WO2017167195A1 - 一种无孔隔膜及其应用 - Google Patents

一种无孔隔膜及其应用 Download PDF

Info

Publication number
WO2017167195A1
WO2017167195A1 PCT/CN2017/078569 CN2017078569W WO2017167195A1 WO 2017167195 A1 WO2017167195 A1 WO 2017167195A1 CN 2017078569 W CN2017078569 W CN 2017078569W WO 2017167195 A1 WO2017167195 A1 WO 2017167195A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous
porous separator
compound
organic solvent
polymer material
Prior art date
Application number
PCT/CN2017/078569
Other languages
English (en)
French (fr)
Inventor
吴宇平
朱玉松
郑健
Original Assignee
浙江地坤键新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江地坤键新能源科技有限公司 filed Critical 浙江地坤键新能源科技有限公司
Priority to US16/080,630 priority Critical patent/US11205822B2/en
Priority to EP17773225.2A priority patent/EP3439070A4/en
Priority to JP2018545411A priority patent/JP6972000B2/ja
Publication of WO2017167195A1 publication Critical patent/WO2017167195A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/286Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of polymer materials and batteries, and particularly relates to a non-porous membrane and an application thereof.
  • lithium battery In order to increase the energy density of the battery, the aqueous electrolyte is changed to an organic electrolyte, so that the operating voltage of the battery can greatly exceed the theoretical decomposition voltage of water of 1.23V (Yuping Wu, Lithium-Ion Batteries: Fundamentals and Applications, CRC Press-Taylor & Francis, New York, 2015).
  • lithium batteries are currently preferred.
  • As a new type of chemical power source lithium battery has the advantages of high energy density, environmental friendliness, and no memory effect. Since its commercialization, lithium battery has been widely used in various portable electronic devices such as notebook computers, digital cameras, mobile phones, etc.
  • JP2000344325 inventor: Lundquist Joseph T, etc., name "Lithium battery”, application date 1986 May 15th; US invention patent application number US20000546266, inventor: Zhang Zhengming, the name “Separator for a high energy rechargeable lithium battery", application date April 10, 2000; Chinese invention patent application number CN201510240715.9, inventor : Wang Luoxin, etc., the name "a melt-blown polyphenylene sulfide non-woven lithium battery separator and its preparation method", application date May 13, 2015), and the porosity of these classic diaphragms must exceed 30% to get Good electrochemical performance, therefore even if the surface is coated with ceramics (Chinese Patent Application No.
  • the invention Person Gozdz AS, Schmutz CN, Tarascon J, Warren PC, the name "Separator membrane for electrolytic cell-comprising polymeric material and plasticizer", application date May 2, 1995; Chinese invention patent number: ZL 200710038632.7, inventor: Zhang Peng, Zhang Hanping, Li Zhaohui, Wu Yuping, the name "an organic-inorganic composite polymer electrolyte and its preparation method and application", date of authorization May 19, 2010).
  • the main matrix of the gel polymer electrolyte is also a porous polymer membrane material such as polyethylene, polypropylene, polyvinylidene fluoride, poly(vinylidene fluoride-hexafluoropropylene) or the like.
  • these porous polymer membrane materials cannot solve the problem of battery micro-short circuit caused by the introduction of foreign materials such as metal powder, on the other hand, they are compounded with fillers or other polymer materials (China Invention Patent No. ZL 200710041166.8, inventor) : Zhang Peng, Zhang Hanping, Li Zhaohui, Wu Yuping, the name "organic-inorganic composite polymer with microporous structure and its preparation method and application", date of authorization June 3, 2009; Chinese invention patent application number, inventor: Mao Wei, Zhen Xing, Wang Fang, name "A method for preparing a PVDF-PAM polymer lithium battery separator", application date April 10, 2015), their mechanical strength is still low, and it cannot be used in a large-scale application in batteries such as lithium batteries.
  • the object of the present invention is to overcome the problems that the conventional porous membrane cannot solve the micro short circuit and the poor safety performance, and at the same time overcome the disadvantage that the gel polymer electrolyte membrane cannot solve the micro short circuit and the mechanical strength is low, and two or Two or more polymer materials are used as a matrix to provide a non-porous membrane having a gelling function.
  • the diaphragm can avoid micro short circuit of the battery and greatly improve the pass rate of the battery.
  • Another object of the present invention is to provide an application of the above non-porous separator in a primary or secondary battery. Since the non-porous separator has a polymer material gelled by an organic solvent in the electrolyte, after the organic electrolyte is added, a gel polymer electrolyte is formed, and the prepared primary or secondary battery is at a high temperature, a low temperature, a cycle, and The service life has been significantly improved.
  • a non-porous separator of the present invention comprises two or more kinds of polymer materials, and at least one of the polymer materials can be gelled by an organic solvent; and the two or more kinds and the two or more types
  • the polymer material is a mixture of any of a mixture of molecular grade, nanoscale or micrometer scale.
  • the polymer material capable of being gelled by an organic solvent is a synthetic polymer compound or a natural polymer compound or a blend of a synthetic polymer compound and a natural polymer compound, and copolymerization. Materials, modifications and complexes.
  • the synthetic polymer material is a polymer of a polyether, a polysiloxane, a polyester, a polyacrylonitrile, a fluoropolymer, an acrylic acid and an ester thereof, and a polyvinyl chloride. , polyvinyl acetate, phenolic resin, epoxy resin, polyurethane, polyaromatic hydrocarbon, polyamide, polyimide One or two or more blends, copolymers, modifications and composites.
  • the synthetic polymer material further comprises a filler and an additive, and the weight ratio of the filler to the additive is 0.01 wt.% to 20 wt.% of the synthetic polymer material.
  • the weight ratio of the filler to the additive is preferably from 1 wt.% to 5 wt.% of the synthetic polymer material.
  • the natural polymer material is one or two or more of cellulose, starch, chitin, chitosan, collagen, gelatin, silk, and spider silk. Mixtures, modifications and complexes.
  • the modified natural polymer is one of an alkyl compound, a carboxyl compound, a sulfonic acid group compound, a carboxymethyl compound, a graft compound, and a crosslinking compound. Or a mixture of two or more.
  • the natural polymer further comprises a filler and an additive; and the weight ratio of the filler to the additive is 0.01 wt.% to 20 wt.% of the natural polymer material.
  • the weight ratio of the filler to the additive is preferably from 1 wt.% to 5 wt.% of the natural polymer material.
