WO2017154787A1 - 駐車領域表示システム及びそれを用いた自動駐車システム - Google Patents

駐車領域表示システム及びそれを用いた自動駐車システム Download PDF

Info

Publication number
WO2017154787A1
WO2017154787A1 PCT/JP2017/008560 JP2017008560W WO2017154787A1 WO 2017154787 A1 WO2017154787 A1 WO 2017154787A1 JP 2017008560 W JP2017008560 W JP 2017008560W WO 2017154787 A1 WO2017154787 A1 WO 2017154787A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
parking area
parking
unit
parallel projection
Prior art date
Application number
PCT/JP2017/008560
Other languages
English (en)
French (fr)
Inventor
飯尾 聡
塘中 哲也
裕介 木内
泰郎 藤島
ケビン ウォルターズ
Original Assignee
三菱重工業株式会社
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱自動車工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2017154787A1 publication Critical patent/WO2017154787A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/06Automatic manoeuvring for parking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles

Definitions

  • the present invention relates to a parking area display system that displays a parking area where a vehicle can be parked, and an automatic parking system using the parking area display system.
  • a parking lot frame detected by image processing of the image is superimposed on an image captured by a rear camera, and a driver confirms or changes the display position of the parking lot frame.
  • the parked parking lot is parked by automatic driving.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a parking area display system in which a driver can easily check a parking area and an automatic parking system using the parking area display system.
  • the parking area display system for solving the above-mentioned problems is A first photographing means for photographing an image of the side of the vehicle while traveling in front of a parking section on the side of the vehicle; A distance measuring means for measuring a distance between the vehicle and the object on the side of the vehicle along a horizontal direction; Based on the amount of movement and the direction of movement of the vehicle while traveling, a vehicle position calculation unit that calculates the vehicle position; A parallel projection image creating unit that creates a parallel projection image based on the plurality of images photographed by the first photographing unit; A parking area detection unit that detects an area larger than the vehicle length and width of the vehicle as a parking area based on the distance in the horizontal direction measured by the distance measuring unit; Based on the vehicle position calculated by the vehicle position calculation unit, the parking area detected by the parking area detection unit is superimposed on the parallel projection image created by the parallel projection image creation unit.
  • a parking area display system for solving the above-mentioned problems is as follows.
  • the distance measuring means further measures the distance to the object on the side of the vehicle along the vertical direction
  • the parking area detecting unit detects an area larger than the vehicle length, width, and height of the vehicle as a parking area based on the distance in the horizontal direction and the vertical direction measured by the distance measuring unit. .
  • a parking area display system for solving the above-mentioned problems is as follows.
  • the parallel projection image creation unit cuts out a central area of each of the plurality of images photographed by the first photographing unit, and sets each central area to the own vehicle position calculated by the own vehicle position calculation unit.
  • the parallel projection image is generated by superimposing while shifting to a corresponding position.
  • a parking area display system for solving the above-mentioned problems is as follows.
  • a second photographing means for photographing an image in front of the vehicle during the traveling;
  • a bird's-eye image creation unit that creates a driver-view bird's-eye image by combining the parallel projection image created by the parallel projection image creation unit and the current image taken by the second photographing unit;
  • the parking area display unit superimposes and displays the parking area detected by the parking area detection unit on the bird's eye image created by the bird's eye image creation unit.
  • a parking area display system for solving the above-mentioned problems is as follows.
  • a first range indicating the size when the door of the vehicle is closed and a second range indicating the size when the door is opened are displayed in the parking area, and output to the display means,
  • the position of the 1st range and the 2nd range can be corrected, and it has further a parking position correction part which makes the position of the 1st range and the 2nd range at the time of confirmation the parking position.
  • An automatic parking system for solving the above-described problems is as follows.
  • the parking area display system according to the fifth invention; And at least an actuator for steering the vehicle,
  • the parking position is confirmed by the parking area display system, the steering is steered by the actuator, and the vehicle is guided to the parking position at the time of confirmation.
  • the detected parking area is superimposed and displayed on the parallel projection image created based on the plurality of images, in the parallel projection image that is not behind the obstacles such as other parked vehicles.
  • the parking area is displayed, and it becomes easy to visually confirm the parking area.
  • the distance to the vehicle side is measured along the horizontal direction, and based on the measured distance in the horizontal direction, an area larger than the vehicle length and width of the vehicle is detected as a parking area. Even if the white line of the frame is dirty or the white line is cut, the parking area can be detected.
  • the distance to the object on the side of the vehicle is measured along the horizontal direction and the vertical direction, and based on the measured distance in the horizontal direction and the vertical direction, the vehicle length, width, and Since the area larger than the height is detected as the parking area, the parking area can be detected even if the white line of the parking partition frame is dirty or the white line is broken, and the detected parking area is high. Since direction information is also included, it is easy to visually confirm the size (width and height) of the parking area.
