WO2016093513A2 - 성형성이 우수한 복합조직강판 및 이의 제조방법 - Google Patents

성형성이 우수한 복합조직강판 및 이의 제조방법 Download PDF

Info

Publication number
WO2016093513A2
WO2016093513A2 PCT/KR2015/012746 KR2015012746W WO2016093513A2 WO 2016093513 A2 WO2016093513 A2 WO 2016093513A2 KR 2015012746 W KR2015012746 W KR 2015012746W WO 2016093513 A2 WO2016093513 A2 WO 2016093513A2
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
martensite
except
manufacturing
Prior art date
Application number
PCT/KR2015/012746
Other languages
English (en)
French (fr)
Other versions
WO2016093513A3 (ko
Inventor
한상호
안연상
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2017530609A priority Critical patent/JP6516845B2/ja
Priority to US15/528,989 priority patent/US10400301B2/en
Priority to CN201580067763.0A priority patent/CN107109601B/zh
Priority to EP15866709.7A priority patent/EP3231886B1/en
Publication of WO2016093513A2 publication Critical patent/WO2016093513A2/ko
Publication of WO2016093513A3 publication Critical patent/WO2016093513A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength steel sheet, and more particularly, to a composite structured steel sheet and a method for manufacturing the same, which are excellent in formability and suitable for use in automobile panels.
  • high-strength steels are being actively used to satisfy both lightweight and high-strength automobile bodies, and the application of high-strength steels to automobile exteriors is expanding.
  • the steel sheet applied to the exterior of the automobile should be excellent surface quality above all, it is difficult to secure the surface quality of the coating due to the hardenable elements and oxidizing elements (for example, Si, Mn, etc.) added to ensure high strength to be.
  • the hardenable elements and oxidizing elements for example, Si, Mn, etc.
  • alloyed hot-dip galvanized steel sheet which is heat-treated again after hot-dip galvanizing is widely used in view of excellent corrosion resistance and weldability and formability.
  • Patent Document 1 discloses a steel sheet having a composite structure mainly composed of martensite as a conventional technique for improving workability in high tensile steel sheets, and a high tensile strength steel sheet in which fine Cu precipitates having a particle size of 1 to 100 nm are dispersed in a structure to improve workability.
  • a manufacturing method is disclosed.
  • Patent Document 1 it is necessary to add an excess of 2 to 5% of Cu in order to precipitate fine Cu particles, which may cause red brittleness resulting from Cu and excessively increase manufacturing costs.
  • Patent Document 2 discloses a composite steel sheet comprising ferrite as a main phase, residual austenite as a two phase, and bainite and martensite as a low temperature transformation phase, and a method for improving the ductility and extension flange of the steel sheet.
  • Patent Document 2 has a problem in that it is difficult to secure the plating quality by adding a large amount of Si and Al to secure the retained austenite phase, it is difficult to secure the surface quality during steelmaking and performance.
  • due to the metamorphic organic plasticity has a high yield ratio high initial YS value.
  • Patent Document 3 is a technique for providing a high-strength hot-dip galvanized steel sheet having good workability, and a steel sheet comprising a composite of soft ferrite and hard martensite as a microstructure, and to improve its elongation and r value (Lankford value). A manufacturing method is disclosed.
  • this technique not only ensures excellent plating quality as a large amount of Si is added, but also causes a problem in that the manufacturing cost increases due to the addition of a large amount of Ti and Mo.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2005-264176
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2004-292891
  • Patent Document 3 Korean Unexamined Patent Publication No. 2002-0073564
  • One aspect of the present invention relates to a composite structure steel sheet suitable as a steel sheet for automotive exterior plate, composite structure steel sheet having excellent moldability that can significantly improve the ductility (EL / YR) compared to yield ratio by optimizing alloy design and manufacturing conditions And to provide a method for producing the same.
  • the steel sheet includes ferrite as a main phase, has a fine martensite fraction of 1 to 8% at a point of 1 / 4t based on the total thickness (t), and has an average particle diameter of 1 ⁇ m existing in a ferrite grain boundary defined by the following formula (1).
  • the occupancy ratio (M%) of less than martensite is 90% or more, and the moldability is that the area ratio (B%) of bainite is 3% or less (including 0%) in the total two-phase structure defined by the following formula (2): Provides excellent composite steel sheet.
  • M (%) ⁇ M gb / (M gb + M in ) ⁇ ⁇ 100
  • the step of reheating the steel slab satisfying the above-described component system Manufacturing a hot rolled steel sheet by finishing hot rolling of the reheated steel slab at an Ar3 transformation point or more; Winding the hot rolled steel sheet at 450 to 700 ° C; Manufacturing the cold rolled steel sheet by cold rolling the wound hot rolled steel sheet at a reduction ratio of 40 to 80%; And annealing the cold rolled steel sheet at a temperature range of 760 to 850 ° C. in a continuous annealing furnace or an alloyed hot dip plating furnace.
  • the annealed steel sheet includes ferrite as a main phase, and has a fine martensite fraction of 1 to 8% at a point of 1 / 4t based on the total thickness (t) and an average present in the ferrite grain boundary defined by Equation (1).
  • the occupancy ratio (M%) of martensite having a particle diameter of less than 1 ⁇ m is 90% or more, and the area ratio (B%) of bainite is 3% or less (including 0%) in the total two-phase structure defined by the formula (2).
  • a method for producing a composite tissue steel sheet having excellent moldability is provided.
  • According to the present invention can provide a composite tissue steel sheet that can ensure excellent strength and ductility at the same time excellent, it has an effect that is suitable for automotive exterior plates that require high processability.
  • FIG. 1 is a graph showing the change in yield ratio (YS / TS) according to the temper reduction rate of the composite tissue steel sheet according to an aspect of the present invention.
  • the present inventors have studied in depth to provide a steel sheet excellent in formability by securing strength and ductility at the same time to be suitable for automotive exterior panels, provide a composite structured steel sheet that satisfies the intended properties by optimizing the manufacturing conditions with alloy design It confirmed that it was possible and came to complete this invention.
  • Composite tissue sheet according to the present invention by weight%, carbon (C): 0.01 ⁇ 0.08%, manganese (Mn): 1.5 ⁇ 2.5%, chromium (Cr): 1.0% or less (excluding 0%), silicon (Si ): 1.0% or less (except 0%) Phosphorus (P): 0.1% or less (except 0%), sulfur (S): 0.01% or less (excluding 0%), nitrogen (N): 0.01% or less ( 0% excluding), acid value aluminum (sol.Al): 0.02 ⁇ 0.1%, molybdenum (Mo): 0.1% or less (excluding 0%), boron (B): 0.003% or less (excluding 0%), It is preferable that the balance consists of Fe and other unavoidable impurities, and the sum of the weight percentages of Mn and Cr (Mn + Cr) satisfies 1.5 to 3.5%.
  • the content of each component means all by weight.
  • Carbon (C) is an important component for producing a steel sheet having a composite structure, which is an advantageous element for forming strength martensite, one of the two-phase structure.
  • C Carbon
  • YS / TS intended strength and yield ratio
  • the bainite transformation occurs at the time of annealing and cooling, thereby increasing the yield ratio of the steel.
  • the content of C it is preferable to control the content of C to 0.01% or more. If the content of C is less than 0.01%, it is difficult to secure the strength of the 490MPa grade targeted in the present invention, and it is difficult to form an appropriate level of martensite. On the other hand, if the content exceeds 0.08%, the grain boundary bainite formation is promoted upon cooling after annealing, so that the yield strength is increased, so that bending and surface defects occur easily when processing automotive parts. Therefore, in the present invention, it is preferable to control the content of C to 0.01 ⁇ 0.08%.
  • Manganese (Mn) is an element that improves hardenability in a steel sheet having a composite structure, and is particularly important in forming martensite.
  • Existing solid solution strengthening steel is effective to increase strength due to solid solution strengthening effect, and precipitates S, which is inevitably added in steel, to MnS, and plays an important role in suppressing plate breakage caused by S and high temperature embrittlement during hot rolling.
  • Mn manganese-doped-silicon
  • Chromium (Cr) is a component having properties similar to those of Mn described above, and is an element added to improve the hardenability of steel and to secure high strength. Such Cr is effective in forming martensite, and forms coarse Cr-based carbides such as Cr 23 C 6 in the hot rolling process, thereby suppressing the yield point yield (YP-El) by precipitating the amount of solid solution C in the steel below an appropriate level. It is an advantageous element for the production of composite steel with low yield ratio. In addition, it is advantageous to manufacture a composite tissue steel having a high ductility by minimizing the decrease in elongation compared to the increase in strength.
  • the Cr facilitates the formation of martensite through improving the hardenability, but if the content exceeds 1.0%, there is a problem of excessively increasing the martensite formation rate, resulting in a decrease in strength and elongation. Therefore, in the present invention, it is preferable to limit the content of Cr to 1.0% or less, and 0% is excluded in consideration of the amount inevitably added in production.
  • Mn and Cr are important elements for improving the hardenability, and when the composite tissue steel is prepared by adding C in excess of 0.08% to form martensite, the production of the composite tissue steel is low even though the content of Mn and Cr is low. Possible, but in this case, there is a problem that the elongation is lowered and it is difficult to manufacture a resistive steel sheet.
  • the content of C is added as low as possible, and instead, the content of Mn and Cr, which are strong hardenability elements, is controlled to form an appropriate level of martensite, thereby achieving physical properties such as improvement in resistance ratio and elongation. can do.
  • the yield ratio that is, the yield strength is rapidly increased compared to the tensile strength, there is a problem that defects such as crack generation and bending occurs easily when processing the part. Therefore, in the present invention, it is preferable to control the sum of the contents of Mn and Cr to 1.5 to 3.5%.
  • silicon is an element which contributes to the improvement of elongation by forming residual austenite at an appropriate level during annealing, but exhibits its characteristics when the C content is high as about 0.6%.
  • the Si serves to improve the strength of the steel through a solid solution strengthening effect, or is known to improve the surface properties of the plated steel sheet at an appropriate level or more.
  • the content of Si is limited to 1.0% or less (excluding 0%), in order to secure strength and improve elongation.
  • 0% is excluded in consideration of the amount inevitably added in manufacturing. If the content of Si exceeds 1.0%, the plating surface properties are inferior, and the amount of solid solution C is low, so that residual austenite is not formed.
