WO2017166924A1 - 车载充电器和车辆 - Google Patents

车载充电器和车辆 Download PDF

Info

Publication number
WO2017166924A1
WO2017166924A1 PCT/CN2017/072884 CN2017072884W WO2017166924A1 WO 2017166924 A1 WO2017166924 A1 WO 2017166924A1 CN 2017072884 W CN2017072884 W CN 2017072884W WO 2017166924 A1 WO2017166924 A1 WO 2017166924A1
Authority
WO
WIPO (PCT)
Prior art keywords
controllable switch
switch
module
control
node
Prior art date
Application number
PCT/CN2017/072884
Other languages
English (en)
French (fr)
Inventor
杨仕青
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201620255161.XU external-priority patent/CN205724952U/zh
Priority claimed from CN201610192757.4A external-priority patent/CN107294147A/zh
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP17772955.5A priority Critical patent/EP3439137A4/en
Priority to US16/089,471 priority patent/US20200303926A1/en
Publication of WO2017166924A1 publication Critical patent/WO2017166924A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • B60L2210/42Voltage source inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • the invention belongs to the technical field of vehicles, and in particular to an in-vehicle charger and a vehicle having the same.
  • Car chargers include a variety of, for example, one-way, two-way.
  • the vehicle charger includes a rectifier bridge circuit 1 ′, a power factor correction circuit 2 ′, and a DC/DC isolation converter.
  • 3', control circuit 4', control circuit 5', the car charger intelligently realizes charging of the energy storage device, that is, the battery.
  • the rectifier bridge circuit 1' converts the external AC alternating current into direct current (half wave)
  • the power factor correction circuit 2' includes the power tube Q5', the inductor L1', the diode D1' and the filter capacitor C1'
  • the control circuit 4' collects
  • the AC input voltage VL/VN and the current iq of the power tube Q5' are calculated to obtain a PWM (Pulse Width Modulation) wave (PWM1') with appropriate duty ratio, and the power tube Q5' is controlled to make an AC input.
  • PWM Pulse Width Modulation
  • the DC/DC isolated converter 3' includes power transistors Q1', Q2', Q3', and Q4', a transformer T1', a rectifier bridge circuit 6', and a filter capacitor C2'.
  • the control circuit 5' collects the DC output voltage Vdc and the DC current Idc, and after calculation, obtains a PWM wave (PWM2') of a suitable duty ratio, and controls the power transistors Q1', Q2', Q3', and Q4' to be turned on and off, and Through the transformer T1' and the rectifier circuit 6', the output DC voltage is stabilized, and an energy storage device such as a high voltage battery is charged.
  • the on-board charger includes a bidirectional commutation composed of four power controllable switch tubes, a boost circuit, and a filter capacitor.
  • Circuit 10' PWM rectification circuit.
  • the converter circuit 10' When charging, the converter circuit 10' is used as a controllable DC circuit, AC (Alternating current) is connected to the controllable rectifier circuit, and the control module 20' performs SPWM control on the power tube Q10'-Q40' to output DC power (half wave).
  • the high-voltage battery pack is connected; when discharging, the commutation circuit 10' is used as an inverter circuit, and the high-voltage battery pack is connected to the inverter circuit to output an AC for use by the AC terminal load.
  • the topology is complicated, the power device is large, multi-level control is required, the cost is high, the efficiency is low, the diode of the rectifier bridge, the controllable switch tube of the power factor correction circuit, and the DC/DC conversion
  • the controllable switch tube and the isolated rectifier circuit have controllable switching losses, and the energy storage device cannot output AC power externally.
  • the two-way non-isolated vehicle charger has a simple structure and relatively low cost, because it is a non-isolated system, there are many problems, for example, limited by the AC peak voltage limit, and the output voltage is lower than the AC peak voltage, and cannot be directly passed.
  • the circuit is charged; then, as the DC voltage increases, the controllable switching loss of the power tube increases, the efficiency decreases, and the heat dissipation is difficult.
  • the power tube needs to meet the power and also withstand higher voltage stress, wherein the voltage stress refers to The ratio of the actual voltage to the device specification value, the higher the voltage stress, the greater the pressure that the power tube is subjected to.
  • the AC and DC are switched by the controllable switch tube, and the common mode voltage of the AC side is difficult to eliminate. There is a great safety hazard, and the DC side ground discharge current will eventually pass through the AC. The line is fed back to the grid. When the product is working, the AC leakage current detection value is too large, which easily triggers leakage protection.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • an embodiment of the present application provides an in-vehicle charger, where the in-vehicle charger includes a bidirectional converter module, and the first end of the bidirectional converter module is connected to one end of the AC end, and the bidirectional converter a second end of the module is connected to the other end of the AC end; a bidirectional DC/DC conversion module, the bidirectional DC/DC conversion module includes: a first DC transform unit, a first end of the first DC transform unit a third end of the bidirectional converter module is connected, a second end of the first DC conversion unit is connected to a fourth end of the bidirectional converter module; a transformer unit, a first end of the transformer unit and the first end a third end of a DC transform unit connected, a second end of the transformer unit being coupled to a fourth end of the first DC transform unit; and a second DC transform unit, a first end of the second DC transform unit Connected to the third end of the transformer unit, the second end of the second DC conversion unit is connected to the fourth end of
  • the vehicle charger of the invention can realize the bidirectional flow of energy and improve the efficiency based on the combination of the bidirectional converter module and the bidirectional DC/DC conversion module, and the transformer unit is used for isolation in the bidirectional DC/DC converter module, which can reduce the AC side.
  • the mode voltage isolates the AC side from the DC side to improve safety and reduce conducted radiation.
  • the DC voltage has a wide application range.
  • another embodiment of the present invention further provides a vehicle including the above-described vehicle charger.
  • the vehicle can realize bidirectional energy transmission by adopting the above-mentioned vehicle charger, and the AC side is isolated from the DC side, and the AC side common mode voltage is lowered to improve safety.
  • FIG. 1 is a circuit diagram of a unidirectional isolated vehicle charger in the related art
  • FIG. 3 is a block diagram of an in-vehicle charger in accordance with one embodiment of the present invention.
  • FIG. 4 is a circuit diagram of a vehicle charger in accordance with an embodiment of the present invention.
  • FIG. 5 is a block diagram of a vehicle in accordance with one embodiment of the present invention.
  • the vehicle charger 100 includes a bidirectional converter module 10, a bidirectional DC/DC conversion module 20, an acquisition module 30, and a control module 40. .
  • the first end a11 of the bidirectional current conversion module 10 is connected to one end of the AC end, and the second end a12 of the bidirectional current conversion module 10 is connected to the other end of the AC end;
  • the bidirectional DC/DC conversion module 20 includes a first DC conversion unit 201, Transformer unit 202 and second DC transform unit 203.
  • the first end b11 of the first DC conversion unit 201 is connected to the third end a13 of the bidirectional converter module 10, the second end b12 of the first DC conversion unit 201 and the fourth end a14 of the bidirectional converter module 10; the transformer unit 202
  • the first end c11 is connected to the third end b13 of the first DC transform unit 201, the second end c12 of the transformer unit 202 is connected to the fourth end b14 of the first DC transform unit 201; the first of the second DC transform unit 203
  • the terminal d11 is connected to the third end c13 of the transformer unit 202, the second end d12 of the second DC conversion unit 203 is connected to the fourth end c14 of the transformer unit 202, and the third end d13 of the second DC conversion unit 203 and the energy storage device
  • one end of the high voltage battery is connected, and the fourth end d14 of the second DC conversion unit 203 is connected to the other end of the energy storage device.
  • the acquisition module 30 separately collects the output of the AC terminal, such as the output current signal and the current voltage signal, the rectified output of the bidirectional converter module 10, and the output of the second DC conversion unit 203, and separately collects the output of the energy storage device, and the first DC conversion unit 201 The output and the inverter output of the bidirectional converter module 10.