  • the central regions of the plurality of captured images are each cut out, and the parallel projection images are created by superimposing each central region while shifting to the position corresponding to the vehicle position. Further, the parallel projection image becomes an image that is not behind an obstacle such as another parked vehicle, and the parking area can be easily visually confirmed.
  • the bird's-eye view image of the driver viewpoint is created by combining the created parallel projection image and the current image capturing the front of the vehicle, and the detected parking area is superimposed on the bird's-eye view image. Therefore, it is easier to check the surrounding environment than a conventional around view monitor.
  • the conventional around view monitor displays an image obtained by projecting a camera image on a virtual road surface, a three-dimensional image is displayed as stretched. For example, the image of the conventional around view monitor shown in FIG. 15 is displayed as if the front portion of the vehicle is extended.
  • the created bird's-eye view image is an image from the driver's viewpoint, it is easy to visually confirm the parking area.
  • the parking position can be corrected by displaying the first range indicating the size when the door of the vehicle is closed and the second range indicating the size when the door is opened in the parking area. Therefore, it is possible to adjust the parking position to a desired position with an appropriate space between adjacent obstacles (such as other parked vehicles) while confirming the position where the driver can park.
  • the parking position is confirmed using the parking area display system according to the fifth aspect, an appropriate distance between adjacent obstacles (such as other parked vehicles).
  • the vehicle can be guided and parked at a parking position with a gap.
  • FIG. 1 It is a block diagram which shows an example (Example 1) of embodiment of the automatic parking system which concerns on this invention. It is a flowchart explaining the procedure which the automatic parking system shown in FIG. 1 implements. It is a figure explaining the operation
  • FIG. 1 it is a figure which shows the screen of the parking position confirmation displayed on a touch panel.
  • FIG. 2 shows another example (Example 2) of embodiment of the automatic parking system which concerns on this invention.
  • FIG. 9 shows the procedure which the automatic parking system shown in FIG. 9 implements.
  • FIG. 10 is a diagram showing a parking position confirmation screen displayed on the touch panel in the automatic parking system shown in FIG. 9.
  • Embodiments of a parking area display system and an automatic parking system using the parking area display system according to the present invention will be described with reference to FIGS.
  • the parking area display system according to the present invention and the automatic parking system using the parking area display system are collectively referred to as an automatic parking system.
  • FIG. 1 is a block diagram illustrating an automatic parking system according to the present embodiment
  • FIG. 2 is a flowchart illustrating a procedure performed by the automatic parking system illustrated in FIG. 1.
  • the automatic parking system of the present embodiment includes a start / end switch 11, a vehicle position sensor 12, a side camera 13 ⁇ / b> A, a distance measurement sensor 14, a touch panel 15, and a steering actuator 16. , An accelerator actuator 17, a brake actuator 18, and a control device 20A.
  • the start / end switch 11 is a switch for operating the start or end of the automatic parking system of the present embodiment.
  • parking area and parking position display which will be described later, and automatic parking start.
  • the driver turns off the start / end switch 11, the parking area, parking position display and automatic parking are started. Ends.
  • an operation button instead of the start / end switch 11 may be displayed on a touch panel described later, and the start or end of the system may be operated by the driver touching the displayed operation button.
  • the own vehicle position sensor 12 detects the own vehicle position.
  • a wheel speed sensor or a steering angle sensor is used.
  • the wheel speed sensor is attached to the rear wheel, for example, and detects the angular speed of the rear wheel
  • the steering angle sensor is attached to, for example, a steering column, and detects the steering angle of the steering wheel.
  • the movement amount and the movement direction can be calculated based on the steering angle
  • the vehicle position can be calculated based on the movement amount and the movement direction. It should be noted that other sensors may be used instead of the wheel speed sensor and the steering angle sensor as long as the vehicle position can be detected.
  • the side camera 13A continuously captures images on both sides of the vehicle. As will be described later, in order to create a parallel projection image from continuous camera images, the side camera 13A is attached at an angle for photographing the horizontal direction of the side.
  • the side camera 13A may be attached to the nose (front end center) of the vehicle or to both the left and right door mirrors, but may be attached anywhere as long as both sides of the vehicle can be photographed.
  • the distance measuring sensor 14 measures the distance from an object on the side of the vehicle along the horizontal direction. That is, the change in the distance along the horizontal direction that is the traveling direction (vehicle length direction) is measured on the side of the vehicle.
  • an ultrasonic sensor or a radar is used as the distance measurement sensor 14.
  • the distance measurement sensor 14 may be attached to the nose of the vehicle or the left and right door mirrors together with the side camera 13A described above, but may be attached anywhere as long as the vehicle side can be measured.
  • the distance from the object on the side of the vehicle may be measured along the horizontal direction and the vertical direction.
  • the distance measurement sensor 14 for example, an ultrasonic sensor or a radar is used.
  • the ultrasonic sensor or the radar is configured to scan in the vertical direction.
  • the plurality of ultrasonic sensors or radars may be configured to measure different heights.
  • Touch panel 15 displays a parking area and a parking position together with a parallel projection image.