  • Phosphorus (P) in steel is the most favorable element to secure the strength without increasing the formability, but excessive addition greatly increases the possibility of brittle fracture, which increases the possibility of plate breakage of the slab during hot rolling. There is a problem of acting as an element that inhibits properties.
  • the content of P is limited to a maximum of 0.1%, except for 0% in consideration of the inevitably added level.
  • S Sulfur
  • S in steel has a problem of increasing the possibility of generating red brittleness, it is preferable to control the content to 0.01% or less.
  • 0% is excluded in consideration of the level inevitably added during the manufacturing process.
  • N Nitrogen
  • Acid soluble aluminum (sol.Al) is an element added to refine the particle size and deoxidation of the steel. If the content is less than 0.02%, aluminum killed steel cannot be manufactured in a stable state. When it exceeds 0.1%, the grain refinement effect is advantageous to increase the strength, while the excessive formation of inclusions during steelmaking operation increases the possibility of surface defects on the plated steel sheet, and increases the manufacturing cost. Therefore, in the present invention, it is preferable to control the content of sol.Al to 0.02 to 0.1%.
  • Molybdenum is an element added to delay the transformation of austenite into pearlite and to refine the ferrite and improve the strength.
  • Mo has the advantage that the yield ratio can be controlled by finely forming martensite at a grain boundary by improving the hardenability of the steel.
  • disadvantages in manufacturing as the content of the expensive element increases, it is preferable to control the content appropriately.
  • the optimal level of Mo in the present invention is 0.05%, it is not unreasonable to secure the desired physical properties even if not necessarily added. However, 0% is excluded in consideration of the level inevitably added during the manufacturing process.
  • Boron (B) in steel is an element added in order to prevent secondary work embrittlement by P addition.
  • the content of B exceeds 0.003%, there is a problem that the elongation is lowered, so the content of B is controlled to 0.003% or less, in which case 0% is excluded in consideration of the inevitably added level.
  • this invention consists of remainder Fe and other unavoidable impurities other than the said component.
  • the composite tissue steel sheet of the present invention that satisfies the above-described component composition preferably includes martensite (M) in columnar ferrite (F) and biphasic phase as its microstructure, and may include some bainite (B).
  • the martensite is preferably contained 1 to 8% by area fraction of the entire microstructure.
  • the fraction of fine martensite satisfies 1 to 8% at a 1 / 4t point based on the total thickness t. If the fraction is less than 1%, it is difficult to secure the strength, whereas if the fraction exceeds 8%, the strength is too high to secure the desired workability.
  • the occupancy ratio (M%) of the martensite less than 1 micrometer of average particle diameters which exist in a ferrite grain boundary defined by following formula (1) satisfy
  • M (%) ⁇ M gb / (M gb + M in ) ⁇ ⁇ 100
  • M gb number of martensites present in the ferrite grain boundary and M in : number of martensite present in the ferrite grain grain.
  • the martensite has an average particle diameter of 1 ⁇ m or less.
  • the yield ratio before the temper rolling can be controlled to 0.55 or less, and then the tempering rolling can be controlled to the yield ratio of an appropriate level.
  • the occupancy ratio of the martensite is less than 90%, the martensite formed in the crystal grains increases the yield strength during tensile deformation, resulting in a high yield ratio, which makes it impossible to control the yield ratio through temper rolling.
  • the elongation is lowered, because martensite present in the crystal grains significantly prevents the progress of dislocations during processing, so that the yield strength proceeds faster than the tensile strength, and also a large amount of martensite is formed in the ferrite grain. This is because excessively large potentials are generated to hinder the movement of movable potentials during processing.
  • the composite tissue steel sheet of the present invention preferably satisfies 3% or less of the area ratio (B%) of bainite in the total two-phase structure defined by the following formula (2).
  • the present invention it is important to control the bainite area ratio of the total two-phase structure low, which means that the solid solution elements C and N, which are bainite in the bainite grains, are easily fixed to the potentials to prevent dislocations and discontinuities. This is because the yield ratio is significantly increased by showing the yield behavior.
  • the yield ratio before the temper rolling can be managed to 0.55 or less, and then the tempering rolling can be controlled to the yield level of an appropriate level. If the bainite area ratio exceeds 3%, the yield ratio before temper rolling exceeds 0.55, making it difficult to manufacture a resistive-complex composite tissue sheet, which causes a ductility drop.
  • Composite tissue sheet of the present invention that satisfies both the composition and the microstructure described above is capable of controlling the yield ratio through the temper rolling, it can be achieved by controlling the temper reduction rate.
  • the value (calculated value) derived from the conditional expression defined by Equation (3) can be defined as the yield ratio theoretically derived, through which the intended resistance ratio ratio or high yield ratio type composite steel sheet can be provided. have.
  • the temper reduction ratio can be applied as 0.86 ⁇ 2.0%.
  • the composite tissue steel sheet of the present invention is capable of manufacturing a steel sheet having a desired yield ratio by controlling the temper reduction rate.
  • the composite tissue steel sheet of the present invention is reheated to a steel slab that satisfies the above-described component system under normal conditions, and then hot rolled to produce a hot rolled steel sheet and then wound. Thereafter, the wound hot rolled steel sheet is cold rolled at an appropriate rolling rate to be manufactured as a cold rolled steel sheet, and then manufactured by annealing in a continuous annealing furnace or an alloyed hot dip continuous furnace.
  • the present invention it is preferable to reheat the steel slab formed as described above under normal conditions, in order to smoothly perform the subsequent hot rolling process and to sufficiently obtain the properties of the target steel sheet.
  • the present invention is not particularly limited to such reheating conditions, and may be normal conditions.
  • the reheating process may be performed at a temperature range of 1100 to 1300 ° C.
  • the hot-rolled steel sheet by hot-rolling the reheated steel slab under Ar3 transformation point or more under normal conditions.
  • the present invention is not limited to the above conditions for finishing hot rolling and can use a normal hot rolling temperature.
  • the finish hot rolling may be performed at a temperature range of 800 to 1000 ° C.
  • the hot-rolled steel sheet manufactured according to the above it is preferable to wind up the hot-rolled steel sheet manufactured according to the above at 450-700 degreeC.
  • the coiling temperature is less than 450 °C excessive martensite or bainite is generated to cause excessive strength increase of the hot-rolled steel sheet, there is a fear that problems such as shape defects due to the subsequent cold rolling load may occur.
  • the coiling temperature exceeds 700 °C, there is a problem that the surface thickening by elements that reduce the wettability of molten zinc plating, such as Si, Mn, B in the steel. Therefore, in consideration of this, it is preferable to control the winding temperature to 450 ⁇ 700 °C.
  • the wound hot rolled steel sheet is preferably pickled and cold rolled into a cold rolled steel sheet.
  • the cold rolling is preferably carried out at a reduction ratio of 40 to 80%, if the cold reduction ratio is less than 40%, there is a problem that it is difficult to secure the target thickness and the shape correction of the steel sheet is difficult, while exceeding 80% If the crack is likely to occur in the steel sheet edge (edge), there is a problem that brings the load of cold rolling.
  • the continuous annealing process is for forming ferrite and austenite and distributing carbon at the same time as recrystallization. If the temperature is less than 760 ° C, not only sufficient recrystallization is performed, but also it is difficult to form sufficient austenite in the present invention. There is a problem that it is difficult to secure the intended strength. On the other hand, if it exceeds 850 °C productivity decreases, austenite is excessively generated, there is a problem that bainite is included after cooling to reduce the ductility. Therefore, in consideration of this, it is preferable to control the continuous annealing temperature range to 760 ⁇ 850 °C.
  • the steel sheet manufactured according to the above is a composite tissue steel sheet intended in the present invention, and preferably, its internal structure includes ferrite and martensite in a main phase.
  • the fraction of martensite having a fine martensite fraction of 1 to 8% at a point of 1 / 4t based on the total thickness (t) and an average particle diameter of less than 1 ⁇ m existing in the ferrite grain boundary defined by the formula (1) (M) %) Is 90% or more
  • the area ratio (B%) of bainite among all the two-phase structures defined by the formula (2) satisfies 3% or less.
  • the description of the internal structure and the numerical limitation thereof is as mentioned above.
  • the present invention it is preferable to perform the temper rolling process after the continuous annealing, it is possible to adjust the yield ratio of the steel sheet through the temper rolling process. More specifically, the present invention can provide an intended composite tissue sheet of resistive ratio or high yield ratio from controlling the temper reduction ratio.
  • the yield potential is lowered by lowering the yield strength compared to the tensile strength by facilitating material deformation during tensile deformation.
  • Steel sheet which satisfies the range of 0.45-0.6 can be manufactured.
  • temper rolling is not carried out, a minimum yield ratio can be secured, but temper rolling at a minimum temper rolling rate is preferable for adjusting the shape of the steel sheet and uniformizing the plating layer. Therefore, 0% is excluded.
  • the temper reduction ratio In order to manufacture such a high yield ratio composite tissue steel sheet, it is preferable to control the temper reduction ratio to 0.86% or more. If the temper reduction ratio exceeds 2.0%, the yield ratio exceeds 0.8 and thus the composite tissue steel Loss of function and excessively high yield strength results in a problem that spring back occurs during machining of the part.
  • the composite tissue steel sheet of the present invention is a steel sheet which can control yield ratio according to the temper rolling ratio and is excellent in formability, and can be suitably used for automobile exterior plates.
  • the yield ratio (1) represents the value measured before the temper rolling
  • yield ratio (2) and yield strength, tensile strength and ductility represents the value measured after the temper rolling
  • M represents martensite and B represents bainite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 고강도 강판에 관한 것으로서, 보다 상세하게는 성형성이 우수하여 자동차 판넬용 등에 적합하게 적용할 수 있는 복합조직강판 및 이의 제조방법에 관한 것이다.