  • the control module 40 controls the bidirectional current conversion module 10, the first DC conversion unit 201, and the second DC conversion unit 203 according to the collected data of the acquisition module 30 to charge or discharge the energy storage device, thereby realizing the transmission of the bidirectional electric energy.
  • the in-vehicle charger 100 of the embodiment of the present invention forms a bidirectional isolated converter circuit through the bidirectional converter module 10, for example, the controllable bidirectional PWM rectification circuit and the isolated bidirectional DC/DC conversion module 20, wherein "bidirectional" can be understood In order to achieve both rectification and inverter.
  • the bidirectional current conversion module 10 functions as a rectification circuit
  • the DC/DC conversion module 20 functions as an inverter-transformer transmission-rectification circuit, wherein the first DC conversion unit 201 performs inverter control, and the transformer unit 202 functions as an isolation to isolate the AC side from the DC side, and the second DC conversion Unit 203 performs rectification control.
  • the AC power is connected to the bidirectional converter module 10 as an input terminal.
  • the control module 40 performs calculation according to the collected data of the acquisition module 30, performs SPWM (Sinusoidal PWM) control on the bidirectional converter module 10, and outputs DC power such as half-wave DC.
  • the control module 40 controls the first DC conversion unit 201 to invert the DC power to AC power, and controls the transformer unit 202 to perform energy transmission, and then rectifies the AC power to DC power to the energy storage through the second DC conversion unit 203.
  • the device is, for example, a high voltage battery pack, thereby enabling the charging function of the energy storage device.
  • the bidirectional current conversion module 10 is, for example, a PWM rectifier circuit as an inverter circuit, and the bidirectional DC/DC conversion unit 20 is also used as an inverter-transformer transmission-rectification circuit.
  • An energy storage device such as a high voltage battery pack, is connected as an input terminal to the second DC conversion unit 203, and the DC power output from the high voltage battery pack is inverted to AC power by the second DC conversion unit 203, and energy is transmitted through the transformer unit 202, and then passed through the first
  • the DC conversion unit 201 rectifies the alternating current into a direct current output to the bidirectional converter module 10.
  • the bidirectional converter module 10 inverts the direct current into an alternating current for use by an alternating current load at the alternating current end, thereby implementing a discharge function of the energy storage device.
  • the in-vehicle charger 100 of the embodiment of the present invention adopts the bidirectional current conversion module 10 and the bidirectional DC/DC conversion module 20 to realize bidirectional transmission of energy, thereby realizing charging of the energy storage device by the alternating current, and also realizing
  • the energy storage device outputs an AC load at the AC end of the power supply;
  • the transformer unit 202 is isolated in the bidirectional DC/DC converter module 20 to reduce the common mode voltage on the AC side, isolate the AC side from the DC side, and improve safety.
  • the buck-boost is applied, and the DC voltage is widely applied to reduce conducted radiation.
  • the bidirectional current conversion module 10 can be a controllable bidirectional PWM rectification circuit.
  • the bidirectional current conversion module 10 includes a first controllable switch Q1, a second controllable switch Q2, a third controllable switch Q3, and a fourth controllable switch Q4.
  • the control terminal 02 of the first controllable switch Q1 is connected to the control module 40; the control terminal 02 of the second controllable switch Q2 is connected to the control module 40, and the first end 21 of the second controllable switch Q2 is first controllable
  • the second end 12 of the switch Q1 is connected, and the first node D1 of the second controllable switch Q2 and the second end 12 of the first controllable switch Q1 have a first node D1, and the first node D1 is connected to one end of the AC end;
  • the control terminal 03 of the third controllable switch Q3 is connected to the control module 40, and the first end 31 of the third controllable switch Q3 is respectively connected to the first end 11 of the first controllable switch Q1 and the first DC conversion unit 201;
  • the control terminal 04 of the four controllable switch Q4 is connected to the control module 40.
  • the first end 41 of the fourth controllable switch Q4 is connected to the second end 32 of the third controllable switch Q3, and the first end of the fourth controllable switch Q4 is connected.
  • 41 has a second node D2 between the second end 32 of the third controllable switch Q3, the second node D2 is connected to the other end of the AC terminal, and the second end 42 of the fourth controllable switch Q4 is respectively connected to the second controllable switch
  • the second end 22 of Q2 is coupled to the first DC conversion unit 201.
  • the control module 40 When the AC output is charged to the energy storage device, the control module 40 outputs an AC voltage and an AC power according to the AC terminal.
  • the rectified output voltage of the stream and bidirectional converter module 10 controls the first controllable switch Q1, the second controllable switch Q2, the third controllable switch Q3, and the fourth controllable switch Q4, and the bidirectional converter module 10 implements a rectification function.
  • control module 40 controls the first controllable switch Q1, the second controllable switch Q2, the third controllable switch Q3 and the fourth according to the AC voltage control of the inverter output of the bidirectional converter module 10.
  • the controllable switch Q4 and the bidirectional converter module 10 implement the function of the inverter.
  • the bidirectional current conversion module 10 further includes a filtering unit 1010.
  • the filtering unit 1010 includes a first inductor L1, a second inductor L2, and a first capacitor C1.
  • the first end of the first inductor L1 is connected to one end of the alternating current end
  • the second end of the first inductor is connected to the first node D1
  • the first end of the second inductor L2 is connected to the other end of the alternating current end
  • the second inductor L2 is The second end is connected to the second node D2
  • the first end of the first capacitor C1 is respectively connected to the first end of the first inductor L1 and the end of the AC end
  • the second end of the first capacitor C1 is respectively connected with the second inductor L2
  • the end is connected to the other end of the AC.
  • the first DC conversion unit 201 includes a fifth controllable switch Q5, a sixth controllable switch Q6, a seventh controllable switch Q7, and an eighth controllable switch Q8.
  • the control terminal 05 of the fifth controllable switch Q5 is connected to the control module 40, and the first end 51 of the fifth controllable switch Q5 is connected to the first end 31 of the third controllable switch Q3; the sixth controllable switch Q6
  • the control terminal 06 is connected to the control module 40.
  • the first end 61 of the sixth controllable switch Q6 is connected to the second end 52 of the fifth controllable switch Q5.
  • the first end 61 and the fifth controllable state of the sixth controllable switch Q6 are controllable.
  • the second end 52 of the switch Q5 has a third node D3, and the second end 62 of the sixth controllable switch Q6 is connected to the second end 42 of the fourth controllable switch Q4; the control end 07 of the seventh controllable switch Q7 Connected to the control module 40, the first end 71 of the seventh controllable switch Q7 is connected to the first end 51 of the fifth controllable switch Q5; the control end 08 of the eighth controllable switch Q8 is connected to the control module 40, and the eighth The first end 81 of the control switch Q8 is connected to the second end 72 of the seventh controllable switch Q7, and the fourth end 81 of the eighth controllable switch Q8 has a fourth position between the second end 72 of the seventh controllable switch Q7. Node D4, the second end 82 of the eighth controllable switch Q8 is coupled to the second end 62 of the sixth controllable switch Q6.
  • the second DC conversion unit 203 includes a ninth controllable switch Q9, a tenth controllable switch Q10, an eleventh controllable switch Q11, and a twelfth controllable switch Q12.
  • the control terminal 09 of the ninth controllable switch Q9 is connected to the control module 40; the control terminal 010 of the tenth controllable switch Q10 is connected to the control module 40, and the first end 101 and the ninth controllable of the tenth controllable switch Q10 are connected.