  • the filler and the additive include alumina, silica, titania, zirconia, aLi 2 O-bAl 2 O 3 -cTiO 2 -dP 2 O 5 (a, b, c a compound consisting of a compound of d between 1 and 100, aLi 2 O-bLa 2 O 3 -cZrO 2 -dTa 2 O 5 (a, b, c, d between 1 and 100), aLi 2 A compound consisting of S-bSiS 2 -cP 2 S 5 (a, b, c is between 1 and 100), montmorillonite, one or both of molecular sieves, and a mixture of two or more thereof.
  • the non-porous separator of the present invention further contains at least one polymer material (hereinafter referred to as a matrix) which cannot be gelated by an organic solvent.
  • the substrate may be any polymeric material that cannot be gelled by an organic solvent, such as a polyolefin such as polypropylene, polyethylene, polypropylene or a combination thereof, especially polypropylene, polypropylene/polyethylene/polypropylene; polyester , for example, polyethylene terephthalate, polybutylene terephthalate, especially polyethylene terephthalate; polyimide; polyvinylidene fluoride; poly(vinylidene fluoride - Hexafluoropropylene).
  • the substrate can be in the form of a film or a fiber cloth.
  • the substrate can be porous.
  • the content of the matrix is from 38.46 to 64.77 wt%, based on the total weight of the separator.
  • the organic solvent is any organic solvent that can be used in the battery electrolyte.
  • the non-porous membrane of the present invention has a thickness of from 1 to 200 microns.
  • the non-porous membrane of the present invention preferably has a thickness of from 5 to 40 microns.
  • non-porous means that the gas permeability of the separator is found by gas permeability detection (the area of the separator is 10 cm 2 and the gas pressure difference between the two sides is 1 atmosphere and the time is 10 minutes). 0 ml/min.
  • the present invention also relates to a method of preparing a non-porous separator comprising two or more polymer materials, at least one of which can be gelled by an organic solvent, and at least one of which is incapable of being condensed by an organic solvent Gelatinization - that is, a substrate, the method comprising dissolving a polymer material capable of being gelled by an organic solvent in a solvent to form a solution; immersing the substrate in the solution, evaporating the solvent, thereby enabling gelation by the organic solvent The polymer material is precipitated from the solution and deposited on the substrate.
  • the solvent may be any solvent capable of dissolving the polymer material capable of being gelled by an organic solvent, and is, for example, acetone, N,N'-dimethylformamide, butyl acetate, water, acetonitrile or the like.
  • a filler and an additive may be incorporated in the solution, and deposited on the substrate together with the polymer material capable of being gelled by the organic solvent.
  • the fillers and additives are those described above.
  • the present invention also relates to the use of the nonporous separator of the present invention as a separator for a primary or secondary battery using an organic solvent-based electrolyte.
  • a polymer material capable of being gelated by an organic solvent in the separator gels due to an organic solvent in a battery, thereby causing a conductive ion Can pass through the diaphragm.
  • the invention further relates to a battery comprising the non-porous membrane of the invention.
  • the invention adopts a non-porous membrane composed of at least two polymer materials, which can avoid micro-short circuit caused by foreign matter such as metal and large-scale high-energy density battery because there is no pore of the classical diaphragm and the gel membrane. Product pass rate.
  • the non-porous separator has a polymer material which can be gelled by an organic solvent, and thus the prepared battery has good safety and cycle performance.
  • a polypropylene film having a thickness of 15 ⁇ m and a porosity of 60% was placed in a 10 wt.% solution of polyvinylidene fluoride in acetone, and heated to 30 ° C. After the acetone was continuously volatilized, polyvinylidene fluoride was precipitated from the solution and filled. Into the pores of polypropylene. Thus, a separator having a weight ratio of polypropylene to polyvinylidene fluoride of 39:61 was obtained.
  • the gas permeability test (the area of the diaphragm is 10 cm 2 , the gas pressure difference between the two sides is 1 atmosphere, the time is 10 minutes), the gas permeability is found to be 0 ml / min, and also observed by scanning electron microscopy, and found that there is no The apparent pore structure was measured with a spiral micrometer and was 15 microns thick. This indicates that the membrane is non-porous.
  • a mixture of LiFePO 4 , conductive carbon black, and binder PVDF (weight ratio of 9:0.4:0.6) was used as a positive electrode, and was fixed to the surface of the positive electrode on the positive electrode sheet at a ratio of 3 micrometers of iron microspheres per ampere-hour.
  • Example 1 The other conditions were the same as in Example 1, except that the separator was used to have a thickness of 13 to 18 ⁇ m, a porosity of 40%, a pore diameter of 0.1 to 0.3 ⁇ m, and a material of polypropylene.
  • the relevant performance of the battery was then measured according to the method described in Example 1, and the relevant data is summarized in Table 1.
  • a polypropylene/polyethylene/polypropylene composite film having a thickness of 30 ⁇ m and a porosity of 50% was placed in a solution of 10 wt.% polyacrylonitrile in N,N'-dimethylformamide and heated to 100 ° C. After N,N'-dimethylformamide is continuously volatilized, polyacrylonitrile is precipitated from the solution and filled into the pores of the polypropylene/polyethylene/polypropylene. This gives a polypropylene/polyethylene/polypropylene to polyacrylonitrile weight ratio of 49:51. Diaphragm.
  • the gas permeability test (the method is the same as in the first embodiment), it was found that the gas permeability was 0 ml/min, and also observed by a scanning electron microscope, and it was found that there was no obvious pore-like structure, and the thickness was 31 ⁇ m by a spiral micrometer. . This indicates that the membrane is non-porous.
  • the proportion of mm iron microspheres is fixed to the surface of the positive electrode to modify the mixture of natural graphite (Shanghai Shanshan Co., Ltd., LA1), conductive carbon black, and binder PVDF (weight ratio 9:0.3:0.7) as the negative electrode.
  • the above non-porous separator is used as a separator, and is wound into a square lithium ion battery according to a conventional method. After being formed, the volume is divided and the test battery is qualified. rate. Then, a charge and discharge cycle was performed at a 100% discharge depth between 2.5 and 4.40 V at 1 C, and the appearance and capacity change of the battery after 500 cycles were observed. Some data are shown in Table 1.
  • Example 2 Other conditions were the same as in Example 2 except that the separator was used to have a thickness of 28 to 32 ⁇ m, a porosity of 43%, a pore diameter of 0.1 to 0.3 ⁇ m, a material of polypropylene, and both surfaces coated with a thickness of about 2 ⁇ m and a particle diameter of 100 nm.
  • a composite film of SiO 2 was then measured according to the method described in Example 1, and the relevant data is summarized in Table 1.