  • touch panel 15 a touch panel of a navigation system can be used.
  • the steering actuator 16 steers the vehicle by operating a steering handle (not shown).
  • the accelerator actuator 17 operates an accelerator (not shown), and the brake actuator 18 operates a brake (not shown).
  • the accelerator actuator 17 and the brake actuator 18 operate acceleration / deceleration and speed of the vehicle. ing.
  • the control device 20A based on the input from the start / end switch 11, the vehicle position sensor 12, the side camera 13A, the distance measurement sensor 14, and the touch panel 15, performs parallel projection images and parking according to the procedure of the flowchart shown in FIG. While displaying the area, the parking position is confirmed, and the steering actuator 16, the accelerator actuator 17 and the brake actuator 18 are automatically controlled based on the confirmed parking position to guide the vehicle to the parking position.
  • an ECU Electronics Control Unit
  • this ECU is a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory). Etc.
  • control device 20A includes a host vehicle position calculation unit 21, a parallel projection image creation unit 22A, a parking area detection unit 23, a parking area display unit 24A, a parking position correction unit 25A, and an automatic parking control unit 26. ing. These configurations will be described later together with the flowchart shown in FIG.
  • the automatic parking system of the present embodiment starts when the driver turns on the start / end switch 11. For example, in a parking lot where parking sections are continuously arranged in parallel (parallel parking type parking lot), when the host vehicle comes to the entrance of the parking section area, the start / end switch 11 may be turned on.
  • Step S1A After the start / end switch 11 is turned on, as shown in FIG. 3, the driver drives the vehicle so as to cross the front of the parking area Pa (parking areas P 1 to P 4 ) on the side of the vehicle, and the vehicle is running Acquire data.
  • reference numeral 10 1 indicates the host vehicle at the initial position
  • reference numeral A 1 indicates data acquisition at the position
  • Reference numeral 10 i indicates a host vehicle at a position after moving from the first position
  • reference numeral A i indicates data acquisition at the position
  • reference numeral 10 n indicates a host vehicle at the last position.
  • reference numeral a n denotes the data acquisition in the position. Note that i is a positive integer of 2 or more and less than n, and n is a positive integer of 3 or more.
  • the camera 13A acquires a horizontal camera image on the side of the vehicle (see FIG. 4 to be described later), and the distance measurement sensor 14 (ultrasonic sensor) measures the distance to an object existing on the side of the host vehicle. (See FIG. 6 described later).
  • the own vehicle position calculation unit 21 calculates the own vehicle position based on the moving amount and moving direction of the own vehicle during travel. Specifically, the amount of movement is calculated based on the detection value of the vehicle position sensor 12, that is, the angular velocity detected by the wheel speed sensor, and the movement is performed based on the steering angle of the steering detected by the steering angle sensor. The direction is calculated, and the vehicle position is calculated based on the movement amount and the movement direction.
  • Step S3A The parallel projection image creation unit 22A creates a parallel projection image from a plurality of continuous camera images photographed by the side camera 13A, and outputs the created parallel projection image to the touch panel 15.
  • the side camera 13A has a plurality of continuous camera images G 1 ,..., G i ,. Gn will be taken. Then, the central regions of a plurality of continuous camera images G 1 ,..., G i ,..., G n shown in FIG.
  • a parallel projection image G pp shown in FIG. 5 is created and output to the touch panel 15 by sequentially superposing and synthesizing while shifting to a position corresponding to the vehicle position.
  • the camera image G 1 shown in FIG. 4 ..., G i, ... , G n , the data acquisition A 1 shown in FIG. 3, ..., A i, ..., correspond to a A n.
  • the camera image G i in FIG. 4 shows a cut-out portion of the central area in the cutout amount du (dotted line), in Figure 5, a portion (dotted line) corresponding to the cut-out portion Show.
  • Step S4 The parking area detection unit 23 determines whether a parking area where the host vehicle can be parked is detected based on a distance from an object existing on the side of the host vehicle measured by the distance measurement sensor 14 (ultrasonic sensor). If the parking area is not detected, the process returns to step S1A. If the parking area is detected, the process proceeds to step S5A.
  • the distance measurement sensor 14 measures the distance along the horizontal direction, an area larger than the vehicle length and width of the host vehicle is detected as a parking area, and the distance measurement sensor 14 follows the horizontal direction and the vertical direction. When measuring the distance, an area larger than the vehicle length, width and height of the host vehicle may be detected as a parking area.
  • FIG. 6 shows a parallel projection image G pp (see FIG. 5) created by the parallel projection image creation unit 22A in order to show the correspondence with the graph in the upper part of FIG.
  • the distance measured by the distance measuring sensor 14 (ultrasonic sensor) reflects the parking situation shown in FIG. 3, and the distance corresponding to the parking section P 3 is the parking section P 1.
  • P 2 and P 4 are larger than the length of one vehicle compared to the distance of the portion corresponding to P 4 .