  • the second end 92 of the switch Q9 is connected, and the fifth node D5 is between the first end 101 of the tenth controllable switch Q10 and the second end 92 of the ninth controllable switch Q9; the control end of the eleventh controllable switch Q11 011 is connected to the control module 40.
  • the first end 111 of the eleventh controllable switch Q11 is respectively connected to the first end 91 of the ninth controllable switch Q9 and one end of the energy storage device; the control end of the twelfth controllable switch Q12
  • the first end 121 of the twelfth controllable switch Q12 is connected to the second end 112 of the eleventh controllable switch Q11, and the first end 121 and the eleventh of the twelfth controllable switch Q12 are connected to the control module 40.
  • the second end 112 of the controllable switch Q11 has a sixth node D6, and the second end 122 of the twelfth controllable switch Q12 and the second end of the tenth controllable switch Q10 102 is connected to the other end of the energy storage device.
  • the second DC conversion unit 203 adopts a controllable switch instead of a diode, which can improve transmission efficiency.
  • the transformer unit 202 includes a high-frequency transformer.
  • the combination of the power frequency transformer and the bidirectional rectification circuit realizes the isolated bidirectional AC/DC circuit function, and the power frequency transformer is difficult to implement on the vehicle, so
  • a high-frequency transformer is used to realize high-frequency isolated transmission, and energy bidirectional transmission can be realized.
  • the high frequency transformer includes a first coil T11 and a second coil T22.
  • the first end of the first coil T11 is connected to the third node D3 through the third inductor L3, and the second end of the first coil T11 is connected to the fourth node D4 through the second capacitor C2; the first end of the second coil T22 passes the first
  • the third capacitor C3 is connected to the fifth node D5, and the second end of the second coil T22 is connected to the sixth node D6.
  • the high-frequency transformer realizes the isolation of the energy between the AC side and the DC side, improves the safety, and realizes the bidirectional transmission of energy.
  • the high-frequency transformer is used for lifting and lowering, and the DC voltage has a wide application range.
  • the control module 40 controls the fifth controllable switch Q5 to the eighth according to the rectified output voltage of the bidirectional current conversion module 10, the output current of the second DC conversion unit 203, and the output voltage, respectively, when the AC output is charged by the energy storage device.
  • the controllable switch Q8 performs inverter control, and rectifies and controls the ninth controllable switch Q9 to the twelfth controllable switch Q12, thereby implementing the charging function of the energy storage device.
  • the control module 40 When the energy storage device outputs, the control module 40 performs inverter control on the ninth controllable switch Q9 to the twelfth controllable switch Q12 according to the voltage and current output by the energy storage device and the voltage output by the first DC conversion unit 201, respectively. And rectifying and controlling the fifth controllable switch Q5 to the eighth controllable switch Q8, and then inverting the direct current into the load provided by the alternating current to the alternating current through the bidirectional converter module 10, thereby realizing discharge of the energy storage device.
  • the in-vehicle charger 100 further includes a switch module 50.
  • the switch module 50 includes a first switch S1, a second switch S2, a third switch S3, and a first resistor R1.
  • the first end of the first switch S1 is connected to the first end of the first switch S1
  • the second end of the first switch S1 is connected to the first end of the first inductor L1
  • the first end of the second switch S2 is connected to the other end of the AC end.
  • the second end of the second switch S2 is connected to the first end of the second inductor L2; the first end of the third switch S3 is respectively connected to one end of the alternating current end and the first end of the first switch S1; the first end of the first resistor R1 The terminal is connected to the second end of the third switch S3, and the second end of the first resistor R1 is connected to the second end of the first switch S1.
  • the in-vehicle charger 100 further includes a fourth capacitor C4 and a fifth capacitor C5.
  • the first end 31 of the third controllable switch Q3 and the first end 51 of the fifth controllable switch Q5 have a seventh node D7, and the first end of the fourth capacitor C4 is connected to the seventh node D7, and the fourth An eighth node D8 is provided between the second end 42 of the controllable switch Q4 and the second end 62 of the sixth controllable switch Q6, and the second end of the fourth capacitor C4 is connected to the eighth node D8;
  • the fifth capacitor C5 is One end is connected to one end of the energy storage device, and the second end of the fifth capacitor C5 is connected to the other end of the energy storage device.
  • control module 40 includes a first control module 401 and a second control module 402.
  • the acquisition module 30 includes a first sampling circuit 301 and a second sampling circuit 302.
  • the first sampling circuit 301 collects the AC voltage Vac, the AC current Iac, and the output DC voltage Vdc1 of the bidirectional converter module 10.
  • the first control module 401 calculates and outputs PWM signals such as PWM1 and PWM2.
  • the first controllable switch Q1 to the fourth controllable switch Q4 are sequentially controlled and rectified, and the output DC voltage Vdc1 is used as feedback to implement AC-DC conversion.
  • the output is compressed and the AC current is synchronized with the AC voltage with a power factor close to 1.
  • the fourth capacitor C4 performs filtering. After the Vdc1 voltage is constant, the sampling circuit 2 acquires Vdc1, the DC output, that is, the battery voltage Vdc2, and the DC output current Idc2.
  • the second control module 402 calculates the PWM signal and sequentially controls the fifth controllable switch.
  • the Q5 to the eighth controllable switch Q8 perform inverter control, and continue the synchronous rectification control for the ninth controllable switch Q9 to the twelfth controllable switch Q12 to realize DC-DC conversion, and the charging power can be adjusted according to the feedback Idc2.
  • the high-frequency transformer is used to isolate the energy between the AC side and the DC side, and the design of the high-frequency transformer can be adjusted according to the range of the DC voltage.
  • the energy storage device such as a high voltage battery pack serves as an input terminal
  • the second sampling circuit 302 collects Vdc1, the battery voltage Vdc2, and the battery output current Idc2
  • the second control module 402 calculates and outputs a PWM signal, which is sequentially
  • the nine controllable switch Q9 to the twelfth controllable switch Q12 perform inverter control, and the fifth controllable switch Q5 to the eighth controllable switch Q8 are synchronously rectified and controlled, and the output DC voltage Vdc1 is used as feedback to realize AC-DC conversion. , constant voltage output.
  • the Vdc1 After the voltage Vdc1 is constant, the Vdc1 is used as an input terminal, the first sampling circuit 301 collects the AC voltage Vac as feedback, and the first control module 401 outputs the SPWM waveform signal according to the sine law to control the first controllable switch Q1 to the fourth controllable switch Q4.
  • the alternating current output voltage of the AC terminal is used to supply power to the load on the AC side to achieve inverter.
  • the in-vehicle charger 100 of the embodiment of the present invention can realize bidirectional flow of energy based on the combination of the bidirectional current conversion module 10 and the bidirectional DC/DC conversion module 20 to improve efficiency, and the bidirectional DC/DC conversion module 20
  • the transformer unit 202 for isolation the common mode voltage on the AC side can be reduced, and the AC side and the DC side can be isolated to improve safety and reduce the transmission to the radiation.
  • the DC voltage has a wide application range.
  • another embodiment of the present invention provides a vehicle.
  • FIG. 5 is a block diagram of a vehicle including the in-vehicle charger 100 of the above-described embodiments, as shown in FIG. 5, in accordance with an embodiment of the present invention.
  • the in-vehicle charger 100 of the above aspect bidirectional energy transmission can be realized, and the AC side is isolated from the DC side, and the AC side common mode voltage is lowered to improve safety.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种车载充电器,该车载充电器包括双向变流模块、双向DC/DC变换模块、采集模块和控制模块,其中,双向变流模块与交流端相连;双向DC/DC变换模块包括第一DC变换单元、变压器单元和第二DC变换单元,第一DC变换单元分别与双向变流模块和变压器单元相连;第二DC变换单元分别与变压器模块和储能装置相连;采集模块采集交流端的输出、双向变流模块的整流输出和第二DC变换单元的输出,以及采集储能装置的输出、第一DC变换单元的输出和双向变流模块的逆变输出;控制模块根据采集模块的采集数据进行控制。本发明还公开了一种车辆。

