties from Inventive Example 2 using Inventive Steel 1, but as shown in FIG. 2, the internal oxidation depth after hot rolling is 12.3 ⁇ m, followed by pickling, cold rolling, and annealing. Surface cracks and dents occurred at the time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 전자제품용 소재와 자동차, 기차 및 배 등을 포함한 운송수단용 소재등의 경량화에 사용되는 고강도 강판에 관한 것으로서, 보다 상세하게는 내부산화 깊이 및 1차 소둔 후 잔류 오스테나이트 양을 제어함으로써 항복강도 및 연성이 향상되고, 생산시 덴트 결함의 발생 없이 안정적으로 생산 및 제공할 수 있는 고강도 냉연강판, 도금강판 및 이들의 제조방법에 관한 것이다.

Description

항복강도와 연성이 우수한 고강도 냉연강판, 도금강판 및 이들의 제조방법
본 발명은 전자제품용 소재와 자동차, 기차 및 배 등을 포함한 운송수단용 소재로 바람직하게 사용될 수 있는 항복강도와 연성이 우수한 고강도 냉연강판, 도금강판 및 이들의 제조방법에 관한 것이다.
전자제품용 소재와 자동차, 기차 및 배 등을 포함한 운송수단용 소재의 경량화를 위하여 강판의 두께를 낮추기 위해서는 강재의 강도를 높이는 것이 필요한데, 일반적으로는 강도를 높임에 따라 연성이 저하되는 단점이 있다. 이를 극복하기 위하여 강도와 연성 간의 관계를 개선하기 위한 연구가 많이 이루어졌으며, 그 결과 저온조직인 마르텐사이트, 베이나이트와 더불어 잔류 오스테나이트 상을 활용하는 변태조직강이 개발되어 적용되고 있는 실정이다.
변태조직강은 소위 DP(Dual Phase)강, TRIP(Transformation Induced Plasticity)강, CP(Complex Phase)강 등으로 구별되며, 이들 각각의 강은 모상과 제2상의 종류 및 분율에 따라 기계적 성질 즉, 인장강도 및 연신율의 수준이 달라지게 되며, 특히 잔류 오스테나이트를 함유하는 TRIP강의 경우에는 인장강도와 연신율의 밸런스(TS×El)가 가장 높은 값을 나타낸다.
상기와 같은 변태조직강 중 CP강은 다른 강들에 비해 연신율이 낮아 롤 포밍 등의 단순 가공에 국한되어 사용되고, 고연성의 DP강과 TRIP강은 냉간 프레스 성형 등에 적용된다.
특허문헌 1에서는 2회 소둔을 이용하여 가공성이 우수한 고강도 강판을 제조하는 방법을 제시하고 있는데, 1차 소둔시에 오스테나이트 단상으로 가열한 후에 Ms점 이상 Bs점 이하의 온도까지 20℃/초 이상의 평균 냉각속도로 냉각하는 공정을 실시하고, 2차 소둔시에는 2상역 소둔을 실시함에 의하여 최종조직에서 소려 베이나이트를 50% 이상 함유하고 잔류 오스테나이트를 3~30% 수준을 확보하는 방안을 제시하고 있다.
특허문헌 2에서는 특허문헌 1과 공정이 동일하나 1차 소둔시에 오스테나이트 단상으로 가열한 후에 Ms점 이하의 온도까지 20℃/초 이상의 평균 냉각속도로 냉각하는 공정을 실시하고, 2차 소둔시에는 2상역 소둔을 실시함에 의하여 최종조직에서 소려 마르텐사이트를 50% 이상 함유하고 잔류 오스테나이트를 3~20% 수준을 확보하는 방안을 제시하고 있다.
특허문헌 1 및 2는 신장플랜지성과 연성을 동시에 향상시키는 장점이 있으나, 2회 소둔을 실시함에 의한 공정비용이 추가되는 단점과 Si과 Mn이 다량 함유된 강을 1차 소둔시 고온소둔을 실시함에 의하여 소둔로내 덴트를 유발하여 동종의 소재를 연속작업하는 것이 불가능한 단점이 있다. 또한, 1차 소둔시에 오스테나이트 열처리후에 20℃/초 이상의 빠른 평균 냉각속도로 냉각함에 의하여 프레스 성형용 소재에서 중요한 형상이 불량해지는 단점이 있다.
상술한 변태조직강들 외에도, 강 중 C 및 Mn을 다량 첨가하여 강의 미세조직을 오스테나이트 단상으로 얻는 TWIP(Twinning Induced Plasticity)강이 있다.
특허문헌 3에 개시된 TWIP 강의 경우 인장강도와 연신율의 밸런스(TS×El)가 50,000MPa% 이상으로, 매우 우수한 재질 특성을 보인다. 그런데, 이와 같은 TWIP강을 제조하기 위하여, C의 함량이 0.4중량%인 경우에는 Mn의 함량이 약 25중량% 이상이 요구되고, C의 함량이 0.6중량%인 경우에는 Mn의 함량이 약 20중량% 이상이 요구되는데, 이를 만족하지 못하면 모상 중에 쌍정(twinning)현상을 일으키는 오스테나이트 상이 안정적으로 확보되지 않고, 가공성에 극히 해로운 HCP구조의 입실론 마르텐사이트(ε)와 BCT구조의 마르텐사이트(α')가 형성되기 때문에 상온에서 안정적으로 오스테나이트가 존재할 수 있도록 다량의 오스테나이트 안정화 원소를 첨가하여야 한다. 이와 같이, 합금성분이 다량 첨가되는 TWIP강은 합금성분으로부터 기인하는 문제점으로 인해 주조, 압연 등의 공정이 매우 어려울 뿐만 아니라, 경제적으로도 제조원가가 크게 상승하는 문제점이 있다.
이에, 최근에는 상기 변태조직강인 DP, TRIP강보다는 연성이 높고, TWIP강에 비하여는 연성이 낮으나 제조원가가 낮은 소위 3세대강 혹은 X-AHSS(eXtra Advanced High Strength Steel)의 개발이 이루어지고 있으나, 현재까지 큰 성과를 이루지 못하고 있다.
일 예로, 특허문헌 4에는 잔류 오스테나이트와 마르텐사이트로 주요 조직을 구성시키는 방법(Quenching and Partitioning Process, Q&P)이 개시되어 있는데, 이를 활용한 보고(비특허문헌 1)에서 보여지는 바와 같이, 탄소가 0.2% 수준으로 낮은 경우에는 항복강도가 400MPa 내외로 낮은 단점이 있으며, 또한 최종 제품에서 얻어지는 연신율이 기존 TRIP강과 유사한 수준만을 얻게 된다. 그리고 탄소와 망간의 합금량을 증가시켜서 항복강도를 대폭 높이는 방법도 도출되었으나, 이러한 경우에는 과도한 합금성분의 첨가로 용접성이 열위한 단점이 있다.
상기 Q&P 열처리에 의한 제품의 문제를 해결하기 위하여 특허문헌 5 에서는 2회 소둔 프로세스 Q&P 열처리 전의 미세조직을 제어함에 의하여 최종물성을 개선하는 방안을 제안하기도 하였다. 그러나 Si과 Mn이 다량 함유된 강을 1차 소둔시 고온소둔을 실시함에 의하여 소둔로내 덴트를 유발할 수 있는 문제점이 있었다.
(특허문헌 1) 특허문헌 1: 일본 공개특허공보 제2002-309334호
(특허문헌 2) 특허문헌 2: 일본 공개특허공보 제2002-302734호
(특허문헌 3) 특허문헌 3: 한국 공개특허공보 제1994-0002370호
(특허문헌 4) 특허문헌 4: 미국 공개특허공보 제2006-0011274호
(특허문헌 5) 특허문헌 5: 한국 공개특허공보 제2015-0130612호
(비특허문헌 1) 비특허문헌 1: ISIJ International, Vol.51, 2011, p.137-144
