WO2017163148A1 - Oscillateur balancier-spiral pour piece d'horlogerie - Google Patents

Oscillateur balancier-spiral pour piece d'horlogerie Download PDF

Info

Publication number
WO2017163148A1
WO2017163148A1 PCT/IB2017/051480 IB2017051480W WO2017163148A1 WO 2017163148 A1 WO2017163148 A1 WO 2017163148A1 IB 2017051480 W IB2017051480 W IB 2017051480W WO 2017163148 A1 WO2017163148 A1 WO 2017163148A1
Authority
WO
WIPO (PCT)
Prior art keywords
balance
oscillator
spiral
oscillation
curves
Prior art date
Application number
PCT/IB2017/051480
Other languages
English (en)
Inventor
Jean-Luc Bucaille
Original Assignee
Patek Philippe Sa Geneve
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patek Philippe Sa Geneve filed Critical Patek Philippe Sa Geneve
Priority to JP2018549474A priority Critical patent/JP6991154B2/ja
Priority to KR1020187027755A priority patent/KR102305812B1/ko
Priority to SG11201806735QA priority patent/SG11201806735QA/en
Priority to US16/078,952 priority patent/US11249440B2/en
Priority to CN201780019397.0A priority patent/CN108885426B/zh
Priority to EP17712250.4A priority patent/EP3433680B1/fr
Publication of WO2017163148A1 publication Critical patent/WO2017163148A1/fr

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/063Balance construction
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/26Compensation of mechanisms for stabilising frequency for the effect of variations of the impulses
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/28Compensation of mechanisms for stabilising frequency for the effect of imbalance of the weights, e.g. tourbillon
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D7/00Measuring, counting, calibrating, testing or regulating apparatus
    • G04D7/08Measuring, counting, calibrating, testing or regulating apparatus for balance wheels
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D7/00Measuring, counting, calibrating, testing or regulating apparatus
    • G04D7/10Measuring, counting, calibrating, testing or regulating apparatus for hairsprings of balances

