WO2017159270A1 - 無段変速機の制御装置及び無段変速機の制御方法 - Google Patents

無段変速機の制御装置及び無段変速機の制御方法 Download PDF

Info

Publication number
WO2017159270A1
WO2017159270A1 PCT/JP2017/006818 JP2017006818W WO2017159270A1 WO 2017159270 A1 WO2017159270 A1 WO 2017159270A1 JP 2017006818 W JP2017006818 W JP 2017006818W WO 2017159270 A1 WO2017159270 A1 WO 2017159270A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuously variable
ratio
variable transmission
advance
transmission
Prior art date
Application number
PCT/JP2017/006818
Other languages
English (en)
French (fr)
Inventor
謙 岡原
安達 和孝
金子 豊
森 憲一
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Priority to US16/085,363 priority Critical patent/US10989301B2/en
Priority to KR1020187028484A priority patent/KR102103816B1/ko
Priority to EP17766275.6A priority patent/EP3431824A4/en
Priority to CN201780017055.5A priority patent/CN108779848B/zh
Publication of WO2017159270A1 publication Critical patent/WO2017159270A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/40Output shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/26Inputs being a function of torque or torque demand dependent on pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/70Inputs being a function of gearing status dependent on the ratio established
    • F16H2059/704Monitoring gear ratio in CVT's
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/0078Linear control, e.g. PID, state feedback or Kalman
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/70Inputs being a function of gearing status dependent on the ratio established
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/70Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for change-speed gearing in group arrangement, i.e. with separate change-speed gear trains arranged in series, e.g. range or overdrive-type gearing arrangements
    • F16H61/702Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for change-speed gearing in group arrangement, i.e. with separate change-speed gear trains arranged in series, e.g. range or overdrive-type gearing arrangements using electric or electrohydraulic control means