  • a polyethylene terephthalate film having a thickness of 20 ⁇ m and a porosity of 45% was placed in a solution of 20 wt.% polyvinyl acetate in butyl acetate, and the solution was uniformly dispersed in a mass ratio of 5 wt.%.
  • TiO 2 having a particle diameter of 50 nm was heated to 70 ° C, and butyl acetate was continuously volatilized, and polyvinyl acetate containing TiO 2 was precipitated from the solution and filled into the pores of polyethylene terephthalate.
  • a separator having a weight ratio of polyethylene terephthalate, polyvinyl acetate and TiO 2 of 46:44:11 was obtained.
  • the gas permeability test (the method is the same as in the first embodiment), it is found that the gas permeability is 0 ml/min, and also observed by a scanning electron microscope, and it is found that there is no obvious pore-like structure, and the thickness is 20 ⁇ m by a spiral micrometer. . This indicates that the membrane is non-porous.
  • the proportion of mm iron microspheres is fixed to the surface of the positive electrode to modify the mixture of natural graphite (Shanghai Shanshan Co., Ltd., LA1), conductive carbon black, and binder PVDF (weight ratio 9:0.3:0.7) as the negative electrode.
  • LB-315 (Guotai Huarong Chemical Co., Ltd., Zhangjiagang City, Jiangsu province, China) as an electrolyte
  • the above-mentioned non-porous separator is used as a separator
  • a lithium-ion battery packaged in an aluminum plastic film is prepared in a conventional manner, and is divided into a volume after being formed.
  • the pass rate of the battery was performed.
  • a charge and discharge cycle was performed at a 100% discharge depth between 2.5 and 4.40 V at 1 C, and the appearance and capacity change of the battery after 500 cycles were observed.
  • Example 3 The other conditions were the same as in Example 3 except that the separator was made of polypropylene/polyethylene/polypropylene having a thickness of 18 to 22 ⁇ m, a porosity of 38%, a pore diameter of 0.1 to 0.3 ⁇ m, and a three-layer structure.
  • the relevant performance of the battery was then measured according to the method described in Example 3, and the relevant data is summarized in Table 1.
  • a polyimide fiber cloth having a thickness of 50 ⁇ m and a diameter of 200 nm was placed in an aqueous solution of 2 wt.% carboxymethylcellulose, and the solution contained 20Li uniformly dispersed in a mass ratio of 0.4 wt.% and having a particle diameter of 50 nm.
  • the gas permeability test (the method is the same as in the first embodiment), it is found that the gas permeability is 0 ml/min, and also observed by a scanning electron microscope, and it is found that there is no obvious pore-like structure, and the thickness is 20 ⁇ m by a spiral micrometer. . This indicates that the membrane is non-porous.
  • a mixture of Li 1.05 Ni 0.8 Co 0.1 Mn 0.1 O 2 , conductive carbon black, and binder PVDF (weight ratio of 9:0.4:0.6) was used as a positive electrode, and the particle diameter of the positive electrode sheet was 0.1 mm per ampere.
  • the proportion of iron microspheres was fixed to the surface of the positive electrode, and a mixture of artificial graphite (Shanghai Shanshan Co., Ltd., CMS), conductive carbon black, and binder PVDF (weight ratio of 9:0.3:0.7) was used as the negative electrode to LB-315.
  • the above-mentioned non-porous separator is used as a separator, and a square lithium ion battery packaged in a metal aluminum casing is prepared in a conventional manner, and after being formed into a separator, the battery is tested and divided. Pass rate. Then, a charge and discharge cycle was performed at a 100% discharge depth between 2.5 and 4.40 V at 1 C, and the appearance and capacity change of the battery after 1000 cycles were observed. Some data are shown in Table 1.
  • Example 4 The other conditions were the same as in Example 4 except that the separator was coated with polypropylene/polyethylene/polypropylene having a thickness of about 50 ⁇ m, a porosity of 55%, a pore diameter of 0.1 to 0.3 ⁇ m, and an intermediate material having a three-layer structure.
  • the relevant performance of the battery was then measured in accordance with the method described in Example 4, and the relevant data is summarized in Table 1.
  • a polyvinylidene fluoride film having a thickness of 30 ⁇ m, a porosity of 35%, and an average pore diameter of 400 nm was placed in a 20 wt.% polyacrylonitrile solution in acetonitrile, and the solution contained a mass ratio of 0.2 wt.% uniformly dispersed, and the particles were uniformly dispersed.
  • Li 2 S-3SiS 2 -5P 2 S 5 having a diameter of 50 nm, heated to 120 ° C, until acetonitrile is continuously volatilized, and polyacrylonitrile containing Li 2 S-3SiS 2 -5P 2 S 5 is precipitated from the solution and filled into the poly In the pores of vinylidene fluoride.
  • a separator having a polyvinylidene fluoride film, polyacrylonitrile, and Li 2 S-3SiS 2 -5P 2 S 5 weight ratio of 65:35:0.35 was obtained.
  • the gas permeability test (the method is the same as in the first embodiment), it is found that the gas permeability is 0 ml/min, and also observed by scanning electron microscopy, and it is found that there is no obvious pore structure, and the thickness is 30 micrometers. . This indicates that the membrane is non-porous.
  • the proportion of the ball is fixed to the surface of the positive electrode, and a mixture of artificial graphite (Shanghai Shanshan Co., Ltd., CMS), conductive carbon black, and binder PVDF (weight ratio of 9:0.3:0.7) is used as the negative electrode, and LB-315 (Guotai Huarong Chemical Co., Ltd., Zhangjiagang City, Jiangsuzhou, China)
  • LB-315 Guotai Huarong Chemical Co., Ltd., Zhangjiagang City, Jiangsu province, China
  • the electrolyte the above-mentioned non-porous separator is used as a separator, and a square lithium ion battery packaged in an aluminum plastic film is prepared in a conventional manner, and the capacity is divided after the formation, and the pass rate of the test battery is tested. . Then, a charge-discharge cycle was performed at a 100% discharge depth between 2.5 and 4.20 V at 1 C, and the appearance and capacity change of the battery after 500 cycles were
  • Example 5 The other conditions were the same as in Example 5 except that the separator was a polyvinylidene fluoride film having a thickness of about 30 ⁇ m, a porosity of 35%, and an average pore diameter of 400 nm.
  • the relevant performance of the battery was then measured in accordance with the method described in Example 5, and the relevant data is summarized in Table 1.
  • the non-porous separator used in the present invention is used in a high energy density battery, which not only prevents micro short circuit of the battery, but also has high yield of the battery product and cycle life. Long, small volume changes.
  • the non-porous separator of the present invention is mainly used as a separator for a primary or secondary battery using an organic solvent-based electrolyte, the negative electrode of which is an alkali metal, an alkali metal alloy, a carbon material, an alloy of tin and tin, silicon or silicon.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