  • the distance of the part corresponding to the parking section P 2 is larger than the distance of the part corresponding to the parking sections P 1 and P 4 by the amount parked by the parked vehicle.
  • the graph shown in the upper part of FIG. 6 is data when the distance is measured along the horizontal direction of the height position where the distance measurement sensor 14 is located. Specifically, measurement data of a two-dimensional plane obtained by measuring the distance in the horizontal direction (vehicle width direction) perpendicular to the traveling direction along the horizontal direction that is the traveling direction (vehicle length direction) of the host vehicle. Yes. Therefore, in the horizontal direction on the side of the host vehicle, an area on a two-dimensional plane that can be parked can be detected. Therefore, when a region on a two-dimensional plane that is larger than the vehicle length and width of the host vehicle is detected, this region is detected as the parking region Pt.
  • the parking area Pt is not detected.
  • the distance measuring sensor 14 measures the distance along the horizontal direction and the vertical direction
  • a plurality of data similar to the graph shown in the upper part of FIG. 6 are measured according to the height position. That is, measurement data in a three-dimensional space in which the distance in the horizontal direction (vehicle width direction) perpendicular to the traveling direction is measured at a plurality of height positions along the horizontal direction that is the traveling direction (vehicle length direction) of the host vehicle. It has become. Therefore, in the horizontal direction and the vertical direction on the side of the host vehicle, it is possible to detect an area in the three-dimensional space that is a parking area where parking is possible. Accordingly, when a region in the three-dimensional space that is larger than the vehicle length, width, and height of the host vehicle is detected, this region is detected as the parking region Pt.
  • the parking region Pt Not detected even if the region where the measured distance is longer than the vehicle length continues over the vehicle width, if the region is less than the vehicle height in the vertical direction (height direction), the parking region Pt Not detected. Moreover, even if the area where the measurement distance is longer than the vehicle length of the host vehicle continues over the vehicle height in the vertical direction (height direction), if the area is less than the vehicle width, the parking area Pt Not detected.
  • the width of the parking area Pt is set based on the vehicle width of the host vehicle.
  • What is necessary is just to set the width
  • step S1A the process returns to step S1A, the host vehicle is driven until the parking area Pt is detected, and the above-described steps S1A to S4 are repeated.
  • Step S5A Parking area display unit 24A, when the parking area Pt are detected, as shown in FIG. 7, and displayed superimposed the parking area Pt on parallel projection image G pp, and output to the touch panel 15
  • the touch panel 15 displays the output screen. Since both the parallel projection image Gpp and the parking area Pt have a corresponding relationship with the own vehicle position calculated by the own vehicle position calculation unit 21, the parking area Pt is at an accurate position on the parallel projection image Gpp. Can be displayed.
  • the distance measurement sensor 14 ultrasonic sensor
  • detects the width (or width and height) of the parking area Pt it includes the width (or width and height) of the parking area Pt in parallel. It can be displayed on the projection image Gpp .
  • Step S6A The parking position correction unit 25A uses the screen shown in FIG. 8 to allow the touch panel 15 to correct the parking position and to confirm the final parking position.
  • the screen shown in FIG. 8 includes the screen shown in FIG. 7 and further displays a function for correcting and confirming the parking position.
  • a message “Please check the parking position.” Is displayed, and the parking area Pt (see double line) displayed on the parallel projection image Gpp is displayed.
  • a first range Ta (see dotted line) indicating the size (vehicle width and height) when the vehicle door is closed, and the size when the vehicle door is released
  • a second range Tb (see solid line) indicating the height (width and vehicle height) is displayed.
  • the parking area Pt, the first range Ta, and the second range Tb are displayed in different colors so that they are easily visible. For example, the parking area Pt is green, the first range Ta is blue, and the second range Tb. Is displayed in red.
  • the above-described first range Ta and second range Tb are displayed together with the image of the vehicle itself.
  • the left arrow displayed below the image of the host vehicle itself each time the driver touches the left arrow once, the first range Ta and the second range Tb described above are left in the frame of the parking area Pt. By moving by a predetermined amount, the set parking position is moved to the left by a predetermined distance.
  • the first range Ta and the second range Tb described above are set to move to the right by a predetermined amount within the frame of the parking area Pt.
  • the parking position is moved to the right by a predetermined distance.
  • the parking position is corrected by such an operation.
  • the driver pointing arrow when the driver pointing arrow is displayed on the vehicle's own image touches, within the frame of the parking area Pt on parallel projection image G pp, the vehicle's own image is displayed, the left arrow and the aforementioned When the driver touches the right arrow, the parking position can be changed together with the image of the vehicle itself.
  • the confirmation is completed when the driver touches the “OK” button displayed at the lower right of the screen. That is, the positions of the first range Ta and the second range Tb at the time of confirmation are final parking positions.
  • the automatic parking control unit 26 uses the steering actuator 16 to automatically control the steering handle of the host vehicle to steer the host vehicle so as to guide the host vehicle to the parking position confirmed by the above-described procedure.