Definitions

  • the present invention relates to a continuously variable transmission control device and a continuously variable transmission control method.
  • JP2002-106700A discloses a technique for advancing and compensating a target gear ratio by a response delay of an actual gear ratio with respect to the target gear ratio.
  • a longitudinal vibration that causes a shaking in the front-rear direction at the resonance frequency of the power train. It is considered that the longitudinal vibration is generated when the torque fluctuation and the speed change of the continuously variable transmission are coupled when the stability of the transmission ratio of the continuously variable transmission is insufficient with respect to the torque fluctuation of the power train. For this reason, it is conceivable to suppress longitudinal vibration by performing lead compensation and improving the stability of the transmission ratio of the continuously variable transmission, that is, the damping performance.
  • the lead compensation there is a peak value frequency in which the lead amount corresponding to the frequency shows a peak, and the lead amount decreases and the vibration suppression effect decreases as the frequency moves away from the peak value frequency. For this reason, depending on the running state of the vehicle, the frequency deviation between the resonance frequency and the peak value frequency increases as the resonance frequency of the power train changes, and as a result, the vibration damping effect may be reduced.
  • the present invention has been made in view of such a problem, and a continuously variable transmission control device and a continuously variable transmission that can improve the reduction of the vibration damping effect due to advance compensation in accordance with a change in the resonance frequency of the power train. It aims at providing the control method of a machine.
  • a control device for a continuously variable transmission is a control device for a continuously variable transmission that performs feedback control based on an actual value representing a state of the continuously variable transmission, and performs advance compensation of the feedback control.
  • a control method for a continuously variable transmission that performs feedback control based on an actual value representing a state of the continuously variable transmission, wherein the advance compensation of the feedback control is performed;
  • a control method for a continuously variable transmission including changing a peak value frequency of the advance compensation in accordance with a gear ratio of the continuously variable transmission.
  • the peak value frequency of the advance compensation is changed according to the gear ratio of the continuously variable transmission, A frequency shift between the resonance frequency and the peak value frequency can be suppressed. For this reason, it can improve that the damping effect by advance compensation reduces according to the change of the resonant frequency of a power train.
  • FIG. 1 is a schematic configuration diagram of a vehicle including a transmission controller.
  • FIG. 2 is a schematic configuration diagram of the transmission controller.
  • FIG. 3 is a diagram illustrating an example of a Bode diagram of the phase lead compensator.
  • FIG. 4 is a diagram illustrating an example of a functional block diagram of the transmission controller.
  • FIG. 5 is a flowchart illustrating an example of control performed by the transmission controller.
  • FIG. 6 is a diagram showing changes in the resonance frequency according to the gear ratio.
  • FIG. 1 is a schematic configuration diagram of a vehicle including a transmission controller 12.
  • the vehicle includes an engine 1 as a power source.
  • the power of the engine 1 is transmitted to the drive wheels 7 via the torque converter 2, the first gear train 3, the transmission 4, the second gear train 5, and the differential 6 that constitute the power train PT.
  • the second gear train 5 is provided with a parking mechanism 8 that mechanically locks the output shaft of the transmission 4 during parking.
  • the torque converter 2 includes a lock-up clutch 2a.
  • the lock-up clutch 2a When the lock-up clutch 2a is engaged, slippage in the torque converter 2 is eliminated, and the transmission efficiency of the torque converter 2 is improved.
  • the lock-up clutch 2a is referred to as the LU clutch 2a.
  • the transmission 4 is a continuously variable transmission including a variator 20.
  • the variator 20 is a continuously variable transmission mechanism that includes a pulley 21 that is a primary pulley, a pulley 22 that is a secondary pulley, and a belt 23 that is wound around the pulleys 21 and 22.
  • the pulley 21 constitutes a driving side rotating element
  • the pulley 22 constitutes a driven side rotating element.
  • Each of the pulleys 21 and 22 includes a fixed conical plate, a movable conical plate that is disposed with a sheave surface facing the fixed conical plate, and forms a V-groove between the fixed conical plate, and a rear surface of the movable conical plate. And a hydraulic cylinder that displaces the movable conical plate in the axial direction.
  • the pulley 21 includes a hydraulic cylinder 23a as a hydraulic cylinder
  • the pulley 22 includes a hydraulic cylinder 23b as a hydraulic cylinder.
  • the variator 20 may be a toroidal continuously variable transmission mechanism.
  • the transmission 4 further includes an auxiliary transmission mechanism 30.
  • the subtransmission mechanism 30 is a transmission mechanism having two forward speeds and one reverse speed, and has a first speed and a second speed having a smaller gear ratio than the first speed.
  • the auxiliary transmission mechanism 30 is provided in series with the variator 20 in the power transmission path from the engine 1 to the drive wheels 7.
  • the sub-transmission mechanism 30 may be directly connected to the output shaft of the variator 20 as in this example, or may be connected via another power transmission mechanism such as a shift or a gear train. Alternatively, the auxiliary transmission mechanism 30 may be connected to the input shaft side of the variator 20.
  • the vehicle further includes an oil pump 10 that is driven using a part of the power of the engine 1, and a hydraulic control circuit that adjusts the hydraulic pressure generated by the oil pump 10 by supplying oil and supplies the hydraulic pressure to each part of the transmission 4. 11 and a transmission controller 12 that controls the hydraulic control circuit 11 are provided.
  • the hydraulic control circuit 11 includes a plurality of flow paths and a plurality of hydraulic control valves.
  • the hydraulic control circuit 11 switches a hydraulic pressure supply path by controlling a plurality of hydraulic control valves based on a shift control signal from the transmission controller 12.
  • the hydraulic control circuit 11 adjusts the required hydraulic pressure from the hydraulic pressure generated by the oil pump 10 by supplying oil, and supplies the adjusted hydraulic pressure to each part of the transmission 4. As a result, the variator 20 is shifted, the sub-transmission mechanism 30 is changed, and the LU clutch 2a is engaged / released.
  • FIG. 2 is a schematic configuration diagram of the transmission controller 12.
  • the transmission controller 12 includes a CPU 121, a storage device 122 including a RAM / ROM, an input interface 123, an output interface 124, and a bus 125 that connects these components to each other.
  • the input interface 123 includes, for example, an output signal of an accelerator opening sensor 41 that detects an accelerator opening APO that represents an operation amount of an accelerator pedal, an output signal of a rotational speed sensor 42 that detects an input side rotational speed of the transmission 4, and a pulley.
  • the output signal of the rotation speed sensor 43 for detecting the rotation speed Nsec of 22 and the output signal of the rotation speed sensor 44 for detecting the output side rotation speed of the transmission 4 are input.
  • the input side rotational speed of the transmission 4 is the rotational speed of the input shaft of the transmission 4, and hence the rotational speed Npri of the pulley 21.
  • the output side rotational speed of the transmission 4 is the rotational speed of the output shaft of the transmission 4, and hence the rotational speed of the output shaft of the subtransmission mechanism 30.
  • the input side rotational speed of the transmission 4 may be a rotational speed at a position where a gear train or the like is sandwiched between the transmission 4 and the like, for example, a turbine rotational speed of the torque converter 2. The same applies to the output side rotational speed of the transmission 4.
  • the input interface 123 further includes an output signal of the vehicle speed sensor 45 that detects the vehicle speed VSP, an output signal of the oil temperature sensor 46 that detects the oil temperature TMP of the transmission 4, and an output signal of the inhibitor switch 47 that detects the position of the select lever.
  • An output signal of the hydraulic sensor 50 that detects the above is input.
  • a torque signal of the engine torque Te is also input to the input interface 123 from the engine controller 51 provided in the engine 1.
  • the storage device 122 stores a shift control program for the transmission 4, various maps used in the shift control program, and the like.
  • the CPU 121 reads and executes the shift control program stored in the storage device 122 and generates a shift control signal based on various signals input via the input interface 123. Further, the CPU 121 outputs the generated shift control signal to the hydraulic control circuit 11 via the output interface 124.
  • Various values used by the CPU 121 in the calculation process and the calculation results of the CPU 121 are stored in the storage device 122 as appropriate.
  • longitudinal vibration may occur at the PT resonance frequency Fpt, which is the resonance frequency of the power train PT. It is considered that the longitudinal vibration is generated by coupling the torque fluctuation and the shift of the transmission 4 when the stability of the transmission ratio of the transmission 4 is insufficient with respect to the torque fluctuation of the power train PT. For this reason, it is conceivable to suppress the longitudinal vibration by improving the lead speed compensation and improving the stability of the transmission ratio of the transmission 4, that is, the vibration damping performance.
  • FIG. 3 is a diagram showing an example of a Bode diagram of the phase lead compensator.
  • the horizontal axis of the Bode diagram indicates the logarithm of the frequency.
  • FIG. 3 shows a case where secondary phase lead compensation is performed.
  • the peak value frequency Fpk is a frequency at which the advance amount A corresponding to the frequency shows a peak, and is set according to the target frequency in the phase advance compensation. Specifically, the target frequency is the PT resonance frequency Fpt. For this reason, the peak value frequency Fpk is set to, for example, the PT resonance frequency Fpt.
  • the advance amount Apk indicates the advance amount A corresponding to the peak value frequency Fpk.
  • the advance amount A decreases as the frequency becomes farther from the peak value frequency Fpk. Therefore, the vibration control effect is reduced. For this reason, depending on the running state of the vehicle, there is a concern that the vibration damping effect may be reduced as a result of the frequency shift between the PT resonance frequency Fpt and the peak value frequency Fpk becoming larger in accordance with the change in the PT resonance frequency Fpt.
  • the advance amount A is more likely to decrease in the secondary case than in the primary case, but the same applies to the primary case.
  • the controller 12 performs shift control as described below.
  • the speed ratio of the variator 20 is used as the speed ratio of the transmission 4.
  • the gear ratio Ratio is a general term for the gear ratios of the variator 20 including an actual gear ratio Ratio_A, a target gear ratio Ratio_D, and a final gear ratio Ratio_T, which will be described later, and includes at least one of them.
  • the transmission ratio of the transmission 4 may be a through transmission ratio that is the transmission ratio of the variator 20 and the auxiliary transmission mechanism 30 as a whole.
  • the transmission controller 12 is simply referred to as a controller 12.
  • FIG. 4 is a diagram showing an example of a feedback function block diagram of the controller 12 showing a main part of the shift control.