본 발명의 일 측면은, TWIP강 대비 적은 합금원가를 구현하고, 자동차 구조부재용 소재에서 필요한 높은 항복강도와 연성을 확보하고, 또한 조업시에 소둔로내 덴트를 유발하지 않고 형상품질이 양호한 고강도 냉연강판, 도금강판 및 이들의 제조방법을 제공하고자 하기 위함이다.
본 발명의 일 측면은, 중량%로, 탄소(C): 0.1~0.3%, 실리콘(Si): 0.1~2.0%, 알루미늄(Al): 0.005~1.5%, 망간(Mn): 1.5~3.0%, 인(P): 0.04% 이하(0%는 제외), 황(S): 0.015% 이하(0%는 제외), 질소(N): 0.02% 이하(0%는 제외), 안티몬(Sb): 0.01~0.1%, 나머지 Fe 및 불가피한 불순물을 포함하며, 상기 Si 및 Al의 합(Si+Al, 중량%)은 1~3.5%를 만족하고,
미세조직은 면적분율로 단축과 장축의 비가 0.4를 초과하는 폴리고널 페라이트가 5% 이하, 단축과 장축의 비가 0.4 이하인 침상 페라이트의 분율이 70% 이하, 침상의 잔류 오스테나이트가 0.6~25% 및 나머지 마르텐사이트를 포함하고,
내부산화 깊이가 표면으로부터 1㎛ 이하인 항복강도와 연성이 우수한 고강도 냉연강판에 관한 것이다.
본 발명의 다른 일 측면은 상기 냉연강판의 표면에 용융아연도금층, 합금화 용융아연도금층, 알루미늄-실리콘 도금층 및 아연-마그네슘-알루미늄 도금층 중 하나가 형성되어 있는 항복강도와 연성이 우수한 고강도 도금강판에 관한 것이다.
본 발명의 또 다른 일 측면은 상술한 합금조성을 만족하는 강 슬라브를 1000~1300℃로 가열하는 단계;
상기 가열된 강 슬라브를 800~950℃에서 열간 마무리 압연하여 열연강판을 제조하는 단계;
상기 열연강판을 750℃ 이하에서 권취하는 단계;
상기 권취된 열연강판을 냉간압연하여 냉연강판을 제조하는 단계;
상기 냉연강판을 Ac3 이상의 온도로 소둔 및 25℃/초 이하의 평균 냉각속도로 냉각하는 1차 소둔 단계; 및
상기 1차 소둔 후 Ac1~Ac3범위의 온도로 가열 및 유지한 후, 500℃ 이하의 온도까지 20℃/초 미만의 평균 냉각속도로 냉각하여 1초 이상 유지한 후 냉각하는 2차 소둔 단계를 포함하는 항복강도와 연성이 우수한 고강도 냉연강판의 제조방법에 관한 것이다.
본 발명의 또 다른 일 측면은 상기 2차 소둔 단계 후 냉연강판의 표면에 용융아연도금층, 합금화 용융아연도금층, 알루미늄-실리콘 도금층 및 아연-마그네슘-알루미늄 도금층 중 하나를 형성하는 단계를 추가로 포함하는 항복강도와 연성이 우수한 고강도 도금강판의 제조방법에 관한 것이다.
본 발명에 의하면, 기존의 DP강 또는 TRIP강과 같은 고연성 변태조직강 및 Q&P 열처리를 거친 Q&P강에 비하여, 항복강도와 연성이 우수한 인장강도 780MPa 이상의 고강도 냉연강판, 도금강판 및 그 제조방법을 제공할 수 있으며, 또한 생산시 덴트 결함의 발생 없이 안정적으로 생산 및 제공할 수 있다.
또한, 본 발명의 초고강도 강판은 전자제품용 소재와 자동차, 기차 및 배 등을 포함한 운송수단용 소재 등의 경량화에 활용될 가능성이 높다.
도 1은 본 발명에 따른 소둔공정의 일 예를 나타낸 것으로, (a)1차 소둔 공정 및 (b)2차 소둔 공정을 나타낸 것이다.
도 2는 (a)발명예 2와 (b)비교예 5의 열간압연 후 내부산화 깊이 및 형성을 관찰한 것이다.
도 3은 비교예 1~4 및 발명예 1~2의 1차 소둔 후 잔류 오스테나이트 양에 따른 항복강도 개선율을 나타낸 그래프이다.
본 발명자들은 2회 소둔 프로세스에서 2차 소둔 전에 수행되는 1차 소둔에 의하여 얻어지는 상(phase)의 구성이 최종 물성에 미치는 영향을 깊이 연구한 결과, 기존과 달리 1차 소둔시 잔류 오스테나이트를 적정하게 형성시킴으로써 최종 제품의 항복강도 및 연성을 개선할 수 있음을 알아내었다.
또한, Si, Mn, Al을 다량 첨가하는 소재를 소둔하는 경우에 주로 발생하는 소둔로내 덴트 결함을 억제하기 위하여 Sb를 첨가함으로써 내부산화 깊이를 최소화하고, 1차 소둔에 해당하는 오스테나이트 단상 소둔의 고온 열처리에 기인한 Si, Mn, Al의 표면 농화층에 의하여 유발되는 덴트 결함을 억제할 수 있음을 알아내고 본 발명을 완성하기에 이르렀다.
이하, 본 발명의 일 측면인 항복강도와 연성이 우수한 고강도 냉연강판에 대하여 상세히 설명한다.
본 발명의 일 측면인 항복강도와 연성이 우수한 고강도 냉연강판은 중량%로, 탄소(C): 0.1~0.3%, 실리콘(Si): 0.1~2.0%, 알루미늄(Al): 0.005~1.5%, 망간(Mn): 1.5~3.0%, 인(P): 0.04% 이하(0%는 제외), 황(S): 0.015% 이하(0%는 제외), 질소(N): 0.02% 이하(0%는 제외), 안티몬(Sb): 0.01~0.1%, 나머지 Fe 및 불가피한 불순물을 포함하며, 상기 Si 및 Al의 합(Si+Al, 중량%)은 1~3.5%를 만족하고, 미세조직은 면적분율로 단축과 장축의 비가 0.4를 초과하는 폴리고널 페라이트가 5% 이하, 단축과 장축의 비가 0.4 이하인 침상 페라이트의 분율이 70% 이하, 잔류 오스테나이트가 0.6~25% 및 나머지 마르텐사이트를 포함하고, 내부산화 깊이가 표면으로부터 1㎛ 이하이다.
우선, 합금 성분조성을 상기와 같이 제한하는 이유에 대하여 상세히 설명한다. 이하 각 성분의 함량은 특별한 언급이 없는 한 중량%를 의미한다.
C: 0.1~0.3%
탄소(C)는 강을 강화시키는데 유효한 원소로서, 본 발명에서는 잔류 오스테나이트의 안정화 및 강도 확보를 위해서 첨가되는 중요 원소이다. 상술한 효과를 얻기 위해서는 0.1% 이상으로 첨가되는 것이 바람직하지만, 그 함량이 0.3%를 초과하게 되면 주편 결함이 발생할 위험성이 증가할 뿐만 아니라, 용접성도 크게 저하되는 문제가 있다. 따라서, 본 발명에서 C의 함량은 0.1~0.3%로 제한하는 것이 바람직하다.
Si: 0.1~2.0%
실리콘(Si)은 페라이트 내에서 탄화물의 석출을 억제하고, 페라이트 내 탄소가 오스테나이트로 확산하는 것을 조장하여, 결과적으로 잔류 오스테나이트의 안정화에 기여하는 원소이다. 상술한 효과를 얻기 위해서는 0.1% 이상으로 첨가되는 것이 바람직하지만, 그 함량이 2.0%를 초과하는 경우에는 열간 및 냉간압연성이 매우 열위하며, 강 표면에 산화물을 형성하여 도금성을 저해하는 문제가 있다. 따라서, 본 발명에서 Si의 함량은 0.1~2.0%로 제한하는 것이 바람직하다.
Al: 0.005~1.5%
알루미늄(Al)은 강중 산소와 결합하여 탈산작용을 하는 원소로서, 이를 위해서는 그 함량이 0.005% 이상을 유지하는 것이 바람직하다. 또한, Al은 상기 Si과 같이 페라이트 내에서 탄화물의 생성 억제를 통해 잔류 오스테나이트의 안정화에 기여한다. 이러한 Al의 함량이 1.5%를 초과하게 되면 주조시 몰드 플러스와의 반응을 통해 건전한 슬라브 제조가 어려워지고, 역시 표면 산화물을 형성하여 도금성을 저해하는 문제가 있다. 따라서, 본 발명에서 Al의 함량은 0.005~1.5%로 제한하는 것이 바람직하다.