  • the accelerator and brake are automatically controlled using the accelerator actuator 17 and the brake actuator 18 to operate acceleration / deceleration and speed of the host vehicle.
  • steps S7 to S8 the steering wheel, accelerator and brake are automatically controlled to automatically park the host vehicle.
  • the steering wheel is automatically controlled, and the accelerator and brake are operated by the driver. You may make it perform the parking assistance of a vehicle. That is, it is good also as an automatic parking assistance system.
  • the parallel projection image G pp created from the acquired camera image during running it is possible to target parking partition not in the shadow of the adjacent parked vehicle, to improve the visibility. Further, on the parallel projection image G pp created, not only the parking area Pt, since displaying a first range Ta and the second range Tb when door release when the door closed, when the parking to the parking area Pt This makes it easy to check and correct the parking position. As a result, the parking position can be easily corrected to a position desired by the driver, for example, to the center in the frame of the parking area Pt or to the left or right side. In addition, when the parking area Pt includes not only the width but also information in the height direction, for example, when parking a tall vehicle, the size (width and height) of the parking area Pt. Can be confirmed visually.
  • FIG. 9 is a block diagram illustrating the automatic parking system according to the present embodiment
  • FIG. 10 is a flowchart illustrating a procedure performed by the automatic parking system illustrated in FIG. 9.
  • the automatic parking system of the present embodiment basically has a configuration substantially the same as that of the automatic parking system of the first embodiment shown in FIG. 1, and the procedure performed by the automatic parking system of the present embodiment is also described. Basically, the procedure is substantially the same as the procedure performed by the automatic parking system of the first embodiment shown in FIG.
  • the automatic parking system of the present embodiment shown in FIG. 9 differs from the automatic parking system of the first embodiment shown in FIG. 1 in addition to the side camera 13A, the front camera 13B (second photographing means).
  • the control device 20B instead of the parallel projection screen creation unit 22A, the control device 20B has a bird's-eye view image creation unit 22B.
  • the procedure executed by the automatic parking system of the present embodiment shown in FIG. 10 is different from the procedure executed by the automatic parking system of the first embodiment shown in FIG. 2 in that step S3B is used instead of step S3A. is there.
  • the parking area display unit 24B and the parking position correction unit 25B are partially different in contents, and the contents of steps S1B, S5B, and S6B are also partially different. Come.
  • the automatic parking system of the present embodiment also starts when the driver turns on the start / end switch 11 as in the first embodiment.
  • Step S1B data acquisition is performed during traveling in substantially the same manner as in the first embodiment.
  • the wheel speed sensor acquires the angular velocity
  • the steering angle sensor acquires the steering angle
  • the side camera 13A acquires the horizontal camera image of the vehicle side
  • the distance the measurement sensor 14 (ultrasonic sensor) measures the distance from an object existing on the side of the host vehicle, in the present embodiment, the front camera 13B further acquires a camera image in front of the vehicle.
  • the front camera 13B captures the front of the vehicle during traveling, and, as will be described later, in order to create a bird's-eye view image from the camera image of the front camera 13B, the front camera 13B is attached at an angle for capturing the front. Yes.
  • the front camera 13B is attached to the nose of the vehicle, but may be attached anywhere as long as the front of the vehicle can be photographed.
  • Step S2 Similar to the first embodiment, the host vehicle position calculation unit 21 calculates the host vehicle position based on the amount of movement and the direction of movement of the host vehicle.
  • Step S3B The bird's-eye image creation unit 22B creates a bird's-eye view image of the driver viewpoint by combining the parallel projection image by the side camera 13A and the current camera image by the front camera 13B by the following procedure.
  • virtual planes F 1 to F 5 perpendicular to the road surface S are set in the top view of the real space shown in FIG. Specifically, the center of the front end of the host vehicle 10 is the assumed position C of the driver, and the virtual planes F 1 and F 2 along the vehicle length direction are located at a position 2 m away from the assumed position C on the left side.
  • the vehicle travels about 1 m away from the parking area, and the side camera 13A that captures the left and right sides is at the nose position of the vehicle 10 having a vehicle width of about 2 m. Reflects that it is installed.
  • the side camera 13A is attached to the left and right door mirror positions, the virtual planes F 1 and F 2 are about 1 m from the left side camera 13A to the left side, and the virtual planes F 4 and F 5 are the right side. It is preferable that the distance is about 1 m on the right side from the direction camera 13A.
  • the virtual planes F 1 and F 5 are on the vehicle rear side from the position of the assumed position C in the vehicle length direction, and the virtual planes F 2 and F 4 are on the vehicle front side from the position of the assumed position C in the vehicle length direction. It is said.
  • the assumed position C is the camera position of the front camera 13B.
  • the virtual planes F 1 and F 5 are parallel from a plurality of continuous camera images photographed by the side camera 13A, as in the parallel projection image creation unit 22A described in the first embodiment.
  • a projection image is created, and the created parallel projection image is projected onto virtual planes F 1 and F 5 .