Definitions

  • the present invention relates to a pendulum-type oscillator for a timepiece, more particularly such an oscillator whose isochronism is improved.
  • Isochronism is understood to mean the variations of the gait as a function of the oscillation amplitude of the balance and as a function of the position of the timepiece. The smaller these variations, the more isochronous the oscillator.
  • the march of a balance-balance oscillator is equal to the sum of the march due to the lack of equilibrium of the balance and the march due to the balance spring.
  • the lack of equilibrium or imbalance of the pendulum disturbs the regularity of the oscillations.
  • it is customary to rebalance the balance by milling or by means of adjusting screws fitted to the balance.
  • the movements of the spiral are caused mainly by the eccentric development and the weight of the hairspring.
  • the eccentric development of the spiral generates a disturbing torque, the same in all positions, created by the restoring forces between the pivots of the oscillator shaft and the bearings in which they rotate.
  • the weight of the hairspring generates another disturbing torque, a function of the inclination of the timepiece relative to the horizontal position.
  • the present invention aims at proposing another approach to improve the isochronism of a balance-balance oscillator and in particular to reduce the differences of gait between its different vertical positions.
  • an oscillator for a timepiece comprising a balance and a balance spring, the balance having a defect of equilibrium, characterized in that the balance defect of the balance and the spiral geometry are such that
  • the present invention proposes to design the balance and the hairspring in such a way that the step due to the lack of equilibrium balance and the step due to the weight of the hairspring compensate at least partially and preferably substantially entirely in all or almost all the normal operating range of the balance. Unlike the state of the art, it is therefore not sought in the present invention to cancel the unbalance of the balance, it can even be high. Similarly, there is no attempt to minimize walking due to weight of the hairspring. This new approach makes it possible to obtain very small gaps between the different vertical positions of the oscillator and thus improves the precision of the timepiece.
  • the amplitude of oscillation at which the curves representing the oscillator step due to the weight of the hairspring go through zero may be slightly different from one curve to another.
  • said curves go through zero at the same amplitude of oscillation and therefore intersect at the same point.
  • the balance defect of the balance and the spiral geometry are such that the average slope of each curve of said curves representing the oscillator step due to the lack of equilibrium balance has substantially the same an absolute value that the average slope of the corresponding one of said curves representing the oscillator step due to the weight of the hairspring in the range of oscillation amplitudes from 150 ° to 280 °.
  • the lack of equilibrium balance and the spiral geometry may be such that the maximum deviation of the oscillator step due to the lack of equilibrium balance and the weight of the balance between said vertical positions in the range of amplitudes oscillation from 150 ° to 280 ° is less than 4 seconds / day, or even 2 seconds / day, or even 1 second / day, or even 0.7 seconds / day.
  • the distance between the inner end of the hairspring and the center of rotation of the hairspring may be greater than 500 pm, or even 600 pm, or even 700 pm.
  • the balance of the pendulum can be greater than 0.5 pg.cm, or even 1 pg.cm.
  • the inner coil of the spiral has a stiffened portion and / or is shaped according to a Grossmann curve.
  • the outer coil of the spiral may also have a stiffened portion.
  • the spiral has a rigidity and / or a pitch that varies continuously over at least several turns.
  • FIG. 1 shows a balance-balance oscillator according to a first embodiment of the invention
  • FIG. 2 shows the hairspring of the oscillator according to the first embodiment of the invention
  • FIG. 3 shows the pendulum of the oscillator according to the invention, seen from the other side with respect to FIG. 1;
  • FIG. 4 shows curves representing the progress of the oscillator due to the weight of the hairspring according to the first embodiment of the invention
  • FIG. 5 shows curves representing the progress of the oscillator due to the lack of balance of the balance according to the first embodiment of the invention
  • FIG. 6 shows curves representing the oscillator step due to both the equilibrium balance defect and the hairspring weight according to the first embodiment of the invention
  • FIG. 7 shows the hairspring of an oscillator according to a second embodiment of the invention.
  • FIG. 8 shows curves representing the progress of the oscillator due to the weight of the hairspring according to the second embodiment of the invention.
  • FIG. 9 shows curves representing the progress of the oscillator due to the lack of balance of the balance according to the second embodiment of the invention.
  • FIG. 10 shows curves representing the oscillator step due to both the equilibrium defect of the balance and to the weight of the balance spring according to the second embodiment of the invention.
  • a balance-balance oscillator for a watch movement intended to equipping a timepiece such as a wristwatch or a pocket watch, comprises a rocker 1 mounted on a rocker shaft 2 and a hairspring 3 whose inner end 3a is fixed to the rocker shaft 2 by via a ferrule 4 and whose outer end 3b is fixed to the frame of the movement via one or more organs.
  • the outer end 3b of the spiral 3 is extended by a rigid attachment portion 5 which is held by a clamp 6 mounted on the frame of the movement, as described in EP 178061 1 of the applicant.
  • the outer end 3b could however be fixed to the frame in another way, for example by means of a traditional stud.
  • the assembly comprising the hairspring 3, the shell 4 and the rigid fastening portion 5 may be monolithic and made for example of silicon or diamond.
  • the balance shaft 2 also carries a plate or double plate 7 itself carrying a plate pin 8 and part of an exhaust serving to maintain and count oscillations of the oscillator.
  • Spiral 3 does not have the traditional shape of an Archimedean spiral with a constant blade section.
  • the geometry of the spiral is indeed irregular in that it has a section and / or a pitch that varies along its blade.
  • a portion 3c of the outer turn hereinafter “outer stiffened portion” and a portion 3d of the inner turn (hereinafter “internal stiffened portion”) have a larger section, so a larger great rigidity, that the rest of the blade forming the spiral 3. Outside these portions 3c and 3d the section of the blade is constant.
  • the pitch of the hairspring 3 is constant from a point 3e 'located on its inner coil to a point 3e located on its outer turn.
  • the end portion 3f of the hairspring 3 extending between the points 3e and 3b comprises at least a portion of, typically all, the outer stiffened portion 3c.
  • the inner turn could be shaped according to a Grossmann curve. One could also have no external stiffened portion 3c.
  • the section of the spiral blade instead of changing the section of the spiral blade only locally at the inner turn and the outer turn, it could change the section continuously along the length of the blade or several turns, it that is to say on a number (not necessarily integer) of turns greater than 1, for example equal to 2 or more. It would also be possible to continuously vary the pitch of the hairspring all along the blade or on several turns, replacing or in addition to the variation of section. In addition, one could vary the rigidity of the spiral along its blade in another way than by changing its section, for example by doping or heat treatment.
  • the progress of a balance-balance oscillator is equal to the sum of the step due to the balance and the step due to the balance spring.
  • the pendulum influences walking in vertical positions only.
  • the oscillation of the oscillator due to the pendulum is caused by the lack of equilibrium balance, that is to say by the fact that due to manufacturing tolerances, the center of gravity of the pendulum is not on the axis of rotation of the latter.
  • the unbalance A of the balance and the angular position Qb of its center of gravity G are adjustment parameters of the step due to the lack of equilibrium of the balance.
  • the spiral it influences the march in the horizontal position and in the vertical positions.
  • the eccentric development of the spiral causes reactions in the bearings of the balance shaft, which vary in all the positions of the oscillator.