앞서 언급한 바와 같이, Si 및 Al 모두 잔류 오스테나이트 안정화에 기여하는 원소로서, 이를 효과적으로 달성하기 위해서는 Si과 Al의 함량의 합(Si+Al, 중량%)이 1.0~3.5%를 만족하는 것이 바람직하다.
Mn: 1.5~3.0%
망간(Mn)은 페라이트의 변태를 제어하면서, 잔류 오스테나이트의 형성 및 안정화시키는데 유효한 원소이다. 이러한 Mn의 함량이 1.5% 미만이면 페라이트 변태가 다량 발생하여 목표로 하는 강도의 확보가 어려워지는 문제가 있으며, 반면 3.0%를 초과하게 되면 2차 Q&P 열처리를 행할 경우, 상변태가 너무 지연되어 마르텐사이트가 다량 형성됨에 따라, 의도하는 연성의 확보가 어려워지는 문제가 있다. 따라서, 본 발명에서 Mn의 함량은 1.5~3.0%로 제한하는 것이 바람직하다.
Sb: 0.01~0.1%
안티몬(Sb)은 입계편석을 통한 Si, Al 등의 표면 농화 및 산화원소의 이동을 저해함에 의하여 열간압연 후 내부산화를 억제하는 효과가 있고, 동일한 이유로 소둔시 Si, Al 등의 표면 농화에 의한 산화를 억제하여 도금 표면품질을 향상시키는 효과가 있다. 하지만, 그 함량이 0.01% 미만인 경우에는 내부산화 억제의 효과가 충분하지 않아 최종 제품의 내부산화 깊이가 표면으로부터 1㎛를 초과할 수 있고, 그 함량이 0.1%를 초과하는 경우에는 아연도금층의 합금화가 지연되는 문제가 발생할 수 있다.
P: 0.04% 이하(0%는 제외)
인(P)은 고용강화 효과를 얻을 수 있으며 잔류 오스테나이트를 안정화시키는 원소이지만, 그 함량이 0.04%를 초과하게 되면 용접성이 저하되고 강의 취성(brittleness)이 발생할 위험성이 커지는 문제가 있다. 따라서, 본 발명에서는 P의 함량을 0.04% 이하, 보다 바람직하게는 0.02% 이하일 수 있다.
S: 0.015% 이하(0%는 제외)
황(S)은 강 중에 불가피하게 함유되는 불순물 원소로서, 그 함량을 최대한 억제하는 것이 바람직하다. 이론상 S의 함량은 0%로 제한하는 것이 유리하나, 제조공정상 필연적으로 함유될 수 밖에 없으므로, 상한을 관리하는 것이 중요하며, 그 함량이 0.015%를 초과하게 되면 강판의 연성 및 용접성을 저해할 가능성이 높다. 따라서, 본 발명에서는 0.015% 이하로 제한하는 것이 바람직하다.
N: 0.02% 이하(0는 제외)
질소(N)는 오스테나이트를 안정화시키는데 유효한 작용을 하는 원소이지만, 그 함량이 0.02%를 초과하게 되면 강의 취성이 발생할 위험성이 증가하게 되고, Al과 반응하여 AlN이 과다하게 석출됨에 따라 연주품질이 저하하는 문제가 있다. 따라서, 본 발명에서는 N의 함량을 0.02% 이하로 제한하는 것이 바람직하다.
이때, 본 발명의 냉연강판은 상술한 성분 이외에도, 강도 향상 등을 위하여 Ti, Nb, V, Zr 및 W 중 1종 이상을 추가로 포함할 수 있다.
Ti: 0.005~0.1%, Nb: 0.005~0.1%, V: 0.005~0.1%, Zr: 0.005~0.1% 및 W: 0.005~0.5% 중 1종 이상
티타늄(Ti), 니오븀(Nb), 바나듐(V), 지르코늄(Zr) 및 텅스텐(W)은 강판의 석출강화 및 결정립 미세화에 유효한 원소로서, 그 함량이 각각 0.005% 미만이면 상술한 효과를 확보하기 어려워지는 문제가 있다. 반면, 그 함량이 Ti, Nb, V 및 Zr의 경우 0.1%, W의 경우 0.5%를 초과하게 되면 상술한 효과가 포화되고, 제조비용이 크게 상승하는 문제가 있으며, 석출물이 과다하게 형성되어 오히려 연성이 크게 저하되는 문제가 있다.
또한, 본 발명의 냉연강판은 Mo, Ni, Cu 및 Cr 중 1종 이상을 추가로 포함할 수 있다.
Mo: 1% 이하(0은 제외), Ni: 1% 이하(0은 제외), Cu: 0.5% 이하(0은 제외) 및 Cr: 1% 이하(0은 제외) 중 1종 이상
몰리브덴(Mo), 니켈(Ni), 구리(Cu) 및 크롬(Cr)은 잔류 오스테나이트 안정화에 기여하는 원소로서, 이들 원소들은 C, Si, Mn, Al 등과 함께 복합작용하여 오스테나이트의 안정화에 기여한다. 이러한 원소들의 함량이 Mo, Ni 및 Cr의 경우 1.0%, Cu의 경우 0.5%를 초과하게 되면 제조비용이 과다하게 상승하게 되는 문제가 있으므로, 상기 함량을 초과하게 않도록 제어하는 것이 바람직하다.
또한, Cu를 첨가하는 경우 열연시 취성을 야기할 수 있으므로, 이때 Ni이 함께 첨가되는 것이 보다 바람직하다.
더불어, 본 발명의 냉연강판은 Ca, Bi 및 B 중 1종 이상을 추가로 포함할 수 있다.
Ca: 0.01% 이하(0%는 제외), Bi: 0.1% 이하(0%는 제외), B: 0.01% 이하(0%는 제외)
칼슘(Ca)은 황화물의 형태를 제어하여 가공성 향상에 유리한 원소로서, 그 함량이 0.01%를 초과하게 되면 상술한 효과가 포화되므로, 0.01% 이하로 포함하는 것이 바람직하다.
비스무스(Bi)은 입계편석을 통한 Si, Al 등의 표면 산화원소의 이동을 저해하여 도금표면품질을 향상시키는 효과가 있는 원소로서, 그 함량이 0.1%를 초과하게 되면 상술한 효과가 포화되므로, 0.1% 이하로 포함되는 것이 바람직하다.
보론(B)은 Mn, Cr 등과의 복합효과로 소입성을 향상시켜 고온에서 연질 페라이트 변태를 억제하는 효과가 있으나, 그 함량이 0.01%를 초과하게 되면 도금시 강 표면에 과다한 B이 농화되어 도금 밀착성의 열화를 초래할 수 있으므로, 그 함량을 0.01% 이하로 포함하는 것이 바람직하다.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 철강제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 철강제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
상술한 성분조성을 만족하는 본 발명의 냉연강판은 미세조직으로 면적분율로 단축과 장축의 비가 0.4를 초과하는 폴리고널 페라이트가 5% 이하, 단축과 장축의 비가 0.4 이하인 침상형 페라이트가 70% 이하, 잔류 오스테나이트가 0.6~25% 및 나머지 마르텐사이트를 포함한다.
상기 단축과 장축의 비가 0.4를 초과하는 폴리고널 페라이트는 구조부재 등에 적용되는 본 발명강의 항복강도를 낮추는 역할을 하므로 5% 이하로 제한하였으며, 단축과 장축의 비가 0.4 이하인 침상형 페라이트와 잔류 오스테나이트는 본 발명의 주 조직으로 강도 및 연성의 확보에 유리한 조직이다.
상기 잔류 오스테나이트는 강도 및 연성의 밸런스를 유리하게 확보하기 위한 필수조직이나 그 분율이 너무 과다하여 25%(상한값)를 초과하게 되면 탄소가 분산되어 확산되기 때문에 잔류 오스테나이트의 안정화가 충분해지지 못하는 문제가 있다. 따라서, 본 발명에서 잔류 오스테나이트의 분율은 25% 이하를 만족하는 것이 바람직하다. 한편, 하한은 본 발명에서 1차 소둔 후에 바람직하게 확보되어야 하는 잔류 오스테나이트 분율인 0.6% 이상에 근거한다.