  • the controller 12 includes a target value generator 131, an FB compensator 132, an advance compensation on / off determiner 133, an advance amount determiner 134, an advance amount filter unit 135, a first phase advance compensator 136, a second It has a phase lead compensator 137, a switch unit 138, an on / off command filter unit 139, a sensor value filter unit 140, and a peak value frequency determination unit 141.
  • FB is an abbreviation for feedback.
  • the target value generation unit 131 generates a target value for shift control.
  • the target value is a target speed ratio Ratio_D based on a final speed ratio Ratio_T that is a final target speed control value with the speed ratio Ratio as a speed control value.
  • the shift control value may be, for example, the primary pressure Ppri as a control parameter.
  • the ultimate transmission ratio Ratio_T is preset according to the driving state of the vehicle in the shift map. For this reason, the target value generation unit 131 reads the corresponding reaching speed ratio Ratio_T from the shift map based on the detected driving state.
  • the driving state of the vehicle is a vehicle speed VSP and an accelerator opening APO.
  • the target value generation unit 131 calculates the target speed ratio Ratio_D based on the reached speed ratio Ratio_T.
  • the target speed ratio Ratio_D is a transitional target speed ratio until the target speed ratio Ratio_T is reached, and constitutes a target speed control value.
  • the calculated target gear ratio Ratio_D is input to the FB compensator 132.
  • the FB compensator 132 calculates a feedback command value based on the actual speed ratio Ratio_A and the target speed ratio Ratio_D, which are actual values of the speed ratio Ratio.
  • the feedback command value is, for example, a feedback primary command pressure Ppri_FB for filling an error between the actual speed ratio Ratio_A and the target speed ratio Ratio_D.
  • the calculated feedback command value (feedback primary command pressure Ppri_FB) is input to the advance amount determination unit 134 and the first phase advance compensator 136.
  • the advance compensation on / off determination unit 133 determines on / off of the phase advance compensation of the feedback primary command pressure Ppri_FB.
  • Lead compensation on / off determination section 133 determines on / off of phase lead compensation according to pulley state value M.
  • the pulley state value M is a value for determining whether or not the pulleys 21 and 22 are in a state in which longitudinal vibration occurs, and the rotational speed Npri, the input torque Tsec to the pulley 22, the transmission ratio Ratio, It includes the rate of change ⁇ of the ratio Ratio.
  • the input torque Tsec is calculated as a value obtained by multiplying the engine torque Te by the gear ratio set between the engine 1 and the pulley 22, and thus in the present embodiment, the gear ratio of the first gear train 3 and the gear ratio of the variator 20. Can do.
  • the actual speed ratio Ratio_A and the target speed ratio Ratio_D can be applied to the speed ratio Ratio.
  • the speed ratio Ratio may be the actual speed ratio Ratio_A or the target speed ratio Ratio_D.
  • the advance compensation on / off determination unit 133 determines on / off of the phase advance compensation of the feedback primary command pressure Ppri_FB in accordance with all four parameters of the rotational speed Npri, the input torque Tsec, the speed ratio Ratio, and the change rate ⁇ . To do.
  • the advance compensation on / off determination unit 133 may be configured to determine on / off of the phase advance compensation in accordance with at least one of the parameters of the input torque Tsec, the gear ratio Ratio, and the change rate ⁇ .
  • the advance compensation on / off determination unit 133 further determines the phase of the feedback primary command pressure Ppri_FB according to the engaged state of the LU clutch 2a, the state of the driver operation on the transmission 4, and the presence or absence of a failure Determine on / off of lead compensation.
  • FIG. 5 is a flowchart illustrating an example of processing performed by the controller 12. Specifically, the processing of this flowchart is performed by the advance compensation on / off determination unit 133.
  • step S1 to step S5 is processing for determining whether or not resonance of the power train PT occurs, in other words, processing for determining whether longitudinal vibration of the transmission 4 occurs.
  • the resonance of the power train PT is referred to as PT resonance.
  • step S1 the controller 12 determines whether or not the pulley state value M is a value at which longitudinal vibration occurs. That is, in step S1, it is determined whether the state of the pulleys 21 and 22 is a state in which longitudinal vibration occurs. Specifically, in step S1, the controller 12 performs the following determination for each of the rotational speed Npri, the input torque Tsec, the transmission ratio Ratio, and the change ratio ⁇ of the transmission ratio Ratio, which is the pulley state value M.
  • the controller 12 determines whether or not the operating point corresponding to the rotational speed Npri and the input torque Tsec is in a determination region defined accordingly.
  • the controller 12 determines that both the rotational speed Npri and the input torque Tsec are longitudinal vibration occurrence values. If the operating point is in the determination region, in other words, it is a state where the pulleys 21 and 22 are vulnerable to disturbance, that is, the stability of the transmission ratio Ratio is insufficient.
  • the determination area can be set in advance by experiments or the like.
  • the controller 12 determines that the speed ratio Ratio is a longitudinal vibration occurrence value when the speed ratio Ratio is greater than the predetermined speed ratio Ratio1, in other words, when the speed ratio Ratio is Low than the predetermined speed ratio Ratio1.
  • the predetermined gear ratio Ratio1 is a value for defining a gear ratio at which longitudinal vibration occurs, and is 1, for example.
  • the predetermined gear ratio Ratio1 can be set in advance by experiments or the like.
  • the controller 12 determines that the change rate ⁇ is the longitudinal vibration occurrence value when the change rate ⁇ of the transmission ratio Ratio is smaller than the predetermined value ⁇ 1.
  • the predetermined value ⁇ 1 is a value for defining the rate of change ⁇ at which the longitudinal vibration occurs. When the rate of change ⁇ is smaller than the predetermined value ⁇ 1, the speed ratio Ratio is in a steady state.
  • the predetermined value ⁇ 1 can be set in advance through experiments or the like.
  • step S1 the controller 12 makes an affirmative determination when it is determined that all of these pulley state values M are longitudinal vibration occurrence values, and if any of these pulley state values M is not a longitudinal vibration occurrence value. Make a negative decision.
  • step S1 determines that PT resonance does not occur. Therefore, it is determined that no longitudinal vibration occurs. In this case, the process proceeds to step S10, and the controller 12 turns off the phase advance compensation. After step S10, the process of this flowchart ends.
  • step S1 determines whether or not the LU clutch 2a is engaged. Thus, on / off of the phase lead compensation is determined according to the engaged state of the LU clutch 2a.
  • step S2 If a negative determination is made in step S2, it is determined that no longitudinal vibration occurs because the LU clutch 2a is not engaged. In this case, the process proceeds to step S5. If an affirmative determination is made in step S2, it is determined that the state of the LU clutch 2a is a state in which longitudinal vibration occurs. In this case, the process proceeds to step S3.
  • step S3 the controller 12 determines whether or not the state of the driver operation on the transmission 4 is a predetermined state.
  • the predetermined state includes at least one of a first operation state in which the gear ratio Ratio is greater than the predetermined gear ratio Ratio1 and a second operation state in which the gear ratio Ratio is in a steady state.
  • the first operation state is, for example, a state where the OD switch 49 is OFF.
  • the second operation state is a state in which the gear ratio Ratio is fixed by a driver operation, such as a state in which a manual range is selected by the select lever or a state in which a manual mode such as a sports mode is selected.
  • the gear ratio Ratio is continuously larger than the predetermined gear ratio Ratio1 or that the gear ratio Ratio is continuously in a steady state. can do. Therefore, it is possible to more reliably determine that the gear ratio Ratio is a state in which longitudinal vibration occurs.
  • step S3 If the determination in step S3 is negative, it is determined that the longitudinal vibration does not occur because the driver operation state is not a predetermined state. In this case, the process proceeds to step S5. If the determination is affirmative in step S3, the process proceeds to step S4.
  • step S4 the controller 12 determines that PT resonance occurs. Therefore, it is determined that longitudinal vibration occurs. After step S4, the process proceeds to step S6.
  • step S8 it is determined whether or not phase lead compensation can be turned on. In other words, it is determined whether or not the phase lead compensation can be executed.
  • the controller 12 determines whether or not there is a failure.
  • the failure can be, for example, a failure for the transmission 4 including a failure of the hydraulic control circuit 11 and sensors / switches used for the transmission control of the transmission 4.
  • the failure may be a vehicle failure including a failure for the transmission 4.
  • step S6 determines whether the determination in step S6 is affirmative. If the determination in step S6 is affirmative, the process proceeds to step S8, and the controller 12 determines that the phase advance compensation should not be turned on. That is, the execution prohibition determination of the phase advance compensation is made. After step S8, the process proceeds to step S10.
  • step S7 the process proceeds to step S7, and the controller 12 determines that the phase advance compensation may be turned on. In other words, the execution permission determination for phase advance compensation is made. In this case, the process proceeds to step S9, and the controller 12 turns on phase advance compensation. After step S9, the process of this flowchart ends.
  • the lead compensation on / off determination unit 133 outputs an on command when it determines that the phase lead compensation is on, and outputs an off command when it determines that the phase lead compensation is off.
  • the on / off command is input from the advance compensation on / off determination unit 133 to the advance amount determination unit 134 and the on / off command filter unit 139.
  • the advance amount determination unit 134 determines the advance amount Apk.
  • the advance amount determination unit 134 is provided downstream of the advance compensation on / off determination unit 133.
  • the advance amount determination unit 134 is provided in this way in terms of arrangement in the signal path.
  • the advance amount determination unit 134 determines the advance amount Apk according to the ON / OFF command, in other words, according to the ON / OFF determination of the phase advance compensation.
  • the advance amount determination unit 134 determines the advance amount Apk to be zero when an off command is input.
  • the advance amount determination unit 134 determines the advance amount Apk as the first advance amount Apk1 or the second advance amount Apk2 when an ON command is input.
  • the first advance amount Apk1 is set in correspondence with the case of performing first-order phase lead compensation described later, and the second advance amount Apk2 is set in correspondence with the case of performing second-order phase lead compensation described later. .
  • the second advance amount Apk2 is set to 1 ⁇ 2 of the first advance amount Apk1.
  • the first advance amount Apk1 is, for example, 80 deg and can be a constant value.
  • the first advance amount Apk1 can be set in advance by experiments or the like.
  • the advance amount Apk is input from the advance amount determination unit 134 to the advance amount filter unit 135.
  • the advance amount filter unit 135 is provided downstream of the advance amount determination unit 134 and performs a filtering process of the advance amount Apk.
  • the advance amount filter unit 135 is provided in this way in terms of arrangement in the signal path.
  • the advance amount filter unit 135 is a low-pass filter unit, and is composed of, for example, a first-order low-pass filter.
  • the advance amount filter unit 135 performs a filtering process of the advance amount Apk, so that when the advance compensation is switched on / off, the advance of the phase advance compensation gain G according to the determination of the on / off of the advance phase compensation is smoothed.