本发明属于高分子材料和电池技术领域,具体涉及一种无孔隔膜及其应用,更具体地涉及一种无孔且具有凝胶化功能的隔膜及其应用。该种无孔隔膜由两种或者两种以上高分子材料组成,其中至少一种能够被有机溶剂凝胶化。该种无孔隔膜用于采用有机溶剂类电解质的、能量密度高的电池中,不但能够防止金属等异物引入产生的微短路,提高产品的合格率,而且能够大幅度改善该类电池的安全性能和循环使用寿命。

Description

一种无孔隔膜及其应用 技术领域
本发明属于高分子材料和电池技术领域,具体涉及一种无孔隔膜及其应用。
研究背景
为了提高电池的能量密度,将水溶液电解质改为有机电解质,这样电池的工作电压可以大幅度超过水的理论分解电压1.23V(Yuping Wu,Lithium-Ion Batteries:Fundamentals and Applications,CRC Press-Taylor&Francis,New York,2015)。在使用有机电解质的一次或者二次电池中,目前性能比较理想的为锂电池。锂电池作为一种新型化学电源,具有能量密度高、环境友好、无记忆效应等优点,自其商品化以来已广泛应用于笔记本电脑、数码相机、手机等各种便携式电子设备中,同时其也是混合动力电动汽车(HEV)、插电式混合动力电动汽车(PHEV),纯电动汽车(EV)及小型智能电网的理想储能设备之一。然而,由于LiPF6系有机电解液(对水份敏感,易燃,易引起电池***)的广泛应用使得大容量锂离子电池的安全性和可靠性受到质疑。同时,由于其使用的隔膜为多孔聚合物如聚乙烯、聚丙烯、聚苯硫醚等材料(例如日本发明专利号JP2000344325,发明人:Lundquist Joseph T等,名称“Lithium battery”,申请日期1986年5月15日;美国发明专利申请号US20000546266,发明人:Zhang Zhengming,名称“Separator for a high energy rechargeable lithium battery”,申请日期2000年4月10日;中国发明专利申请号CN201510240715.9,发明人:王罗新等,名称“一种熔喷聚苯硫醚无纺布锂电池隔膜及其制备方法”,申请日期2015年5月13日),而这些经典隔膜的孔隙率必须超过30%才能得到较佳的电化学性能,因此即使在其表面涂覆了陶瓷(中国发明专利申请号CN201410445356.6,发明人:吴术球等,名称“陶瓷和凝胶聚合物多层复合的锂电池隔膜及其制备方法”,申请日 期2014年9月2日;中国发明专利申请,发明人:伍伯林、许静、白守萍,名称“一种锂电池用复合隔膜及其制备方法和包括该复合隔膜的锂电池”,申请日期2012年7月17日;德国专利申请号DE201110105956,发明人:Daimler A,名称“Method for manufacturing ceramic separator for lithium ion battery,involves providing the water-repelling substance on the surface of ceramic particles of separator”,申请日期2011年6月29日;美国专利申请号US20090620150,发明人:Kim Dong等,名称“Method for preparing cross-linked ceramic-coated separator containing ionic polymer,ceramic-coated separator prepared by the method,and lithium secondary battery using the same”,申请日期2009年11月17日),如果有少量金属等异物引入,由于其依然有大量的孔隙结构,无法解决微短路的问题,经常导致锂电池的大规模召回。例如东芝电脑网络(上海)有限公司将自2016年1月28日起,召回部分从日本进口的东芝笔记本电脑电池,原因是由于电芯材料中混入了不恰当的材料(铁),在电池充放电的过程中可能会造成微短路。
为了解决常规锂离子电池的安全性问题,后来发现采用加入增塑剂的凝胶体(凝胶聚合物电解质,gel polymer electrolytes,GPEs)。由于凝胶聚合物电解质具有固体和液体电解质的双重性质,导电率与有机液体电解质相当,且电化学窗口较宽,热稳定性好,受到广泛关注(例如美国发明专利申请号US5418091-A,发明人:Gozdz AS、Schmutz CN、Tarascon J、Warren PC,名称“Separator membrane for electrolytic cell-comprising polymeric material and plasticizer”,申请日期1995年5月2日;中国发明专利号:ZL 200710038632.7,发明人:张鹏、张汉平、李朝晖、吴宇平,名称“一种有机无机复合聚合物电解质及其制备方法和应用”,授权日期2010年5月19日)。但是,凝胶聚合物电解质的主要基体也是多孔的高分子膜材料,如聚乙烯、聚丙烯、聚偏氟乙烯、聚(偏氟乙烯-六氟丙烯)等。一方面这些多孔的高分子膜材料同样无法解决由于金属粉等异物引入而引起的电池微短路问题,另一方面它们即使与填料或者其它高分子材料等复合(中国发明专利号ZL 200710041166.8,发明人:张鹏、张汉平、李朝晖、 吴宇平,名称“具有微孔结构的有机无机复合聚合物及其制备方法和应用”,授权日期2009年6月3日;中国发明专利申请号,发明人:毛威、振兴、王芳,名称“一种PVDF-PAM聚合物锂电池隔膜的制备方法”,申请日期2015年4月10日),它们的机械强度依然低,无法在锂电池等电池中得到大规模应用。
自从电池诞生以来,除了最先采用浆糊作为隔膜外,以后的纸质、玻璃纤维毡、无纺布等均是多孔的。锂电池自其20世纪70年度诞生以来就没有采用过无孔材料作为隔膜。我们经过长期的研究,发明了本专利。
发明内容
本发明的目的在于克服现有多孔隔膜无法解决微短路的问题以及安全性能差的缺点,同时,也克服凝胶聚合物电解质膜无法解决微短路的问题以及机械强度低的缺点,将两种或者两种以上高分子材料作为基体,提供一种无孔但具有凝胶化功能的隔膜。该种隔膜能够避免电池的微短路,大幅度提高电池的合格率。
本发明的另一目的在于提供上述无孔隔膜在一次或者二次电池中的应用。由于无孔隔膜中具有被电解液中的有机溶剂凝胶化的高分子材料,加入有机电解液以后,形成了凝胶聚合物电解质,所制备的一次或者二次电池在高温、低温、循环和使用寿命方面得到了明显的提高。
本发明的一种无孔隔膜包括两种或者两种以上的高分子材料,且其中至少有一种高分子材料能够被有机溶剂凝胶化;且所述的两种或者两种及两种以上的高分子材料是分子级、纳米级或者微米级尺度的混合中的任一种混合。