Description

성형성이 우수한 복합조직강판 및 이의 제조방법
본 발명은 고강도 강판에 관한 것으로서, 보다 상세하게는 성형성이 우수하여 자동차 판넬용 등에 적합하게 적용할 수 있는 복합조직강판 및 이의 제조방법에 관한 것이다.
자동차의 충격 안정성의 규제 및 연비 효율이 강조되면서 자동차 차체의 경량화와 더불어 고강도화를 동시에 만족시키기 위해 고장력강이 적극적으로 사용되고 있으며, 이러한 추세를 따라 자동차 외판에서도 고강도강의 적용이 확대되고 있는 실정이다.
현재에는 대부분 340MPa급 소부경화강이 자동차 외판으로 적용되고 있으나, 일부 490MPa급 강판도 적용 중에 있으며, 이는 590MPa급의 강판으로 확대 적용될 전망이다.
이와 같이 강도가 증가된 강판을 외판으로 적용할 경우 경량화 및 내덴트성은 향상되는 반면, 강도 증가에 따라 가공시 성형성이 열위해지는 단점이 있다. 이에, 최근 고객사에서는 외판에 고강도강을 적용하면서 부족한 가공성을 보완시키기 위해 항복비(YR=YS/TS)가 낮고, 연성이 우수한 강판을 요구하고 있다.
뿐만 아니라, 자동차 외판으로 적용되는 강판은 무엇보다 표면품질이 우수하여야 하는데, 고강도를 확보하기 위해 첨가하는 경화능 원소이자 산화성 원소들(예컨대 Si, Mn 등)로 인해 도금 표면품질의 확보가 어려운 실정이다.
한편, 자동차용으로 적합하게 적용되기 위해서는 우수한 내식성이 요구되며, 이에 종래부터 자동차용 강판으로서 내식성이 우수한 용융아연도금강판이 사용되어 왔다. 이러한 강판은 재결정 소둔 및 도금을 동일 라인에서 실시하는 연속 용융아연 도금설비를 통해 제조되므로 저비용으로 고내식성의 강판을 제조할 수 있는 장점이 있다.
또한, 용융아연도금 후에 다시 가열처리한 합금화 용융아연도금강판은 우수한 내식성과 더불어 용접성이나 성형성도 우수한 측면에서 널리 사용되고 있다.
따라서, 자동차 외판의 경량화 및 가공성 향상을 위해서는 성형성이 우수한 고장력 냉연강판의 개발이 요구되고 있는 것이며, 이와 더불어 우수한 내식성, 용접성 및 성형성을 갖는 고장력 용융아연도금강판의 개발이 요구되고 있다.
고장력 강판에서 가공성을 향상시킨 종래기술로서 특허문헌 1에는 마르텐사이트를 주체로 하는 복합조직을 갖는 강판이 개시되어 있으며, 가공성 향상을 위해 조직 내에 입경 1~100nm의 미세한 Cu 석출물을 분산시킨 고장력 강판의 제조방법이 개시되어 있다.
상기 특허문헌 1은 미세한 Cu 입자를 석출시키기 위하여 2~5%의 과량의 Cu를 첨가할 필요가 있으며, 이는 Cu로부터 기인하는 적열취성이 발생할 수 있고, 제조비용이 과다하게 상승하는 문제점이 있다.
특허문헌 2에는 주상인 페라이트와 2상인 잔류 오스테나이트 및 저온 변태상인 베이나이트와 마르텐사이트를 포함하는 복합조직 강판과 상기 강판의 연성과 신장플랜지성을 개선하는 방법이 개시되어 있다.
하지만 상기 특허문헌 2는 잔류 오스테나이트상의 확보를 위해 다량의 Si와 Al을 첨가함에 따라 도금품질을 확보하기 어렵고, 제강 및 연주시 표면품질의 확보가 어려운 문제점을 가지고 있다. 또한, 변태유기소성으로 인해 초기 YS값이 높아 항복비가 높은 단점이 있다.
특허문헌 3에서는 가공성이 양호한 고장력 용융아연도금강판을 제공하기 위한 기술로서, 미세조직으로 연질 페라이트와 경질 마르텐사이트를 복합으로 포함하는 강판과, 이것의 연신율 및 r값(Lankford value)을 개선하기 위한 제조방법이 개시되어 있다.
그러나, 이 기술은 다량의 Si을 첨가함에 따라 우수한 도금품질을 확보하기 어려울 뿐만 아니라, 다량의 Ti과 Mo의 첨가로부터 제조원가가 상승하는 문제가 발생한다.
(특허문헌 1) 일본 공개특허공보 제2005-264176호
(특허문헌 2) 일본 공개특허공보 제2004-292891호
(특허문헌 3) 한국 공개특허공보 제2002-0073564호
본 발명의 일 측면은, 자동차 외판용 강판으로 적합한 복합조직강판에 관한 것으로서, 합금설계 및 제조조건을 최적화하여 항복비 대비 연성(EL/YR)을 크게 향상시킬 수 있는 성형성이 우수한 복합조직강판 및 이를 제조하는 방법을 제공하고자 하는 것이다.
본 발명의 일 측면은, 중량%로, 탄소(C): 0.01~0.08%, 망간(Mn): 1.5~2.5%, 크롬(Cr): 1.0% 이하(0%는 제외), 실리콘(Si): 1.0% 이하(0%는 제외), 인(P): 0.1% 이하(0%는 제외), 황(S): 0.01% 이하(0%는 제외), 질소(N): 0.01% 이하(0%는 제외), 산가용 알루미늄(sol.Al): 0.02~0.1%, 몰리브덴(Mo): 0.1% 이하(0%는 제외), 보론(B): 0.003% 이하(0%는 제외), 잔부 Fe 및 기타 불가피한 불순물로 이루어지고, 상기 Mn과 Cr의 중량% 합(Mn+Cr)이 1.5~3.5%를 만족하는 강판으로서,
상기 강판은 주상으로 페라이트를 포함하고, 전 두께(t) 기준으로 1/4t 지점에서 미세 마르텐사이트 분율이 1~8%이고, 하기 식(1)로 정의되는 페라이트 결정립계에 존재하는 평균 입경 1㎛ 미만의 마르텐사이트의 점유비(M%)가 90% 이상이며, 하기 식(2)로 정의되는 전체 2상 조직 중 베이나이트의 면적비(B%)가 3% 이하(0% 포함)인 성형성이 우수한 복합조직강판을 제공한다.
식(1)
M(%) = {Mgb/(Mgb+Min)}×100
(여기서, Mgb: 페라이트 결정립계에 존재하는 마르텐사이트 개수, Min: 페라이트 결정립내에 존재하는 마르텐사이트 개수를 나타낸다.)
식(2)
B(%) = {BA/(MA+BA)}×100
(여기서, BA: 베이나이트 점유 면적, MA: 마르텐사이트 점유 면적을 나타낸다.)
본 발명의 다른 일 측면은, 상술한 성분계를 만족하는 강 슬라브를 재가열하는 단계; 상기 재가열된 강 슬라브를 Ar3 변태점 이상에서 마무리 열간압연하여 열연강판을 제조하는 단계; 상기 열연강판을 450~700℃에서 권취하는 단계; 상기 권취된 열연강판을 40~80%의 압하율로 냉간압연하여 냉연강판을 제조하는 단계; 및 상기 냉연강판을 연속 소둔로 또는 합금화 용융도금 연속로에서 760~850℃의 온도범위로 소둔 처리하는 단계를 포함하고,
상기 소둔 처리된 강판은 주상으로 페라이트를 포함하고, 전 두께(t) 기준으로 1/4t 지점에서 미세 마르텐사이트 분율이 1~8%이고, 상기 식(1)로 정의되는 페라이트 결정립계에 존재하는 평균 입경 1㎛ 미만의 마르텐사이트의 점유비(M%)가 90% 이상이며, 상기 식(2)로 정의되는 전체 2상 조직 중 베이나이트의 면적비(B%)가 3% 이하(0% 포함)인 성형성이 우수한 복합조직강판의 제조방법을 제공한다.
본 발명에 의할 경우 강도와 연성을 동시에 우수하게 확보할 수 있는 복합조직강판을 제공할 수 있으며, 이는 고가공성이 요구되는 자동차 외판용으로 적합한 효과가 있다.
도 1은 본 발명의 일 측면에 따른 복합조직강판의 조질압하율에 따른 항복비(YS/TS) 변화를 그래프로 나타낸 것이다.
본 발명자들은 자동차 외판용으로 적합하도록 강도 및 연성을 동시에 확보하여 성형성이 우수한 강판을 제공하기 위하여 깊이 연구한 결과, 합금설계와 더불어 제조조건을 최적화시킴으로써 의도하는 물성을 만족하는 복합조직강판을 제공할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
이하, 본 발명에 대하여 상세히 설명한다.
먼저, 본 발명에 일 측면에 따른 성형성이 우수한 복합조직강판에 대하여 상세히 설명한다.