  • a gain smoothing unit for performing is configured. By smoothing the change in the gain G, the amount of change in the gain G associated with the on / off switching of the phase lead compensation can be suppressed.
  • the advance amount Apk from the advance amount filter unit 135 is input to the first phase advance compensator 136, the second phase advance compensator 137, and the switch unit 138.
  • the peak value frequency Fpk is also input from the peak value frequency determination unit 141 to the first phase lead compensator 136 and the second phase lead compensator 137.
  • Both the first phase advance compensator 136 and the second phase advance compensator 137 are based on the input advance amount Apk and the input peak value frequency Fpk, and the primary phase advance compensation of the feedback primary command pressure Ppri_FB. I do.
  • the phase advance compensation of the feedback primary command pressure Ppri_FB By performing the phase advance compensation of the feedback primary command pressure Ppri_FB, the phase advance compensation of the feedback shift control of the transmission 4 is performed.
  • the first phase lead compensator 136 and the second phase lead compensator 137 are composed of a first-order low-pass filter, and correspond to the inputted advance amount Apk and further the inputted peak value frequency Fpk. By performing the filtering process, the primary phase lead compensation of the feedback primary command pressure Ppri_FB is performed.
  • the second phase lead compensator 137 is provided in series with the first phase lead compensator 136.
  • the second phase lead compensator 137 is provided in this way in terms of the arrangement in the signal path.
  • the feedback primary command pressure Ppri_FB subjected to the first-order phase advance compensation by the first phase advance compensator 136 is input to the second phase advance compensator 137.
  • the second phase lead compensator 137 further performs the primary phase lead compensation when performing the primary phase lead compensation of the feedback primary command pressure Ppri_FB. Thereby, the secondary phase lead compensation of the feedback primary command pressure Ppri_FB is performed.
  • the second phase lead compensator 137 and the first phase lead compensator 136 constitute a lead compensation unit.
  • the switch unit 138 performs the phase lead compensation by the first phase lead compensator 136 and the second phase lead compensator 137 in accordance with the input lead amount Apk, that is, the case where the second phase lead compensation is performed.
  • the phase lead compensation is performed only by the first phase lead compensator 136, that is, when the first phase lead compensation is performed.
  • the predetermined value A1 can be preferably set to a minimum value within a range in which a gain suppression effect by the quadratic phase advance compensation can be obtained.
  • the lead amount determination unit 134 and the switch unit 138 are specifically configured as follows.
  • the advance amount determination unit 134 calculates the advance amount A of the primary phase advance compensation of the feedback primary command pressure Ppri_FB based on the input feedback primary command pressure Ppri_FB.
  • the advance amount determination unit 134 determines that the primary phase advance compensation is to be performed when the advance amount A is smaller than the predetermined value A1, and determines the advance amount Apk as the first advance amount Apk1. Further, the advance amount determination unit 134 determines that the secondary phase advance compensation is performed when the advance amount A is equal to or greater than the predetermined value A1, and determines the advance amount Apk as the second advance amount Apk2.
  • the advance amount A can be set in advance using map data or the like.
  • the switch unit 138 performs switching so that the phase advance compensation is performed only by the first phase advance compensator 136 when the first advance amount Apk1 is input. In addition, when the second advance amount Apk2 is input, the switch unit 138 performs switching so that the first phase advance compensator 136 and the second phase advance compensator 137 perform phase advance compensation.
  • the first phase lead compensator 136 and the second phase lead compensator 137 are configured to perform phase lead compensation only with the first phase lead compensator 136 according to the lead amount A. .
  • the first phase lead compensator 136 and the second phase lead compensator 137 are configured to perform phase lead compensation only with the first phase lead compensator 136 when the lead amount A is smaller than the predetermined value A1.
  • the switch unit 138 may be configured to perform phase advance compensation only with the second phase advance compensator 137 when performing primary phase advance compensation.
  • the advance amount determination unit 134 may input the advance amount A to the switch unit 138 instead of the advance amount Apk, and the switch unit 138 may perform switching based on the input advance amount A in this way. . Thereby, even if the first advance amount Apk1 and the second advance amount Apk2 are smoothed, the primary and secondary phase advance compensation can be appropriately performed.
  • the switch unit 138 together with the lead compensation on / off determination unit 133, according to the pulley state value M, a feedback primary instruction in which lead compensation has been performed by at least one of the first phase lead compensator 136 and the second phase lead compensator 137.
  • a setting unit that sets the pressure Ppri_FB as the feedback primary command pressure Ppri_FB is configured.
  • At least one of the first phase lead compensator 136 and the second phase lead compensator 137 constitutes a lead compensation unit that performs lead compensation of the feedback primary command pressure Ppri_FB.
  • the feedback primary command pressure Ppri_FB for which the advance compensation has been performed constitutes the compensated feedback primary command pressure value_FB.
  • the actuator 111 receives a primary command pressure Ppri_FF (a target primary command pressure that determines a balance thrust and a gear ratio) that is set based on a feedback primary command pressure Ppri_FB selected from the switch unit 138 and a target gear ratio Ratio_D. Is done.
  • the actuator 111 is, for example, a primary pressure control valve that controls the primary pressure Ppri provided in the hydraulic pressure control circuit 11, and the primary pressure so that the actual pressure Ppri_A of the primary pressure Ppri becomes the command pressure Ppri_D corresponding to the target gear ratio Ratio_D. Control Ppri.
  • the transmission gear ratio Ratio is controlled so that the actual transmission gear ratio Ratio_A becomes the target transmission gear ratio Ratio_D.
  • the sensor unit 40 detects the actual gear ratio Ratio_A of the variator 20.
  • the sensor unit 40 includes a rotation speed sensor 42 and a rotation speed sensor 43.
  • the actual speed ratio Ratio_A that is the actual speed ratio (sensor value) detected by the sensor unit 40 is input to the sensor value filter unit 140.
  • An on / off command is also input to the sensor value filter unit 140 via the on / off command filter unit 139.
  • the on / off command filter unit 139 may be omitted.
  • the sensor value filter unit 140 performs a filter process of the actual gear ratio Ratio_A.
  • the mode of the filter processing is changed according to the on / off command. Specifically, in the sensor value filter unit 140, the order of the filter processing or execution / stop is switched according to the on / off command.
  • the sensor value filter unit 140 is a primary low-pass filter when an off command is input, and is a high-order low-pass filter when an on command is input, or stops the filter process.
  • the sensor value filter unit 140 By configuring the sensor value filter unit 140 in this way, a slight delay occurs in a region below the frequency to be removed when the first-order low-pass filter is used. Is improved. As a result, the phase of the feedback primary command pressure Ppri_FB can be further advanced.
  • the sensor value filter unit 140 may be configured to include one or a plurality of first-order low-pass filters provided so that execution / stop of the filter processing or the order can be switched.
  • the actual gear ratio Ratio_A from the sensor value filter unit 140 is input to the FB compensator 132.
  • the peak value frequency determining unit 141 determines the peak value frequency Fpk for phase advance compensation.
  • the peak value frequency determination unit 141 changes the peak value frequency Fpk by determining the peak value frequency Fpk according to the transmission ratio Ratio.
  • the gear ratio Ratio is a target gear ratio Ratio_D. Therefore, the target speed ratio Ratio_D is input from the target value generation unit 131 to the peak value frequency determination unit 141.
  • the peak value frequency Fpk determined by the peak value frequency determining unit 141 is input to the first phase lead compensator 136 and the second phase lead compensator 137, respectively. Accordingly, the peak value frequency determination unit 141 is configured to set the peak value frequency Fpk of each of the phase advance compensation performed by the first phase advance compensator 136 and the second phase advance compensator 137 based on the transmission ratio Ratio. The Specifically, the peak value frequency determination unit 141 changes the peak value frequency Fpk in accordance with the gear ratio Ratio as described below.
  • FIG. 6 is a diagram showing a change in the PT resonance frequency Fpt according to the gear ratio Ratio.
  • the PT resonance frequency Fpt decreases as the speed ratio Ratio increases.
  • the peak value frequency determination unit 141 decreases the peak value frequency Fpk as the speed ratio Ratio increases.
  • the controller 12 constitutes a control device for a continuously variable transmission that performs feedback shift control of the transmission 4 such that the actual gear ratio Ratio_A becomes the target gear ratio Ratio_D.
  • the controller 12 includes a first phase lead compensator 136 and a second phase lead compensator 137 that perform phase lead compensation of the feedback primary command pressure Ppri_FB, and a peak value frequency determination unit that changes the peak value frequency Fpk according to the gear ratio Ratio. 141.
  • the controller 12 having such a configuration, even if the speed ratio Ratio changes and the PT resonance frequency Fpt changes, the peak value frequency Fpk is changed according to the speed ratio Ratio, so that the PT resonance frequency Fpt and the peak value are changed. A frequency shift between the frequencies Fpk can be suppressed. For this reason, it can improve that the damping effect by phase advance compensation reduces according to the change of PT resonance frequency Fpt.
  • the peak value frequency determination unit 141 decreases the peak value frequency Fpk as the speed ratio Ratio increases. According to the controller 12 having such a configuration, the frequency shift can be appropriately suppressed.
  • the peak value frequency determination unit 141 is configured to set the peak value frequency Fpk of each of the phase advance compensation performed by the first phase advance compensator 136 and the second phase advance compensator 137 based on the transmission ratio Ratio. Is done.
  • the controller 12 having such a configuration, even when performing the second-order phase lead compensation using the first phase lead compensator 136 and the second phase lead compensator 137 that perform the first-order phase lead compensation, the frequency Deviation can be suppressed.
  • the peak value frequency determination unit 141 determines the peak value frequency Fpk based on the target gear ratio Ratio_D. According to the controller 12 having such a configuration, the peak value frequency Fpk can be stabilized even when the actual gear ratio Ratio_A varies.
  • the primary phase lead compensator may be configured by a single phase lead compensator such as the first phase lead compensator 136 or the second phase lead compensator 137.
  • the peak value frequency determination unit 141 determines the peak value frequency Fpk according to the target speed ratio Ratio_D, but may determine the peak value frequency Fpk according to the actual speed ratio Ratio_A. Good. In this way, even if the target speed ratio Ratio_D and the actual speed ratio Ratio_A are deviated, the peak value frequency Fpk can be made closer to the target frequency.
  • the controller 12 is configured as a control device for a continuously variable transmission.
  • the control device for the continuously variable transmission may be realized by a plurality of controllers, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