또한, 본 발명의 강판은 상기 미세조직의 특징과 함께 내부산화 깊이가 표면으로부터 1㎛ 이하인 것이 바람직하다.
본 발명에서는 Sb이 기본적으로 0.01~0.1% 포함되는 것이 필수인데, 상기 원소는 열간 마무리 압연후 냉각 및 권취시에 Mn, Si, Al 등의 표면 농화원소들과 강내로 확산하는 산소의 결합에 의한 내부산화를 Sb의 표면 농화를 통하여 억제하는 효과가 있다(도 2). 열간압연 후 형성된 내부산화 층은 후속되는 산세 및 냉간압연의 공정을 거치면서 내부산화 층의 균열이 발생할 수 있고 이는 후속 소둔작업시 소둔로 내 롤에 탈락 및 부착 등으로 강판에 덴트 결함을 유발한다. 이러한 덴트 결함은 해당 제품 코일을 포함하여 후속 작업되는 소둔 코일들의 표면 품질을 열위하게 하여 정상적인 제품 생산을 어렵게 한다. 최종 냉연강판의 내부산화 깊이가 1㎛ 초과인 경우에는 상기 문제점들이 발생할 수 있다.
한편, 내부산화가 일어나지 않을수록 덴트 결함을 억제하는 것에 유리하므로 특별히 내부산화 깊이의 하한은 한정하지 않으며, 0을 포함한다.
상기 서술한 합금조성 및 미세조직을 만족하는 본 발명의 냉연강판은 인장강도가 780MPa 이상이고 항복강도와 연성이 우수하며, 소둔 조업시 덴트결함이 억제되어 우수한 생산성을 확보할 수 있다.
한편, 본 발명에 따른 냉연강판은 후술하는 제조공정을 통해 제조되며, 이때 1차 소둔 공정 후의 미세조직 즉, 2차 소둔 공정 이전의 미세조직은 0.6% 이상의 침상형 잔류 오스테나이트를 함유하여야 하며, 나머지는 베이나이트, 마르텐사이트 및 템퍼드 마르텐사이트 중 하나 이상으로 이루어지는 것이 바람직하다.
이는, 최종 소둔 공정에서 제조되는 냉연강판의 우수한 항복강도 및 연성을 확보하기 위한 것으로써, 만일 1차 소둔 공정 후에 잔류 오스테나이트가 0.6% 미만으로 함유되는 경우에는 항복강도가 낮아지고 연신율이 저하되는 문제점이 있기 때문이다. 따라서 잔류 오스테나이트는 0.6% 이상인 것이 바람직하다. 1.5% 이상의 잔류 오스테나이트를 확보시에는 최종 소둔제품의 YSxEl(MPa%)이 16,000이상의 매우 우수한 물성을 나타내므로 1차 소둔 후에 1.5% 이상의 잔류 오스테나이트를 확보하는 것이 보다 바람직하다.
본 발명의 다른 일 측면인 항복강도와 연성이 우수한 고강도 도금강판은 상술한 본 발명의 냉연강판의 표면에 용융아연도금층, 합금화 용융아연도금층, 알루미늄-실리콘 도금층 및 아연-마그네슘-알루미늄 도금층 중 하나가 형성되어 있다.
이하, 본 발명의 또 다른 일 측면에 따른 항복강도와 연성이 우수한 고강도 냉연강판의 제조방법에 대하여 상세히 설명한다.
본 발명의 또 다른 일 측면에 따른 항복강도와 연성이 우수한 고강도 냉연강판의 제조방법은 상술한 합금조성을 만족하는 강 슬라브를 가열 - 열간압연 - 권취 - 냉간압연 - 소둔 공정을 거침으로써 제조될 수 있으며, 이하에서는 상기 각각의 공정의 조건에 대하여 상세히 설명한다.
강 슬라브 가열 단계
본 발명에서는 열간압연을 행하기에 앞서 강 슬라브를 가열하여 균질화 처리하는 공정을 거치는 것이 바람직하며, 이는 1000~1300℃의 온도범위에서 행하는 것이 보다 바람직하다.
상기 가열시 온도가 1000℃ 미만이면 압연하중이 급격히 증가하는 문제가 발생하며, 반면 그 온도가 1300℃를 초과하게 되면 에너지 비용이 증가할 뿐만 아니라, 표면 스케일의 양이 과다해지는 문제가 발생한다. 따라서, 본 발명에서 강 슬라브의 가열 공정을 1000~1300℃에서 실시하는 것이 바람직하다.
열간압연 단계
상기 가열된 강 슬라브를 열간압연하여 열연강판으로 제조하고, 이때 열간 마무리 압연은 800~950℃에서 실시하는 것이 바람직하다.
상기 열간 마무리 압연시 압연온도가 800℃ 미만이면 압연하중이 크게 증가하여 압연이 어려워지는 문제가 있으며, 반면 열간 마무리 압연온도가 950℃를 초과하게 되면 압연롤의 열피로가 크게 증가하여 수명단축의 원인이 되고 표면 산화막 생성에 따른 표면품질 열화의 원인이 된다. 따라서, 본 발명에서 열간압연시 열간 마무리 압연온도는 800~950℃로 제한하는 것이 바람직하다.
권취 단계
상기에 따라 제조된 열연강판을 권취하고, 이때 권취온도는 750℃ 이하인 것이 바람직하며, 내부산화층의 억제 등을 위해서는 650℃ 이하로 권취하는 것이 보다 바람직하다.
권취시 권취온도가 너무 높으면 열연강판 표면에 스케일이 과다하게 발생하여 표면결함을 유발하고, 도금성을 열화시키는 원인이 된다. 또한, 본 발명과 같이 Mn, Si, Al 등이 다량 함유된 강에서는 내부산화를 조장하여서 후속 소둔 공정에서 덴트 결함을 유발할 수 있다. 따라서, 권취공정은 750℃ 이하, 보다 바람직하게는 650℃ 이하에서 실시하는 것이 좋다. 이때, 권취온도의 하한은 특별히 한정하지 아니하나, 마르텐사이트의 생성에 의한 열연판 강도가 너무 높아짐에 따른 후속 냉간압연의 어려움을 고려하여 Ms ~ 750℃에서 실시하는 것이 보다 바람직하다.
그러나, 상기 열연조건을 벗어나서 생산하는 것이 최종제품의 물성을 크게 변화시키는 것은 아니며, 생산성에 영향을 미친다.
냉간압연 단계
상기 권취된 열연강판을 산세처리하여 산화층을 제거한 다음, 강판의 형상과 두께를 맞추기 위해 냉간압연을 실시하여 냉연강판을 제조하는 것이 바람직하다. 통상적인 일반적 소둔을 거치는 경우에는 재결정시 조대 결정립의 형성을 방지하기 위하여 냉간압하율의 하한을 설정하는 것이 일반적이나, 본 발명과 같이 최종 소둔전에 1차 소둔을 거치는 경우에는 상기 문제점의 발생이 없으므로 냉간압연시 압하율의 제한은 없다.
소둔 단계(1차 소둔 단계 및 2차 소둔 단계)
본 발명은 최종 미세조직으로 면적분율로 단축과 장축의 비가 0.4를 초과하는 폴리고널 페라이트가 5% 이하, 단축과 장축의 비가 0.4 이하인 침상형 페라이트가 70% 이하, 잔류 오스테나이트가 0.6~25% 및 나머지 마르텐사이트를 포함하고, 내부산화 깊이가 표면으로부터 1㎛ 이하인 냉연강판을 제조하기 위한 것으로써, 이와 같은 냉연강판을 얻기 위해서는 후속하는 소둔 공정의 제어가 중요하다.
특히, 본 발명에서는 소둔시 탄소, 망간 등의 원소들의 재분배(partitioning)를 통하여 목적하는 미세조직을 확보하기 위하여, 냉간압연 후 오스템퍼링(Austempering) 혹은 Q&P 열처리를 포함하는 통상의 소둔 열처리를 실시하여 최종 제품을 생산하는 것이 아니라, 후술하는 바와 같이 1차 소둔 후에 반드시 0.6% 이상의 침상형 잔류 오스테나이트를 함유하는 저온조직을 확보하고, 이어서 2차 소둔시 Ac1~Ac3 범위의 온도로 가열 및 유지한 다음, 500℃ 이하의 온도로 초당 20℃ 미만의 평균 냉각속도로 냉각하여 1초 이상 유지한 후 냉각하는 것을 특징으로 한다.