在本发明的无孔隔膜中,所述的能够被有机溶剂凝胶化的高分子材料是合成高分子化合物或者天然高分子化合物或者是合成高分子化合物和天然高分子化合物的共混物、共聚物、改性物及复合物。
在本发明的无孔隔膜中,所述的合成高分子材料是聚醚类、聚硅氧烷、聚酯、聚丙烯腈、含氟聚合物、丙烯酸及其酯类的聚合物、聚氯乙烯、聚醋酸乙烯酯、酚醛树脂、环氧树脂、聚氨酯、聚芳烃、聚酰胺、聚酰亚胺 中的一种或者两种及两种以上的共混物、共聚物、改性物与复合物。
在本发明的无孔隔膜中,所述的合成高分子材料还包括有填料和添加剂,且填料和添加剂的重量比为合成高分子材料的0.01wt.%-20wt.%。
在本发明的无孔隔膜中,所述的填料和添加剂的重量比优选为合成高分子材料的1wt.%-5wt.%。
在本发明的无孔隔膜中,所述的天然高分子材料是纤维素、淀粉、甲壳素、壳聚糖、胶原、明胶、蚕丝、蜘蛛丝中的一种或者两种及两种以上的共混物、改性物与复合物。
在本发明的无孔隔膜中,所述的天然高分子的改性物为它们的烷基化合物、羧基化合物、磺酸基化合物、羧甲基化合物、接枝化合物、交联化合物中的一种或者两种及两种以上的混合物。
在本发明的无孔隔膜中,所述的天然高分子还包括填料和添加剂;且所述的填料和添加剂的重量比为天然高分子材料的0.01wt.%-20wt.%。
在本发明的无孔隔膜中,所述的填料和添加剂的重量比优选为天然高分子材料的1wt.%-5wt.%。
在本发明的无孔隔膜中,所述的填料和添加剂包括氧化铝、氧化硅、氧化钛、氧化锆、aLi2O-bAl2O3-cTiO2-dP2O5(a、b、c、d位于1-100之间)组成的化合物、aLi2O-bLa2O3-cZrO2-dTa2O5(a、b、c、d位于1-100之间)组成的化合物、aLi2S-bSiS2-cP2S5(a、b、c位于1-100之间)组成的化合物、蒙脱土、分子筛中的一种或者两种及两种以上的混合物。
本发明的无孔隔膜还包含至少一种不能被有机溶剂凝胶化的高分子材料(下文称为基体)。基体可为任何不能被有机溶剂凝胶化的高分子材料,例如聚烯烃,如聚丙烯、聚乙烯、聚丙烯或其组合物,尤其是聚丙烯、聚丙烯/聚乙烯/聚丙烯;聚酯,例如聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯,尤其是聚对苯二甲酸乙二醇酯;聚酰亚胺;聚偏氟乙烯;聚(偏氟乙烯-六氟丙烯)等。基体可呈膜或纤维布的形式。所述基体可为多孔的。
在本发明的无孔隔膜中,基体的含量为38.46-64.77重量%,基于隔膜的总重量。
就本发明而言,有机溶剂为任何能用于电池电解液中的有机溶剂。
在本发明的无孔隔膜中,所述的无孔隔膜厚度为1-200微米。
在本发明的无孔隔膜中,所述的无孔隔膜厚度优选为5-40微米。
在本发明中,“无孔”是指通过透气性检测(隔膜的面积为10平方厘米,两侧气体压差为1个大气压,时间为10分钟),发现所述隔膜的气体透过率为0ml/min。
本发明还涉及一种制备无孔隔膜的方法,所述无孔隔膜包括两种或者两种以上高分子材料,其中至少一种能够被有机溶剂凝胶化,且至少一种不能被有机溶剂凝胶化—即基体,所述方法包括将能够被有机溶剂凝胶化的高分子材料溶解在溶剂中,从而形成溶液;将基体浸入所述溶液中,蒸发溶剂,从而使得能够被有机溶剂凝胶化的高分子材料从溶液中析出并沉积在基体上。所述溶剂可为能够溶解所述能够被有机溶剂凝胶化的高分子材料的任何溶剂,例如为丙酮、N,N’-二甲基甲酰胺、乙酸丁酯、水、乙腈等。
当希望加入填料和添加剂时,可在所述溶液中掺入填料和添加剂,且与所述能够被有机溶剂凝胶化的高分子材料一起沉积在基体上。所述填料和添加剂为上文所述的那些。
本发明还涉及本发明无孔隔膜的用途,其用作采用有机溶剂类电解质的一次或者二次电池的隔膜。
当将本发明的无孔隔膜用于一次或者二次电池中时,所述隔膜中的能够被有机溶剂凝胶化的高分子材料因电池中的有机溶剂而凝胶化,由此使得导电离子能穿过隔膜。
本发明还涉及一种电池,其包含本发明的无孔隔膜。
本发明采用由至少两种高分子材料组成的无孔隔膜,该无孔隔膜由于不存在经典隔膜和凝胶隔膜的孔隙,因此能够避免金属等异物引起的微短路,大规模提高高能量密度电池的产品合格率。同时,该无孔隔膜中存在能够被有机溶剂凝胶化的高分子材料,因此所制备的电池具有良好的安全和循环性能。
具体实施方式
为了更好的阐述本发明,下面结合具体的实施例对本发明作进一步的描述,但并不限于以下实施例。
实施例1
将厚度为15微米、孔隙率为60%的聚丙烯膜放入到10wt.%聚偏氟乙烯的丙酮溶液中,加热到30℃,待丙酮不断挥发,聚偏氟乙烯从溶液中析出,填充到聚丙烯的孔隙中。这样得到聚丙烯与聚偏氟乙烯重量比为39:61的隔膜。通过透气性检测(隔膜的面积为10平方厘米,两侧气体压差为1个大气压,时间为10分钟),发现气体的透过率为0ml/min,同时也用扫描电镜进行观察,发现没有明显的孔状结构,用螺旋测微器检测,厚度为15微米。这表明该隔膜为无孔的。
以LiFePO4、导电炭黑、粘合剂PVDF(重量比9:0.4:0.6)的混合物作为正极,并在正极片上按照每安时3颗粒径为0.1mm铁微球的比例固定到正极表面,以人造石墨(上海杉杉股份有限公司,CMS)、导电炭黑、粘合剂PVDF(重量比9:0.4:0.6)的混合物作为负极,以LB-315(国泰华荣化工有限公司,中国江苏省张家港市)作为电解液,将上述无孔隔膜作为隔膜,按照传统方式卷绕成锂离子电池,化成后进行分容,测试电池的合格率。然后在1C下2.5-4.0V之间100%放电深度进行充放电循环,观察2000次循环后电池外观和容量变化情况。部分数据示于表1中。
对比例1
其它条件与实施例1相同,除了隔膜采用厚度为13-18微米、孔隙率为40%、孔径为0.1-0.3微米、材料为聚丙烯。然后按照实施例1所述的方法测量电池的有关性能,有关数据汇总于表1。
实施例2
将厚度为30微米、孔隙率为50%的聚丙烯/聚乙烯/聚丙烯复合膜放入到10wt.%聚丙烯腈的N,N′-二甲基甲酰胺溶液中,加热到100℃,待N,N′-二甲基甲酰胺不断挥发,聚丙烯腈从溶液中析出,填充到聚丙烯/聚乙烯/聚丙烯的孔隙中。这样得到聚丙烯/聚乙烯/聚丙烯与聚丙烯腈重量比为49:51的 隔膜。通过透气性检测(方法同实施例1),发现气体的透过率为0ml/min,同时也用扫描电镜进行观察,发现没有明显的孔状结构,用螺旋测微器检测,厚度为31微米。这表明该隔膜为无孔的。