  • the displacement of the center of gravity of the spiral caused by the eccentric development of the latter creates a defect of isochronism due to the weight of the spiral applied to said center of gravity. This disturbance is different from the elastic gravitational collapse effect of the hairspring, which is neglected in the present invention.
  • the curve representing the progress of the oscillator due to the lack of equilibrium of the balance according to the oscillation amplitude of the balance, in any vertical position of the latter passes through the value zero (c that is, crosses the x-axis) at an oscillation amplitude of 220 °.
  • the curve representing the oscillator's step due to the weight of the spiral as a function of the oscillation amplitude of the balance, in any vertical position of the latter passes through the zero value (that is to say crosses the abscissa axis) at oscillation amplitudes of 163.5 ° and 330.5 °.
  • the present invention is based on the observation that it is possible to choose parameters A, 0b of rockers and spiral geometries so that the march due to the lack of equilibrium of the balance and the step due to the weight of the balance spring compensate, allowing and to reduce, or to make substantially zero, the differences in the market between the different vertical positions.
  • the spiral 3 has 14 turns.
  • the thickness eo of the blade forming the hairspring measured along a radius extending from the center of rotation O of the hairspring, is 28.1 ⁇ m, except along the outer stiffened portion 3c and the inner stiffened portion 3d where it is bigger.
  • the spiral pitch between points 3e 'and 3e is 86.8 ⁇ m.
  • the radius R of the ferrule 4, or distance between the inner end 3a of the spiral and the center O, defined as the radius of the circle of center O passing through the middle (at half the thickness eo) of the end Inner 3a, is 545 ⁇ m.
  • the maximum thickness ed of the inner stiffened portion 3d measured along a radius extending from the center of curvature Cd of the beginning of the inner turn (between points 3a and 3e '), is 73 ⁇ m.
  • the maximum thickness e c of the outside stiffened portion 3c measured along a radius from the center of curvature of this end portion 3f of the spring 3, is 88 pm.
  • the angular extent ⁇ 0 and the angular position a c (position of its center with respect to the outer end 3b of the hairspring 3) of the outer stiffened portion 3c, measured from the center of curvature Ce, are respectively 94 ° and from 1 to 10 °.
  • FIG. 4 shows the progress of the oscillator 1, 2, 3 due to the weight of the hairspring 3 as a function of the amplitude of oscillation of the balance 1 in each of four vertical positions of the oscillator spaced 90 ° apart , ie a high vertical position VH (3 hours at the top) (curve S1), a vertical right position VD (12 hours at the top) (curve S2), a vertical left position VG (6 hours at the top) (curve S3) and a low vertical position VB (9 hours up) (curve S4).
  • VH 3 hours at the top
  • VD (12 hours at the top
  • curve S3 a vertical left position VG (6 hours at the top)
  • VB (9 hours up) curve S4
  • the curves S1 to S4 intersect at a point P1 located on the abscissa axis at an oscillation amplitude of approximately 218 °, which amplitude is therefore close to the amplitude of oscillation of 220 ° to which the corresponding curves of a pendulum meet.
  • the part of the hairspring 3 which has the most influence on the position of the crossing point P1 is the internal stiffened portion 3d.
  • the outer stiffened portion 3c makes it possible to refine the adjustment of the crossing point P1, and / or to produce a march advance which compensates for a delay caused by the escapement as described in the patent applications WO 2013/034962 and WO 2014/072781 of the present applicant.
  • the crossing point P1 or the vicinity of point P1 occurs in all vertical positions of the oscillator.
  • FIG. 5 represents the progress of the oscillator 1, 2, 3 due to the lack of equilibrium of the balance 1 as a function of the amplitude of oscillation of the balance 1 in each of the four aforementioned vertical positions of the oscillator, namely the vertical high position VH (curve B1), the vertical right position VD (curve B2), the left vertical position VG (curve B3) and the vertical low position VB (curve B4).
  • VH vertical high position
  • VD curve B2
  • VD vertical right position
  • VG right position VG
  • VB vertical low position VB
  • the diagram of FIG. 5 is that of a balance having an unbalance A of 0.6 ⁇ g ⁇ cm and whose angular position 0b of the center of gravity is 60 °.
  • the slope, in particular the average slope, of each curve B1 to B4 is of opposite sign to that of the slope, in particular the average slope, of each curve S1 to S4 respectively.
  • the curves S1 and S2 decrease while the curves B1 and B2 increase
  • the curves S3 and S4 increase while the curves B3 and B4 decrease. This is particularly true in the operating range of a pendulum in vertical position, namely the range of oscillation amplitudes from 150 ° to 280 °.
  • the average slope of each curve S1 to S4 has substantially the same absolute value as the average slope of the corresponding curve B1 to B4 in the range of oscillation amplitudes of 150 ° to 280 °.
  • Adjusting the slopes of the curves B1 to B4 during the design of the oscillator is done by varying the unbalance A of the balance and the angular position 0b of its center of gravity.
  • varying the angular position 0b of the center of gravity of the balance changes the relative position of the curves B1 to B4. It is therefore advisable to choose a value 0b so that the order of the curves B1 to B4 (according to their slope) is the inverse of that of the curves S1 to S4.
  • varying the unbalance A increases or decreases the slope of each curve B1 to B4, which optimizes the degree of compensation between the balance and the hairspring.
  • Figure 6 shows the progress of the oscillator due to the lack of equilibrium of the balance and the weight of the balance spring (sum of the step due to the lack of balance of the balance and the step due to the weight of the balance spring) in each of the four above-mentioned vertical positions, namely the vertical high position VH (curve J1), the vertical right position VD (curve J2), the left vertical position VG (curve J3) and the vertical low position VB (curve J4).
  • VH curve J1
  • VD vertical right position
  • VG curve J3
  • VB vertical low position VB
  • Figure 7 shows a spiral 3 'of the same type as the spiral 3 shown in Figure 2 but whose ferrule radius R was increased from 545 pm to 760 pm.
  • the values eo, e c , ed, Qc, Qd, a c , ad, measured in the same way as for the hairspring 3, are as follows:
  • FIG. 8 shows the progress of the oscillator 1, 2, 3 'due to the weight of the hairspring 3' as a function of the amplitude of oscillation of the balance 1 in each of the four vertical positions mentioned above, namely the vertical position high VH (curve S1 '), the right vertical position VD (curve S2'), the left vertical position VG (curve S3 ') and the vertical low position VB (curve S4').
  • VH curve S1 '
  • VD curve S2'
  • VD curve S2'
  • the left vertical position VG curve S3 '
  • the vertical low position VB curve S4'
  • FIG. 9 shows the progress of the oscillator 1, 2, 3 'due to the lack of balance of the balance 1 as a function of the amplitude of oscillation of the balance 1 in each of the four vertical positions mentioned above, namely the vertical position high VH (curve B1 '), the right vertical position VD (curve B2'), the left vertical position VG (curve B3 ') and the vertical low position VB (curve B4').
  • the diagram of FIG. 9 was obtained with a balance having an unbalance A of 1.25 .mu.g and whose angular position Qb of the center of gravity is 55.degree. It can be seen that the slopes of the curves S1 'to S4' and the slopes of the curves B1 'to B4' allow a step compensation between the balance 1 and the spiral 3 '.
  • FIG. 10 shows the progress of the oscillator 1, 2, 3 'due to the lack of balance of the balance 1 and to the weight of the balance spring 3' (sum of the step due to the lack of balance of the balance 1 and the step due to the weight of the spiral 3 ') in each of the four vertical positions mentioned above, namely the vertical high position VH (curve J1'), the vertical straight position VD (curve J2 '), the vertical left position VG (curve J3') and the low vertical position VB (curve J4 '). It can be noted that the operating deviations between these vertical positions are very small, the maximum operating gap in the range of oscillation amplitudes from 150 ° to 280 ° being less than 0.7 s / d.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Springs (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Micromachines (AREA)
  • Electric Clocks (AREA)
  • Cosmetics (AREA)
  • Testing Of Balance (AREA)