Description

车载充电器和车辆 技术领域
本发明属于车辆技术领域,尤其涉及一种车载充电器,以及具有该车载充电器的车辆。
背景技术
车载充电器包括多种例如单向式、双向式。在相关技术中,如图1所示,为相关技术中的一种单向隔离式车载充电器,该车载充电器包括整流桥电路1′、功率因数校正电路2′、DC/DC隔离变换器3′、控制电路4′、控制电路5′,该车载充电器智能实现对储能装置即电池的充电。其中,整流桥电路1′将外接的AC交流电转换为直流电(半波),功率因数校正电路2′包括功率管Q5′、电感L1′、二极管D1′和滤波电容C1′,控制电路4′采集交流输入电压VL/VN和功率管Q5′的电流iq,经过计算,得到合适的占空比的PWM(Pulse Width Modulation,脉冲宽度调试)波(PWM1′),控制功率管Q5′,使交流输入电流和输入电压同步,提升交流端功率因数。DC/DC隔离变换器3′包括功率管Q1′、Q2′、Q3′和Q4′,变压器T1′、整流桥电路6′和滤波电容C2′。控制电路5′采集直流输出电压Vdc和直流电流Idc,经过计算,得到合适占空比的PWM波(PWM2′),控制功率管Q1′、Q2′、Q3′和Q4′开通和关断,并经过变压器T1′和整流器电路6′,使输出直流电压稳定,对储能装置例如高压电池充电。
如图2所示,为相关技术中的一种双向非隔离式车载充电器的电路图,该车载充电器包括由四个功率可控开关管、升压电路、滤波电容构成的可双向的换流电路10′(PWM整流电路)。充电时,换流电路10′作为可控直流电路,AC(Alternating current,交流电)连接可控整流电路,控制模块20′对功率管Q10′-Q40′进行SPWM控制,输出直流电(半波),连接高压电池包;放电时,换流电路10′作为逆变电路,高压电池包连接该逆变电路,输出交流,供交流端负载使用。
但是,对于单向隔离式车载充电器,其拓扑结构复杂,功率器件多,需要多级控制,成本高,效率低,整流桥的二极管、功率因数校正电路的可控开关管、DC/DC变换器的可控开关管及隔离后的整流电路,都会有可控开关损耗,不能够实现储能装置对外输出交流电。
对于双向非隔离式车载充电器虽然结构简单、成本相对较低,但是因为是非隔离***,存在较多问题,例如,受交流峰值电压限值限制,输出电压低于交流峰值电压时,无法直接通过电路进行充电;再就是,随着直流电压升高,功率管可控开关损耗增加,效率下降,增加散热难度,功率管需要满足功率的同时还将承受更高的电压应力,其中,电压应力指实际电压与器件规格值的比值,电压应力越高功率管承受的压力越大。
再就是,非隔离***,交流与直流之间通过可控开关管相互切换,交流侧居高不下的共模电压难以消除,存在很大的安全隐患,直流侧对地泄放电流最终都会通过交流线反馈至电网,产品工作时交流漏电流检测值偏大,容易触发漏电保护。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为了实现上述目的,本申请一方面实施例提出一种车载充电器,该车载充电器包括:双向变流模块,所述双向变流模块的第一端与交流端的一端相连,所述双向变流模块的第二端与所述交流端的另一端相连;双向DC/DC变换模块,所述双向DC/DC变换模块包括:第一DC变换单元,所述第一DC变换单元的第一端与所述双向变流模块的第三端相连,所述第一DC变换单元的第二端与所述双向变流模块的第四端相连;变压器单元,所述变压器单元的第一端与所述第一DC变换单元的第三端相连,所述变压器单元的第二端与所述第一DC变换单元的第四端相连;和第二DC变换单元,所述第二DC变换单元的第一端与所述变压器单元的第三端相连,所述第二DC变换单元的第二端与所述变压器单元的第四端相连,所述第二DC变换单元的第三端与储能装置的一端相连,所述第二DC变换单元的第四端与所述储能装置的另一端相连;采集模块,所述采集模块采集所述交流端的输出、所述双向变流模块的整流输出和所述第二DC变换单元的输出,以及采集所述储能装置的输出、所述第一DC变换单元的输出和所述双向变流模块的逆变输出;以及控制模块,所述控制模块根据所述采集模块的采集数据分别控制所述双向变流模块、所述第一DC变换单元和所述第二DC变换单元,以使所述储能装置进行充电或放电。
本发明的车载充电器,基于双向变流模块和双向DC/DC变换模块的组合,可以实现能量的双向流动,提高效率,双向DC/DC变换模块中采用变压器单元进行隔离,可以降低交流侧共模电压,将交流侧与直流侧隔离,提高安全性,降低传导辐射,直流电压适用范围宽。
基于上述的车载充电器,本发明另一方面实施例还提出一种车辆,该车辆包括上述的车载充电器。
该车辆,通过采用上述方面的车载充电器,可以实现双向的能量传输,且交流侧与直流侧隔离,降低交流侧共模电压,提高安全性。
附图说明
图1是相关技术中的一种单向隔离式车载充电器的电路示意图;
图2是相关技术中的一种非隔离式双向车载充电器;
图3是根据本发明的一个实施例的车载充电器的框图;
图4是根据本发明的一个具体实施例的车载充电器的电路示意图;以及
图5是根据本发明的一个实施例的车辆的框图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图描述根据本发明实施例提出的车载充电器和车辆。
图3是根据本发明的一个实施例的车载充电器的框图,如图3所示,该车载充电器100包括双向变流模块10、双向DC/DC变换模块20、采集模块30和控制模块40。
其中,双向变流模块10的第一端a11与交流端的一端相连,双向变流模块10的第二端a12与交流端的另一端相连;双向DC/DC变换模块20包括第一DC变换单元201、变压器单元202和第二DC变换单元203。
第一DC变换单元201的第一端b11与双向变流模块10的第三端a13相连,第一DC变换单元201的第二端b12与双向变流模块10的第四端a14;变压器单元202的第一端c11与第一DC变换单元201的第三端b13相连,变压器单元202的第二端c12与第一DC变换单元201的第四端b14相连;第二DC变换单元203的第一端d11与变压器单元202的第三端c13相连,第二DC变换单元203的第二端d12与变压器单元202的第四端c14相连,第二DC变换单元203的第三端d13与储能装置例如高压电池的一端相连,第二DC变换单元203的第四端d14与储能装置的另一端相连。