  • the bird's-eye image creation unit 22B, with respect to the virtual plane F 2 ⁇ F 4, by projecting the current camera image is captured by the front camera 13B (real-time image) to the virtual plane F 2 ⁇ F 4 Yes.
  • the bird's-eye image creation unit 22B looks from the assumed position C close to the driver viewpoint based on the virtual planes F 1 and F 5 onto which the parallel projection images are projected and the virtual planes F 2 to F 4 onto which the real-time images are projected. A bird's-eye view image is created and the created bird's-eye view image is output to the touch panel 15 (see FIG. 12).
  • Step S4 the parking area detection unit 23 determines whether the parking area Pt has been detected based on the distance measured by the distance measurement sensor 14 (ultrasonic sensor), and detects the parking area Pt. If not, the process returns to step S1B. If the parking area Pt is detected, the process proceeds to step S5B.
  • the distance measurement sensor 14 ultrasonic sensor
  • Step S5B When the parking area Pt is detected, the parking area display unit 24B superimposes and displays the parking area Pt on the bird's eye image as shown in FIG. At this time, the parking area display unit 24B displays the traveling direction M of the host vehicle 10 on the screen and the route R to the detected parking area Pt while the host vehicle 10 is moving forward.
  • the parallel projection image (Formula 2 below) and the display method of the route R when traveling parallel to the parking lot as shown in FIG. 3 will be described.
  • the route R is displayed based on the pinhole camera model.
  • the route R is displayed based on the following formulas 3 and 4 as described below.
  • the current vehicle position is set to position: x (t), y (t), posture: rz (t), and the vehicle position just before is x (t ⁇ 1), y (t ⁇ 1),
  • rz (t-1) be the vehicle position at the start of parallel projection image creation, x (0), y (0), rz (0).
  • du k ⁇ d Equation 1
  • k fp / L
  • the cutout amount (cutout pixel) on the camera image is du [pixel]
  • the correspondence between the parallel projection image I (u, v) and the current camera image I ′ (u ′, v ′) is as follows. Equation 2 is obtained. 4 and 5, the cutout portion (dotted line portion) cut out from the camera image shown in FIG. 4 with the cutout amount du corresponds to the dotted line portion of the parallel projection image shown in FIG.
  • d 0 x (t) ⁇ x (0), (w ⁇ du) / 2 ⁇ u ′ ⁇ (w + du) / 2 (W: number of pixels in u 'direction of camera image)
  • Step S6B In the parking position correction unit 25B, the parking position can be corrected and the final parking position is confirmed on the touch panel 15 using the screen including the bird's-eye view image shown in FIG.