Abstract

Oscillateur pour pièce d'horlogerie, comprenant un balancier (1) et un spiral (3; 3'), le balancier présentant un défaut d'équilibre. Le défaut d'équilibre du balancier et la géométrie du spiral sont tels que : (a) les courbes (S1-S4; S1'-S4') représentant la marche de l'oscillateur due au poids du spiral en fonction de l'amplitude d'oscillation du balancier dans au moins quatre positions verticales de l'oscillateur espacées de 90° passent chacune par la valeur zéro à une amplitude d'oscillation du balancier comprise entre 200° et 240°; (b) entre l'amplitude d'oscillation de 150° et l'amplitude d'oscillation de 280°, les courbes (B1 - B4; B1'-B4') représentant la marche de l'oscillateur due au défaut d'équilibre du balancier en fonction de l'amplitude d'oscillation du balancier dans lesdites positions verticales de l'oscillateur ont chacune une pente moyenne de signe opposé à la pente moyenne de la courbe correspondante parmi lesdites courbes (S1-S4; S1'-S4') représentant la marche de l'oscillateur due au poids du spiral. Une diminution des écarts de marche entre les positions verticales peut ainsi être obtenue.

Description

Oscillateur balancier-spiral pour pièce d'horlogerie
La présente invention concerne un oscillateur de type balancier-spiral pour pièce d'horlogerie, plus particulièrement un tel oscillateur dont l'isochronisme est amélioré. Par isochronisme on entend les variations de la marche en fonction de l'amplitude d'oscillation du balancier et en fonction de la position de la pièce d'horlogerie. Plus ces variations sont faibles, plus l'oscillateur est isochrone.
La marche d'un oscillateur balancier-spiral est égale à la somme de la marche due au défaut d'équilibre du balancier et de la marche due au spiral. En position verticale, le défaut d'équilibre ou balourd du balancier perturbe la régularité des oscillations. Pour minimiser cette perturbation, il est d'usage de rééquilibrer le balancier par fraisage ou au moyen de vis de réglage équipant le balancier. Les variations de marche dues au spiral sont, elles, provoquées principalement par le développement excentrique et le poids du spiral. Le développement excentrique du spiral génère un couple perturbateur, le même dans toutes les positions, créé par les forces de rappel entre les pivots de l'arbre de l'oscillateur et les paliers dans lesquels ils tournent. Le poids du spiral génère un autre couple perturbateur, fonction de l'inclinaison de la pièce d'horlogerie par rapport à la position horizontale.
Ces dernières années, des améliorations ont été apportées à la géométrie des spiraux pour diminuer leur contribution au défaut d'isochronisme de l'oscillateur. On peut citer notamment les demandes de brevet EP 1445670, EP 1473604, EP 2299336 et WO 2014/072781 qui décrivent des spiraux comprenant des variations de rigidité et/ou de pas le long de leur lame. Les techniques modernes de fabrication et les matériaux tels que le silicium permettent l'obtention de tels spiraux. Toutefois, cette approche consistant à traiter la marche due au spiral séparément de la marche due au balancier limite le gain possible en matière d'isochronisme global de l'oscillateur. En effet, il apparaît difficile de réduire encore les écarts de marche entre les positions verticales dus au spiral. Malgré la variété de géométries de spiral qui ont été proposées, on ne parvient pas, ou très difficilement, à descendre au-dessous d'écarts de marche de l'ordre de 1 seconde/jour pour le spiral. En ce qui concerne le balancier, il est presque impossible d'obtenir en production industrielle des balanciers ayant un balourd inférieur à 0,5 pg.cm.
La présente invention vise à proposer une autre approche pour améliorer l'isochronisme d'un oscillateur balancier-spiral et pour en particulier réduire les écarts de marche entre ses différentes positions verticales.
A cette fin, il est prévu un oscillateur pour pièce d'horlogerie, comprenant un balancier et un spiral, le balancier présentant un défaut d'équilibre, caractérisé en ce que le défaut d'équilibre du balancier et la géométrie du spiral sont tels que
a) les courbes représentant la marche de l'oscillateur due au poids du spiral en fonction de l'amplitude d'oscillation du balancier dans au moins quatre positions verticales de l'oscillateur espacées de 90°, de préférence dans toutes les positions verticales, passent chacune par la valeur zéro à une amplitude d'oscillation du balancier comprise entre 200° et 240°, de préférence entre 210° et 230°, de préférence encore entre 215° et 225° ; b) entre l'amplitude d'oscillation de 150° et l'amplitude d'oscillation de 280°, les courbes représentant la marche de l'oscillateur due au défaut d'équilibre du balancier en fonction de l'amplitude d'oscillation du balancier dans lesdites positions verticales de l'oscillateur ont chacune une pente moyenne de signe opposé à la pente moyenne de la courbe correspondante parmi lesdites courbes représentant la marche de l'oscillateur due au poids du spiral.
Ainsi, la présente invention propose de concevoir le balancier et le spiral de telle manière que la marche due au défaut d'équilibre du balancier et la marche due au poids du spiral se compensent au moins partiellement et de préférence sensiblement entièrement dans toute ou presque toute la plage de fonctionnement normal du balancier. Contrairement à l'état de la technique, on ne cherche donc pas dans la présente invention à annuler le balourd du balancier, celui-ci peut même être élevé. De même, on ne cherche pas à réduire au minimum la marche due au poids du spiral. Cette nouvelle approche permet l'obtention de très petits écarts de marche entre les différentes positions verticales de l'oscillateur et améliore donc la précision de la pièce d'horlogerie.
En pratique, l'amplitude d'oscillation à laquelle les courbes représentant la marche de l'oscillateur due au poids du spiral passent par zéro peut être légèrement différente d'une courbe à l'autre. De préférence, lesdites courbes passent par zéro à la même amplitude d'oscillation et se croisent donc en un même point.
Dans des exemples de réalisation préférentiels, le défaut d'équilibre du balancier et la géométrie du spiral sont tels que la pente moyenne de chaque courbe parmi lesdites courbes représentant la marche de l'oscillateur due au défaut d'équilibre du balancier a sensiblement la même valeur absolue que la pente moyenne de la courbe correspondante parmi lesdites courbes représentant la marche de l'oscillateur due au poids du spiral, dans la plage d'amplitudes d'oscillation de 150° à 280°.
Le défaut d'équilibre du balancier et la géométrie du spiral peuvent être tels que l'écart maximum de la marche de l'oscillateur due au défaut d'équilibre du balancier et au poids du spiral entre lesdites positions verticales dans la plage d'amplitudes d'oscillation de 150° à 280° est inférieur à 4 secondes/jour, voire à 2 secondes/jour, voire encore à 1 seconde/jour, voire encore à 0,7 seconde/jour.
La distance entre l'extrémité intérieure du spiral et le centre de rotation du spiral peut être supérieure à 500 pm, voire à 600 pm, voire encore à 700 pm.
Le balourd du balancier peut être supérieur à 0,5 pg.cm, voire à 1 pg.cm.
Dans des exemples typiques de réalisation, la spire intérieure du spiral présente une portion rigidifiée et/ou est conformée selon une courbe Grossmann. La spire extérieure du spiral peut elle aussi présenter une portion rigidifiée.
Dans d'autres exemples de réalisation, le spiral présente une rigidité et/ou un pas qui varient continûment sur au moins plusieurs spires. D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée suivante faite en référence aux dessins annexés dans lesquels :
- la figure 1 montre un oscillateur balancier-spiral selon un premier mode de réalisation de l'invention ;
- la figure 2 montre le spiral de l'oscillateur selon le premier mode de réalisation de l'invention ;
- la figure 3 montre le balancier de l'oscillateur selon l'invention, vu depuis l'autre côté par rapport à la figure 1 ;
- la figure 4 montre des courbes représentant la marche de l'oscillateur due au poids du spiral selon le premier mode de réalisation de l'invention ;
- la figure 5 montre des courbes représentant la marche de l'oscillateur due au défaut d'équilibre du balancier selon le premier mode de réalisation de l'invention ;
- la figure 6 montre des courbes représentant la marche de l'oscillateur due à la fois au défaut d'équilibre du balancier et au poids du spiral selon le premier mode de réalisation de l'invention ;
- la figure 7 montre le spiral d'un oscillateur selon un deuxième mode de réalisation de l'invention ;
- la figure 8 montre des courbes représentant la marche de l'oscillateur due au poids du spiral selon le deuxième mode de réalisation de l'invention ;