본 발명에 따른 복합조직강판은 중량%로, 탄소(C): 0.01~0.08%, 망간(Mn): 1.5~2.5%, 크롬(Cr): 1.0% 이하(0%는 제외), 실리콘(Si): 1.0% 이하(0%는 제외) 인(P): 0.1% 이하(0%는 제외), 황(S): 0.01% 이하(0%는 제외), 질소(N): 0.01% 이하(0%는 제외), 산가용 알루미늄(sol.Al): 0.02~0.1%, 몰리브덴(Mo): 0.1% 이하(0%는 제외), 보론(B): 0.003% 이하(0%는 제외), 잔부 Fe 및 기타 불가피한 불순물로 이루어지고, 상기 Mn과 Cr의 중량% 합(Mn+Cr)이 1.5~3.5%를 만족하는 것이 바람직하다.
이하에서는, 본 발명의 복합조직강판의 합금성분을 위와 같이 제한하는 이유에 대하여 상세히 설명한다. 이때, 특별한 언급이 없는 한 각 성분의 함량은 모두 중량%를 의미한다.
C: 0.01~0.08%
탄소(C)는 복합조직을 갖는 강판을 제조하는데 중요한 성분으로서, 이는 2상 조직 중의 하나인 마르텐사이트를 형성시켜 강도를 확보하는데에 유리한 원소이다. 일반적으로 C의 함량이 증가할수록 마르텐사이트의 형성이 용이하여 복합조직강 제조에 유리하나, 의도하는 강도 및 항복비(YS/TS)를 제어하기 위해서는 적정 수준의 함량으로 제어하는 것이 필요하다.
특히, C 함량이 증가할수록 소둔 후 냉각시 베이나이트 변태가 동시에 이루어져 강의 항복비를 상승시키는 경향이 있다. 본 발명의 경우 가능한 한 베이나이트 형성을 최소화하고 적정 수준의 마르텐사이트를 형성하여 목적하는 재질 특성을 확보하는 것이 중요하다.
이에, C의 함량을 0.01% 이상으로 제어하는 것이 바람직하다. 만일, C의 함량이 0.01% 미만이면 본 발명에서 목표로 하는 490MPa급의 강도를 확보하기 어려워지며, 적정 수준의 마르텐사이트를 형성시키기 어려운 문제가 있다. 반면, 그 함량이 0.08%를 초과하게 되면 소둔 후 냉각시 입계 베이나이트 형성이 촉진되어 항복강도가 상승함에 따라, 자동차 부품 가공시 굴곡 및 표면결함 발생이 용이해지는 문제가 있다. 따라서, 본 발명에서는 C의 함량을 0.01~0.08%로 제어하는 것이 바람직하다.
Mn: 1.5~2.5%
망간(Mn)은 복합조직을 갖는 강판에서 경화능을 향상시키는 원소로서, 특히 마르텐사이트를 형성함에 있어서 중요한 원소이다. 기존 고용강화강에서는 고용강화효과로 강도상승에 유효하고, 강중 불가피하게 첨가되는 S를 MnS로 석출시켜 열간압연시 S에 의한 판파단 발생 및 고온취화 현상을 억제시키는 중요한 역할을 한다.
본 발명에서는 이러한 Mn을 1.5% 이상으로 첨가하는 것이 바람직하며, 만일 그 함량이 1.5% 미만이면 마르텐사이트 형성이 불가하여 복합조직강의 제조가 어려워지고, 반면 2.5%를 초과하게 되면 마르텐사이트가 과잉으로 형성되어 재질이 불안정하고, 조직 내 Mn-Band(Mn 산화물의 띠)가 형성되어 가공크랙 및 판파단 발생 위험이 높아지는 문제가 있다. 또한, 소둔시 Mn 산화물이 표면에 용출되어 도금성을 크게 저해하는 문제가 있다. 따라서, 본 발명에서는 Mn의 함량을 1.5~2.5%로 제한하는 것이 바람직하다.
Cr: 1.0% 이하(0%는 제외)
크롬(Cr)은 상술한 Mn과 유사한 특성을 갖는 성분으로서, 강의 경화능을 향상시키고 고강도를 확보하기 위해 첨가되는 원소이다. 이러한 Cr은 마르텐사이트 형성에 유효하고, 열간압연 과정에서 Cr23C6과 같은 조대한 Cr계 탄화물을 형성하여 강중 고용 C 량을 적정 수준 이하로 석출시킴으로써 항복점연신(YP-El) 발생을 억제하여 항복비가 낮은 복합조직강 제조에 유리한 원소이다. 또한, 강도 상승 대비 연신율 하락을 최소화시켜 고연성을 갖는 복합조직강의 제조에도 유리하다.
본 발명에서 상기 Cr은 경화능 향상을 통해 마르텐사이트 형성을 용이하게 하지만, 그 함량이 1.0%를 초과하게 되면 마르텐사이트 형성 비율을 과도하게 증가시켜 강도 및 연신율 저하를 초래하는 문제가 있다. 따라서, 본 발명에서는 Cr의 함량을 1.0% 이하로 제한하는 것이 바람직하며, 제조상 불가피하게 첨가되는 양을 고려하여 0%를 제외한다.
한편, 상기 Mn과 Cr은 경화능 향상에 중요한 원소로서, 통상 마르텐사이트 형성을 위해 C를 0.08%를 초과하여 첨가하여 복합조직강을 제조하는 경우 Mn 및 Cr의 함량이 낮더라도 복합조직강의 제조는 가능하나, 이 경우 연신율이 저하되고 저항복비형 강판 제조가 어려운 문제가 있다.
이에, 본 발명에서는 C의 함량을 가능한 한 낮게 첨가하고, 그 대신 강력한 경화능 원소인 Mn과 Cr의 함량을 제어하여 적정 수준의 마르텐사이트를 형성시켜 목적하는 저항복비, 연신율 향상 등의 물성을 달성할 수 있다. 이때, 상기 Mn과 Cr의 함량 합(Mn+Cr, 중량%)을 1.5~3.5%로 제어하는 것이 바람직하다. 만일, 상기 함량 합이 1.5% 미만이면 마르텐사이트가 거의 형성되지 않아 항복비가 급격히 상승하고, 항복점연신 현상도 나타나 재질이 불안정해지는 문제가 있으며, 반면 그 함량 합이 3.5%를 초과하게 되면 마르텐사이트가 과잉으로 형성될 뿐만 아니라, 베이나이트가 동시에 형성되어 항복비 즉 인장강도 대비 항복강도가 급격히 상승하여 부품 가공시 크랙 발생 및 굴곡 등의 결함이 용이하게 발생하는 문제가 있다. 따라서, 본 발명에서는 상기 Mn과 Cr의 함량 합을 1.5~3.5%로 제어하는 것이 바람직하다.
Si: 1.0% 이하(0%는 제외)
통상 실리콘(Si)은 소둔 냉각시 잔류 오스테나이트를 적정 수준으로 형성시켜 연신율 향상에 크게 기여하는 원소이나, 이는 C의 함량이 0.6% 정도로 높을 때 그 특성을 발휘한다. 또한, 상기 Si은 고용강화효과를 통해 강의 강도를 향상시키는 역할을 하거나, 적정 수준이상에서는 도금강판의 표면특성을 향상시키는 것으로 알려져 있다.
본 발명에서는 이러한 Si의 함량을 1.0% 이하(0%는 제외)로 제한하는데, 이는 강도 확보 및 연신율을 개선하기 위함이다. 다만, 상기 Si을 첨가하지 않더라도 물성 확보에는 큰 문제가 없으나, 제조상 불가피하게 첨가되는 양을 고려하여 0%를 제외한다. 만일, Si의 함량이 1.0%를 초과하게 되면 도금표면 특성이 열위되고, 고용 C 량이 낮아 잔류 오스테나이트가 형성되지 않아 연신율 향상에 유리한 효과가 없다.
P: 0.1% 이하(0%는 제외)
강 중 인(P)은 성형성을 크게 해지지 않으면서 강도 확보에 가장 유리한 원소이나, 과잉 첨가할 경우 취성 파괴 발생 가능성이 크게 증가하여 열간압연 도중 슬라브의 판파단의 발생 가능성이 증가되며, 도금표면 특성을 저해하는 원소로 작용하는 문제가 있다.
따라서, 본 발명에서는 이러한 P의 함량을 최대 0.1%로 제한하며, 다만 불가피하게 첨가되는 수준을 고려하여 0%는 제외한다.
S: 0.01% 이하(0%는 제외)
황(S)은 강 중 불순물 원소로서 불가피하게 첨가되는 원소로서, 가능한 한 낮게 관리하는 것이 중요하다. 특히, 강 중 S은 적열 취성을 발생시킬 가능성을 높이는 문제가 있으므로, 그 함량을 0.01% 이하로 제어하는 것이 바람직하다. 다만, 제조과정 중에 불가피하게 첨가되는 수준을 고려하여 0%는 제외한다.
N: 0.01% 이하(0%는 제외)
질소(N)는 강 중 불순물 원소로서 불가피하게 첨가되는 원소이다. 이러한 N은 가능한 한 낮게 관리하는 것이 중요하나, 이를 위해서는 강의 정련 비용이 급격히 상승하는 문제가 있으므로, 조업조건이 가능한 범위인 0.01% 이하로 제어하는 것이 바람직하다. 다만, 불가피하게 첨가되는 수준을 고려하여 0%는 제외한다.
sol.Al: 0.02~0.1%
산가용 알루미늄(sol.Al)은 강의 입도 미세화와 탈산을 위해 첨가되는 원소로서, 그 함량이 0.02% 미만이면 통상의 안정된 상태로 알루미늄 킬드(Al killed)강을 제조할 수 없으며, 반면 그 함량이 0.1%를 초과하게 되면 결정립 미세화 효과로 강도 상승에는 유리한 반면 제강 연주 조업시 개재물의 과다 형성으로 도금강판 표면 불량이 발생할 가능성이 높아질 뿐만 아니라, 제조원가의 상승을 초래하는 문제가 있다. 따라서, 본 발명에서는 sol.Al의 함량을 0.02~0.1%로 제어하는 것이 바람직하다.