상기 1차 소둔 후에 확보되는 잔류 오스테나이트의 양이 많을수록 항복강도와 연성이 증가하며, 1차 소둔 후에 1.5% 이상의 잔류 오스테나이트를 확보시에는 최종 소둔제품의 YSxEl(MPa%)이 16,000 이상인 매우 우수한 물성을 나타내므로 1차 소둔 후에 1.5% 이상의 잔류 오스테나이트를 확보하는 것이 보다 바람직하다.
1차 소둔
먼저, 상기 제조된 냉연강판을 Ac3 이상의 온도로 소둔 및 25℃/초 이하의 평균 냉각속도로 냉각하는 1차 소둔 열처리를 행하는 것이 바람직하다 (도 1의 (a) 참조).
상기 냉각속도를 한정한 것은 잔류 오스테나이트를 0.6%이상으로 확보하기 위함이며, 25℃/초 이하로 냉각시에는 동적 재분배(Dynamic partitioning)에 의하여 잔류 오스테나이트를 보다 안정적으로 확보하는 것이 가능하여 0.6% 이상의 잔류 오스테나이트를 확보할 수 있다. 동적 재분배(Dynamic partitioning)란 고온에서 냉각하는 도중에 합금원소가 상간에 재분배되는 것을 의미한다.
도 1의 (a)에서 5번 열처리는 통상의 austempering 열처리를 나타내는데, 평균 냉각속도가 매우 느린 조건을 나타낸다.
1차 소둔 열처리된 냉연강판의 미세조직은 0.6% 이상의 잔류 오스테나이트를 함유하여야 하며, 연질의 폴리고널 페라이트의 형성은 후속 소둔 열처리시에 미세한 최종소둔 조직을 얻는 것을 저해하므로 최소한으로 억제되는 것이 바람직하고 나머지는 저온 미세조직인 베이나이트 혹은 마르텐사이트, 템퍼드 마르텐사이트 가운데 어느 조직으로 확보되어도 상관없다.
다만, 본 발명에서 최종 소둔후 폴리고널 페라이트를 5% 이하로 확보하기 위해서는 도 1 (a)에 나타낸 페라이트 역을 냉각시에 거의 거치지 않는 것이 중요하다.
따라서, austempering열처리, Q&P열처리의 1-step 및 2-step 열처리 중 어느 하나의 열처리를 행할 경우, 도 1의 (a)에서 5번에 나타낸 바와 같이, 초기 냉각속도를 느리게 제어한 후 급냉하는 형태로 냉각하며, 평균 냉각속도를 25℃/초 이하로 제어하여, 페라이트 역을 거치지 않게 냉각함과 동시에 잔류 오스테나이트를 확보한다.
상기의 열처리 조건은 최종 소둔 공정에서 austempering 혹은 Q&P공정을 거쳐 제조되는 냉연강판의 우수한 항복강도 및 연성을 확보하기 위한 것으로써, 만일 1차 소둔 공정 후에 침상형 잔류 오스테나이트가 0.6% 미만으로 함유되는 경우에는 항복강도가 낮아지고 연신율이 저하되는 단점이 있기 때문이다.
2차 소둔
상기 1차 소둔 후 Ac1~Ac3범위의 온도로 가열 및 유지한 후, 500℃ 이하의 온도까지 20℃/초 미만의 평균 냉각속도로 냉각하여 1초 이상 유지한 후 냉각하는 2차 소둔 단계를 행하는 것이 바람직하다. 상기 500℃ 이하의 온도로 냉각 후에는 일반적인 austempering 혹은 Q&P 열처리를 행할 수 있다(도1의 (b)).
본 발명에서 Ac1~Ac3의 범위로 가열하는 것은 소둔시 오스테나이트로의 합금원소의 분배를 통하여 오스테나이트의 안정성을 확보하여, 상온에서의 최종 조직에서 잔류 오스테나이트를 확보하기 위한 것으로서, 가열 후 그 온도에서 유지하는 것으로부터 1차 소둔 열처리 후 형성된 침상형 잔류 오스테나이트에 의한 침상형 조직의 확보가 용이해진다.
이러한 침상형 잔류 오스테나이트의 존재에 의하여 역변태가 이루어지는 2차 소둔 후에도 미세한 조직의 확보가 용이한 것으로 판단된다.
상기의 2상역 소둔 후에 냉각 온도는 500℃ 이하로 하는 것이 바람직하며 이는 500℃ 초과에서 장시간 유지시 오스테나이트 상이 펄라이트로 변태가 일어나서 잔류 오스테나이트의 확보가 원활하지 않기 때문이다. 따라서, 장시간 유지시는 500℃ 이하의 온도까지 가열하는 것이 바람직하며, 용융합금화 열처리시에는 불가피하게 500℃ 이상으로 온도를 높여야 하나 1분 이내의 용융합금화 열처리는 본 발명강의 물성을 크게 열화시키지는 않는다.
이때, 소둔후 냉각시에 강판의 사행 등을 억제하기 위하여 소둔 직후 서냉각 구간을 통과시킬 수 있으나, 서냉각 구간에서 폴리고널 페라이트로의 변태를 최대한 억제하여야 본 발명강의 미세조직 및 물성을 확보할 수 있다.
이와 같이, 본 발명은 침상형 잔류 오스테나이트를 0.6% 이상 함유한 저온조직을 Ac1~Ac3 범위에서 가열 및 유지를 통해 침상형 미세조직을 2차 소둔시에 확보함으로써 통상의 오스템퍼링(Austempering), Q&P 프로세스와 1차 소둔시 잔류 오스테나이트를 확보하지 않는 일반적인 2회 소둔 열처리에서 얻어지는 물성대비 높은 항복강도와 연성을 확보할 수 있게 된다.
한편, 본 발명의 또 다른 일 측면인 항복강도와 연성이 우수한 고강도 도금강판의 제조방법은 상기 2차 소둔 단계 후 냉연강판의 표면에 도금층을 형성하는 단계를 추가로 포함한다.
상기 도금층을 형성하는 단계는 용융아연도금욕에 침지하여 용융아연도금층을 형성하거나, 상기 형성된 용융아연도금층을 합금화처리하여 합금화 용융아연도금층을 형성시킬 수 있다. 또한, 알루미늄-실리콘 또는 아연-마그네슘-알루미늄 용융포트에 침지하여 알루미늄-실리콘 도금층 또는 아연-마그네슘-알루미늄 도금층을 형성시킬 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
진공용해를 통하여 표 1에 나타낸 성분조성을 갖는 두께 90mm, 폭 175mm의 잉곳을 제조한 다음, 이를 1200℃에서 1시간 동안 가열하여 균질화 처리한 후 Ar3 이상인 900℃ 이상에서 열간 마무리 압연을 하고 630℃ 이상까지 냉각한 후 630℃로 미리 가열된 로에 장입하여 1시간 유지한 후 로냉함에 의하여 열간압연을 모사하였다. 이후, 상기 열간압연된 판재를 50~60%의 냉간압하율로 냉간압연한 후, 하기 표 2의 조건으로 소둔 열처리를 행하여 최종 냉연강판을 제조하였으며, 상기 각각의 냉연강판에 대하여 항복강도, 인장강도 및 연신율을 측정한 결과를 표 2에 함께 나타내었다.
하기 표 1에서 각 원소 함량의 단위는 중량%이다.
또한, 하기 표 1에서 Bs(베이나이트 변태시작온도), Ms(마르텐사이트 변태시작온도), Ac1(승온시 오스테나이트 출현온도), Ac3(승온시 페라이트 완전소멸하여 오스테나이트 단상열처리 시작하는 온도)의 단위는 ℃이며, 하기 관계식을 이용하여 계산하였다. 하기 관계식에서 각 원소기호는 각 원소 함량을 중량%로 나타낸 값이다.
Bs = 830-270C-90Mn-37Ni-70Cr-83Mo
Ms = 539-423C-30.4Mn-12.1Cr-17.7Ni-7.5Mo
Ac1 = 723-10.7Mn-16.9Ni+29.1Si+16.9Cr+290As+6.38W
Ac3 = 910-203√C-15.2Ni+44.7Si+104V+31.5Mo+13.1W-30Mn-11Cr-20Cu+700P+400Al +120As+400Ti