采集模块30分别采集交流端的输出例如输出电流信号和电流电压信号、双向变流模块10的整流输出和第二DC变换单元203的输出,以及分别采集储能装置的输出、第一DC变换单元201的输出和双向变流模块10的逆变输出。
控制模块40根据采集模块30的采集数据分别控制双向变流模块10、第一DC变换单元201和第二DC变换单元203,以使储能装置进行充电或放电,从而实现双向电能的传输。
本发明实施例的车载充电器100,通过双向变流模块10例如可控双向PWM整流电路和隔离型双向DC/DC变换模块20构成可双向的隔离型换流电路,其中,“双向”可以理解为既可以实现整流又可以实现逆变。
具体地,在储能装置例如高压电池包进行充电时,双向变流模块10作为整流电路,双 向DC/DC变换模块20作为逆变-变压器传输-整流电路,其中,第一DC变换单元201进行逆变控制,变压器单元202起到隔离作用,使得交流侧和直流侧隔离,第二DC变换单元203进行整流控制。AC交流电作为输入端连接至双向变流模块10,控制模块40根据采集模块30的采集数据进行计算,对双向变流模块10进行SPWM(Sinusoidal PWM)控制,输出直流电例如半波直流。在输出直流电压稳定之后,控制模块40控制第一DC变换单元201将直流电逆变为交流电,并控制变压器单元202进行能量传输,然后经过第二DC变换单元203将交流电整流为直流电连接至储能装置例如高压电池包,从而实现储能装置的充电功能。
在储能装置放电时,双向变流模块10例如PWM整流电路作为逆变电路,双向DC/DC变换单元20同样作为逆变-变压器传输-整流电路。储能装置例如高压电池包作为输入端连接第二DC变换单元203,通过第二DC变换单元203将高压电池包输出的直流电逆变为交流电,并通过变压器单元202进行能量传输,进而通过第一DC变换单元201将交流电整流为直流电输出至双向变流模块10,双向变流模块10将直流电逆变为交流电,供交流端的交流负载使用,从而实现储能装置的放电功能。
可以看出,本发明实施例的车载充电器100,采用双向变流模块10和双向DC/DC变换模块20,实现能量的双向传输,即可实现由交流电为储能装置充电,也可以实现由储能装置输出以供电交流端的交流负载;双向DC/DC变换模块20中采用变压器单元202隔离设计,可以降低交流侧共模电压,将交流侧与直流侧隔离,提高安全性,通过变压器单元202进行升降压,直流电压适用范围宽,降低传导辐射。
下面参照附图4所示,对本发明实施例的车载充电器100的各个模块进一步说明。
双向变流模块10可以为可控的双向PWM整流电路,双向变流模块10包括第一可控开关Q1、第二可控开关Q2、第三可控开关Q3和第四可控开关Q4。
其中,第一可控开关Q1的控制端01与控制模块40相连;第二可控开关Q2的控制端02与控制模块40相连,第二可控开关Q2的第一端21与第一可控开关Q1的第二端12相连,第二可控开关Q2的第一端21与第一可控开关Q1的第二端12之间具有第一节点D1,第一节点D1与交流端的一端相连;第三可控开关Q3的控制端03与控制模块40相连,第三可控开关Q3的第一端31分别与第一可控开关Q1的第一端11和第一DC变换单元201相连;第四可控开关Q4的控制端04与控制模块40相连,第四可控开关Q4的第一端41与第三可控开关Q3的第二端32相连,第四可控开关Q4的第一端41与第三可控开关Q3的第二端32之间具有第二节点D2,第二节点D2与交流端的另一端相连,第四可控开关Q4的第二端42分别与第二可控开关Q2的第二端22和第一DC变换单元201相连。
在交流端输出即对储能装置充电时,控制模块40根据交流端输出的交流电压、交流电 流和双向变流模块10的整流输出电压控制第一可控开关Q1、第二可控开关Q2、第三可控开关Q3和第四可控开关Q4,双向变流模块10实现整流的功能。
在储能装置输出即放电时,控制模块40根据双向变流模块10的逆变输出的交流电压控制控制第一可控开关Q1、第二可控开关Q2、第三可控开关Q3和第四可控开关Q4,双向变流模块10实现逆变的功能。
如图4所示,双向变流模块10还包括滤波单元1010,滤波单元1010包括第一电感L1、第二电感L2和第一电容C1。其中,第一电感L1的第一端与交流端的一端相连,第一电感的第二端与第一节点D1相连;第二电感L2的第一端与交流端的另一端相连,第二电感L2的第二端与第二节点D2相连;第一电容C1的第一端分别与第一电感L1的第一端和交流端的一端相连,第一电容C1的第二端分别与第二电感L2第一端和交流端的另一端相连。
第一DC变换单元201包括第五可控开关Q5、第六可控开关Q6、第七可控开关Q7和第八可控开关Q8。
其中,第五可控开关Q5的控制端05与控制模块40相连,第五可控开关Q5的第一端51与第三可控开关Q3的第一端31相连;第六可控开关Q6的控制端06与控制模块40相连,第六可控开关Q6的第一端61与第五可控开关Q5的第二端52相连,第六可控开关Q6的第一端61与第五可控开关Q5的第二端52之间具有第三节点D3,第六可控开关Q6的第二端62与第四可控开关Q4的第二端42相连;第七可控开关Q7的控制端07与控制模块40相连,第七可控开关Q7的第一端71与第五可控开关Q5的第一端51相连;第八可控开关Q8的控制端08与控制模块40相连,第八可控开关Q8的第一端81与第七可控开关Q7的第二端72相连,第八可控开关Q8的第一端81与第七可控开关Q7的第二端72之间具有第四节点D4,第八可控开关Q8的第二端82与第六可控开关Q6的第二端62相连。
第二DC转换单元203包括第九可控开关Q9、第十可控开关Q10、第十一可控开关Q11和第十二可控开关Q12。