以高压LiCoO2(湖南杉杉股份有限公司,LC800S)、导电炭黑、粘合剂PVDF(重量比9:0.4:0.6)的混合物作为正极,并在正极片上按照每安时3颗粒径为0.1mm铁微球的比例固定到正极表面,以改性天然石墨(上海杉杉股份有限公司,LA1)、导电炭黑、粘合剂PVDF(重量比9:0.3:0.7)的混合物作为负极,以LB-315(国泰华荣化工有限公司,中国江苏省张家港市)作为电解液,将上述无孔隔膜作为隔膜,按照传统方式卷绕成方形锂离子电池,化成后进行分容,测试电池的合格率。然后在1C下2.5-4.40V之间100%放电深度进行充放电循环,观察500次循环后电池外观和容量变化情况。部分数据示于表1中。
对比例2
其它条件与实施例2相同,除了隔膜采用厚度为28-32微米、孔隙率为43%、孔径为0.1-0.3微米、材料为聚丙烯、两面均涂布有厚度约为2微米粒径为100nm的SiO2的复合膜。然后按照实施例1所述的方法测量电池的有关性能,有关数据汇总于表1。
实施例3
将厚度为20微米、孔隙率为45%的聚对苯二甲酸乙二醇酯膜放入到20wt.%聚醋酸乙烯酯的乙酸丁酯溶液中,该溶液含有质量比为5wt.%均匀分散、粒径为50nm的TiO2,加热到70℃,待乙酸丁酯不断挥发,含有TiO2的聚醋酸乙烯酯从溶液中析出,填充到聚对苯二甲酸乙二醇酯的孔隙中。这样得到聚对苯二甲酸乙二醇酯、聚醋酸乙烯酯与TiO2重量比为46:44:11的隔膜。通过透气性检测(方法同实施例1),发现气体的透过率为0ml/min,同时也用扫描电镜进行观察,发现没有明显的孔状结构,用螺旋测微器检测,厚度为20微米。这表明该隔膜为无孔的。
以高压LiCoO2(湖南杉杉股份有限公司,LC800S)、导电炭黑、粘 合剂PVDF(重量比9:0.4:0.6)的混合物作为正极,并在正极片上按照每安时3颗粒径为0.1mm铁微球的比例固定到正极表面,以改性天然石墨(上海杉杉股份有限公司,LA1)、导电炭黑、粘合剂PVDF(重量比9:0.3:0.7)的混合物作为负极,以LB-315(国泰华荣化工有限公司,中国江苏省张家港市)作为电解液,将上述无孔隔膜作为隔膜,按照传统方式制成铝塑膜包装的锂离子电池,化成后进行分容,测试电池的合格率。然后在1C下2.5-4.40V之间100%放电深度进行充放电循环,观察500次循环后电池外观和容量变化情况。部分数据示于表1中。
对比例3
其它条件与实施例3相同,除了隔膜采用厚度为18-22微米、孔隙率为38%、孔径为0.1-0.3微米、材料为三层结构的聚丙烯/聚乙烯/聚丙烯。然后按照实施例3所述的方法测量电池的有关性能,有关数据汇总于表1。
实施例4
将厚度为50微米、直径为200nm的聚酰亚胺纤维布放入到2wt.%羧甲基纤维素的水溶液中,该溶液含有质量比为0.4wt.%均匀分散、粒径为50nm的20Li2O-19Al2O3-SiO2-30P2O5-25TiO2-3GeO2,加热到80℃,待水不断挥发,含有20Li2O-19Al2O3-SiO2-30P2O5-25TiO2-3GeO2的羧甲基纤维素从溶液中析出,填充到聚酰亚胺纤维布的孔隙中。这样得到聚酰亚胺纤维布、羧甲基纤维素和20Li2O-19Al2O3-SiO2-30P2O5-25TiO2-3GeO2重量比为30:40:8的隔膜。通过透气性检测(方法同实施例1),发现气体的透过率为0ml/min,同时也用扫描电镜进行观察,发现没有明显的孔状结构,用螺旋测微器检测,厚度为20微米。这表明该隔膜为无孔的。
以组成为Li1.05Ni0.8Co0.1Mn0.1O2、导电炭黑、粘合剂PVDF(重量比9:0.4:0.6)的混合物作为正极,并在正极片上按照每安时3颗粒径为0.1mm铁微球的比例固定到正极表面,以人造石墨(上海杉杉股份有限公司,CMS)、导电炭黑、粘合剂PVDF(重量比9:0.3:0.7)的混合物作为负极,以LB-315(国泰华荣化工有限公司,中国江苏省张家港市)作为电解液, 将上述无孔隔膜作为隔膜,按照传统方式制成金属铝壳包装的方形锂离子电池,化成后进行分容,测试电池的合格率。然后在1C下2.5-4.40V之间100%放电深度进行充放电循环,观察1000次循环后电池外观和容量变化情况。部分数据示于表1中。
对比例4
其它条件与实施例4相同,除了隔膜采用厚度约为50微米、孔隙率为55%、孔径为0.1-0.3微米、中间材料为三层结构的聚丙烯/聚乙烯/聚丙烯、两面涂布有厚度均约为5微米的聚偏氟乙烯多孔膜,其中聚偏氟乙烯多孔膜中含有质量比为3wt.%、粒径为60nm的Al2O3。然后按照实施例4所述的方法测量电池的有关性能,有关数据汇总于表1。
实施例5
将厚度为30微米、孔隙率为35%、平均孔径为400nm的聚偏氟乙烯膜放入到20wt.%聚丙烯腈的乙腈溶液中,该溶液含有质量比为0.2wt.%均匀分散、粒径为50nm的Li2S-3SiS2-5P2S5,加热到120℃,待乙腈不断挥发,含有Li2S-3SiS2-5P2S5的聚丙烯腈从溶液中析出,填充到聚偏氟乙烯的孔隙中。这样得到聚偏氟乙烯膜、聚丙烯腈和Li2S-3SiS2-5P2S5重量比为65:35:0.35的隔膜。通过透气性检测(方法同实施例1),发现气体的透过率为0ml/min,同时也用扫描电镜进行观察,发现没有明显的孔状结构,用螺旋测微器检测,厚度为30微米。这表明该隔膜为无孔的。
以组成为Li1.05Mn0.98Co0.02O2、导电炭黑、粘合剂PVDF(重量比92:4:4)的混合物作为正极,并在正极片上按照每安时3颗粒径为0.1mm铁微球的比例固定到正极表面,以人造石墨(上海杉杉股份有限公司,CMS)、导电炭黑、粘合剂PVDF(重量比9:0.3:0.7)的混合物作为负极,以LB-315(国泰华荣化工有限公司,中国江苏省张家港市)作为电解液,将上述无孔隔膜作为隔膜,按照传统方式制成铝塑膜包装的方形锂离子电池,化成后进行分容,测试电池的合格率。然后在1C下2.5-4.20V之间100%放电深度进行充放电循环,观察500次循环后电池外观和容量变化情况。部分数据示于 表1中。
对比例5
其它条件与实施例5相同,除了隔膜采用厚度约为30微米、孔隙率为35%、平均孔径为400nm的聚偏氟乙烯膜。然后按照实施例5所述的方法测量电池的有关性能,有关数据汇总于表1。
表1实施例1-5和对比例1-5的电化学性能测试结果
Figure PCTCN2017078569-appb-000001
从采用实施例和对比例制备锂离子电池的对比来看,本发明采用的无孔隔膜,用于高能量密度电池中,不仅能够防止电池的微短路,电池产品的合格率高,而且循环寿命长,体积变化小。
本发明的无孔隔膜的应用主要是作为采用有机溶剂类电解质的一次或者二次电池的隔膜,该电池的负极为碱金属、碱金属的合金、碳材料、锡、锡的合金、硅或者硅的合金,正极为MNO2(M=Li、Na、K中的一种、2种元素或者2种以上元素,N=Co、Ni、Mn、Co中一种、2种元素或者2种以上元素)、MN′PO4(N′=Fe、Mn、Co中一种、两种或者2种以上元素)或者它们的掺杂物、包覆物。