コントローラは、実変速比が目標変速比になるように変速機のフィードバック変速制御を行う無段変速機の制御装置を構成する。コントローラは、フィードバックプライマリ指示圧の位相進み補償を行う第1位相進み補償器及び第2位相進み補償器と、変速比に応じてピーク値周波数を変化させるピーク値周波数決定部と、を有する。

Description

無段変速機の制御装置及び無段変速機の制御方法
 本発明は、無段変速機の制御装置及び無段変速機の制御方法に関する。
 無段変速機の変速制御に関し、JP2002-106700Aでは目標変速比に対する実変速比の応答遅れ分だけ目標変速比を進み補償する技術が開示されている。
 無段変速機では、パワートレインの共振周波数で前後方向の揺さぶりを引き起こす前後振動が発生することがある。前後振動は、パワートレインのトルク変動に対して無段変速機の変速比の安定性が不足している場合に、トルク変動と無段変速機の変速とが連成して発生すると考えられる。このため、進み補償を行い無段変速機の変速比の安定性、つまり制振性を高めることで、前後振動を抑制することが考えられる。
 ところが、進み補償では、周波数に応じた進み量がピークを示すピーク値周波数が存在し、周波数がピーク値周波数から離れるほど、進み量が減少し制振効果は減少する。このため、車両の走行状態によっては、パワートレインの共振周波数の変化に応じて共振周波数及びピーク値周波数間の周波数ずれが大きくなる結果、制振効果が減少する虞がある。
 本発明はこのような課題に鑑みてなされたもので、パワートレインの共振周波数の変化に応じて進み補償による制振効果が減少することを改善可能な無段変速機の制御装置及び無段変速機の制御方法を提供することを目的とする。
 本発明のある態様の無段変速機の制御装置は、無段変速機の状態を現す実値に基づいてフィードバック制御を行う無段変速機の制御装置であって、前記フィードバック制御の進み補償を行う進み補償部と、前記無段変速機の変速比に応じて、前記進み補償のピーク値周波数を変化させるピーク値周波数決定部と、を有する。
 本発明の別の態様によれば、無段変速機の状態を現す実値に基づいてフィードバック制御を行う無段変速機の制御方法であって、前記フィードバック制御の進み補償を行うことと、前記無段変速機の変速比に応じて、前記進み補償のピーク値周波数を変化させることと、を含む無段変速機の制御方法が提供される。
 これらの態様によれば、無段変速機の変速比が変化しパワートレインの共振周波数が変化しても、無段変速機の変速比に応じて進み補償のピーク値周波数を変化させることで、共振周波数及びピーク値周波数間の周波数ずれを抑制することができる。このため、パワートレインの共振周波数の変化に応じて進み補償による制振効果が減少することを改善することができる。
図1は、変速機コントローラを含む車両の概略構成図である。 図2は、変速機コントローラの概略構成図である。 図3は、位相進み補償器のボード線図の一例を示す図である。 図4は、変速機コントローラの機能ブロック図の一例を示す図である。 図5は、変速機コントローラが行う制御の一例をフローチャートで示す図である。 図6は、変速比に応じた共振周波数の変化を示す図である。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 図1は、変速機コントローラ12を含む車両の概略構成図である。車両は動力源としてエンジン1を備える。エンジン1の動力は、パワートレインPTを構成するトルクコンバータ2、第1ギヤ列3、変速機4、第2ギヤ列5及び差動装置6を介して、駆動輪7へと伝達される。第2ギヤ列5には駐車時に変速機4の出力軸を機械的に回転不能にロックするパーキング機構8が設けられる。
 トルクコンバータ2は、ロックアップクラッチ2aを備える。ロックアップクラッチ2aが締結されると、トルクコンバータ2における滑りがなくなり、トルクコンバータ2の伝達効率が向上する。以下では、ロックアップクラッチ2aをLUクラッチ2aと称す。
 変速機4は、バリエータ20を備える無段変速機である。バリエータ20は、プライマリプーリであるプーリ21と、セカンダリプーリであるプーリ22と、プーリ21、22の間に掛け回されるベルト23とを備える無段変速機構である。プーリ21は主動側回転要素を構成し、プーリ22は従動側回転要素を構成する。
 プーリ21、22それぞれは、固定円錐板と、固定円錐板に対してシーブ面を対向させた状態で配置され固定円錐板との間にV溝を形成する可動円錐板と、可動円錐板の背面に設けられて可動円錐板を軸方向に変位させる油圧シリンダとを備える。プーリ21は油圧シリンダとして油圧シリンダ23aを備え、プーリ22は油圧シリンダとして油圧シリンダ23bを備える。
 油圧シリンダ23a、23bに供給される油圧を調整すると、V溝の幅が変化してベルト23と各プーリ21、22との接触半径が変化し、バリエータ20の変速比が無段階に変化する。バリエータ20は、トロイダル型の無段変速機構であってもよい。
 変速機4は、副変速機構30をさらに備える。副変速機構30は、前進2段・後進1段の変速機構であり、前進用変速段として、1速と、1速よりも変速比の小さな2速を有する。副変速機構30は、エンジン1から駆動輪7に至るまでの動力伝達経路において、バリエータ20と直列に設けられる。
 副変速機構30は、この例のようにバリエータ20の出力軸に直接接続されていてもよいし、その他の変速ないしギヤ列等の動力伝達機構を介して接続されていてもよい。あるいは、副変速機構30はバリエータ20の入力軸側に接続されていてもよい。
 車両にはさらに、エンジン1の動力の一部を利用して駆動されるオイルポンプ10と、オイルポンプ10がオイル供給によって発生させる油圧を調整して変速機4の各部位に供給する油圧制御回路11と、油圧制御回路11を制御する変速機コントローラ12とが設けられる。
 油圧制御回路11は複数の流路、複数の油圧制御弁で構成される。油圧制御回路11は、変速機コントローラ12からの変速制御信号に基づき、複数の油圧制御弁を制御して油圧供給経路を切り換える。また、油圧制御回路11は、オイルポンプ10がオイル供給によって発生させる油圧から必要な油圧を調整し、調整した油圧を変速機4の各部位に供給する。これにより、バリエータ20の変速、副変速機構30の変速段の変更、LUクラッチ2aの締結・解放が行われる。
 図2は、変速機コントローラ12の概略構成図である。変速機コントローラ12は、CPU121と、RAM・ROMからなる記憶装置122と、入力インターフェース123と、出力インターフェース124と、これらを相互に接続するバス125とを有して構成される。
 入力インターフェース123には例えば、アクセルペダルの操作量を表すアクセル開度APOを検出するアクセル開度センサ41の出力信号、変速機4の入力側回転速度を検出する回転速度センサ42の出力信号、プーリ22の回転速度Nsecを検出する回転速度センサ43の出力信号、変速機4の出力側回転速度を検出する回転速度センサ44の出力信号が入力される。
 変速機4の入力側回転速度は具体的には、変速機4の入力軸の回転速度、したがってプーリ21の回転速度Npriである。変速機4の出力側回転速度は具体的には、変速機4の出力軸の回転速度、したがって副変速機構30の出力軸の回転速度である。変速機4の入力側回転速度は、例えばトルクコンバータ2のタービン回転速度など、変速機4との間にギヤ列等を挟んだ位置の回転速度であってもよい。変速機4の出力側回転速度についても同様である。
 入力インターフェース123にはさらに、車速VSPを検出する車速センサ45の出力信号、変速機4の油温TMPを検出する油温センサ46の出力信号、セレクトレバーの位置を検出するインヒビタスイッチ47の出力信号、エンジン1の回転速度Neを検出する回転速度センサ48の出力信号、変速機4の変速範囲を1よりも小さい変速比に拡大するためのODスイッチ49の出力信号、LUクラッチ2aへの供給油圧を検出する油圧センサ50の出力信号などが入力される。入力インターフェース123には、エンジン1が備えるエンジンコントローラ51から、エンジントルクTeのトルク信号も入力される。
 記憶装置122には、変速機4の変速制御プログラム、変速制御プログラムで用いる各種マップ等が格納されている。CPU121は、記憶装置122に格納されている変速制御プログラムを読み出して実行し、入力インターフェース123を介して入力される各種信号に基づき変速制御信号を生成する。また、CPU121は、生成した変速制御信号を出力インターフェース124を介して油圧制御回路11に出力する。CPU121が演算処理で使用する各種値、CPU121の演算結果は記憶装置122に適宜格納される。
 ところで、変速機4では、パワートレインPTの共振周波数であるPT共振周波数Fptで前後振動が発生することがある。前後振動は、パワートレインPTのトルク変動に対して、変速機4の変速比の安定性が不足している場合に、トルク変動と変速機4の変速とが連成して発生すると考えられる。このため、進み補償を行い変速機4の変速比の安定性、つまり制振性を高めることで、前後振動を抑制することが考えられる。
 ところが、車両の走行状態によっては、次に説明するように進み補償による制振効果が減少することが懸念される。
 図3は、位相進み補償器のボード線図の一例を示す図である。ボード線図の横軸は、周波数を対数で示す。図3では、2次の位相進み補償を行う場合を示す。ピーク値周波数Fpkは、周波数に応じた進み量Aがピークを示す周波数であり、位相進み補償で狙いの周波数に応じて設定される。狙いの周波数は具体的には、PT共振周波数Fptである。このため、ピーク値周波数Fpkは例えば、PT共振周波数Fptに設定される。進み量Apkは、ピーク値周波数Fpkに応じた進み量Aを示す。
 図3に示すように、周波数がピーク値周波数Fpkから離れるほど、進み量Aは減少する。したがって、制振効果が減少する。このため、車両の走行状態によっては、PT共振周波数Fptの変化に応じてPT共振周波数Fpt及びピーク値周波数Fpk間の周波数ずれが大きくなる結果、制振効果が減少することが懸念される。周波数がずれた場合は、進み量Aは、1次の場合よりも2次の場合のほうが減少し易いが、1次の場合も同様である。
 このような事情に鑑み、コントローラ12は、以下で説明するように変速制御を行う。以下では、変速機4の変速比としてバリエータ20の変速比Ratioを用いて説明する。変速比Ratioは、後述する実変速比Ratio_A、目標変速比Ratio_D及び到達変速比Ratio_Tを含むバリエータ20の変速比の総称であり、これらのうち少なくともいずれかであることを含む。プーリ21への供給油圧であるプライマリ圧Ppriについても同様である。変速機4の変速比は、バリエータ20及び副変速機構30全体の変速比であるスルー変速比とされてもよい。以下では、変速機コントローラ12を単にコントローラ12と称す。
 図4は、変速制御の要部を示すコントローラ12のフィードバック機能ブロック図の一例を示す図である。コントローラ12は、目標値生成部131と、FB補償器132と、進み補償オンオフ決定部133と、進み量決定部134と、進み量フィルタ部135と、第1位相進み補償器136と、第2位相進み補償器137と、スイッチ部138と、オンオフ指令フィルタ部139と、センサ値フィルタ部140と、ピーク値周波数決定部141とを有する。FBはフィードバックの略である。
 目標値生成部131は、変速制御の目標値を生成する。目標値は具体的には、変速比Ratioを変速制御値とした最終目標変速制御値である到達変速比Ratio_Tに基づく目標変速比Ratio_Dとされる。変速制御値は例えば、制御パラメータとしてのプライマリ圧Ppriとされてもよい。