其中,第九可控开关Q9的控制端09与控制模块40相连;第十可控开关Q10的控制端010与控制模块40相连,第十可控开关Q10的第一端101与第九可控开关Q9的第二端92相连,第十可控开关Q10的第一端101与第九可控开关Q9的第二端92之间具有第五节点D5;第十一可控开关Q11的控制端011与控制模块40相连,第十一可控开关Q11的第一端111分别与第九可控开关Q9的第一端91和储能装置的一端相连;第十二可控开关Q12的控制端012与控制模块40相连,第十二可控开关Q12的第一端121与第十一可控开关Q11的第二端112相连,第十二可控开关Q12的第一端121与第十一可控开关Q11的第二端112之间具有第六节点D6,第十二可控开关Q12的第二端122分别与第十可控开关Q10的第二端 102和储能装置的另一端相连。本发明实施例中,第二DC变换单元203采用可控开关代替二极管,可以提高传输效率。
变压器单元202包括高频变压器,不同于相关技术中,采用工频变压器和双向整流的组合电路实现隔离的双向的AC/DC电路功能,工频变压器在车载上实现起来比较困难,所以,在本发明实施例中,采用高频变压器,实现高频隔离传输,又可以实现能量双向传输。
高频变压器包括第一线圈T11和第二线圈T22。第一线圈T11的第一端通过第三电感L3与第三节点D3相连,第一线圈T11的第二端通过第二电容C2与第四节点D4相连;第二线圈T22的第一端通过第三电容C3与第五节点D5相连,第二线圈T22的第二端与第六节点D6相连。高频变压器实现交流侧和直流侧能量的隔离,提高安全性,并实现能量的双向传输,通过该高频变压器进行升降压,直流电压适用范围宽。
其中,在交流端输出即储能装置充电时,控制模块40根据双向变流模块10的整流输出电压、第二DC变换单元203的输出电流和输出电压分别对第五可控开关Q5至第八可控开关Q8进行逆变控制,以及对第九可控开关Q9至第十二可控开关Q12进行整流控制,从而实现储能装置的充电功能。
在储能装置输出时,控制模块40根据储能装置输出的电压和电流、第一DC变换单元201输出的电压分别对第九可控开关Q9至第十二可控开关Q12进行逆变控制,以及对第五可控开关Q5至第八可控开关Q8进行整流控制,进而通过双向变流模块10将直流电逆变为交流电提供至交流端的负载使用,从而实现储能装置的放电。
如图4所示,该车载充电器100还包括开关模块50。开关模块50包括第一开关S1、第二开关S2、第三开关S3和第一电阻R1。其中,第一开关S1的第一端与交流端的一端相连,第一开关S1的第二端与第一电感L1的第一端相连;第二开关S2的第一端与交流端的另一端相连,第二开关S2的第二端与第二电感L2的第一端相连;第三开关S3的第一端分别与交流端的一端和第一开关S1的第一端相连;第一电阻R1的第一端与第三开关S3的第二端相连,第一电阻R1的第二端与第一开关S1的第二端相连。
该车载充电器100还包括第四电容C4和第五电容C5。其中,第三可控开关Q3的第一端31与第五可控开关Q5的第一端51之间具有第七节点D7,第四电容C4的第一端与第七节点D7相连,第四可控开关Q4的第二端42与第六可控开关Q6的第二端62之间具有第八节点D8,第四电容C4的第二端与第八节点D8相连;第五电容C5的第一端与储能装置的一端相连,第五电容C5的第二端与储能装置的另一端相连。
参照图4所示,其中,控制模块40包括第一控制模块401和第二控制模块402,采集模块30包括第一采样电路301和第二采样电路302。
在储能装置例如高压电池包进行充电时,首先控制第二开关S2和第三开关S3吸合,第一采样电路301采集交流电压Vac、交流电流Iac以及双向变流模块10的输出直流电压Vdc1,第一控制模块401经过计算输出PWM信号例如PWM1和PWM2.依次对第一可控开关Q1至第四可控开关Q4进行可控整流,输出直流电压Vdc1作为反馈,实现AC-DC转换,恒压输出,并且交流电流与交流电压同步,功率因数接近1。
第四电容C4进行滤波,在Vdc1电压恒定之后,采样电路2采集Vdc1、直流输出即电池电压Vdc2、直流输出电流Idc2,第二控制模块402经过计算,输出PWM信号,依次对第五可控开关Q5至第八可控开关Q8进行逆变控制,以及对第九可控开关Q9至第十二可控开关Q12继续同步整流控制,实现DC-DC转换,可以根据反馈Idc2调节充电功率。
其中,通过高频变压器实现交流侧和直流侧能量的隔离,可以根据直流电压的范围调整高频变压器的设计来进行匹配。
在储能装置放电时,储能装置例如高压电池包作为输入端,第二采样电路302采集Vdc1、电池电压Vdc2和电池输出电流Idc2,第二控制模块402经过计算,输出PWM信号,依次对第九可控开关Q9至第十二可控开关Q12进行逆变控制,以及对第五可控开关Q5至第八可控开关Q8进行同步整流控制,输出直流电压Vdc1作为反馈,实现AC-DC转换,恒压输出。
电压Vdc1恒定之后,Vdc1作为输入端,第一采样电路301采集交流电压Vac作为反馈,第一控制模块401按照正弦规律输出SPWM波形信号,控制第一可控开关Q1至第四可控开关Q4,使交流端输出电压合适的交流电,为交流端的负载供电,实现逆变。
综上所述,本发明实施例的车载充电器100,基于双向变流模块10和双向DC/DC变换模块20的组合,可以实现能量的双向流动,提高效率,双向DC/DC变换模块20中采用变压器单元202进行隔离,可以降低交流侧共模电压,将交流侧与直流侧隔离,提高安全性,降低传到辐射,直流电压适用范围宽。
基于上述方面实施例的车载充电器100,本发明的另一方面实施例提出一种车辆。
图5是根据本发明的一个实施例的车辆的框图,如图5所示,该车辆1000包括上述方面实施例的车载充电器100。
该车辆1000,通过采用上述方面的车载充电器100,可以实现双向的能量传输,且交流侧与直流侧隔离,降低交流侧共模电压,提高安全性。
需要说明的是,在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者 特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (11)