Claims (17)

  1. 一种无孔隔膜,其特征在于该无孔隔膜包括两种或者两种以上高分子材料,其中至少一种能够被有机溶剂凝胶化;所述的两种或者两种以上的高分子材料是分子级、纳米级或者微米级尺度的混合中的任一种混合;该隔膜是无孔的,气体的透过率为0ml/min。
  2. 如权利要求1所述的无孔隔膜,其特征在于所述的能够被有机溶剂凝胶化的高分子材料是合成高分子化合物或者天然高分子化合物或者是合成高分子化合物和天然高分子化合物的共混物、共聚物、改性物及复合物。
  3. 如权利要求2中所述的无孔隔膜,其特征在于所述的合成高分子材料是聚醚类、聚硅氧烷、聚酯、聚丙烯腈、含氟聚合物、丙烯酸及其酯类的聚合物、聚氯乙烯、聚醋酸乙烯酯、酚醛树脂、环氧树脂、聚氨酯、聚芳烃、聚酰胺、聚酰亚胺中的一种或者两种及两种以上的共混物、共聚物、改性物与复合物。
  4. 如权利要求2或3所述的无孔隔膜,其特征在于所述的合成高分子材料还包括有填料和添加剂,且填料和添加剂的重量比为合成高分子材料的0.01wt.%-20wt.%。
  5. 如权利要求4中所述的无孔隔膜,其特征在于所述的填料和添加剂的重量比为合成高分子材料的1wt.%-5wt.%。
  6. 如权利要求2所述的无孔隔膜,其特征在于所述的天然高分子材料是纤维素、淀粉、甲壳素、壳聚糖、胶原、明胶、蚕丝、蜘蛛丝中的一种或者两种及两种以上的共混物、改性物与复合物。
  7. 如权利要求6所述的无孔隔膜,其特征在于所述的天然高分子的改性物为它们的烷基化合物、羧基化合物、磺酸基化合物、羧甲基化合物、接枝化合物、交联化合物中的一种或者两种及两种以上的混合物。
  8. 如权利要求6或者7所述的无孔隔膜,其特征在于所述的天然高分子还包括填料和添加剂;且所述的填料和添加剂的重量比为天然高分子材料的0.01wt.%-20wt.%。
  9. 如权利要求8所述的无孔隔膜,其特征在于所述的填料和添加剂的 重量比为天然高分子材料的1wt.%-5wt.%。
  10. 如权利要求4、5、8、9中任意一项所述的无孔隔膜,其特征在于所述的填料和添加剂包括氧化铝、氧化硅、氧化钛、氧化锆、aLi2O-bAl2O3-cTiO2-dP2O5(a、b、c、d位于1-100之间)组成的化合物、aLi2O-bLa2O3-cZrO2-dTa2O5(a、b、c、d位于1-100之间)组成的化合物、aLi2S-bSiS2-cP2S5(a、b、c位于1-100之间)组成的化合物、蒙脱土、分子筛中的一种或者两种及两种以上的混合物。
  11. 如权利要求1-10中任意一项所述的无孔隔膜,其特征在于所述的无孔隔膜厚度为1-200微米。
  12. 如权利要求11所述的无孔隔膜,其特征在于所述的无孔隔膜厚度为为5-40微米。
  13. 如权利要求1-12中任意一项所述的无孔隔膜,其特征在于所述的无孔隔膜还包含至少一种不能被有机溶剂凝胶化的高分子材料,即基体。
  14. 如权利要求13所述的无孔隔膜,其特征在于基体为聚烯烃,如聚丙烯、聚乙烯、聚丙烯或其组合物,尤其是聚丙烯、聚丙烯/聚乙烯/聚丙烯;聚酯,例如聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯,尤其是聚对苯二甲酸乙二醇酯;聚酰亚胺;或聚偏氟乙烯。
  15. 一种制备无孔隔膜的方法,所述无孔隔膜包括两种或者两种以上高分子材料,其中至少一种能够被有机溶剂凝胶化,且至少一种不能被有机溶剂凝胶化—即基体,所述方法包括将能够被有机溶剂凝胶化的高分子材料溶解在溶剂中,从而形成溶液;将基体浸入所述溶液中,蒸发溶剂,从而使得能够被有机溶剂凝胶化的高分子材料从溶液中析出并沉积在基体上。
  16. 如权利要求1-14中任意一项所述的无孔隔膜的用途,其用作采用有机溶剂类电解质的一次或者二次电池的隔膜。
  17. 一种电池,其包含如权利要求1-14中任意一项所述的无孔隔膜。
PCT/CN2017/078569 2016-03-29 2017-03-29 一种无孔隔膜及其应用 WO2017167195A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/080,630 US11205822B2 (en) 2016-03-29 2017-03-29 Non-porous separator and use thereof
EP17773225.2A EP3439070A4 (en) 2016-03-29 2017-03-29 NON-POROUS SEPARATOR AND USE THEREOF
JP2018545411A JP6972000B2 (ja) 2016-03-29 2017-03-29 非多孔質セパレータ及びその使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610187527.9 2016-03-29
CN201610187527.9A CN105679984A (zh) 2016-03-29 2016-03-29 一种无孔隔膜及其应用

Publications (1)

Publication Number Publication Date
WO2017167195A1 true WO2017167195A1 (zh) 2017-10-05

Family

ID=56224567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078569 WO2017167195A1 (zh) 2016-03-29 2017-03-29 一种无孔隔膜及其应用

Country Status (5)

Country Link
US (1) US11205822B2 (zh)
EP (1) EP3439070A4 (zh)
JP (1) JP6972000B2 (zh)
CN (2) CN112366422A (zh)
WO (1) WO2017167195A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018205484A1 (de) * 2018-04-11 2019-10-17 Bayerische Motoren Werke Aktiengesellschaft Separator für einen elektrochemischen energiespeicher und elektrochemischer energiespeicher
CN113871723A (zh) * 2021-08-20 2021-12-31 佛山(华南)新材料研究院 一种固态电解质及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366422A (zh) 2016-03-29 2021-02-12 浙江地坤键新能源科技有限公司 一种无孔隔膜及其应用
CN110752099B (zh) * 2018-07-24 2022-09-27 东莞东阳光科研发有限公司 一种柔性超级电容器的制备方法
CN109728233A (zh) * 2018-12-19 2019-05-07 乐凯胶片股份有限公司 陶瓷浆料、陶瓷隔膜和锂离子电池
JP2021026989A (ja) * 2019-08-08 2021-02-22 株式会社豊田中央研究所 電極構造体、二次電池及び電極構造体の製造方法
FR3102990A1 (fr) 2019-11-13 2021-05-14 Arkema France MEMBRANE POLYMERE GELIFIEE pour BATTERIE LI-ION
TWI741559B (zh) * 2020-04-13 2021-10-01 輝能科技股份有限公司 複合式隔離層
FR3127844A1 (fr) 2021-10-01 2023-04-07 Arkema France Électrolyte solide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429891A (en) * 1993-03-05 1995-07-04 Bell Communications Research, Inc. Crosslinked hybrid electrolyte film and methods of making and using the same
CN101809801A (zh) * 2007-09-28 2010-08-18 A123***公司 具有无机/有机多孔膜的电池
CN102617881A (zh) * 2012-04-10 2012-08-01 中南大学 一种多孔凝胶聚合物锂离子电池隔膜的制备方法
CN103178226A (zh) * 2011-12-22 2013-06-26 北京好风光储能技术有限公司 一种隔膜及其制备方法和应用
CN104868156A (zh) * 2014-12-22 2015-08-26 上海恩捷新材料科技股份有限公司 锂离子电池
CN105679984A (zh) * 2016-03-29 2016-06-15 浙江地坤键新能源科技有限公司 一种无孔隔膜及其应用