 到達変速比Ratio_Tは、変速マップで車両の運転状態に応じて予め設定されている。このため、目標値生成部131は、検出された運転状態に基づき、対応する到達変速比Ratio_Tを変速マップから読み出す。車両の運転状態は具体的には、車速VSP及びアクセル開度APOとされる。
 目標値生成部131は、到達変速比Ratio_Tに基づき、目標変速比Ratio_Dを算出する。目標変速比Ratio_Dは、到達変速比Ratio_Tになるまでの間の過渡的な目標変速比であり、目標変速制御値を構成する。算出された目標変速比Ratio_Dは、FB補償器132に入力される。
 FB補償器132は、変速比Ratioの実値である実変速比Ratio_A、目標変速比Ratio_Dに基づき、フィードバック指令値を算出する。フィードバック指令値は、例えば、実変速比Ratio_Aと目標変速比Ratio_Dの誤差を埋めるためのフィードバックプライマリ指示圧Ppri_FBである。算出されたフィードバック指令値(フィードバックプライマリ指示圧Ppri_FB)は、進み量決定部134と、第1位相進み補償器136に入力される。
 進み補償オンオフ決定部133は、フィードバックプライマリ指示圧Ppri_FBの位相進み補償のオンオフを決定する。進み補償オンオフ決定部133は、プーリ状態値Mに応じて、位相進み補償のオンオフを決定する。プーリ状態値Mは、プーリ21、22が、前後振動が発生する状態であるか否かを判定するための値であり、回転速度Npri、プーリ22への入力トルクTsec、変速比Ratio、及び変速比Ratioの変化率αを含む。
 入力トルクTsecは例えば、エンジン1及びプーリ22間に設定された変速比、したがって本実施形態では第1ギヤ列3のギヤ比及びバリエータ20の変速比をエンジントルクTeに乗じた値として算出することができる。変速比Ratioには、実変速比Ratio_A及び目標変速比Ratio_Dを適用することができる。変速比Ratioは、実変速比Ratio_Aまたは目標変速比Ratio_Dとされてもよい。
 進み補償オンオフ決定部133は具体的には、回転速度Npri、入力トルクTsec、変速比Ratio、及び変化率αの4つのパラメータすべてに応じて、フィードバックプライマリ指示圧Ppri_FBの位相進み補償のオンオフを決定する。進み補償オンオフ決定部133は、入力トルクTsec、変速比Ratio、及び変化率αのうち少なくともいずれかのパラメータに応じて、位相進み補償のオンオフを決定するように構成されてもよい。
 進み補償オンオフ決定部133は、プーリ状態値Mに加えてさらに、LUクラッチ2aの締結状態と、変速機4に対するドライバ操作の状態と、フェールの有無とに応じて、フィードバックプライマリ指示圧Ppri_FBの位相進み補償のオンオフを決定する。
 図5は、コントローラ12が行う処理の一例をフローチャートで示す図である。本フローチャートの処理は具体的には、進み補償オンオフ決定部133によって行われる。
 ステップS1からステップS5までの処理は、パワートレインPTの共振が起きるか否かを判定する処理であり、換言すれば、変速機4の前後振動が発生するか否かを判定する処理である。以下では、パワートレインPTの共振をPT共振と称す。
 ステップS1で、コントローラ12は、プーリ状態値Mが、前後振動が発生する値であるか否かを判定する。つまり、ステップS1では、プーリ21、22の状態が、前後振動が発生する状態であるか否かが判定される。ステップS1で、コントローラ12は具体的には、プーリ状態値Mである回転速度Npri、入力トルクTsec、変速比Ratio、及び変速比Ratioの変化率αそれぞれにつき、次のような判定を行う。
 回転速度Npri及び入力トルクTsecにつき、コントローラ12は、回転速度Npri及び入力トルクTsecに応じた動作点がこれらに応じて規定された判定領域にあるか否かを判定する。コントローラ12は、動作点が判定領域にある場合に、回転速度Npri及び入力トルクTsecがともに、前後振動発生値であると判定する。動作点が判定領域にある場合は、換言すれば、プーリ21、22が外乱に弱い状態、すなわち変速比Ratioの安定性が不足している場合である。判定領域は実験等により予め設定することができる。
 変速比Ratioにつき、コントローラ12は、変速比Ratioが所定変速比Ratio1よりも大きい場合、換言すれば所定変速比Ratio1よりもLowである場合に、変速比Ratioが前後振動発生値であると判定する。所定変速比Ratio1は、前後振動が発生する変速比を規定するための値であり、例えば1である。所定変速比Ratio1は、実験等により予め設定することができる。
 変化率αにつき、コントローラ12は、変速比Ratioの変化率αが所定値α1よりも小さい場合に、変化率αが前後振動発生値であると判定する。所定値α1は、前後振動が発生する変化率αを規定するための値であり、変化率αが所定値α1よりも小さい場合は、変速比Ratioが定常状態である場合に対応する。所定値α1は、実験等により予め設定することができる。
 ステップS1で、コントローラ12は、これらのプーリ状態値Mすべてが前後振動発生値であると判定した場合に肯定判定し、これらのプーリ状態値Mのいずれかが前後振動発生値でないと判定した場合に否定判定する。
 ステップS1で否定判定の場合、処理はステップS5に進み、コントローラ12は、PT共振は起きないと判定する。したがって、前後振動は発生しないと判定される。この場合、処理はステップS10に進み、コントローラ12は、位相進み補償をオフにする。ステップS10の後には、本フローチャートの処理は終了する。
 ステップS1で肯定判定の場合、処理はステップS2に進み、コントローラ12は、LUクラッチ2aが締結されているか否かを判定する。これにより、LUクラッチ2aの締結状態に応じて、位相進み補償のオンオフが決定されることになる。
 ステップS2で否定判定であれば、LUクラッチ2aが締結されていないので、前後振動は発生しないと判断される。この場合、処理はステップS5に進む。ステップS2で肯定判定であれば、LUクラッチ2aの状態は、前後振動が発生する状態であると判断される。この場合、処理はステップS3に進む。
 ステップS3で、コントローラ12は、変速機4に対するドライバ操作の状態が所定状態であるか否かを判定する。所定状態は、変速比Ratioが所定変速比Ratio1よりも大きくなる第1操作状態と、変速比Ratioが定常状態になる第2操作状態とのうち少なくともいずれかを含む。
 第1操作状態は例えば、ODスイッチ49がOFFの状態である。第2操作状態は、セレクトレバーによってマニュアルレンジが選択されている状態や、スポーツモード等のマニュアルモードが選択されている状態など、ドライバ操作によって変速比Ratioが固定される状態である。
 ドライバ操作の状態が所定状態であるか否かを判定することで、変速比Ratioが所定変速比Ratio1よりも継続的に大きくなることや、変速比Ratioが継続的に定常状態になることを判定することができる。したがって、変速比Ratioが、前後振動が発生する状態であることをより確実に判定することができる。
 ステップS3で否定判定であれば、ドライバ操作の状態が所定状態でないので、前後振動は発生しないと判断される。この場合、処理はステップS5に進む。ステップS3で肯定判定であれば、処理はステップS4に進む。
 ステップS4で、コントローラ12は、PT共振が起きると判定する。したがって、前後振動が発生すると判定される。ステップS4の後には、処理はステップS6に進む。
 ステップS6からステップS8では、位相進み補償をオンにできる状態か否かの判定が行われる。換言すれば、位相進み補償の実行の可否が判定される。
 ステップS6で、コントローラ12は、フェールがあるか否かを判定する。フェールは例えば、変速機4の変速制御に用いられる油圧制御回路11やセンサ・スイッチ類のフェールを含む変速機4についてのフェールとすることができる。フェールは、変速機4についてのフェールを含む車両のフェールであってもよい。
 ステップS6で肯定判定であれば、処理はステップS8に進み、コントローラ12は、位相進み補償をオンにしてはいけないと判定する。つまり、位相進み補償の実行禁止判定が下される。ステップS8の後には、処理はステップS10に進む。
 ステップ6で否定判定であれば、処理はステップS7に進み、コントローラ12は、位相進み補償をオンにしてよいと判定する。つまり、位相進み補償の実行許可判定が下される。この場合、処理はステップS9に進み、コントローラ12は、位相進み補償をオンにする。ステップS9の後には、本フローチャートの処理は終了する。
 図4に戻り、進み補償オンオフ決定部133は、位相進み補償のオンを決定した場合にはオン指令を出力し、位相進み補償のオフを決定した場合にはオフ指令を出力する。オンオフ指令は、進み補償オンオフ決定部133から、進み量決定部134と、オンオフ指令フィルタ部139とに入力される。
 進み量決定部134は進み量Apkを決定する。進み量決定部134は、進み補償オンオフ決定部133の後流に設けられる。進み量決定部134は、信号経路における配置上、このように設けられる。進み量決定部134は、オンオフ指令に応じて、換言すれば、位相進み補償のオンオフの決定に応じて進み量Apkを決定する。進み量決定部134は、オフ指令が入力された場合に進み量Apkをゼロに決定する。進み量決定部134は、オン指令が入力された場合に進み量Apkを第1進み量Apk1又は第2進み量Apk2に決定する。
 第1進み量Apk1は、後述する1次の位相進み補償を行う場合に対応させて設定され、第2進み量Apk2は、後述する2次の位相進み補償を行う場合に対応させて設定される。第2進み量Apk2は、第1進み量Apk1の1/2とされる。第1進み量Apk1は例えば、80degであり一定値とすることができる。第1進み量Apk1は、実験等により予め設定することができる。進み量Apkは、進み量決定部134から進み量フィルタ部135に入力される。
 進み量フィルタ部135は、進み量決定部134の後流に設けられ、進み量Apkのフィルタ処理を行う。進み量フィルタ部135は、信号経路における配置上、このように設けられる。進み量フィルタ部135は具体的には、ローパスフィルタ部とされ、例えば1次のローパスフィルタで構成される。
 進み量フィルタ部135は、進み量Apkのフィルタ処理を行うことで、進み補償のオンオフが切り替えられた際に、位相進み補償のオンオフの決定に応じた位相進み補償のゲインGの変化のなましを行うゲインなまし部を構成する。ゲインGの変化のなましを行うことで、位相進み補償のオンオフの切替に伴うゲインGの変化量の抑制が図られる。
 第1位相進み補償器136と、第2位相進み補償器137と、スイッチ部138とには、進み量フィルタ部135から進み量Apkが入力される。第1位相進み補償器136と第2位相進み補償器137とには、ピーク値周波数決定部141からピーク値周波数Fpkも入力される。
 第1位相進み補償器136と第2位相進み補償器137とはともに、入力された進み量Apk、さらには入力されたピーク値周波数Fpkに基づき、フィードバックプライマリ指示圧Ppri_FBの1次の位相進み補償を行う。フィードバックプライマリ指示圧Ppri_FBの位相進み補償を行うことで、変速機4のフィードバック変速制御の位相進み補償が行われる。第1位相進み補償器136と第2位相進み補償器137とは具体的には、1次のローパスフィルタで構成され、入力された進み量Apk、さらには入力されたピーク値周波数Fpkに応じたフィルタ処理を行うことで、フィードバックプライマリ指示圧Ppri_FBの1次の位相進み補償を行う。