구분 C Mn Si P S Al Ti Nb Sb N Bs Ms Ac1 Ac3
발명강1 0.22 2.17 1.47 0.006 0.002 0.03 - - 0.021 0.005 575 380 743 832
발명강2 0.15 2.2 1.49 0.012 0.004 0.03 - - 0.018 0.003 592 409 743 852
발명강3 0.18 2.56 1.44 0.011 0.004 0.42 0.02 0.023 0.051 0.004 551 385 738 995
비교강1 0.22 2.21 1.51 0.01 0.004 0.03 - - - 0.004 572 379 743 835
비교강2 0.08 1.74 1.42 0.011 0.004 0.03 - - 0.019 0.003 652 452 746 884
비교강3 0.27 4.83 1.57 0.012 0.003 0.03 - - 0.02 0.003 322 278 717 750
강종 구분 1차소둔후미세조직 내부산화 깊이(㎛) 2차소둔온도(℃) Ms이하 냉각온도(℃) 재가열온도(℃) 과시효온도(℃) 항복강도 (MPa) 인장강도 (MPa) 연신율(%)
발명강1 비교예1 냉연조직+잔류γ 0% 0 810 None none 420 412 1012 23
비교예2 마르텐사이트+잔류γ 0% 0 810 None none 420 521 1033 25
비교예3 마르텐사이트+잔류γ 0.08% 0 810 None none 420 537 1017 25
비교예4 마르텐사이트+잔류γ 0.54% 0 810 None none 420 572 999 27
발명예1 마르텐사이트+잔류γ 1.02% 0 810 None none 420 584 1010 27
발명예2 베이나이트+마르텐사이트+잔류γ 5.17% 0 810 None none 420 594 981 29
발명강2 발명예3 마르텐사이트+잔류γ 0.6% 0 810 250 440 none 580 842 27
발명강3 발명예4 마르텐사이트+잔류γ 1.3% 0 810 250 440 none 598 1150 18
비교강1 비교예5 베이나이트+마르텐사이트+잔류γ 4.51% 12.3 810 None none 420 588 983 28
비교강2 비교예6 마르텐사이트+잔류γ 0.6% 0 810 350 440 none 455 640 33
비교강3 비교예7 마르텐사이트+잔류γ 0.64% 0 730 150 440 none 1050 1215 13
상기 표 2에서 1차 소둔후 미세조직이 냉연조직인 비교예 1의 실시예는 냉간압연 후에 1차 소둔를 하지 않고 최종 소둔(2차 소둔)을 실시한 것이다. 이외의 실시예는 1차 소둔을 오스테나이트 단상역에서 실시하고 냉각하여서 확보한 미세조직을 나타내었다. 또한, 상기 표 2에서 최종 소둔온도의 옆 열에 표현된 Ms이하 냉각온도는 Q&P 열처리시의 Ms~Mf범위로 냉각한 온도를 나타내고, 재가열온도는 2차 재분배를 위하여 승온한 열처리 온도를 나타낸다. 상기 두 온도가 none으로 표현된 실시예는 Q&P가 아닌 일반 소둔공정의 과시효 처리가 적용된 예로써, 과시효온도로 나타낸 열에 열처리 온도를 나타내었다. Q&P 열처리를 행한 실시예는 과시효 온도의 열에 none으로 표기하여 서로 구별하여 나타내었다.
1차 소둔후 확보되는 잔류 오스테나이트의 양이 최종소둔후 물성에 미치는 영향을 면밀히 검토하기 위하여 냉각조건을 달리하여 실험하였다.
비교예 2(도1 (a) ①)는 수냉(평균 냉각속도 1000℃/초 이상)을 통하여 상온까지 냉각하고, 추가적으로 액체질소를 이용하여 냉각하였다.
비교예 3(도 1(a) ②)는 수냉(평균 냉각속도 1000℃/초 이상)을 통하여 상온까지 냉각하였다.
비교예 4(도 1(a) ③)은 Mist cooling(평균 냉각속도 180℃/초)을 통하여 냉각하였다.
발명예 1(도 1(a) ④)는 25℃/초의 냉각속도로 상온까지 냉각하였다.
발명예 2(도 1(a) ⑤)는 도1a의 5번과 같이 austempering을 적용하여 냉각하였다.
발명예 3, 4 및 비교예 6~7은 25℃/초의 냉각속도로 상온까지 냉각하였고 비교예 5는 발명예 2와 마찬가지로 도 1a의 5번과 같은 austempering을 적용하여 냉각하였다.
발명강 1에 대하여 2회 소둔을 실시하지 않은 비교예 1, 1차 소둔 후 냉각조건을 달리한 비교예 2~4 및 발명예 1~2의 항복강도 개선율을 확인하기 위하여 하기 표 3에 항복강도와 연신율의 곱, 인장강도와 연신율의 곱, 항복강도와 인장강도의 비 및 비교예 1을 기준으로 항복강도 개선율을 측정하여 기재하였다. 또한, 도 4에 1차 소둔 후 침상형 잔류 오스테나이트 양에 따른 2차 소둔 후 항복강도 개선율을 그래프로 나타내었다.
구분 YSxEl(MPa%) TSxEl(MPa%) YS 개선율(%) YS/TS(%)
비교예1 9476 23276 - 41
비교예2 13030 25833 26.5 50
비교예3 13425 25425 30.3 53
비교예4 15444 26973 38.8 57
발명예1 15768 27270 41.7 58
발명예2 17226 28449 44.2 61
통상적인 냉연-소둔 열처리를 적용한 비교예 1에 비하여 2회 소둔을 적용한 비교예 2~4 및 발명예 1~2는 모두 항복강도가 향상되었고, 항복강도와 연신율의 곱도 모두 개선되었으며, 특히 잔류 오스테나이트의 분율이 높을수록 항복강도의 개선 및 항복강도와 연신율의 곱의 개선이 뚜렷한 것을 알 수 있다.
또한, 침상형 잔류 오스테나이트의 분율이 0.6% 이상인 경우에 해당하는 발명예 1~2는 침상형 잔류 오스테나이트가 0.6% 미만인 경우에 비하여 뚜렷하게 40%이상의 향상율을 나타내는 것을 표 3 및 도 4에서 확인할 수 있다. 특히 침상형 잔류 오스테나이트 양이 매우 높은 발명예 2의 경우에는 YSxEl, TSxEl등의 탁월한 개선이 이루어졌다.
발명강 2을 이용한 발명예 3은 탄소량이 발명강 1에 비하여 낮아서 인장강도가 낮으나 여전히 높은 항복비를 나타내고 있다.
발명강 3을 이용한 발명예 4는 다량 첨가된 Al으로 인한 페라이트 도입으로 항복비가 낮아졌으나, 2차 소둔전 침상형 잔류 오스테나이트를 1.3% 확보하여 TSxEl이 20,000MPa% 이상의 우수한 성질을 나타내었다.
비교강 2를 이용한 비교예 6은 탄소 첨가량이 매우 낮아서 본 발명에서 제한하는 인장강도 기준의 확보가 어려웠으며, 비교강 3을 이용한 비교예 7은 다량의 Mn첨가로 인하여 강도는 우수하였으나 연신율의 하락이 커서 TSxEl이 20,000MPa% 미만이었다.
비교강 1은 발명강 1과 Sb 첨가가 없는 것을 제외하면 유사한 성분계를 갖는다. 비교강 1을 이용한 비교예 5의 경우, 발명강 1을 이용한 발명예 2와 물성의 차이는 거의 없으나, 도 2에 나타낸 바와 같이 열연 후 내부 산화 깊이가 12.3㎛로 후속 공정인 산세, 냉연, 소둔시에 표층 균열 및 덴트가 발생하였다.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (12)