  1. 一种车载充电器,其特征在于,包括:
    双向变流模块,所述双向变流模块的第一端与交流端的一端相连,所述双向变流模块的第二端与所述交流端的另一端相连;
    双向DC/DC变换模块,所述双向DC/DC变换模块包括:
    第一DC变换单元,所述第一DC变换单元的第一端与所述双向变流模块的第三端相连,所述第一DC变换单元的第二端与所述双向变流模块的第四端相连;
    变压器单元,所述变压器单元的第一端与所述第一DC变换单元的第三端相连,所述变压器单元的第二端与所述第一DC变换单元的第四端相连;和
    第二DC变换单元,所述第二DC变换单元的第一端与所述变压器单元的第三端相连,所述第二DC变换单元的第二端与所述变压器单元的第四端相连,所述第二DC变换单元的第三端与储能装置的一端相连,所述第二DC变换单元的第四端与所述储能装置的另一端相连;
    采集模块,所述采集模块分别采集所述交流端的输出、所述双向变流模块的整流输出和所述第二DC变换单元的输出,以及分别采集所述储能装置的输出、所述第一DC变换单元的输出和所述双向变流模块的逆变输出;以及
    控制模块,所述控制模块根据所述采集模块的采集数据分别控制所述双向变流模块、所述第一DC变换单元和所述第二DC变换单元,以使所述储能装置进行充电或放电。
  2. 如权利要求1所述的车载充电器,其特征在于,所述双向变流模块包括:
    第一可控开关,所述第一可控开关的控制端与所述控制模块相连;
    第二可控开关,所述第二可控开关的控制端与所述控制模块相连,所述第二可控开关的第一端与所述第一可控开关的第二端相连,所述第二可控开关的第一端与所述第一可控开关的第二端之间具有第一节点,所述第一节点与所述交流端的一端相连;
    第三可控开关,所述第三可控开关的控制端与所述控制模块相连,所述第三可控开关的第一端分别与所述第一可控开关的第一端和所述第一DC变换单元相连;和
    第四可控开关,所述第四可控开关的控制端与所述控制模块相连,所述第四可控开关的第一端与所述第三可控开关的第二端相连,所述第四可控开关的第一端与所述第三可控开关的第二端之间具有第二节点,所述第二节点与所述交流端的另一端相连,所述第四可控开关的第二端分别与所述第二可控开关的第二端和所述第一DC变换单元相连。
  3. 如权利要求2所述的车载充电器,其特征在于,其中,
    在所述储能装置充电时,所述控制模块根据所述交流端输出的交流电压、交流电流和所述双向变流模块的整流输出电压控制所述第一可控开关、所述第二可控开关、所述第三可控开关和所述第四可控开关;
    在所述储能装置放电时,所述控制模块根据所述双向变流模块的逆变输出的交流电压控制控制所述第一可控开关、所述第二可控开关、所述第三可控开关和所述第四可控开关。
  4. 如权利要求2或3所述的车载充电器,其特征在于,所述双向变流模块还包括滤波单元,所述滤波单元包括:
    第一电感,所述第一电感的第一端与所述交流端的一端相连,所述第一电感的第二端与所述第一节点相连;
    第二电感,所述第二电感的第一端与所述交流端的另一端相连,所述第二电感的第二端与所述第二节点相连;和
    第一电容,所述第一电容的第一端分别与所述第一电感的第一端和所述交流端的一端相连,所述第一电容的第二端分别与所述第二电感的第一端和所述交流端的另一端相连。
  5. 如权利要求2至4中任一项所述的车载充电器,其特征在于,所述第一DC变换单元包括:
    第五可控开关,所述第五可控开关的控制端与所述控制模块相连,所述第五可控开关的第一端与所述第三可控开关的第一端相连;
    第六可控开关,所述第六可控开关的控制端与所述控制模块相连,所述第六可控开关的第一端与所述第五可控开关的第二端相连,所述第六可控开关的第一端与所述第五可控开关的第二端之间具有第三节点,所述第六可控开关的第二端与所述第四可控开关的第二端相连;
    第七可控开关,所述第七可控开关的控制端与所述控制模块相连,所述第七可控开关的第一端与所述第五可控开关的第一端相连;和
    第八可控开关,所述第八可控开关的控制端与所述控制模块相连,所述第八可控开关的第一端与所述第七可控开关的第二端相连,所述第八可控开关的第一端与所述第七可控开关的第二端之间具有第四节点,所述第八可控开关的第二端与所述第六可控开关的第二端相连。
  6. 如权利要求5所述的车载充电器,其特征在于,所述第二DC转换单元包括:
    第九可控开关,所述第九可控开关的控制端与所述控制模块相连;
    第十可控开关,所述第十可控开关的控制端与所述控制模块相连,所述第十可控开关的第一端与所述第九可控开关的第二端相连,所述第十可控开关的第一端与所述第九可控开关 的第二端之间具有第五节点;
    第十一可控开关,所述第十一可控开关的控制端与所述控制模块相连,所述第十一可控开关的第一端分别与所述第九可控开关的第一端和所述储能装置的一端相连;和
    第十二可控开关,所述第十二可控开关的控制端与所述控制模块相连,所述第十二可控开关的第一端与所述第十一可控开关的第二端相连,所述第十二可控开关的第一端与所述第十一可控开关的第二端之间具有第六节点,所述第十二可控开关的第二端分别与所述第十可控开关的第二端和所述储能装置的另一端相连。
  7. 如权利要求6所述的车载充电器,其特征在于,所述变压器单元包括高频变压器,所述高频变压器包括:
    第一线圈,所述第一线圈的第一端通过第三电感与所述第三节点相连,所述第一线圈的第二端通过第二电容与所述第四节点相连;和
    第二线圈,所述第二线圈的第一端通过第三电容与所述第五节点相连,所述第二线圈的第二端与所述第六节点相连。
  8. 如权利要求7所述的车载充电器,其特征在于,
    在所述储能装置充电时,所述控制模块根据所述双向变流模块的整流输出电压、所述第二DC变换单元的输出电流和输出电压分别对所述第五可控开关至所述第八可控开关进行逆变控制以及对所述第九可控开关至所述第十二可控开关进行整流控制;
    在所述储能装置放电时,所述控制模块根据所述储能装置输出的电压和电流、所述第一DC变换单元输出的电压分别对所述第九可控开关至所述第十二可控开关进行逆变控制以及对所述第五可控开关至所述第八可控开关进行整流控制。
  9. 如权利要求4至8中任一项所述的车载充电器,其特征在于,还包括:开关模块,所述开关模块包括:
    第一开关,所述第一开关的第一端与所述交流端的一端相连,所述第一开关的第二端与所述第一电感的第一端相连;
    第二开关,所述第二开关的第一端与所述交流端的另一端相连,所述第二开关的第二端与所述第二电感的第一端相连;
    第三开关,所述第三开关的第一端分别与所述交流端的一端和所述第一开关的第一端相连;和
    第一电阻,所述第一电阻的第一端与所述第三开关的第二端相连,所述第一电阻的第二端与所述第一开关的第二端相连。
  10. 如权利要求6至9中任一项所述的车载充电器,其特征在于,还包括:
    第四电容,所述第三可控开关的第一端与所述第五可控开关的第一端之间具有第七节点,所述第四电容的第一端与所述第七节点相连,所述第四可控开关的第二端与所述第六可控开关的第二端之间具有第八节点,所述第四电容的第二端与所述第八节点相连;和
    第五电容,所述第五电容的第一端与所述储能装置的一端相连,所述第五电容的第二端与所述储能装置的另一端相连。
  11. 一种车辆,其特征在于,包括如权利要求1-10任一项所述的车载充电器。
PCT/CN2017/072884 2016-03-30 2017-02-04 车载充电器和车辆 WO2017166924A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17772955.5A EP3439137A4 (en) 2016-03-30 2017-02-04 CHARGER ON BOARD AND VEHICLE
US16/089,471 US20200303926A1 (en) 2016-03-30 2017-02-04 Car charger and vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201620255161.X 2016-03-30
CN201620255161.XU CN205724952U (zh) 2016-03-30 2016-03-30 车载充电器和车辆
CN201610192757.4A CN107294147A (zh) 2016-03-30 2016-03-30 车载充电器和车辆
CN201610192757.4 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017166924A1 true WO2017166924A1 (zh) 2017-10-05