 第2位相進み補償器137は、第1位相進み補償器136と直列に設けられる。第2位相進み補償器137は、信号経路における配置上、このように設けられる。第2位相進み補償器137には、第1位相進み補償器136によって1次の位相進み補償が行われたフィードバックプライマリ指示圧Ppri_FBが入力される。
 したがって、第2位相進み補償器137は、フィードバックプライマリ指示圧Ppri_FBの1次の位相進み補償を行う場合に、1次の位相進み補償をさらに重ねて行う。これにより、フィードバックプライマリ指示圧Ppri_FBの2次の位相進み補償が行われる。第2位相進み補償器137は、第1位相進み補償器136とともに進み補償部を構成する。
 スイッチ部138は、入力された進み量Apkに応じて、第1位相進み補償器136と第2位相進み補償器137とで位相進み補償を行う場合、つまり2次の位相進み補償を行う場合と、第1位相進み補償器136のみで位相進み補償を行う場合、つまり1次の位相進み補償を行う場合とを切り替える。
 2次の位相進み補償を行うことで、1次の位相進み補償を行う場合と比較してゲインGの増大を抑制し変速制御の不安定化を抑制できるためである。また、フィードバックプライマリ指示圧Ppri_FBに応じた1次の位相進み補償の進み量Aが所定値A1よりも小さい場合には、ゲイン抑制効果が望めない一方、1次の位相進み補償を行うことで、周波数ずれによってゲインGが低下し制振効果が減少し易くなる事態を避けることができるためである。所定値A1は、位相進み補償の2次化によるゲイン抑制効果が得られる範囲内で、好ましくは最小値に設定することができる。
 このように位相進み補償を行うにあたり、進み量決定部134とスイッチ部138とは具体的には次のように構成される。
 すなわち、進み量決定部134は、入力されたフィードバックプライマリ指示圧Ppri_FBに基づきフィードバックプライマリ指示圧Ppri_FBの1次の位相進み補償の進み量Aを算出する。進み量決定部134は、進み量Aが所定値A1よりも小さい場合に1次の位相進み補償を行うと判断し、進み量Apkを第1進み量Apk1に決定する。また、進み量決定部134は、進み量Aが所定値A1以上の場合に2次の位相進み補償を行うと判断し、進み量Apkを第2進み量Apk2に決定する。進み量Aは、マップデータ等で予め設定することができる。
 スイッチ部138は、第1進み量Apk1が入力された場合に、第1位相進み補償器136のみで位相進み補償を行うように切り替えを行う。また、スイッチ部138は、第2進み量Apk2が入力された場合に、第1位相進み補償器136と第2位相進み補償器137とで位相進み補償を行うように切り替えを行う。
 このように構成することで、第1位相進み補償器136及び第2位相進み補償器137は、進み量Aに応じて第1位相進み補償器136のみで位相進み補償を行うように構成される。また、第1位相進み補償器136及び第2位相進み補償器137は、進み量Aが所定値A1よりも小さい場合に、第1位相進み補償器136のみで位相進み補償を行うように構成される。
 スイッチ部138は、1次の位相進み補償を行う場合に、第2位相進み補償器137のみで位相進み補償を行うように構成されてもよい。進み量決定部134は、進み量Apkの代わりに進み量Aをスイッチ部138に入力してもよく、スイッチ部138は、このようにして入力された進み量Aに基づき切り替えを行ってもよい。これにより、第1進み量Apk1や第2進み量Apk2になましが施されていても、1次、2次の位相進み補償を適切に行える。
 スイッチ部138は、進み補償オンオフ決定部133とともに、プーリ状態値Mに応じて、第1位相進み補償器136及び第2位相進み補償器137の少なくともいずれかによって進み補償が行われたフィードバックプライマリ指示圧Ppri_FBをフィードバックプライマリ指示圧Ppri_FBとして設定する設定部を構成する。第1位相進み補償器136及び第2位相進み補償器137の少なくともいずれかは、フィードバックプライマリ指示圧Ppri_FBの進み補償を行う進み補償部を構成する。進み補償が行われたフィードバックプライマリ指示圧Ppri_FBは、補償後のフィードバックプライマリ指示圧値_FBを構成する。
 アクチュエータ111には、スイッチ部138から選択されたフィードバックプライマリ指示圧Ppri_FBと目標変速比Ratio_Dに基づいて設定された図示しないプライマリ指示圧Ppri_FF(バランス推力や変速比を決定する目標プライマリ指示圧)が入力される。アクチュエータ111は例えば、油圧制御回路11に設けられたプライマリ圧Ppriを制御するプライマリ圧制御弁であり、プライマリ圧Ppriの実圧Ppri_Aが目標変速比Ratio_Dに応じた指示圧Ppri_Dになるようにプライマリ圧Ppriを制御する。これにより、実変速比Ratio_Aが目標変速比Ratio_Dになるように変速比Ratioが制御される。
 センサ部40は、バリエータ20の実変速比Ratio_Aを検出する。センサ部40は具体的には、回転速度センサ42及び回転速度センサ43で構成されている。センサ部40が検出した変速比の実値(センサ値)である実変速比Ratio_Aは、センサ値フィルタ部140に入力される。センサ値フィルタ部140には、オンオフ指令フィルタ部139を介してオンオフ指令も入力される。オンオフ指令フィルタ部139は省略されてもよい。
 センサ値フィルタ部140は、実変速比Ratio_Aのフィルタ処理を行う。センサ値フィルタ部140では、オンオフ指令に応じてフィルタ処理の態様が変更される。具体的にはセンサ値フィルタ部140では、オンオフ指令に応じてフィルタ処理の次数又は実行・停止が切り替えられる。センサ値フィルタ部140は、オフ指令が入力された場合に1次のローパスフィルタとされ、オン指令が入力された場合に高次のローパスフィルタとされるか、或いはフィルタ処理を停止する。
 このようにセンサ値フィルタ部140を構成することで、1次のローパスフィルタを用いると除去したい周波数以下の領域で僅かな遅れが発生することに対し、オン指令が入力された場合には、遅れが改善される。結果、フィードバックプライマリ指示圧Ppri_FBの位相を更に進めることができる。センサ値フィルタ部140は例えば、フィルタ処理の実行・停止又は次数を切り替え可能に設けられた1又は複数の1次のローパスフィルタを有した構成とすることができる。センサ値フィルタ部140からの実変速比Ratio_Aは、FB補償器132に入力される。
 ピーク値周波数決定部141は、位相進み補償のピーク値周波数Fpkを決定する。ピーク値周波数決定部141は、変速比Ratioに応じてピーク値周波数Fpkを決定することで、ピーク値周波数Fpkを変化させる。変速比Ratioは具体的には、目標変速比Ratio_Dとされる。このため、ピーク値周波数決定部141には、目標変速比Ratio_Dが目標値生成部131から入力される。
 ピーク値周波数決定部141が決定したピーク値周波数Fpkは、第1位相進み補償器136及び第2位相進み補償器137それぞれに入力される。これにより、ピーク値周波数決定部141は、変速比Ratioに基づき、第1位相進み補償器136及び第2位相進み補償器137が行う位相進み補償それぞれのピーク値周波数Fpkを設定するように構成される。ピーク値周波数決定部141は具体的には、次に説明するように変速比Ratioに応じてピーク値周波数Fpkを変化させる。
 図6は、変速比Ratioに応じたPT共振周波数Fptの変化を示す図である。図6に示すように、PT共振周波数Fptは、変速比Ratioが大きいほど小さくなる。このため、ピーク値周波数決定部141は、変速比Ratioが大きいほどピーク値周波数Fpkを小さくする。これにより、変速比Ratioに応じてPT共振周波数Fptが変化しても、PT共振周波数Fpt及びピーク値周波数Fpk間の周波数ずれを適切に抑制することができる。
 次に、コントローラ12の主な作用効果について説明する。
 コントローラ12は、実変速比Ratio_Aが目標変速比Ratio_Dになるように変速機4のフィードバック変速制御を行う無段変速機の制御装置を構成する。コントローラ12は、フィードバックプライマリ指示圧Ppri_FBの位相進み補償を行う第1位相進み補償器136及び第2位相進み補償器137と、変速比Ratioに応じてピーク値周波数Fpkを変化させるピーク値周波数決定部141と、を有する。
 このような構成のコントローラ12によれば、変速比Ratioが変化しPT共振周波数Fptが変化しても、変速比Ratioに応じてピーク値周波数Fpkを変化させることで、PT共振周波数Fpt及びピーク値周波数Fpk間の周波数ずれを抑制することができる。このため、PT共振周波数Fptの変化に応じて位相進み補償による制振効果が減少することを改善することができる。
 コントローラ12では、ピーク値周波数決定部141は、変速比Ratioが大きいほどピーク値周波数Fpkを小さくする。このような構成のコントローラ12によれば、周波数ずれを適切に抑制することができる。
 コントローラ12では、ピーク値周波数決定部141は、変速比Ratioに基づき、第1位相進み補償器136及び第2位相進み補償器137が行う位相進み補償それぞれのピーク値周波数Fpkを設定するように構成される。
 このような構成のコントローラ12によれば、1次の位相進み補償を行う第1位相進み補償器136及び第2位相進み補償器137それぞれを用いて2次の位相進み補償を行う場合でも、周波数ずれを抑制することができる。
 コントローラ12では、ピーク値周波数決定部141は、目標変速比Ratio_Dに基づいてピーク値周波数Fpkを決定している。このような構成のコントローラ12によれば、実変速比Ratio_Aが変動する場合であってもピーク値周波数Fpkを安定させることができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 上述した実施形態では、第1位相進み補償器136及び第2位相進み補償器137が進み補償部を構成する場合について説明した。しかしながら例えば、第1位相進み補償器136又は第2位相進み補償器137など、単一の位相進み補償器で1次の位相進み補償器を構成してもよい。
 また、上述した実施形態では、ピーク値周波数決定部141は、目標変速比Ratio_Dに応じてピーク値周波数Fpkを決定しているが、実変速比Ratio_Aに応じてピーク値周波数Fpkを決定してもよい。このようにすれば、目標変速比Ratio_Dと実変速比Ratio_Aが乖離した場合であってもピーク値周波数Fpkをより狙った周波数に近づけることができる。
 また、上述した実施形態では、目標変速比Ratio_Dと実変速比Ratio_Aとに基づいてフィードバック制御を行う、所謂、サーボ系のフィードバック制御を行うFB補償器を用いる場合について説明した。しかしながら、サーボ系のフィードバック制御に限らず、例えば、入力トルクの変動に応じてフィードバック制御を行うFB補償器を用いる構成としてもよい。
 上述した実施形態では、コントローラ12が無段変速機の制御装置として構成される場合について説明した。しかしながら、無段変速機の制御装置は例えば、複数のコントローラで実現されてもよい。
 本願は2016年3月17日に日本国特許庁に出願された特願2016-53389に基づく優先権を主張し、この出願のすべての内容は参照により本明細書に組み込まれる。