- la figure 9 montre des courbes représentant la marche de l'oscillateur due au défaut d'équilibre du balancier selon le deuxième mode de réalisation de l'invention ;
- la figure 10 montre des courbes représentant la marche de l'oscillateur due à la fois au défaut d'équilibre du balancier et au poids du spiral selon le deuxième mode de réalisation de l'invention.
En référence aux figures 1 à 3, un oscillateur balancier-spiral selon un premier mode de réalisation de l'invention, pour un mouvement horloger destiné à équiper une pièce d'horlogerie telle qu'une montre-bracelet ou une montre de poche, comprend un balancier 1 monté sur un axe de balancier 2 et un spiral 3 dont l'extrémité intérieure 3a est fixée à l'axe de balancier 2 par l'intermédiaire d'une virole 4 et dont l'extrémité extérieure 3b est fixée au bâti du mouvement par l'intermédiaire d'un ou plusieurs organes. Dans l'exemple représenté, l'extrémité extérieure 3b du spiral 3 est prolongée par une partie rigide de fixation 5 qui est tenue par une pince 6 montée sur le bâti du mouvement, comme décrit dans le brevet EP 178061 1 de la demanderesse. L'extrémité extérieure 3b pourrait cependant être fixée au bâti d'une autre manière, par exemple au moyen d'un piton traditionnel. L'ensemble comprenant le spiral 3, la virole 4 et la partie rigide de fixation 5 peut être monolithique et réalisé par exemple en silicium ou en diamant. L'axe de balancier 2 porte aussi un plateau ou double plateau 7 portant lui-même une cheville de plateau 8 et faisant partie d'un échappement servant à entretenir et compter les oscillations de l'oscillateur.
Le spiral 3 n'a pas la forme traditionnelle d'une spirale d'Archimède à section de lame constante. La géométrie du spiral est en effet irrégulière en ce sens qu'elle présente une section et/ou un pas qui varient le long de sa lame. Dans l'exemple représenté, une portion 3c de la spire extérieure (ci-après « portion rigidifiée extérieure ») et une portion 3d de la spire intérieure (ci-après « portion rigidifiée intérieure ») ont une plus grande section, donc une plus grande rigidité, que le reste de la lame formant le spiral 3. En dehors de ces portions 3c et 3d la section de la lame est constante. Le pas du spiral 3 est constant depuis un point 3e' situé sur sa spire intérieure jusqu'à un point 3e situé sur sa spire extérieure. De l'extrémité intérieure 3a au point 3e' le pas augmente légèrement. Après le point 3e le pas augmente nettement, la spire extérieure s'écartant de l'avant-dernière spire par rapport au tracé de la spirale d'Archimède pour éviter que ces deux spires ne se touchent lors des expansions du spiral. La partie terminale 3f du spiral 3 s'étendant entre les points 3e et 3b comprend au moins une partie de, typiquement toute, la portion rigidifiée extérieure 3c. De nombreuses autres géométries du spiral 3 sont toutefois possibles. Par exemple, en remplacement ou en plus de la portion rigidifiée intérieure 3d, la spire intérieure pourrait être conformée selon une courbe Grossmann. On pourrait aussi ne pas avoir de portion rigidifiée extérieure 3c. Dans d'autres variantes, au lieu de changer la section de la lame du spiral uniquement localement au niveau de la spire intérieure et de la spire extérieure, on pourrait changer continûment la section tout le long de la lame ou sur plusieurs spires, c'est-à-dire sur un nombre (pas nécessairement entier) de spires plus grand que 1 , par exemple égal à 2 ou plus. On pourrait aussi faire varier continûment le pas du spiral tout le long de la lame ou sur plusieurs spires, en remplacement ou en plus de la variation de section. De plus, on pourrait faire varier la rigidité du spiral le long de sa lame d'une autre manière qu'en changeant sa section, par exemple par dopage ou traitement thermique.
La marche d'un oscillateur balancier-spiral est égale à la somme de la marche due au balancier et de la marche due au spiral. Le balancier influence la marche dans les positions verticales uniquement. La marche de l'oscillateur due au balancier est causée par le défaut d'équilibre du balancier, c'est-à-dire par le fait que, en raison des tolérances de fabrication, le centre de gravité du balancier n'est pas sur l'axe de rotation de ce dernier. En référence à la figure 3, si l'on définit par d la position radiale du centre de gravité G du balancier 1 (par rapport au centre de rotation O du balancier, en projection dans un plan perpendiculaire à l'axe de rotation 2) et par Mb la masse du balancier, la grandeur A = d.Mb est le balourd du balancier. Comme on le verra par la suite, le balourd A du balancier et la position angulaire Qb de son centre de gravité G (définie par exemple par rapport à un bras du balancier, en projection dans un plan perpendiculaire à l'axe de rotation 2, comme illustré à la figure 3) sont des paramètres d'ajustement de la marche due au défaut d'équilibre du balancier. Le spiral, lui, influence la marche dans la position horizontale et dans les positions verticales. Le développement excentrique du spiral provoque dans les paliers de l'axe de balancier des réactions qui varient, ceci dans toutes les positions de l'oscillateur. De plus, dans les positions verticales, le déplacement du centre de gravité du spiral causé par le développement excentrique de ce dernier crée un défaut d'isochronisme dû au poids du spiral appliqué audit centre de gravité. Cette perturbation est différente de l'effet d'affaissement gravitationnel élastique du spiral, qui est négligé dans la présente invention.
D'après la théorie, la courbe représentant la marche de l'oscillateur due au défaut d'équilibre du balancier en fonction de l'amplitude d'oscillation du balancier, dans toute position verticale de ce dernier, passe par la valeur zéro (c'est-à-dire croise l'axe des abscisses) à une amplitude d'oscillation de 220°. Egalement d'après la théorie, pour un spiral à section de lame constante en forme de spirale d'Archimède parfaite, la courbe représentant la marche de l'oscillateur due au poids du spiral en fonction de l'amplitude d'oscillation du balancier, dans toute position verticale de ce dernier, passe par la valeur zéro (c'est-à-dire croise l'axe des abscisses) à des amplitudes d'oscillation de 163,5° et de 330,5°.
La présente invention repose sur la constatation qu'il est possible de choisir des paramètres A, 0b de balanciers et des géométries de spiraux pour que la marche due au défaut d'équilibre du balancier et la marche due au poids du spiral se compensent, permettant ainsi de diminuer, voire de rendre sensiblement nuls, les écarts de marche entre les différentes positions verticales.
Dans l'exemple de la figure 2, le spiral 3 présente 14 spires. L'épaisseur eo de la lame formant le spiral, mesurée suivant un rayon partant du centre de rotation O du spiral, est de 28, 1 pm, sauf le long de la portion rigidifiée extérieure 3c et de la portion rigidifiée intérieure 3d où elle est plus grande. Le pas du spiral entre les points 3e' et 3e est de 86,8 pm. Le rayon R de la virole 4, ou distance entre l'extrémité intérieure 3a du spiral et le centre O, défini comme le rayon du cercle de centre O passant par le milieu (à la moitié de l'épaisseur eo) de l'extrémité intérieure 3a, est de 545 pm. L'épaisseur ed maximale de la portion rigidifiée intérieure 3d, mesurée suivant un rayon partant du centre de courbure Cd du début de la spire intérieure (entre les points 3a et 3e'), est de 73 pm. L'étendue angulaire 0d de la portion rigidifiée intérieure 3d, mesurée depuis le centre de courbure Cd, est de 78°. Sa position angulaire ad (position de son centre par rapport à l'extrémité intérieure 3a), mesurée depuis le centre de courbure Cd, est de 82°. L'épaisseur maximale ec de la portion rigidifiée extérieure 3c, mesurée suivant un rayon partant du centre de courbure Ce de la partie terminale 3f du spiral 3, est de 88 pm. L'étendue angulaire θ0 et la position angulaire ac (position de son centre par rapport à l'extrémité extérieure 3b du spiral 3) de la portion rigidifiée extérieure 3c, mesurées depuis le centre de courbure Ce, sont respectivement de 94° et de 1 10°.
On a représenté à la figure 4 la marche de l'oscillateur 1 , 2, 3 due au poids du spiral 3 en fonction de l'amplitude d'oscillation du balancier 1 dans chacune de quatre positions verticales de l'oscillateur espacées de 90°, à savoir une position verticale haute VH (3 heures en haut) (courbe S1 ), une position verticale droite VD (12 heures en haut) (courbe S2), une position verticale gauche VG (6 heures en haut) (courbe S3) et une position verticale basse VB (9 heures en haut) (courbe S4). En abscisses du diagramme de la figure 4 est portée l'amplitude d'oscillation du balancier 1 exprimée en degrés par rapport à la position d'équilibre et en ordonnées est représentée la marche en secondes par jour (s/j). Chaque courbe S1 à S4 a été obtenue en utilisant la formule suivante :
MS. L 1 [2 π δνα(θ(φ))