Mo: 0.1% 이하(0%는 제외)
몰리브덴(Mo)은 오스테나이트가 펄라이트로 변태되는 것을 지연시킴과 동시에 페라이트의 미세화 및 강도 향상을 위해 첨가하는 원소이다. 이러한 Mo는 강의 경화능을 향상시켜 마르텐사이트를 결정입계(grainboundary)에 미세하게 형성시켜 항복비 제어가 가능한 장점이 있다. 다만, 고가의 원소로서 그 함량이 높아질수록 제조상 불리해지는 문제가 있으므로, 그 함량을 적절히 제어하는 것이 바람직하다.
상술한 효과를 얻기 위하여 최대 0.1%로 첨가하는 것이 바람직하며, 만일 상기 Mo의 함량이 0.1%를 초과하게 되면 합금원가의 급격한 상승을 초래하여 경제성이 떨어지고, 오히려 강의 연성도 저하되는 문제가 있다. 본 발명에서 Mo의 최적 수준은 0.05%이지만, 필수로 첨가하지 않더라도 목적하는 물성 확보에는 무리가 없다. 다만, 제조과정 중에 불가피하게 첨가되는 수준을 고려하여 0%는 제외한다.
B: 0.003% 이하(0%는 제외)
강 중 보론(B)은 P 첨가에 의한 내 2차가공취성을 방지하기 위해 첨가하는 원소이다. 이러한 B의 함량이 0.003%를 초과하게 되면 연신율의 저하를 초래하는 문제가 있으므로, 상기 B의 함량을 0.003% 이하로 제어하며, 이때 불가피하게 첨가되는 수준을 고려하여 0%는 제외한다.
본 발명은 상기 성분 이외에도 잔부 Fe 및 기타 불가피한 불순물로 이루어지는 것이 바람직하다.
상술한 성분조성을 만족하는 본 발명의 복합조직강판은 그 미세조직으로 주상 페라이트(F) 및 2상으로 마르텐사이트(M)를 포함하는 것이 바람직하며, 이때 일부 베이나이트(B)를 포함할 수 있다. 여기서, 상기 마르텐사이트는 전체 미세조직 중 면적분율로 1~8% 포함하는 것이 바람직하다.
이때, 전 두께(t) 기준으로 1/4t 지점에서 미세 마르텐사이트 분율이 1~8%를 만족하는 것이 바람직하다. 상기 분율이 1% 미만이면 강도 확보에 어려우며, 반면 8%를 초과하게 되면 강도가 너무 높아져 원하는 가공성을 확보하기 어려운 문제가 있다.
또한, 하기 식(1)로 정의되는 페라이트 결정립계에 존재하는 평균 입경 1㎛미만의 마르텐사이트의 점유비(M%)가 90% 이상을 만족하는 것이 바람직하다. 즉, 상기 평균 입경 1㎛ 이하의 미세 마르텐사이트가 페라이트 결정립내 대비 페라이트 결정립계에 주로 존재할수록 낮은 항복비를 유지하면서 연성을 향상시키는데 유리하다.
식(1)
M(%) = {Mgb/(Mgb+Min)}×100
(여기서, Mgb: 페라이트 결정립계에 존재하는 마르텐사이트 개수, Min: 페라이트 결정립내에 존재하는 마르텐사이트 개수를 나타낸다. 상기 마르텐사이트는 평균 입경 1㎛ 이하의 것이다.)
이와 같이, 페라이트 결정립계 마르텐사이트의 점유비가 90% 이상에서는 조질압연 전의 항복비를 0.55 이하로 관리할 수 있으며, 이후 조질압연을 행함으로써 적정수준의 항복비로 제어할 수 있다. 만일, 상기 마르텐사이트의 점유비가 90% 미만이면 결정립내에 형성된 마르텐사이트가 인장변형시 항복강도를 상승시켜 항복비가 높아지고, 조질압연을 통한 항복비 제어가 불가능해지는 문제가 있다. 더불어, 연신율의 저하를 초래하는데, 이는 결정립내에 존재하는 마르텐사이트가 가공시 전위의 진행을 현저히 방해하여 항복강도가 인장강도 대비 빠르게 진행되기 때문이며, 또한 페라이트 입내에 마르텐사이트가 다량 형성되면서 페라이트 입내에 지나치게 많은 전위를 발생시켜 가공시 가동 전위의 이동을 방해하기 때문이다.
또한, 본 발명의 복합조직강판은 하기 식(2)로 정의되는 전체 2상 조직 중 베이나이트의 면적비(B%)가 3% 이하를 만족하는 것이 바람직하다.
식(2)
B(%) = {BA/(MA+BA)}×100
(여기서, BA: 베이나이트 점유 면적, MA: 마르텐사이트 점유 면적을 나타낸다.)
본 발명에서 전체 2상 조직 중 베이나이트 면적비를 낮게 제어하는 것이 중요한데, 이는 베이나이트가 마르텐사이트에 비해서 베이나이트 입내에 있던 고용 원소인 C와 N가 쉽게 전위에 고착되어 전위의 이동을 방해하고 불연속 항복거동을 나타냄으로써 항복비를 현저하게 증가시키기 때문이다.
따라서, 전체 2상 조직 중 베이나이트 면적비가 3% 이하이면 조질압연 전의 항복비를 0.55 이하로 관리할 수 있으며, 이후 조질압연을 행함으로써 적정수준의 항복비로 제어할 수 있다. 만일, 상기 베이나이트 면적비가 3%를 초과하게 되면 조질압연 전 항복비가 0.55를 초과하게 되어 저항복비형 복합조직강판을 제조하기 어려워지며, 연성의 하락을 초래하는 문제가 있다.
상술한 성분조성 및 미세조직을 모두 만족하는 본 발명의 복합조직강판은 조질압연을 통해 항복비의 제어가 가능하며, 이때 조질압하율을 제어함으로써 달성 할 수 있다.
본 발명에서는 하기 식(3)으로 정의되는 조건식으로부터 도출되는 값(계산 값)을 이론적으로 도출한 항복비로 정의할 수 있으며, 이를 통해 의도하는 저항복비형 또는 고항복비형 복합조직강판을 제공할 수 있다.
식(3)
계산 값 = (0.1699*x)+0.4545
(여기서, x: 조질압하율(%)을 나타낸다.)
보다 구체적으로, 상기 식(3)에 의해 계산되는 값 즉 이론적으로 도출한 항복비 값이 0.45~0.6를 만족하는 저항복비형 복합조직강판을 제조하고자 하는 경우 조질압하율을 0.85% 이하(0%는 제외)로 적용할 수 있으며, 이론적으로 도출되는 항복비 값이 0.6 초과인 고항복비형 복합조직강판을 제조하고자 하는 경우에는 조질압하율을 0.86~2.0%로 적용할 수 있다.
도 1은 조질압하율에 따른 항복비 변화를 그래프로 나타낸 것으로서, 조질압하율이 증가할수록 강판의 항복비가 상승하는 것을 확인할 수 있다. 이를 통해 볼 때, 본 발명의 복합조직강판은 조질압하율을 조절함으로써 원하는 항복비를 갖는 강판으로의 제조가 가능한 것이다.
상기 조질압하율에 따른 항복비의 제어는 이하 제조조건에서 보다 상세히 설명할 것이다.
이하, 본 발명의 다른 일 측면인 성형성이 우수한 복합조직강판의 제조방법에 대하여 상세히 설명한다.
개략적으로, 본 발명의 복합조직강판은 상술한 성분계를 만족하는 강 슬라브를 통상의 조건으로 재가열한 후, 이를 열간압연하여 열연강판을 제조한 다음 권취한다. 이후, 상기 권취된 열연강판을 적정 압하율로 냉간압연하여 냉연강판으로 제조한 후, 연속 소둔로 또는 합금화 용융도금 연속로에서 소둔 처리함으로써 제조할 수 있다.
이하, 각 단계별 상세한 조건에 대하여 설명한다.
먼저, 본 발명에서는 상기와 같이 조성된 강 슬라브를 통상의 조건으로 재가열함이 바람직한데, 이는 후속하는 열간압연 공정을 원활히 수행하고, 목표로 하는 강판의 물성을 충분히 얻기 위함이다. 본 발명은 이러한 재가열 조건에 특별히 제한되지 않으며, 통상의 조건이면 무방하다. 일 예로 1100~1300℃의 온도범위에서 재가열 공정을 수행할 수 있다.
그 다음, 상기 재가열된 강 슬라브를 Ar3 변태점 이상에서 통상의 조건으로 마무리 열간압연하여 열연강판으로 제조하는 것이 바람직하다. 본 발명은 상기 마무리 열간압연에 대한 조건에 제한되지 않으며 통상의 열간 압연온도를 이용할 수 있다. 일 예로 800~1000℃의 온도범위에서 마무리 열간압연을 행할 수 있다.
상기에 따라 제조된 열연강판을 450~700℃에서 권취하는 것이 바람직하다. 이때, 권취온도가 450℃ 미만이면 과다한 마르텐사이트 또는 베이나이트가 생성되어 열연강판의 과다한 강도 상승을 초래함으로써 후속되는 냉간압연시 부하로 인한 형상불량 등의 문제가 발생할 우려가 있다. 반면, 권취온도가 700℃를 초과하게 되면 강 중 Si, Mn, B 등의 용융아연도금의 젖음성을 저하시키는 원소들에 의한 표면농화가 심해지는 문제가 있다. 따라서, 이를 고려하여 권취온도를 450~700℃로 제어함이 바람직하다.