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130464A (ja) * 1987-11-16 1989-05-23 Unitika Ltd 電池用セパレータ
JPH10204197A (ja) * 1997-01-21 1998-08-04 Nitto Denko Corp 多孔質膜およびそれを用いた電池用セパレータ並びにその製造方法
JP4169134B2 (ja) * 1997-05-21 2008-10-22 昭和電工株式会社 電気化学素子用セパレータ及びその用途
KR100399785B1 (ko) * 2001-04-07 2003-09-29 삼성에스디아이 주식회사 겔형 고분자 전해질을 포함하는 권취형 리튬 2차 전지용세퍼레이터 및 그 제조방법
CN1165090C (zh) * 2001-07-28 2004-09-01 潘杰民 锂离子聚合物电池
US20050277026A1 (en) * 2002-08-22 2005-12-15 Satoshi Nishikawa Non-aqueous secondary battery and separator used therefor
US20040241550A1 (en) * 2003-05-28 2004-12-02 Wensley C. Glen Battery separator for lithium polymer battery
KR101073180B1 (ko) * 2006-12-21 2011-10-12 주식회사 엘지화학 다층형 세퍼레이터, 그 제조방법 및 이를 구비한 이차전지
JP5174376B2 (ja) * 2007-06-01 2013-04-03 日東電工株式会社 非水リチウムイオン二次電池
JP5154349B2 (ja) * 2008-09-09 2013-02-27 日東電工株式会社 電池用セパレータとその製造方法、並びに、リチウムイオン二次電池とその製造方法
CN103400956A (zh) * 2008-11-10 2013-11-20 三菱树脂株式会社 叠层多孔膜、锂电池用隔板及电池
JP5771621B2 (ja) * 2010-10-27 2015-09-02 株式会社クラレ 非水系電池用セパレータ及びそれを用いた非水系電池、ならびに非水系電池用セパレータの製造方法
CN102719046B (zh) * 2012-06-28 2014-02-26 成都中科来方能源科技有限公司 离子聚合物/陶瓷复合膜材料及其制备方法和锂二次电池
KR101816046B1 (ko) * 2015-12-08 2018-02-21 한국과학기술원 무기공 리튬전지의 분리막 및 이를 포함하는 리튬전지
WO2017180264A2 (en) * 2016-03-08 2017-10-19 Giner, Inc. Separator for use in electrochemical cells and method of fabrication thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429891A (en) * 1993-03-05 1995-07-04 Bell Communications Research, Inc. Crosslinked hybrid electrolyte film and methods of making and using the same
CN101809801A (zh) * 2007-09-28 2010-08-18 A123***公司 具有无机/有机多孔膜的电池
CN103178226A (zh) * 2011-12-22 2013-06-26 北京好风光储能技术有限公司 一种隔膜及其制备方法和应用
CN102617881A (zh) * 2012-04-10 2012-08-01 中南大学 一种多孔凝胶聚合物锂离子电池隔膜的制备方法
CN104868156A (zh) * 2014-12-22 2015-08-26 上海恩捷新材料科技股份有限公司 锂离子电池
CN105679984A (zh) * 2016-03-29 2016-06-15 浙江地坤键新能源科技有限公司 一种无孔隔膜及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3439070A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018205484A1 (de) * 2018-04-11 2019-10-17 Bayerische Motoren Werke Aktiengesellschaft Separator für einen elektrochemischen energiespeicher und elektrochemischer energiespeicher
CN113871723A (zh) * 2021-08-20 2021-12-31 佛山(华南)新材料研究院 一种固态电解质及其制备方法

Also Published As

Publication number Publication date
JP6972000B2 (ja) 2021-11-24
EP3439070A1 (en) 2019-02-06
CN112366422A (zh) 2021-02-12
JP2019512838A (ja) 2019-05-16
US20190088916A1 (en) 2019-03-21
CN105679984A (zh) 2016-06-15
US11205822B2 (en) 2021-12-21
EP3439070A4 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
JP6972000B2 (ja) 非多孔質セパレータ及びその使用
CN108987800B (zh) 固态电解质及其制备方法和含有该固态电解质的固态电池
CN104124427B (zh) 电极、包含该电极的电化学装置和制造该电极的方法
TWI390786B (zh) 具多孔塗佈膜之隔離板及包含其之電化學裝置
CN108281705B (zh) 改性纳米SiO2粒子、其制备方法及包含其的纳米纤维膜、凝胶电解质和锂金属电池
CN109244546B (zh) 固态复合电解质薄膜及其制备方法和全固态电池
CN101281961A (zh) 锂离子电池隔膜用的涂层组合物及该隔膜的制造方法
TW200814412A (en) Electrode having porous active coating layer, and manufacturing method thereof and electrochemical device containing the same
TW200913348A (en) Lithium secondary battery
JP2018508926A (ja) 一体型の電極組立体及びこれを含む電気化学素子
WO2016161920A1 (zh) 复合隔膜及其制备方法以及锂离子电池
JP2017535931A (ja) セルロースナノ繊維分離膜を含む電気化学素子及びその製造方法
Jiang et al. Flexible, nonflammable and Li-dendrite resistant Na2Ti3O7 nanobelt-based separators for advanced Li storage
Zhao et al. Preparation and performance of the polyethylene-supported polyvinylidene fluoride/cellulose acetate butyrate/nano-SiO 2 particles blended gel polymer electrolyte
JP2002280072A (ja) 無機/有機複合高分子固体電解質を組み込んだ電池
CN112201905A (zh) 一种纤维素基锂电池阻燃隔膜及其制备方法
JP2006338918A (ja) 電子部品用セパレータおよび電子部品
CN114725616A (zh) 一种无机杂化芳纶纳米纤维隔膜、制备方法及其在锂电池中的应用
Wu et al. Comparative analysis of different separators for the electrochemical performances and long-term stability of high-power lithium-ion batteries
CN110875476A (zh) 锂二次电池的负极、其制备方法和锂二次电池
CN103268955A (zh) 一种复合凝胶聚合物电解质及其制备方法与应用
WO2021195913A1 (zh) 负极材料、负极极片、电化学装置和电子装置
WO2023179550A1 (zh) 一种复合油基隔膜及其制备方法和二次电池
CN111900458A (zh) 一种复合固态电解质及其制备方法
JP2006351365A (ja) 電子部品用セパレータおよび電子部品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018545411

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017773225

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017773225

Country of ref document: EP

Effective date: 20181029

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773225

Country of ref document: EP

Kind code of ref document: A1