  • Steps S7 to S8 As in the first embodiment, the automatic parking control unit 26 starts automatic parking so as to guide the host vehicle to the confirmed parking position, and after the host vehicle stops at the parking position, the start / end switch described above by the driver. When 11 is turned off, the automatic parking is ended.
  • the bird's-eye view image including the parallel projection image is used, and the image is close to the driver's viewpoint, so that the driver can easily recognize the parking area Pt.
  • an image that allows easy confirmation of the surrounding environment is displayed even when compared with a known around view monitor.
  • the detected parking area Pt is displayed in an easily understandable manner by the driver.
  • the present invention is applicable to all vehicles, for example, passenger cars, construction vehicles, agricultural vehicles, industrial vehicles, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

ドライバが駐車領域を確認し易い駐車領域表示システム及びそれを用いた自動駐車システムを提供する。そのため、走行中に車両側方の画像を撮影する側方カメラ(13A)と、走行中に車両側方にある物との距離を計測する距離計測センサ(14)と、自車位置センサ(12)による移動量及び移動方向に基づいて自車位置を計算する自車位置計算部(21)と、側方カメラ(13A)で撮影された複数の画像に基づいて平行投影画像を作成する平行投影画像作成部(22A)と、距離計測センサ(14)で計測された距離に基づいて駐車領域を検出する駐車領域検出部(23)と、平行投影画像作成部(22A)で作成された平行投影画像上に駐車領域検出部(23)で検出された駐車領域を重畳表示する駐車領域表示部(24A)と、駐車領域表示部(24A)から出力された平行投影画像と駐車領域とを表示するタッチパネル(15)とを有する。

Description

駐車領域表示システム及びそれを用いた自動駐車システム
 本発明は、車両が駐車可能な駐車領域を表示する駐車領域表示システム及びそれを用いた自動駐車システムに関する。
 特許文献1に示す駐車支援装置では、後方カメラで撮影した画像上に、当該画像の画像処理により検出した駐車区画枠を重畳表示し、ドライバにより駐車区画枠の表示位置の確認や変更を求め、確認された駐車区画枠に対し、自動運転により駐車している。
特開2004-322944号公報
 特許文献1に示す駐車支援装置では、図14の白抜き矢印で示す駐車区画枠に対し、その両隣に駐車車両がある場合、自車両の停車位置によっては、目標駐車区画枠が両隣の駐車車両の陰となり、目標駐車区画枠の白線が見えない(認識できない)。また、後方カメラで撮影した画像は、上記特許文献1の図2に示されるように、斜めに歪んでいるので、目標駐車区画枠の確認が困難になるという問題がある。また、駐車区画枠の白線が汚れていたり、かすれていたりすると、白線を認識できなかったり、誤認識するおそれがある。更に、駐車区画枠の高さ方向の情報については、検出あるいは抽出することができない。
 本発明は上記課題に鑑みなされたもので、ドライバが駐車領域を確認し易い駐車領域表示システム及びそれを用いた自動駐車システムを提供することを目的とする。
 上記課題を解決する第1の発明に係る駐車領域表示システムは、
 車両の側方の駐車区画の前を走行中に、前記車両の側方の画像を撮影する第1撮影手段と、
 前記走行中に、前記車両の側方にある物との距離を水平方向に沿って計測する距離計測手段と、
 前記車両の走行中の移動量及び移動方向に基づいて、自車位置を計算する自車位置計算部と、
 前記第1撮影手段で撮影された複数の前記画像に基づいて、平行投影画像を作成する平行投影画像作成部と、
 前記距離計測手段で計測された水平方向における前記距離に基づいて、前記車両の車長及び幅より大きい領域を駐車領域として検出する駐車領域検出部と、
 前記自車位置計算部で計算された前記自車位置に基づいて、前記平行投影画像作成部で作成された前記平行投影画像上に、前記駐車領域検出部で検出された前記駐車領域を重畳して表示して、出力する駐車領域表示部と、
 前記駐車領域表示部から出力された前記平行投影画像と前記駐車領域とを表示する表示手段と、を有する
ことを特徴とする。
 上記課題を解決する第2の発明に係る駐車領域表示システムは、
 上記第1の発明に記載の駐車領域表示システムにおいて、
 前記距離計測手段は、前記車両の側方にある物との距離を更に鉛直方向に沿って計測するものであり、
 前記駐車領域検出部は、前記距離計測手段で計測された水平方向及び鉛直方向における前記距離に基づいて、前記車両の車長、幅及び高さより大きい領域を駐車領域として検出する
ことを特徴とする。
 上記課題を解決する第3の発明に係る駐車領域表示システムは、
 上記第1又は第2の発明に記載の駐車領域表示システムにおいて、
 前記平行投影画像作成部は、前記第1撮影手段で撮影された複数の前記画像の中心領域を各々切り出すと共に、各々の前記中心領域を前記自車位置計算部で計算された前記自車位置に対応した位置にずらしながら重ね合わせて前記平行投影画像を作成する
ことを特徴とする。
 上記課題を解決する第4の発明に係る駐車領域表示システムは、
 上記第1~第3のいずれか1つの発明に記載の駐車領域表示システムにおいて、
 前記走行中に、前記車両の前方の画像を撮影する第2撮影手段と、
 前記平行投影画像作成部で作成された前記平行投影画像と、前記第2撮影手段で撮影された現在の画像とを組み合わせて、ドライバ視点の鳥瞰画像を作成する鳥瞰画像作成部と、を更に有し、