이후, 권취된 열연강판을 산세 및 냉간압연하여 냉연강판으로 제조하는 것이 바람직하다. 상기 냉간압연시 40~80%의 압하율로 실시함이 바람직한데, 만일 냉간 압하율이 40% 미만이면 목표로 하는 두께를 확보하기 어렵고 강판의 형상교정이 어려운 문제가 있으며, 반면 80%를 초과하게 되면 강판 에지(edge)부에서 크랙이 발생할 가능성이 높고, 냉간압연의 부하를 가져오는 문제가 있다.
상기에 따라 제조된 냉연강판을 760~850℃의 온도범위에서 연속 소둔을 행함이 바람직하다. 이때, 연속 소둔로 또는 합금화 도금 연속로에서 실시할 수 있다.
상기 연속 소둔 공정은 재결정과 동시에 페라이트와 오스테나이트를 형성하고 탄소를 분배하기 위한 것으로서, 이때의 온도가 760℃ 미만이면 충분한 재결정이 이루어지지 않을 뿐만 아니라, 충분한 오스테나이트를 형성하기 어려원 본 발명에서 의도하는 강도를 확보하기 어려워지는 문제가 있다. 반면, 850℃를 초과하게 되면 생산성이 하락하고, 오스테나이트가 과다하게 생성되어 냉각 이후에는 베이나이트가 포함되어 연성이 저하되는 문제가 있다. 따라서, 이를 고려하여 연속 소둔 온도범위를 760~850℃로 제어함이 바람직하다.
상기한 바에 따라 제조된 강판은 본 발명에서 의도하는 복합조직강판인 것으로서, 바람직하게 그 내부조직이 주상으로 페라이트와 2상으로 마르텐사이트를 포함한다. 이때, 전 두께(t) 기준으로 1/4t 지점에서 미세 마르텐사이트 분율이 1~8%이고, 상기 식(1)로 정의되는 페라이트 결정립계에 존재하는 평균 입경 1㎛ 미만의 마르텐사이트의 점유비(M%)가 90% 이상이며, 상기 식(2)로 정의되는 전체 2상 조직 중 베이나이트의 면적비(B%)가 3% 이하를 만족한다. 상기 내부조직 및 그 수치 한정에 대한 설명을 이미 언급한 바와 같다.
한편, 본 발명은 상기 연속 소둔 후 조질압연 공정을 더 행하는 것이 바람직하며, 상기 조질압연 공정을 통해 강판의 항복비를 조절할 수 있다. 보다 구체적으로, 본 발명은 조질압하율을 제어하는 것으로부터 저항복비 또는 고항복비의 의도하는 복합조직강판을 제공할 수 있는 것이다.
식(3)
계산 값 = (0.1699*x)+0.4545
(여기서, x: 조질압하율(%)을 나타낸다.)
이때, 상기 식(3)의 조질압하율을 0.85% 이하(0%는 제외)로 제어하는 경우 압연에 의해 도입된 가동 전위가 인장변형시 재료변형을 용이하게 함으로써 인장강도 대비 항복강도를 낮춰 항복비가 0.45~0.6의 범위를 만족하는 강판을 제조할 수 있다.
만일, 조질압연을 행하지 않는 경우 최소한의 항복비를 확보할 수는 있으나, 강판의 형상조정 및 도금층 균일화를 위해 최소한의 조질압하율로 조질압연을 행하는 것이 보다 바람직할 것이다. 따라서, 0%는 제외한다.
상기 조질압하율을 0.86~2.0%로 제어하는 경우 다량의 전위가 서로 응집하여 가공경화현상을 증대시킴으로써 인장강도 대비 항복강도가 상승하여 항복비가 0.6 초과 ~ 0.8 이하인 강판을 제조할 수 있다.
이와 같은 고항복비형 복합조직강판을 제조하고자 하는 경우에는 조질압하율을 0.86% 이상으로 제어하는 것이 바람직하며, 만일 조질압하율이 2.0%를 초과하게 되면 항복비가 0.8을 초과하게 되어 복합조직강으로서의 기능을 상실하고, 과도하게 높은 항복강도로 인해 부품가공시 스프링백(Spring Back, 가공부품의 형상정밀도 불량) 현상이 나타나는 문제가 있다.
이와 같이, 본 발명의 복합조직강판은 조질압연율에 따라 항복비의 제어가 가능하고, 성형성이 우수한 강판인 것으로서, 자동차 외판용으로 적절하게 사용할 수 있다.
이하, 실시예를 통해 보다 상세히 설명한다. 다만, 하기 실시예는 본 발명을 보다 상세히 설명하기 위한 예시일 뿐, 본 발명의 권리범위를 제한하지는 않는다.
(실시예)
하기 표 1에 나타낸 조성을 갖는 강종을 하기 표 2에 나타낸 조건으로 제조한 다음, 이들의 물성을 확인하였다. 이때, 본 발명에서 목표로 하는 재질특성으로서 조질압연을 행하지 않은 상태에서의 항복비를 0.5 이하를 목표로 하였다.
각각의 시험편의 인장시험은 JIS규격을 이용하여 C방향으로 실시하였으며, 미세조직 분율은 소둔 처리된 강판의 판두께 1/4t 지점에서 전자현미경으로 관찰하여 측정하였다. 또한, 마르텐사이트의 점유율은 SEM(3000배)을 이용하여 관찰한 다음, Count Point 작업을 통해 측정하였다.
표 1
구분 성분조성(중량%)
C Si Mn Cr Mo P S sol.Al B N
발명강1 0.025 0.15 1.75 0.5 0.04 0.023 0.006 0.031 0.0006 0.0031
발명강2 0.031 0.21 1.81 0.4 0.05 0.018 0.005 0.028 0.0005 0.0028
발명강3 0.036 0.18 1.76 0.3 0.04 0.023 0.005 0.024 0.0005 0.0048
발명강4 0.037 0.15 2.03 0.3 0.05 0.021 0.005 0.025 0.0012 0.0049
발명강5 0.052 0.13 2.16 0.3 0.05 0.024 0.005 0.035 0.0005 0.0045
비교강1 0.083 0.17 1.81 0 0 0.018 0.006 0.048 0 0.0036
표 2
구분 제조조건 물성 비고
권취온도(℃) 냉간압하율(%) 소둔온도(℃) 조질압연(%) 입계M점유비(M%) B면적비(B%) 전체M분율(%) 항복비(1) 항복강도(MPa) 인강장도(MPa) 연성(%) 항복비(2)
발명강1 553 62 782 0.2 93 2.5 3.5 0.44 251 492 33 0.51 발명예
557 61 785 0.6 92 2.3 3.2 0.44 275 500 32 0.55 발명예
발명강2 556 62 779 0.5 94 2.1 2.9 0.43 273 506 32 0.54 발명예
563 63 743 0.5 86 4.8 2.3 0.55 312 495 34 0.63 비교예
발명강3 652 62 821 1.3 95 1.8 4.5 0.44 323 513 31 0.63 발명예
651 63 823 1.2 93 1.9 4.2 0.43 308 497 33 0.62 발명예
발명강4 482 61 835 0.7 92 2.6 1.9 0.44 331 581 27 0.57 발명예
485 63 855 0.7 86 5.2 12.6 0.62 329 522 30 0.63 비교예
발명강5 648 76 835 1.5 94 2.1 3.7 0.42 318 505 31 0.63 발명예
645 75 836 1.6 93 2.2 3.5 0.43 321 502 32 0.64 발명예
비교강1 556 58 786 0.8 83 4.8 11.2 0.58 335 540 29 0.62 비교예
552 58 789 0.8 82 4.6 13.1 0.57 329 522 27 0.63 비교예
(상기 표 2에서, 항복비(1)은 조질압연을 행하기 전 측정된 값을 나타낸 것이며, 항복비(2)와 항복강도, 인장강도 및 연성은 조질압연을 행한 이후에 측정된 값을 나타낸 것이다.
또한, 상기 표 2에서, M은 마르텐사이트, B는 베이나이트를 나타낸 것이다.)
상기 표 1 및 2에 나타낸 바와 같이, 본 발명에서 제안하는 성분조성 및 제조조건을 모두 만족하는 발명예들의 경우 강도뿐만 아니라 연성을 우수하게 확보할 수 있음을 확인할 수 있다.
반면, 성분조성이 본 발명을 만족하더라도 제조조건이 본 발명을 벗어나는 경우 또는 성분조성이 본 발명을 벗어나는 경우에는 내부조직 중 베이나이트의 분율이 증가할 뿐만 아니라 전체 마르텐사이트 분율도 증가함에 따라 조질압연 후 항복비가 크게 상승하는 것을 확인할 수 있다. 이들 강종들은 가공시 파단 등의 결함이 발생할 가능성이 클 것으로 예상된다.