Figure imgf000010_0001
proposée dans l'ouvrage « Traité de construction horlogère » de M. Vermot, P. Bovay, D. Prongué et S. Dordor, édité par les Presses polytechniques et universitaires romandes, 201 1 , où μ est la marche, Ms est la masse du spiral, L est la longueur du spiral, E est le module de Young du spiral, I est le moment quadratique du spiral, g est la constante de gravité, Θ est l'élongation du balancier par rapport à sa position d'équilibre, θο est l'amplitude du balancier par rapport à sa position d'équilibre, φ est la phase (θ = θο cos φ), yg est l'ordonnée du centre de gravité du spiral dans le repère (O, x, y) de la figure 3 où l'axe y est opposé à la gravité, et δ désigne la dérivée. Le déplacement du centre de gravité du spiral (variation de la grandeur yg) a été calculé par éléments finis. La dérivée et l'intégrale ont ensuite été calculées numériquement.
Comme on peut le voir, les courbes S1 à S4 se croisent en un point P1 situé sur l'axe des abscisses à une amplitude d'oscillation d'environ 218°, amplitude qui est donc proche de l'amplitude d'oscillation de 220° à laquelle se croisent les courbes correspondantes d'un balancier. La partie du spiral 3 qui a le plus d'influence sur la position du point de croisement P1 est la portion rigidifiée intérieure 3d. La portion rigidifiée extérieure 3c permet d'affiner le réglage du point de croisement P1 , et/ou de produire une avance de marche qui compense un retard de marche causé par l'échappement comme décrit dans les demandes de brevet WO 2013/034962 et WO 2014/072781 de la présente demanderesse. En pratique, le croisement au point P1 ou au voisinage du point P1 se produit dans toutes les positions verticales de l'oscillateur.
La figure 5 représente la marche de l'oscillateur 1 , 2, 3 due au défaut d'équilibre du balancier 1 en fonction de l'amplitude d'oscillation du balancier 1 dans chacune des quatre positions verticales précitées de l'oscillateur, à savoir la position verticale haute VH (courbe B1 ), la position verticale droite VD (courbe B2), la position verticale gauche VG (courbe B3) et la position verticale basse VB (courbe B4). Chaque courbe B1 à B4 a été obtenue en utilisant la formule suivante :
μ(β0) = 86400. .! ± . οο3
«o (φ +β proposée dans l'ouvrage précité « Traité de construction horlogère », où μ est la marche, θο est l'amplitude du balancier par rapport à sa position d'équilibre, Mb est la masse du balancier, g est la constante de gravité, d est la position radiale du centre de gravité du balancier, Jb est le moment d'inertie du balancier, ωο est la pulsation propre de l'oscillateur, Ji est la fonction de Bessel d'ordre 1 (qui s'annule pour une valeur de θο d'environ 220°), β est la position angulaire du centre de gravité du balancier par rapport à la cheville de plateau 8 (cf. figure 3 ; β = Qb - 45°) et φ est la position angulaire de la cheville de plateau 8 par rapport à la direction de la gravité.
Plus particulièrement, le diagramme de la figure 5 est celui d'un balancier ayant un balourd A de 0,6 pg.cm et dont la position angulaire 0b du centre de gravité est de 60°. On constate que la pente, en particulier la pente moyenne, de chaque courbe B1 à B4 est de signe opposé à celui de la pente, en particulier la pente moyenne, de chaque courbe S1 à S4 respectivement. En d'autres termes, les courbes S1 et S2 décroissent alors que les courbes B1 et B2 croissent, et les courbes S3 et S4 croissent alors que les courbes B3 et B4 décroissent. Ceci est vrai notamment dans la plage de fonctionnement courante d'un balancier en position verticale, à savoir la plage d'amplitudes d'oscillation de 150° à 280°. Cette caractéristique relative aux pentes des courbes S1 à S4 et B1 à B4 combinée au fait que le point de croisement P1 des courbes S1 à S4 est proche du point de croisement P2, à 220°, des courbes B1 à B4, permet à la marche due au défaut d'équilibre du balancier 1 et à la marche due au poids du spiral 3 de se compenser mutuellement, au moins partiellement. De préférence, la pente moyenne de chaque courbe S1 à S4 a sensiblement la même valeur absolue que la pente moyenne de la courbe B1 à B4 correspondante dans la plage d'amplitudes d'oscillation de 150° à 280°. Le réglage des pentes des courbes B1 à B4 lors de la conception de l'oscillateur s'effectue en faisant varier le balourd A du balancier et la position angulaire 0b de son centre de gravité. À balourd A constant, faire varier la position angulaire 0b du centre de gravité du balancier change la position relative des courbes B1 à B4. Il convient donc de choisir une valeur 0b pour que l'ordre des courbes B1 à B4 (selon leur pente) soit l'inverse de celui des courbes S1 à S4. À valeur 0b constante, faire varier le balourd A augmente ou diminue la pente de chaque courbe B1 à B4, ce qui permet d'optimiser le degré de compensation entre le balancier et le spiral. La figure 6 montre la marche de l'oscillateur due au défaut d'équilibre du balancier et au poids du spiral (somme de la marche due au défaut d'équilibre du balancier et de la marche due au poids du spiral) dans chacune des quatre positions verticales précitées, à savoir la position verticale haute VH (courbe J1 ), la position verticale droite VD (courbe J2), la position verticale gauche VG (courbe J3) et la position verticale basse VB (courbe J4). On peut noter que les écarts de marche entre ces positions verticales sont très faibles, l'écart de marche maximal dans la plage d'amplitudes d'oscillation de 150° à 280° étant inférieur à 0,7 s/j.
En pratique, sur un balancier fabriqué, on peut régler le balourd A et la position angulaire 0b du centre de gravité par fraisage et/ou au moyen de vis de réglage qui équipent le balancier et/ou au moyen de masselottes qui équipent le balancier. Pour toutefois faciliter la fabrication et le réglage du balancier, il est prévu selon un deuxième mode de réalisation de l'invention de choisir un plus grand balourd A. Cependant, l'augmentation du balourd A entraîne une augmentation de la pente des courbes B1 à B4. Afin de permettre au spiral de compenser la marche due au défaut d'équilibre du balancier, il est également prévu selon ce deuxième mode de réalisation de l'invention d'augmenter le rayon de la virole 4 pour augmenter la pente des courbes S1 à S4.
Ainsi, la figure 7 montre un spiral 3' du même type que le spiral 3 illustré à la figure 2 mais dont le rayon de virole R a été augmenté de 545 pm à 760 pm. Les valeurs eo, ec, ed, Qc, Qd, ac, ad, mesurées de la même manière que pour le spiral 3, sont les suivantes :
eo = 25,9 pm
ec = 86 m
Figure imgf000013_0001
Oc = 94°
Figure imgf000013_0002
Qc = 90°
ad = 88° Le pas du spiral 3' est de 96,5 m. Le nombre de spires est de 10.
A la figure 8 est représentée la marche de l'oscillateur 1 , 2, 3' due au poids du spiral 3' en fonction de l'amplitude d'oscillation du balancier 1 dans chacune des quatre positions verticales précitées, à savoir la position verticale haute VH (courbe S1 '), la position verticale droite VD (courbe S2'), la position verticale gauche VG (courbe S3') et la position verticale basse VB (courbe S4'). Ces courbes S1 ' à S4' se croisent sensiblement en un point P1 ' situé sur l'axe des abscisses et correspondant à une amplitude d'oscillation du balancier d'environ 223°.
La figure 9 montre la marche de l'oscillateur 1 , 2, 3' due au défaut d'équilibre du balancier 1 en fonction de l'amplitude d'oscillation du balancier 1 dans chacune des quatre positions verticales précitées, à savoir la position verticale haute VH (courbe B1 '), la position verticale droite VD (courbe B2'), la position verticale gauche VG (courbe B3') et la position verticale basse VB (courbe B4'). Le diagramme de la figure 9 a été obtenu avec un balancier ayant un balourd A de 1 ,25 pg.cm et dont la position angulaire Qb du centre de gravité est de 55°. On peut constater que les pentes des courbes S1 ' à S4' et les pentes des courbes B1 ' à B4' permettent une compensation de marche entre le balancier 1 et le spiral 3'.
La figure 10 montre la marche de l'oscillateur 1 , 2, 3' due au défaut d'équilibre du balancier 1 et au poids du spiral 3' (somme de la marche due au défaut d'équilibre du balancier 1 et de la marche due au poids du spiral 3') dans chacune des quatre positions verticales précitées, à savoir la position verticale haute VH (courbe J1 '), la position verticale droite VD (courbe J2'), la position verticale gauche VG (courbe J3') et la position verticale basse VB (courbe J4'). On peut noter que les écarts de marche entre ces positions verticales sont très faibles, l'écart de marche maximal dans la plage d'amplitudes d'oscillation de 150° à 280° étant inférieur à 0,7 s/j.
Les exemples de réalisation décrits ci-dessus ne sont nullement limitatifs. Il va de soi que de nombreuses configurations sont possibles pour réaliser l'invention telle que revendiquée.