  1. 중량%로, 탄소(C): 0.1~0.3%, 실리콘(Si): 0.1~2.0%, 알루미늄(Al): 0.005~1.5%, 망간(Mn): 1.5~3.0%, 인(P): 0.04% 이하(0%는 제외), 황(S): 0.015% 이하(0%는 제외), 질소(N): 0.02% 이하(0%는 제외), 안티몬(Sb): 0.01~0.1%, 나머지 Fe 및 불가피한 불순물을 포함하며, 상기 Si 및 Al의 합(Si+Al, 중량%)은 1~3.5%를 만족하고,
    미세조직은 면적분율로 단축과 장축의 비가 0.4를 초과하는 폴리고널 페라이트가 5% 이하, 단축과 장축의 비가 0.4 이하인 침상형 페라이트가 70% 이하, 잔류 오스테나이트가 0.6~25% 및 나머지 마르텐사이트를 포함하고,
    내부산화 깊이가 표면으로부터 1㎛ 이하인 항복강도와 연성이 우수한 고강도 냉연강판.
  2. 제1항에 있어서,
    상기 냉연강판은 2차 소둔 단계 이전의 미세조직이 면적분율로 0.6% 이상의 침상형 잔류 오스테나이트, 나머지는 베이나이트, 마르텐사이트 및 템퍼드 마르텐사이트 중 1 이상으로 이루어지는 것을 특징으로 하는 항복강도와 연성이 우수한 고강도 냉연강판.
  3. 제1항에 있어서,
    상기 냉연강판은 티타늄(Ti): 0.005~0.1%, 니오븀(Nb): 0.005~0.1%, 바나듐(V): 0.005~0.1%, 지르코늄(Zr): 0.005~0.1% 및 텅스텐(W): 0.005~0.5%으로 이루어진 그룹에서 선택된 1종 이상을 추가로 포함하는 것을 특징으로 하는 항복강도와 연성이 우수한 고강도 냉연강판.
  4. 제1항에 있어서,
    상기 냉연강판은 몰리브덴(Mo): 1% 이하(0%는 제외), 니켈(Ni): 1% 이하(0%는 제외), 구리(Cu): 0.5% 이하(0%는 제외) 및 크롬(Cr): 1% 이하(0%는 제외)로 이루어진 그룹에서 선택된 1종 이상을 추가로 포함하는 것을 특징으로 하는 항복강도와 연성이 우수한 고강도 냉연강판.
  5. 제1항에 있어서,
    상기 냉연강판은 칼슘(Ca): 0.01% 이하(0%는 제외), Bi: 0.1% 이하(0%는 제외) 및 보론(B): 0.01% 이하(0%는 제외)로 이루어진 그룹에서 선택된 1종 이상을 추가로 포함하는 것을 특징으로 하는 항복강도와 연성이 우수한 고강도 냉연강판.
  6. 제1항에 있어서,
    상기 냉연강판의 인장강도는 780MPa 이상인 것을 특징으로 하는 항복강도와 연성이 우수한 고강도 냉연강판.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 냉연강판의 표면에 용융아연도금층, 합금화 용융아연도금층, 알루미늄-실리콘 도금층 및 아연-마그네슘-알루미늄 도금층 중 하나가 형성되어 있는 것을 특징으로 하는 항복강도와 연성이 우수한 고강도 도금강판.
  8. 중량%로, 탄소(C): 0.1~0.3%, 실리콘(Si): 0.1~2.0%, 알루미늄(Al): 0.005~1.5%, 망간(Mn): 1.5~3.0%, 인(P): 0.04% 이하(0%는 제외), 황(S): 0.015% 이하(0%는 제외), 질소(N): 0.02% 이하(0%는 제외), 안티몬(Sb): 0.01~0.1%, 잔부 Fe 및 불가피한 불순물을 포함하며, 상기 Si 및 Al의 합(Si+Al, 중량%)은 1~3.5%를 만족하는 강 슬라브를 1000~1300℃로 가열하는 단계;
    상기 가열된 강 슬라브를 800~950℃에서 열간 마무리 압연하여 열연강판을 제조하는 단계;
    상기 열연강판을 750℃ 이하에서 권취하는 단계;
    상기 권취된 열연강판을 냉간압연하여 냉연강판을 제조하는 단계;
    상기 냉연강판을 Ac3 이상의 온도로 소둔 및 25℃/초 이하의 평균 냉각속도로 냉각하는 1차 소둔 단계; 및
    상기 1차 소둔 후 Ac1~Ac3범위의 온도로 가열 및 유지한 후, 500℃ 이하의 온도까지 20℃/초 미만의 평균 냉각속도로 냉각하여 1초 이상 유지한 후 냉각하는 2차 소둔 단계를 포함하는 항복강도와 연성이 우수한 고강도 냉연강판의 제조방법.
  9. 제8항에 있어서,
    상기 강 슬라브는 티타늄(Ti): 0.005~0.1%, 니오븀(Nb): 0.005~0.1%, 바나듐(V): 0.005~0.1%, 지르코늄(Zr): 0.005~0.1% 및 텅스텐(W): 0.005~0.5%으로 이루어진 그룹에서 선택된 1종 이상을 추가로 포함하는 것을 특징으로 하는 항복강도와 연성이 우수한 고강도 냉연강판의 제조방법.
  10. 제9항에 있어서,
    상기 강 슬라브는 몰리브덴(Mo): 1% 이하(0%는 제외), 니켈(Ni): 1% 이하(0%는 제외), 구리(Cu): 0.5% 이하(0%는 제외) 및 크롬(Cr): 1% 이하(0%는 제외)로 이루어진 그룹에서 선택된 1종 이상을 추가로 포함하는 것을 특징으로 하는 항복강도와 연성이 우수한 고강도 냉연강판의 제조방법.
  11. 제 9항에 있어서,
    상기 강 슬라브는 칼슘(Ca): 0.01% 이하(0%는 제외), Bi: 0.1% 이하(0%는 제외) 및 보론(B): 0.01% 이하(0%는 제외)로 이루어진 그룹에서 선택된 1종 이상을 추가로 포함하는 것을 특징으로 하는 항복강도와 연성이 우수한 고강도 냉연강판의 제조방법.
  12. 청구항 8 내지 11 중 어느 한 항에 있어서,
    상기 2차 소둔 단계 후 냉연강판의 표면에 용융아연도금층, 합금화 용융아연도금층, 알루미늄-실리콘 도금층 및 아연-마그네슘-알루미늄 도금층 중 하나를 형성하는 단계를 추가로 포함하는 것을 특징으로 하는 항복강도와 연성이 우수한 고강도 도금강판의 제조방법.
PCT/KR2017/003351 2016-03-28 2017-03-28 항복강도와 연성이 우수한 고강도 냉연강판, 도금강판 및 이들의 제조방법 WO2017171366A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780020986.0A CN108884536A (zh) 2016-03-28 2017-03-28 屈服强度和延展性优异的高强度冷轧钢板、镀覆钢板及它们的制造方法
EP17775790.3A EP3438315A4 (en) 2016-03-28 2017-03-28 HIGH STRENGTH COLD LAMINATED STEEL SHEET HAVING EXCELLENT LIMIT OF ELASTICITY AND DUCTILITY, COATED STEEL PLATE AND METHOD FOR MANUFACTURING THE SAME
US16/079,722 US20190071745A1 (en) 2016-03-28 2017-03-28 High-strength cold rolled steel sheet with excellent yield strength and ductility, coated steel plate, and method for manufacturing same
JP2018550600A JP2019512608A (ja) 2016-03-28 2017-03-28 降伏強度と延性に優れた高強度冷延鋼板、めっき鋼板、及びこれらの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0036872 2016-03-28
KR1020160036872A KR101786318B1 (ko) 2016-03-28 2016-03-28 항복강도와 연성이 우수한 고강도 냉연강판, 도금강판 및 이들의 제조방법