Claims (8)

  1. 중량%로, 탄소(C): 0.01~0.08%, 망간(Mn): 1.5~2.5%, 크롬(Cr): 1.0% 이하(0%는 제외), 실리콘(Si): 1.0% 이하(0%는 제외), 인(P): 0.1% 이하(0%는 제외), 황(S): 0.01% 이하(0%는 제외), 질소(N): 0.01% 이하(0%는 제외), 산가용 알루미늄(sol.Al): 0.02~0.1%, 몰리브덴(Mo): 0.1% 이하(0%는 제외), 보론(B): 0.003% 이하(0%는 제외), 잔부 Fe 및 기타 불가피한 불순물로 이루어지고, 상기 Mn과 Cr의 중량% 합(Mn+Cr)이 1.5~3.5%를 만족하는 강판으로서,
    상기 강판은 주상으로 페라이트를 포함하고, 전 두께(t) 기준으로 1/4t 지점에서 미세 마르텐사이트 분율이 1~8%이고, 하기 식(1)로 정의되는 페라이트 결정립계에 존재하는 평균 입경 1㎛ 미만의 마르텐사이트의 점유비(M%)가 90% 이상이며, 하기 식(2)로 정의되는 전체 2상 조직 중 베이나이트의 면적비(B%)가 3% 이하(0% 포함)인 성형성이 우수한 복합조직강판.
    식(1)
    M(%) = {Mgb/(Mgb+Min)}×100
    (여기서, Mgb: 페라이트 결정립계에 존재하는 마르텐사이트 개수, Min: 페라이트 결정립내에 존재하는 마르텐사이트 개수를 나타낸다.)
    식(2)
    B(%) = {BA/(MA+BA)}×100
    (여기서, BA: 베이나이트 점유 면적, MA: 마르텐사이트 점유 면적을 나타낸다.)
  2. 제 1항에 있어서,
    상기 강판은 전체 미세조직 중 마르텐사이트 분율이 1~8%인 성형성이 우수한 복합조직강판.
  3. 제 1항에 있어서,
    상기 강판은 항복비(YR)가 0.45~0.6인 성형성이 우수한 복합조직강판.
  4. 제 1항에 있어서,
    상기 강판은 항복비(YR)가 0.6 초과 ~ 0.8 이하인 성형성이 우수한 복합조직강판.
  5. 중량%로, 탄소(C): 0.01~0.08%, 망간(Mn): 1.5~2.5%, 크롬(Cr): 1.0% 이하(0%는 제외), 실리콘(Si): 1.0% 이하(0%는 제외), 인(P): 0.1% 이하(0%는 제외), 황(S): 0.01% 이하(0%는 제외), 질소(N): 0.01% 이하(0%는 제외), 산가용 알루미늄(sol.Al): 0.02~0.1%, 몰리브덴(Mo): 0.1% 이하(0%는 제외), 보론(B): 0.003% 이하(0%는 제외), 잔부 Fe 및 기타 불가피한 불순물로 이루어지고, 상기 Mn과 Cr의 중량% 합(Mn+Cr)이 1.5~3.5%를 만족하는 강 슬라브를 재가열하는 단계;
    상기 재가열된 강 슬라브를 Ar3 변태점 이상에서 마무리 열간압연하여 열연강판을 제조하는 단계;
    상기 열연강판을 450~700℃에서 권취하는 단계;
    상기 권취된 열연강판을 40~80%의 압하율로 냉간압연하여 냉연강판을 제조하는 단계; 및
    상기 냉연강판을 연속 소둔로 또는 합금화 용융도금 연속로에서 760~850℃의 온도범위로 소둔 처리하는 단계를 포함하고,
    상기 소둔 처리된 강판은 주상으로 페라이트를 포함하고, 전 두께(t) 기준으로 1/4t 지점에서 미세 마르텐사이트 분율이 1~8%이고, 하기 식(1)로 정의되는 페라이트 결정립계에 존재하는 평균 입경 1㎛ 미만의 마르텐사이트의 점유비(M%)가 90% 이상이며, 하기 식(2)로 정의되는 전체 2상 조직 중 베이나이트의 면적비(B%)가 3% 이하(0% 포함)인 성형성이 우수한 복합조직강판의 제조방법.
    식(1)
    M(%) = {Mgb/(Mgb+Min)}×100
    (여기서, Mgb: 페라이트 결정립계에 존재하는 마르텐사이트 개수, Min: 페라이트 결정립내에 존재하는 마르텐사이트 개수를 나타낸다.)
    식(2)
    B(%) = {BA/(MA+BA)}×100
    (여기서, BA: 베이나이트 점유 면적, MA: 마르텐사이트 점유 면적을 나타낸다.)
  6. 제 5항에 있어서,
    상기 소둔 처리 후 조질압연하는 단계를 더 포함하는 것을 특징으로 하는 성형성이 우수한 복합조직강판의 제조방법.
  7. 제 6항에 있어서,
    상기 조질압연시 압하율이 0.85% 이하(0%는 제외)인 경우, 하기 식(3)에 의해 계산되는 값이 0.45~0.6의 범위를 만족하는 것인 성형성이 우수한 복합조직강판의 제조방법.
    식(3)
    계산 값 = (0.1699*x)+0.4545
    (여기서, x: 조질압하율(%)을 나타낸다.)
  8. 제 6항에 있어서,
    상기 조질압연시 압하율이 0.86~2.0%인 경우, 상기 식(3)에 의해 계산되는 값이 0.6 초과 ~ 0.8 이하의 범위를 만족하는 것인 성형성이 우수한 복합조직강판의 제조방법.
PCT/KR2015/012746 2014-12-10 2015-11-26 성형성이 우수한 복합조직강판 및 이의 제조방법 WO2016093513A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017530609A JP6516845B2 (ja) 2014-12-10 2015-11-26 成形性に優れた複合組織鋼板及びその製造方法
US15/528,989 US10400301B2 (en) 2014-12-10 2015-11-26 Dual-phase steel sheet with excellent formability and manufacturing method therefor
CN201580067763.0A CN107109601B (zh) 2014-12-10 2015-11-26 成型性优异的复合组织钢板及其制造方法
EP15866709.7A EP3231886B1 (en) 2014-12-10 2015-11-26 Complex-phase steel sheet with excellent formability and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140177837A KR101620750B1 (ko) 2014-12-10 2014-12-10 성형성이 우수한 복합조직강판 및 이의 제조방법
KR10-2014-0177837 2014-12-10