Claims

REVENDICATIONS
1 . Oscillateur pour pièce d'horlogerie, comprenant un balancier (1 ) et un spiral (3 ; 3'), le balancier présentant un défaut d'équilibre, caractérisé en ce que le défaut d'équilibre du balancier et la géométrie du spiral sont tels que a) les courbes (S1 -S4 ; SV-S4') représentant la marche de l'oscillateur due au poids du spiral en fonction de l'amplitude d'oscillation du balancier dans au moins quatre positions verticales de l'oscillateur espacées de 90° passent chacune par la valeur zéro à une amplitude d'oscillation du balancier comprise entre 200° et 240° ;
b) entre l'amplitude d'oscillation de 150° et l'amplitude d'oscillation de 280°, les courbes (B1 -B4 ; B1 '-B4') représentant la marche de l'oscillateur due au défaut d'équilibre du balancier en fonction de l'amplitude d'oscillation du balancier dans lesdites positions verticales de l'oscillateur ont chacune une pente moyenne de signe opposé à la pente moyenne de la courbe correspondante parmi lesdites courbes (S1 -S4 ; SV-S4') représentant la marche de l'oscillateur due au poids du spiral.
2. Oscillateur selon la revendication 1 , caractérisé en ce que la géométrie du spiral est telle que lesdites courbes (S1 -S4 ; SV-S4') représentant la marche de l'oscillateur due au poids du spiral passent chacune par la valeur zéro à une amplitude d'oscillation du balancier comprise entre 210° et 230°.
3. Oscillateur selon la revendication 2, caractérisé en ce que la géométrie du spiral est telle que lesdites courbes (S1 -S4 ; S1 '-S4') représentant la marche de l'oscillateur due au poids du spiral passent chacune par la valeur zéro à une amplitude d'oscillation du balancier comprise entre 215° et 225°.
4. Oscillateur selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le défaut d'équilibre du balancier et la géométrie du spiral sont tels que la pente moyenne de chaque courbe parmi lesdites courbes (B1 -B4 ; B1 '-B4') représentant la marche de l'oscillateur due au défaut d'équilibre du balancier a sensiblement la même valeur absolue que la pente moyenne de la courbe correspondante parmi lesdites courbes (S1 -S4 ; SV-S4') représentant la marche de l'oscillateur due au poids du spiral, dans la plage d'amplitudes d'oscillation de 150° à 280°.
5. Oscillateur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le défaut d'équilibre du balancier et la géométrie du spiral sont tels que l'écart maximum de la marche de l'oscillateur due au défaut d'équilibre du balancier et au poids du spiral entre lesdites positions verticales dans la plage d'amplitudes d'oscillation de 150° à 280° est inférieur à 4 secondes/jour, de préférence à 2 secondes/jour, de préférence encore à 1 seconde/jour, de préférence encore à 0,7 seconde/jour.
6. Oscillateur selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la distance (R) entre l'extrémité intérieure (3a) du spiral (3') et le centre de rotation (O) du spiral (3') est supérieure à 500 pm, de préférence supérieure à 600 pm, de préférence encore supérieure à 700 pm.
7. Oscillateur selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le balourd du balancier est supérieur à 0,5 pg.cm, de préférence supérieur à 1 pg.cm.
8. Oscillateur selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la spire intérieure du spiral (3 ; 3') présente une portion rigidifiée (3d) et/ou est conformée selon une courbe Grossmann.
9. Oscillateur selon la revendication 8, caractérisé en ce que la spire extérieure du spiral (3 ; 3') présente une portion rigidifiée (3c).
10. Oscillateur selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le spiral présente une rigidité et/ou un pas qui varient continûment sur au moins plusieurs spires.
PCT/IB2017/051480 2016-03-23 2017-03-15 Oscillateur balancier-spiral pour piece d'horlogerie WO2017163148A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018549474A JP6991154B2 (ja) 2016-03-23 2017-03-15 時計用のテンプ-ヒゲゼンマイ振動子
KR1020187027755A KR102305812B1 (ko) 2016-03-23 2017-03-15 시계를 위한 평형 바퀴 오실레이터
SG11201806735QA SG11201806735QA (en) 2016-03-23 2017-03-15 Balance-hairspring oscillator for a timepiece
US16/078,952 US11249440B2 (en) 2016-03-23 2017-03-15 Balance-hairspring oscillator for a timepiece
CN201780019397.0A CN108885426B (zh) 2016-03-23 2017-03-15 用于钟表的摆轮-游丝振荡器
EP17712250.4A EP3433680B1 (fr) 2016-03-23 2017-03-15 Oscillateur balancier-spiral pour piece d'horlogerie

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16161964 2016-03-23
EP16161964.8 2016-03-23

Publications (1)

Publication Number Publication Date
WO2017163148A1 true WO2017163148A1 (fr) 2017-09-28

Family

ID=55589744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/051480 WO2017163148A1 (fr) 2016-03-23 2017-03-15 Oscillateur balancier-spiral pour piece d'horlogerie

Country Status (7)

Country Link
US (1) US11249440B2 (fr)
EP (1) EP3433680B1 (fr)
JP (1) JP6991154B2 (fr)
KR (1) KR102305812B1 (fr)
CN (1) CN108885426B (fr)
SG (1) SG11201806735QA (fr)
WO (1) WO2017163148A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210045472A (ko) * 2018-09-21 2021-04-26 니바록스-파 에스.에이. 지지 요소에 시계 구성요소를 부착하기 위한 탄성 유지 부재
EP3913441A1 (fr) 2020-05-22 2021-11-24 Patek Philippe SA Genève Oscillateur pour pièce d'horlogerie
EP4372479A1 (fr) * 2022-11-18 2024-05-22 Richemont International S.A. Procede de fabrication de spiraux d'horlogerie

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309625B1 (fr) * 2016-10-13 2020-07-29 Nivarox-FAR S.A. Spiral destiné à être fixé par une rondelle élastique
EP3968097A1 (fr) * 2020-09-09 2022-03-16 Nivarox-FAR S.A. Ensemble horloger et son procédé de fabrication
EP4293428A1 (fr) 2022-06-14 2023-12-20 Patek Philippe SA Genève Spiral pour résonateur horloger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445670A1 (fr) 2003-02-06 2004-08-11 ETA SA Manufacture Horlogère Suisse Spiral de résonateur balancier-spiral et son procédé de fabrication
EP1473604A1 (fr) 2003-04-29 2004-11-03 Patek Philippe S.A. Organe de régulation à balancier et spiral plan pour mouvement d'horlogerie
EP1780611A2 (fr) 2005-10-25 2007-05-02 Patek Philippe Sa Dispositif régulateur pour pièce d'horlogerie
EP2299336A2 (fr) 2009-09-21 2011-03-23 Rolex Sa Spiral plat pour balancier d'horlogerie et ensemble balancier-spiral
WO2013034962A1 (fr) 2011-09-07 2013-03-14 Patek Philippe Sa Geneve Mouvement d'horlogerie à balancier-spiral
WO2014001341A1 (fr) * 2012-06-26 2014-01-03 Rolex Sa Procédé de détermination d'une caractéristique de balourd d'un oscillateur
WO2014072781A2 (fr) 2012-11-07 2014-05-15 Patek Philippe Sa Geneve Mouvement d'horlogerie a balancier-spiral
WO2015132259A2 (fr) * 2014-03-03 2015-09-11 Richemont International Sa Methode d'appairage d'un balancier et d'un spiral dans un organe regulateur