Publications (1)

Publication Number Publication Date
WO2017171366A1 true WO2017171366A1 (ko) 2017-10-05

Family

ID=59966126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003351 WO2017171366A1 (ko) 2016-03-28 2017-03-28 항복강도와 연성이 우수한 고강도 냉연강판, 도금강판 및 이들의 제조방법

Country Status (6)

Country Link
US (1) US20190071745A1 (ko)
EP (1) EP3438315A4 (ko)
JP (1) JP2019512608A (ko)
KR (1) KR101786318B1 (ko)
CN (1) CN108884536A (ko)
WO (1) WO2017171366A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102077182B1 (ko) * 2017-12-26 2020-02-13 주식회사 포스코 인산염 처리성이 우수한 초고강도 도금 냉연강판 제조방법
KR102457019B1 (ko) * 2020-06-17 2022-10-21 주식회사 포스코 성형성이 우수한 고강도 강판 및 이의 제조방법
KR20230013272A (ko) * 2020-06-30 2023-01-26 제이에프이 스틸 가부시키가이샤 아연 도금 강판, 부재 및 그들의 제조 방법
CN112410668B (zh) * 2020-11-11 2021-09-14 鞍钢股份有限公司 一种780MPa级汽车结构用钢及生产方法
CN112458382B (zh) * 2020-11-11 2021-09-14 鞍钢股份有限公司 一种550MPa级汽车结构用钢及生产方法
KR20230081744A (ko) * 2021-11-29 2023-06-08 주식회사 포스코 연신율이 우수한 초고강도 냉연강판 및 이의 제조방법
WO2024127766A1 (ja) * 2022-12-16 2024-06-20 Jfeスチール株式会社 高強度鋼板、高強度めっき鋼板、及びそれらの製造方法、並びに部材
JP7493132B1 (ja) 2022-12-16 2024-05-31 Jfeスチール株式会社 高強度鋼板、高強度めっき鋼板、及びそれらの製造方法、並びに部材
CN117778905A (zh) * 2023-12-22 2024-03-29 武汉科技大学 一种高强度高塑性中锰钢及生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040091751A (ko) * 2002-03-18 2004-10-28 제이에프이 스틸 가부시키가이샤 연성 및 내피로특성에 우수한 고장력 용융 아연도금강판의제조방법
JP2008514820A (ja) * 2004-09-30 2008-05-08 ポスコ 形状凍結性に優れた高強度冷延鋼板及びその製造方法
KR20120110538A (ko) * 2011-03-29 2012-10-10 현대제철 주식회사 고강도 강판 및 그 제조 방법
KR20130027794A (ko) * 2011-09-08 2013-03-18 현대하이스코 주식회사 저항복비형 초고강도 냉연강판, 용융도금강판 및 그 제조 방법
KR20150130612A (ko) * 2014-05-13 2015-11-24 주식회사 포스코 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4188581B2 (ja) * 2001-01-31 2008-11-26 株式会社神戸製鋼所 加工性に優れた高強度鋼板およびその製造方法
KR100711358B1 (ko) * 2005-12-09 2007-04-27 주식회사 포스코 성형성, 소부경화성 및 도금특성이 우수한 고강도 냉연강판및 용융아연도금강판, 그리고 이들의 제조방법
KR100711475B1 (ko) * 2005-12-26 2007-04-24 주식회사 포스코 용융아연도금특성이 우수한 고 가공성 고강도 강판의제조방법
KR20080061853A (ko) * 2006-12-28 2008-07-03 주식회사 포스코 기계적 성질 및 표면 품질이 우수한 고강도 아연도금용 강판 및 그 제조방법
KR101008117B1 (ko) * 2008-05-19 2011-01-13 주식회사 포스코 표면특성이 우수한 고가공용 고강도 박강판 및용융아연도금강판과 그 제조방법
JP5457840B2 (ja) * 2010-01-07 2014-04-02 株式会社神戸製鋼所 伸びおよび伸びフランジ性に優れた高強度冷延鋼板
JP5786316B2 (ja) * 2010-01-22 2015-09-30 Jfeスチール株式会社 加工性および耐衝撃特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5765092B2 (ja) * 2010-07-15 2015-08-19 Jfeスチール株式会社 延性と穴広げ性に優れた高降伏比高強度溶融亜鉛めっき鋼板およびその製造方法
WO2012067379A2 (ko) * 2010-11-15 2012-05-24 (주)포스코 인장강도 590MPa급의 가공성 및 재질편차가 우수한 고강도 냉연/열연 DP강의 제조방법
WO2015177582A1 (fr) * 2014-05-20 2015-11-26 Arcelormittal Investigación Y Desarrollo Sl Tôle d'acier doublement recuite à hautes caractéristiques mécaniques de résistance et ductilité, procédé de fabrication et utilisation de telles tôles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040091751A (ko) * 2002-03-18 2004-10-28 제이에프이 스틸 가부시키가이샤 연성 및 내피로특성에 우수한 고장력 용융 아연도금강판의제조방법
JP2008514820A (ja) * 2004-09-30 2008-05-08 ポスコ 形状凍結性に優れた高強度冷延鋼板及びその製造方法
KR20120110538A (ko) * 2011-03-29 2012-10-10 현대제철 주식회사 고강도 강판 및 그 제조 방법
KR20130027794A (ko) * 2011-09-08 2013-03-18 현대하이스코 주식회사 저항복비형 초고강도 냉연강판, 용융도금강판 및 그 제조 방법
KR20150130612A (ko) * 2014-05-13 2015-11-24 주식회사 포스코 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3438315A4 *

Also Published As

Publication number Publication date
EP3438315A1 (en) 2019-02-06
CN108884536A (zh) 2018-11-23
JP2019512608A (ja) 2019-05-16
KR20170113858A (ko) 2017-10-13
KR101786318B1 (ko) 2017-10-18
US20190071745A1 (en) 2019-03-07
EP3438315A4 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
WO2015174605A1 (ko) 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2017171366A1 (ko) 항복강도와 연성이 우수한 고강도 냉연강판, 도금강판 및 이들의 제조방법
WO2017078278A1 (ko) 성형성 및 구멍확장성이 우수한 초고강도 강판 및 이의 제조방법
WO2017222189A1 (ko) 항복강도가 우수한 초고강도 고연성 강판 및 그 제조방법
WO2015099221A1 (ko) 고강도 저비중 강판 및 그 제조방법
WO2015023012A1 (ko) 초고강도 강판 및 그 제조방법
WO2019124693A1 (ko) 가공성이 우수한 고강도 강판 및 이의 제조방법
WO2018110867A1 (ko) 항복강도, 연성 및 구멍확장성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2018117501A1 (ko) 굽힘 가공성이 우수한 초고강도 강판 및 이의 제조방법
WO2016104881A1 (ko) 굽힘 특성이 우수한 hpf 성형부재 및 그 제조방법
WO2016098963A1 (ko) 구멍확장능이 우수한 용융아연도금강판, 합금화 용융아연도금강판 및 그 제조방법
WO2020050573A1 (ko) 항복강도비가 우수한 초고강도 고연성 강판 및 그 제조방법
WO2017105025A1 (ko) 화성처리성 및 굽힘가공성이 우수한 초고강도 강판 및 이의 제조방법
WO2017188654A1 (ko) 항복비가 우수한 초고강도 고연성 강판 및 이의 제조방법
WO2018080133A1 (ko) 구멍확장성 및 항복비가 우수한 초고강도 강판 및 그 제조방법
WO2018117470A1 (ko) 저온역 버링성이 우수한 고강도 강판 및 이의 제조방법
WO2018105904A1 (ko) 소부 경화성 및 상온 내시효성이 우수한 용융 아연계 도금강판 및 그 제조방법
WO2022139400A1 (ko) 점용접성 및 성형성이 우수한 초고장력 냉연강판, 초고장력 도금강판 및 그 제조방법
WO2021112488A1 (ko) 내구성이 우수한 후물 복합조직강 및 그 제조방법
WO2018117466A1 (ko) 용접성이 우수한 전봉강관용 열연강판 및 이의 제조방법
WO2021125790A2 (ko) 가공용 주석 도금원판 및 그 제조방법
WO2017111428A1 (ko) 연성, 구멍가공성 및 표면처리 특성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2016093513A2 (ko) 성형성이 우수한 복합조직강판 및 이의 제조방법
WO2018117500A1 (ko) 굽힘성 및 신장플랜지성이 우수한 고장력강 및 이의 제조방법
WO2022086050A1 (ko) 연성이 우수한 초고강도 강판 및 그 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018550600

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017775790

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017775790

Country of ref document: EP

Effective date: 20181029

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775790

Country of ref document: EP

Kind code of ref document: A1