Publications (2)

Publication Number Publication Date
WO2016093513A2 true WO2016093513A2 (ko) 2016-06-16
WO2016093513A3 WO2016093513A3 (ko) 2017-05-18

Family

ID=56023735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012746 WO2016093513A2 (ko) 2014-12-10 2015-11-26 성형성이 우수한 복합조직강판 및 이의 제조방법

Country Status (6)

Country Link
US (1) US10400301B2 (ko)
EP (1) EP3231886B1 (ko)
JP (1) JP6516845B2 (ko)
KR (1) KR101620750B1 (ko)
CN (1) CN107109601B (ko)
WO (1) WO2016093513A2 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101797401B1 (ko) 2016-12-07 2017-11-13 주식회사 포스코 소부 경화성 및 상온 내시효성이 우수한 용융 아연계 도금강판 및 그 제조방법
CN110117755B (zh) * 2019-05-21 2020-11-03 安徽工业大学 一种980MPa级低屈强比冷轧中锰钢的制备方法
RU2709075C1 (ru) * 2019-08-19 2019-12-13 Акционерное общество "Выксунский металлургический завод" Способ производства горячекатаного рулонного проката из низколегированной стали

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081640A1 (fr) 2000-04-21 2001-11-01 Nippon Steel Corporation Plaque d'acier presentant une excellente aptitude a l'ebarbage et une resistance elevee a la fatigue, et son procede de production
DE60143907D1 (de) 2000-11-28 2011-03-03 Jfe Steel Corp Kompositstruktur-stahlplatte mit hoher zugfestigkeit, beschichtete kompositstruktur-stahlplatte mit hoher zugfestigkeit und deren herstellungsverfahren
JP4165272B2 (ja) 2003-03-27 2008-10-15 Jfeスチール株式会社 疲労特性および穴拡げ性に優れる高張力溶融亜鉛めっき鋼板およびその製造方法
CN102011053B (zh) * 2003-09-30 2013-07-24 新日铁住金株式会社 焊接性和延展性优良的高屈服比高强度薄钢板及制造方法
JP4308689B2 (ja) 2004-03-16 2009-08-05 Jfeスチール株式会社 加工性の良好な高強度鋼およびその製造方法
FR2887386B1 (fr) * 2005-06-17 2007-08-10 Alcatel Sa Encapsulation de trames stm-n/sts-m sous ethernet
JP5157146B2 (ja) 2006-01-11 2013-03-06 Jfeスチール株式会社 溶融亜鉛めっき鋼板
JP5272547B2 (ja) 2007-07-11 2013-08-28 Jfeスチール株式会社 降伏強度が低く、材質変動の小さい高強度溶融亜鉛めっき鋼板およびその製造方法
KR101290883B1 (ko) 2010-01-13 2013-07-29 신닛테츠스미킨 카부시키카이샤 성형성이 우수한 고강도 강판 및 그 제조 방법
JP4998757B2 (ja) * 2010-03-26 2012-08-15 Jfeスチール株式会社 深絞り性に優れた高強度鋼板の製造方法
KR101225246B1 (ko) * 2010-09-29 2013-01-22 현대하이스코 주식회사 성형성이 우수한 자동차용 고강도 냉연 복합조직강판 및 그 제조 방법
KR20120132834A (ko) * 2011-05-30 2012-12-10 현대제철 주식회사 고강도 냉연강판 및 그 제조 방법
KR101377861B1 (ko) * 2011-06-03 2014-03-26 현대제철 주식회사 조질압연을 이용하여 항복강도가 우수한 dp 강판 제조 방법
CA2842800C (en) 2011-07-29 2016-09-06 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet and high-strength galvanized steel sheet excellent in shape fixability, and manufacturing method thereof
US10538830B2 (en) 2011-10-06 2020-01-21 Nippon Steel Corporation Steel sheet and method of producing the same
KR20140024678A (ko) * 2012-08-20 2014-03-03 주식회사 포스코 신장 플랜지성이 우수한 고강도 냉연강판 및 그 제조방법
CN105074018A (zh) * 2013-03-28 2015-11-18 现代制铁株式会社 钢板及其制备方法

Also Published As

Publication number Publication date
EP3231886A2 (en) 2017-10-18
CN107109601B (zh) 2020-03-13
EP3231886A4 (en) 2017-10-18
WO2016093513A3 (ko) 2017-05-18
CN107109601A (zh) 2017-08-29
JP6516845B2 (ja) 2019-05-22
EP3231886B1 (en) 2020-03-18
US20170306438A1 (en) 2017-10-26
KR101620750B1 (ko) 2016-05-13
JP2018502992A (ja) 2018-02-01
US10400301B2 (en) 2019-09-03

Similar Documents

Publication Publication Date Title
WO2015174605A1 (ko) 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2016098964A1 (ko) 재질 불균일이 작고 성형성이 우수한 고강도 냉연강판, 용융아연도금강판, 및 그 제조 방법
WO2018117501A1 (ko) 굽힘 가공성이 우수한 초고강도 강판 및 이의 제조방법
WO2018009041A1 (ko) 균열전파 저항성 및 연성이 우수한 열간성형 부재 및 이의 제조방법
WO2016098963A1 (ko) 구멍확장능이 우수한 용융아연도금강판, 합금화 용융아연도금강판 및 그 제조방법
WO2020050573A1 (ko) 항복강도비가 우수한 초고강도 고연성 강판 및 그 제조방법
WO2016104881A1 (ko) 굽힘 특성이 우수한 hpf 성형부재 및 그 제조방법
WO2018110867A1 (ko) 항복강도, 연성 및 구멍확장성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2017171366A1 (ko) 항복강도와 연성이 우수한 고강도 냉연강판, 도금강판 및 이들의 제조방법
WO2017111407A1 (ko) 고항복비형 고강도 냉연강판 및 그 제조방법
WO2020067752A1 (ko) 구멍확장성이 높은 고강도 냉연강판, 고강도 용융아연도금강판 및 이들의 제조방법
WO2017188654A1 (ko) 항복비가 우수한 초고강도 고연성 강판 및 이의 제조방법
WO2016105115A1 (ko) 표면품질, 도금밀착성 및 성형성이 우수한 고강도 용융아연도금강판 및 그 제조방법
WO2020022778A1 (ko) 내충돌 특성이 우수한 고강도 강판 및 이의 제조방법
WO2015099222A1 (ko) 용접성 및 버링성이 우수한 열연강판 및 그 제조방법
WO2018105904A1 (ko) 소부 경화성 및 상온 내시효성이 우수한 용융 아연계 도금강판 및 그 제조방법
WO2018117470A1 (ko) 저온역 버링성이 우수한 고강도 강판 및 이의 제조방법
WO2018117711A1 (ko) 굽힘가공성과 구멍확장성이 우수한 냉연강판 및 그 제조방법
WO2016093513A2 (ko) 성형성이 우수한 복합조직강판 및 이의 제조방법
WO2017051998A1 (ko) 도금 강판 및 이의 제조방법
WO2021112488A1 (ko) 내구성이 우수한 후물 복합조직강 및 그 제조방법
WO2019124781A1 (ko) 상온내시효성 및 소부경화성이 우수한 아연계 도금강판 및 그 제조방법
WO2021117989A1 (ko) 초고강도 냉연강판 및 이의 제조방법
WO2013154254A1 (ko) 재질 균일성이 우수한 고탄소 열연강판 및 이의 제조방법
WO2018117500A1 (ko) 굽힘성 및 신장플랜지성이 우수한 고장력강 및 이의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15528989

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017530609

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015866709

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866709

Country of ref document: EP

Kind code of ref document: A2