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH327796A (fr) 1954-02-22 1958-02-15 Horlogerie Suisse S A Asuag Spiral plat
DE60206939T2 (de) * 2002-11-25 2006-07-27 Csem Centre Suisse D'electronique Et De Microtechnique S.A. Spiraluhrwerkfeder und Verfahren zu deren Herstellung
EP1605182B8 (fr) * 2004-06-08 2010-07-14 CSEM Centre Suisse d'Electronique et de Microtechnique S.A. - Recherche et Développement Oscillateur balancier-spiral compensé en température
EP1612627B1 (fr) * 2004-07-02 2009-05-06 Nivarox-FAR S.A. Spiral autocompensateur bi-matière
EP1818736A1 (fr) * 2006-02-09 2007-08-15 The Swatch Group Research and Development Ltd. Virole anti-choc
DE102009048733A1 (de) 2009-10-08 2011-04-14 Konrad Damasko Spiralfeder für mechanische Schwingungssysteme von Uhren
EP2405312A1 (fr) * 2010-07-09 2012-01-11 Montres Breguet S.A. Spiral de balancier à deux niveaux et à centre de masse immobile
EP2455825B1 (fr) 2010-11-18 2016-08-17 Nivarox-FAR S.A. Procédé d'appairage et d'ajustement d'un sous-ensemble d'horlogerie
EP4224257A1 (fr) * 2011-09-29 2023-08-09 Rolex Sa Ensemble monolithique ressort spiral - virole
EP2613206B1 (fr) * 2012-01-05 2022-05-11 Montres Breguet SA Spiral à deux ressort-spiraux à isochronisme amélioré
CH706798B1 (fr) * 2012-08-07 2022-03-31 Eta Sa Mft Horlogere Suisse Mouvement horloger comprenant un système oscillant.
EP3254158B1 (fr) * 2015-02-03 2023-07-05 ETA SA Manufacture Horlogère Suisse Resonateur isochrone d'horlogerie

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445670A1 (fr) 2003-02-06 2004-08-11 ETA SA Manufacture Horlogère Suisse Spiral de résonateur balancier-spiral et son procédé de fabrication
EP1473604A1 (fr) 2003-04-29 2004-11-03 Patek Philippe S.A. Organe de régulation à balancier et spiral plan pour mouvement d'horlogerie
EP1780611A2 (fr) 2005-10-25 2007-05-02 Patek Philippe Sa Dispositif régulateur pour pièce d'horlogerie
EP2299336A2 (fr) 2009-09-21 2011-03-23 Rolex Sa Spiral plat pour balancier d'horlogerie et ensemble balancier-spiral
WO2013034962A1 (fr) 2011-09-07 2013-03-14 Patek Philippe Sa Geneve Mouvement d'horlogerie à balancier-spiral
WO2014001341A1 (fr) * 2012-06-26 2014-01-03 Rolex Sa Procédé de détermination d'une caractéristique de balourd d'un oscillateur
WO2014072781A2 (fr) 2012-11-07 2014-05-15 Patek Philippe Sa Geneve Mouvement d'horlogerie a balancier-spiral
WO2015132259A2 (fr) * 2014-03-03 2015-09-11 Richemont International Sa Methode d'appairage d'un balancier et d'un spiral dans un organe regulateur

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JEAN PIRANDA ET AL: "De la conception pragmatique à la conception assistée par ordinateur : évolution du spiral de balancier", ANNALES FRANCAISES DE CHRONOMÉTRIE ET DE MICROMÉCANIQUE : PUBLICATION TRIMESTRIELLE DE LA SOCIÉTÉ CHRONOMÉTRIQUE DE FRANCE., 1 January 2011 (2011-01-01), pages 71 - 82, XP055302311, DOI: http://bdchrono.ssc.ch/Conference.aspx?Mode=Search&From=List&Page=0&intItem=0&Col=Annee&Sens=DESC&idConference=CO4826 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210045472A (ko) * 2018-09-21 2021-04-26 니바록스-파 에스.에이. 지지 요소에 시계 구성요소를 부착하기 위한 탄성 유지 부재
JP2022501620A (ja) * 2018-09-21 2022-01-06 ニヴァロックス−ファー ソシエテ アノニム 支持要素に計時器構成要素を付着させるための弾性保持部材
JP7353370B2 (ja) 2018-09-21 2023-09-29 ニヴァロックス-ファー ソシエテ アノニム 支持要素に計時器構成要素を付着させるための弾性保持部材
KR102629671B1 (ko) 2018-09-21 2024-01-25 니바록스-파 에스.에이. 지지 요소에 시계 구성요소를 부착하기 위한 탄성 유지 부재
EP3913441A1 (fr) 2020-05-22 2021-11-24 Patek Philippe SA Genève Oscillateur pour pièce d'horlogerie
EP4372479A1 (fr) * 2022-11-18 2024-05-22 Richemont International S.A. Procede de fabrication de spiraux d'horlogerie

Also Published As

Publication number Publication date
SG11201806735QA (en) 2018-09-27
CN108885426B (zh) 2020-10-27
JP6991154B2 (ja) 2022-01-12
EP3433680A1 (fr) 2019-01-30
JP2019509492A (ja) 2019-04-04
US11249440B2 (en) 2022-02-15
US20190049900A1 (en) 2019-02-14
CN108885426A (zh) 2018-11-23
KR20180127367A (ko) 2018-11-28
EP3433680B1 (fr) 2020-04-29
KR102305812B1 (ko) 2021-09-29

Similar Documents

Publication Publication Date Title
EP3433680B1 (fr) Oscillateur balancier-spiral pour piece d'horlogerie
EP2102717B1 (fr) Oscillateur mecanique pour une piece d'horlogerie
EP2455825B1 (fr) Procédé d'appairage et d'ajustement d'un sous-ensemble d'horlogerie
WO2015189278A2 (fr) Oscillateur pour un ensemble de balancier-spiral d'une pièce d'horlogerie
EP2917787B1 (fr) Mouvement d'horlogerie a balancier-spiral
EP2690506B1 (fr) Spiral d'horlogerie anti-galop
EP2690507B1 (fr) Spiral d'horlogerie
EP3792700B1 (fr) Oscillateur horloger a pivot flexible
EP3913441B1 (fr) Oscillateur pour pièce d'horlogerie
EP2753985B1 (fr) Mouvement d'horlogerie à balancier-spiral
EP3037893B1 (fr) Composant micromécanique ou horloger à guidage flexible
CH716331B1 (fr) Arbre horloger à pivot dont le coefficient de frottement est réduit.
CH705928B1 (fr) Procédé d'amélioration du pivotement d'un balancier, balancier, balancier-spiral, mouvement et pièce d'horlogerie.
WO2023242746A1 (fr) Spiral pour résonateur horloger
EP3534222A1 (fr) Procédé de réalisation d'un oscillateur thermo-compensé
CH714600A2 (fr) Pièce d'horlogerie munie d'un tourbillon.
CH703605B1 (fr) Oscillateur pour pièce d'horlogerie, balancier pour équiper un tel oscillateur et mouvement de montre équipé d'un tourbillon comportant un tel balancier.
CH713286B1 (fr) Balancier pour mouvement d'horlogerie mécanique.
WO2020144587A1 (fr) Organe régulateur pour mouvement horloger
CH708657A1 (fr) Balancier pour mouvement d'horlogerie à moment d'inertie ajustable.
CH716332B1 (fr) Arbre horloger à pivot structuré.
CH710581B1 (fr) Ressort spiral et son procédé de fabrication.
CH706760A2 (fr) Mécanisme et spiral d'horlogerie anti-galop.
CH712017B1 (fr) Spiral en silicium pour organe réglant ou mouvement d'horlogerie mécanique.

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11201806735Q

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2018549474

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187027755

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017712250

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017712250

Country of ref document: EP

Effective date: 20181023

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17712250

Country of ref document: EP

Kind code of ref document: A1