Claims (6)

  1.  無段変速機の状態を現す実値に基づいてフィードバック制御を行う無段変速機の制御装置であって、
     前記フィードバック制御の進み補償を行う進み補償部と、
     前記無段変速機の変速比に応じて、前記進み補償のピーク値周波数を変化させるピーク値周波数決定部と、
    を有する無段変速機の制御装置。
  2.  請求項1に記載の無段変速機の制御装置であって、
     前記ピーク値周波数決定部は、前記変速比が大きいほど前記ピーク値周波数を小さくする、
    無段変速機の制御装置。
  3.  請求項1又は2に記載の無段変速機の制御装置であって、
     前記進み補償部は、
      前記フィードバック制御の1次の進み補償を行う第1進み補償部と、
      前記第1進み補償部と直列に設けられ、前記第1進み補償部によって進み補償が行われた前記フィードバック制御の1次の進み補償を行う第2進み補償部と、
    を有して構成され、
     前記ピーク値周波数決定部は、前記変速比に基づき、前記第1進み補償部及び前記第2進み補償部それぞれが行う進み補償のピーク値周波数を設定する、
    無段変速機の制御装置。
  4.  請求項1に記載の無段変速機の制御装置であって、
     前記変速比は、車速とアクセル開度に基づいて設定される目標変速比である、
    無段変速機の制御装置。
  5.  請求項1に記載の無段変速機の制御装置であって、
     前記変速比は、検出された実変速比である、
    無段変速機の制御装置。
  6.  無段変速機の状態を現す実値に基づいてフィードバック制御を行う無段変速機の制御方法であって、
     前記フィードバック制御の進み補償を行うことと、
     前記無段変速機の変速比に応じて、前記進み補償のピーク値周波数を変化させることと、
    を含む無段変速機の制御方法。
PCT/JP2017/006818 2016-03-17 2017-02-23 無段変速機の制御装置及び無段変速機の制御方法 WO2017159270A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/085,363 US10989301B2 (en) 2016-03-17 2017-02-23 Control device for continuously variable transmission and control method for continuously variable transmission
KR1020187028484A KR102103816B1 (ko) 2016-03-17 2017-02-23 무단 변속기의 제어 장치 및 무단 변속기의 제어 방법
EP17766275.6A EP3431824A4 (en) 2016-03-17 2017-02-23 CONTROL UNIT FOR LEVEL TRANSMISSION AND CONTROL METHOD FOR LEVEL TRANSMISSION
CN201780017055.5A CN108779848B (zh) 2016-03-17 2017-02-23 无级变速器的控制装置及无级变速器的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016053389A JP6637800B2 (ja) 2016-03-17 2016-03-17 無段変速機の制御装置及び無段変速機の制御方法
JP2016-053389 2016-03-17

Publications (1)

Publication Number Publication Date
WO2017159270A1 true WO2017159270A1 (ja) 2017-09-21

Family

ID=59850679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006818 WO2017159270A1 (ja) 2016-03-17 2017-02-23 無段変速機の制御装置及び無段変速機の制御方法

Country Status (6)

Country Link
US (1) US10989301B2 (ja)
EP (1) EP3431824A4 (ja)
JP (1) JP6637800B2 (ja)
KR (1) KR102103816B1 (ja)
CN (1) CN108779848B (ja)
WO (1) WO2017159270A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110219975B (zh) * 2019-05-07 2021-08-24 江苏理工学院 一种双电机调节的cvt电子控制***及方法
JP7241124B2 (ja) * 2021-04-21 2023-03-16 本田技研工業株式会社 車両用無段変速機の制御装置及び制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287483A (ja) * 1986-06-05 1987-12-14 Sony Corp 回転記録媒体に対するサーボ装置
JPH11194801A (ja) * 1997-02-27 1999-07-21 Denso Corp システム制御装置
JP2000018372A (ja) * 1998-07-03 2000-01-18 Nissan Motor Co Ltd 無段変速機の変速制御装置
JP2002106700A (ja) 2000-09-29 2002-04-10 Jatco Transtechnology Ltd 無段変速機の変速制御装置
JP2004360725A (ja) * 2003-06-02 2004-12-24 Nissan Motor Co Ltd 無段変速機の変速比制御装置
JP2008310601A (ja) * 2007-06-14 2008-12-25 Fujitsu Ltd フィードバック制御系の設計方法、設計プログラム、および設計支援装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3198954B2 (ja) * 1996-11-25 2001-08-13 日産自動車株式会社 加速度推定装置
JP2012076537A (ja) * 2010-09-30 2012-04-19 Aisin Aw Co Ltd 制御装置
JP5860535B2 (ja) * 2012-06-20 2016-02-16 ジヤトコ株式会社 無段変速機及びその制御方法
JP5708885B2 (ja) * 2012-07-12 2015-04-30 日産自動車株式会社 車両の制御装置
US9222531B2 (en) * 2014-02-20 2015-12-29 GM Global Technology Operations LLC Vehicle transmission with tie-up monitoring logic
JP6272178B2 (ja) * 2014-08-06 2018-01-31 株式会社デンソー 回転電機の制御装置
JP6090260B2 (ja) * 2014-08-19 2017-03-08 株式会社デンソー 回転電機の制御装置
JP6405258B2 (ja) * 2015-02-12 2018-10-17 本田技研工業株式会社 無段変速機の制御装置
EP3505797B1 (en) * 2016-08-29 2020-06-17 Nissan Motor Co., Ltd Control method for continuously variable transmissions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287483A (ja) * 1986-06-05 1987-12-14 Sony Corp 回転記録媒体に対するサーボ装置
JPH11194801A (ja) * 1997-02-27 1999-07-21 Denso Corp システム制御装置
JP2000018372A (ja) * 1998-07-03 2000-01-18 Nissan Motor Co Ltd 無段変速機の変速制御装置
JP2002106700A (ja) 2000-09-29 2002-04-10 Jatco Transtechnology Ltd 無段変速機の変速制御装置
JP2004360725A (ja) * 2003-06-02 2004-12-24 Nissan Motor Co Ltd 無段変速機の変速比制御装置
JP2008310601A (ja) * 2007-06-14 2008-12-25 Fujitsu Ltd フィードバック制御系の設計方法、設計プログラム、および設計支援装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3431824A4

Also Published As

Publication number Publication date
CN108779848A (zh) 2018-11-09
US20190093764A1 (en) 2019-03-28
EP3431824A1 (en) 2019-01-23
KR20180114214A (ko) 2018-10-17
JP6637800B2 (ja) 2020-01-29
EP3431824A4 (en) 2019-03-27
CN108779848B (zh) 2020-04-24
KR102103816B1 (ko) 2020-04-24
JP2017166615A (ja) 2017-09-21
US10989301B2 (en) 2021-04-27

Similar Documents

Publication Publication Date Title
WO2017154632A1 (ja) 無段変速機の制御装置及び無段変速機の制御方法
WO2017159270A1 (ja) 無段変速機の制御装置及び無段変速機の制御方法
JP6731057B2 (ja) 無段変速機の制御方法
JP6655166B2 (ja) 無段変速機の制御装置及び無段変速機の制御方法
JP6714171B2 (ja) 無段変速機の制御装置および制御方法
JP6831470B2 (ja) 無段変速機の制御装置および制御方法
JP2017211008A (ja) 無段変速機の制御方法
JP6742530B2 (ja) 無段変速機の制御装置および制御方法
WO2017159268A1 (ja) 無段変速機の制御装置及び無段変速機の制御方法
JP6887734B2 (ja) 無段変速機の制御装置
JP6896343B2 (ja) 無段変速機の制御装置
WO2019176417A1 (ja) 無段変速機の制御装置および制御方法
JP2019052729A (ja) 無段変速機の制御装置

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017766275

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017766275

Country of ref document: EP

Effective date: 20181017

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766275

Country of ref document: EP

Kind code of ref document: A1