Family

ID=59962548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072884 WO2017166924A1 (zh) 2016-03-30 2017-02-04 车载充电器和车辆

Country Status (3)

Country Link
US (1) US20200303926A1 (zh)
EP (1) EP3439137A4 (zh)
WO (1) WO2017166924A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018102117A (ja) * 2016-12-09 2018-06-28 デルタ エレクトロニクス (タイ) パブリック コンパニー リミテッドDelta Electronics (Thailand) Public Company Limited 充電システム及びその方法
CN114825559A (zh) * 2022-06-22 2022-07-29 浙江吉利控股集团有限公司 车辆的智能供电***、车辆及方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018129411A1 (de) * 2018-11-22 2020-05-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und System zu einer Entwärmung bei einer Stromkompensationsschaltung
KR20210096131A (ko) 2018-11-30 2021-08-04 위트리시티 코포레이션 고전력 무선 전력 시스템에서의 저전력 여기를 위한 시스템 및 방법
JP2022533250A (ja) 2019-05-24 2022-07-21 ワイトリシティ コーポレーション 無線電力レシーバのための保護回路
JP7383131B2 (ja) * 2019-08-26 2023-11-17 ワイトリシティ コーポレーション 無線電力システムのアクティブ整流の制御
EP4220894A1 (en) 2020-01-29 2023-08-02 WiTricity Corporation Auxiliary power dropout protection for a wireless power transfer system
KR102659781B1 (ko) 2020-03-06 2024-04-22 위트리시티 코포레이션 무선 전력 시스템들에서의 능동 정류
JP7294286B2 (ja) 2020-09-18 2023-06-20 トヨタ自動車株式会社 充電器、及び車両
DE102021107958A1 (de) 2021-03-30 2022-10-06 Bayerische Motoren Werke Aktiengesellschaft Kraftfahrzeug mit einer Antriebsbatterie zum solargestützten Laden sowie Verfahren zum solargestützten Laden einer Antriebsbatterie
CN114679068B (zh) * 2022-05-30 2022-08-09 深圳戴普森新能源技术有限公司 一种储能变换器电能变换双向dcdc变换器及储能***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025182A (zh) * 2010-11-30 2011-04-20 梁一桥 多功能电动汽车动力电池组模块化充放电***
CN102222958A (zh) * 2011-06-21 2011-10-19 清华大学深圳研究生院 一种电动汽车车载双向充电机
CN102751772A (zh) * 2012-07-05 2012-10-24 西安交通大学 一种蓄电池充放电电路拓扑
CN105098941A (zh) * 2015-09-02 2015-11-25 山东大学 考虑电网频率稳定的电动汽车充电双向控制***及方法
CN205724952U (zh) * 2016-03-30 2016-11-23 比亚迪股份有限公司 车载充电器和车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025182A (zh) * 2010-11-30 2011-04-20 梁一桥 多功能电动汽车动力电池组模块化充放电***
CN102222958A (zh) * 2011-06-21 2011-10-19 清华大学深圳研究生院 一种电动汽车车载双向充电机
CN102751772A (zh) * 2012-07-05 2012-10-24 西安交通大学 一种蓄电池充放电电路拓扑
CN105098941A (zh) * 2015-09-02 2015-11-25 山东大学 考虑电网频率稳定的电动汽车充电双向控制***及方法
CN205724952U (zh) * 2016-03-30 2016-11-23 比亚迪股份有限公司 车载充电器和车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3439137A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018102117A (ja) * 2016-12-09 2018-06-28 デルタ エレクトロニクス (タイ) パブリック コンパニー リミテッドDelta Electronics (Thailand) Public Company Limited 充電システム及びその方法
CN114825559A (zh) * 2022-06-22 2022-07-29 浙江吉利控股集团有限公司 车辆的智能供电***、车辆及方法

Also Published As

Publication number Publication date
EP3439137A1 (en) 2019-02-06
EP3439137A4 (en) 2019-02-06
US20200303926A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
WO2017166924A1 (zh) 车载充电器和车辆
TWI517545B (zh) 雙向直流變換器
Tang et al. A bridgeless totem-pole interleaved PFC converter for plug-in electric vehicles
CN205724952U (zh) 车载充电器和车辆
TWI373900B (en) High efficiency charging circuit and power supplying system
US11011936B2 (en) Single-stage transmitter for wireless power transfer
CN1808832B (zh) 一种适用于中大功率不间断电源的电路装置
US20180269795A1 (en) Bidirectional resonant conversion circuit and converter
CN103683919B (zh) 高功率因数低谐波失真恒流电路及装置
US9048750B2 (en) Active buck power factor correction device
CN105871244A (zh) 一种单相ac-dc/ dc-ac双用电路及三相ac-dc/ dc-ac双用电路
CN203774850U (zh) 具有模式切换功能的多功能一体化电动汽车车载充电机
CN105141019A (zh) 一种电动汽车充电***
CN107294147A (zh) 车载充电器和车辆
EP3255771A1 (en) Bidirectional dc-dc convertor
WO2020052617A1 (zh) 一种无桥三整流Boost电源电路
CN106685242A (zh) 单级交流至直流转换器
Singh et al. An EV battery charger with power factor corrected bridgeless zeta converter topology
Zhao et al. A novel wireless power charging system for electric bike application
CN113765358A (zh) 单级交错并联ac-dc谐振变换电路及其控制方法
CN203840038U (zh) 基于全控型器件的多功能一体化车载充电机
TWI485961B (zh) 共鐵心式功率因數校正諧振轉換器
CN106972777A (zh) 一种高效双向ac‑dc变换器
CN112572189B (zh) 车载充放电***及具有其的车辆
CN112572192B (zh) 车载充电***及具有其的车辆

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017772955

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017772955

Country of ref document: EP

Effective date: 20181030

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17772955

Country of ref document: EP

Kind code of ref document: A1