 前記駐車領域表示部は、前記鳥瞰画像作成部で作成された前記鳥瞰画像上に、前記駐車領域検出部で検出された前記駐車領域を重畳して表示して、出力する
ことを特徴とする。
 上記課題を解決する第5の発明に係る駐車領域表示システムは、
 上記第1~第4のいずれか1つの発明に記載の駐車領域表示システムにおいて、
 前記車両のドア閉鎖時の大きさを示す第1範囲とドア開放時の大きさを示す第2範囲とを前記駐車領域内に表示し、前記表示手段に出力して、前記駐車領域内における前記第1範囲及び前記第2範囲の位置を修正可能とすると共に、確認時の前記第1範囲及び前記第2範囲の位置を駐車位置とする駐車位置修正部を更に有する
ことを特徴とする。
 上記課題を解決する第6の発明に係る自動駐車システムは、
 上記第5の発明に記載の駐車領域表示システムと、
 前記車両のステアリングを操舵するアクチュエータとを少なくとも有し、
 前記駐車領域表示システムにより前記駐車位置を確認し、前記アクチュエータにより前記ステアリングを操舵して、確認時の前記駐車位置に前記車両を誘導する
ことを特徴とする。
 第1の発明によれば、複数の画像に基づいて作成した平行投影画像上に検出した駐車領域を重畳して表示するので、他の駐車車両などの障害物の陰にならない平行投影画像中に駐車領域を表示することになり、駐車領域を視覚的に確認し易くなる。また、車両の側方にある物との距離を水平方向に沿って計測し、計測した水平方向における距離に基づいて、車両の車長及び幅より大きい領域を駐車領域として検出するので、駐車区画枠の白線が汚れていたり、白線が切れていたりしても、駐車領域を検出することができる。
 第2の発明によれば、車両の側方にある物との距離を水平方向及び鉛直方向に沿って計測し、計測した水平方向及び鉛直方向における距離に基づいて、車両の車長、幅及び高さより大きい領域を駐車領域として検出するので、駐車区画枠の白線が汚れていたり、白線が切れていたりしても、駐車領域を検出することができ、しかも、検出された駐車領域は高さ方向の情報も含んでいるので、駐車領域の大きさ(幅及び高さ)が視覚的に確認し易くなる。
 第3の発明によれば、撮影された複数の画像の中心領域を各々切り出すと共に、各々の中心領域を自車位置に対応した位置にずらしながら重ね合わせて平行投影画像を作成するので、作成された平行投影画像が他の駐車車両などの障害物の陰にならない画像となり、駐車領域を視覚的に確認し易くなる。
 第4の発明によれば、作成した平行投影画像と車両前方を撮影している現在の画像とを組み合わせて、ドライバ視点の鳥瞰画像を作成し、この鳥瞰画像上に検出した駐車領域を重畳して表示するので、従来のアラウンドビューモニタと比較して、周囲環境が確認し易くなる。なお、従来のアラウンドビューモニタでは、カメラ画像を仮想路面に投影した画像を表示しているので、立体的なものは伸びたように表示されてしまう。例えば、図15に示す従来のアラウンドビューモニタの画像では、車両のフロント部分が伸びたように表示されている。また、作成した鳥瞰画像がドライバ視点の画像であるので、駐車領域を視覚的に確認し易くなる。
 第5の発明によれば、駐車領域内に車両のドア閉鎖時の大きさを示す第1範囲とドア開放時の大きさを示す第2範囲とを表示して、駐車位置を修正可能としているので、ドライバが駐車可能な位置を確認しながら、隣接する障害物(他の駐車車両など)との間に適切な間隔が空く希望の位置に、駐車位置を調整することができる。
 第6の発明によれば、上記第5の発明に記載の駐車領域表示システムを用いて駐車位置を確認しているので、隣接する障害物(他の駐車車両など)との間に適切な間隔を空けた駐車位置に、車両を誘導して駐車することができる。
本発明に係る自動駐車システムの実施形態の一例(実施例1)を示すブロック図である。 図1に示した自動駐車システムが実施する手順を説明するフローチャートである。 図1に示した自動駐車システムにおいて、駐車時の動作を説明する図である。 図1に示した自動駐車システムにおいて、平行投影画像を作成するための連続するカメラ画像を示す図である。 図1に示した自動駐車システムにおいて、連続するカメラ画像から作成した平行投影画像を説明する図である。 図1に示した自動駐車システムにおいて、作成した平行投影画像と超音波センサによる計測距離のグラフとの関係を示す図である。 図6に示した平行投影画像と超音波センサにより検出した駐車領域とを組み合わせた図である。 図1に示した自動駐車システムにおいて、タッチパネルに表示される駐車位置確認の画面を示す図である。 本発明に係る自動駐車システムの実施形態の他の一例(実施例2)を示すブロック図である。 図9に示した自動駐車システムが実施する手順を説明するフローチャートである。 図9に示した自動駐車システムで使用する鳥瞰画像の作成のための仮想平面の設置例を示す図である。 図9に示した自動駐車システムにおいて、タッチパネルに表示される駐車位置確認の画面を示す図である。 ピンホールカメラモデルを説明する図である。 従来の駐車支援装置での問題を説明する図である。 従来のアラウンドビューモニタの画像を示す図である。
 本発明に係る駐車領域表示システム及びそれを用いた自動駐車システムの実施形態について、図1~図13を参照して説明を行う。なお、以降においては、本発明に係る駐車領域表示システム及びそれを用いた自動駐車システムを、まとめて、自動駐車システムと呼ぶ。
[実施例1]
 図1は、本実施例の自動駐車システムを示すブロック図であり、図2は、図1に示した自動駐車システムが実施する手順を説明するフローチャートである。
 本実施例の自動駐車システムは、図1に示すように、開始/終了スイッチ11と、自車位置センサ12と、側方カメラ13Aと、距離計測センサ14と、タッチパネル15と、ステアリングアクチュエータ16と、アクセルアクチュエータ17と、ブレーキアクチュエータ18と、制御装置20Aとを有している。
 開始/終了スイッチ11は、本実施例の自動駐車システムの開始又は終了を操作するためのスイッチである。ドライバが開始/終了スイッチ11をオンにすると、後述する駐車領域、駐車位置の表示及び自動駐車が開始し、ドライバが開始/終了スイッチ11をオフにすると、駐車領域、駐車位置の表示及び自動駐車が終了する。なお、後述するタッチパネル上に開始/終了スイッチ11に代わる操作ボタンを表示し、表示した操作ボタンにドライバがタッチすることで、当該システムの開始又は終了を操作するようにしても良い。
 自車位置センサ12は、自車位置を検出するものである。例えば、車輪速センサや操舵角センサなどが用いられる。車輪速センサは、例えば、後輪に取り付けられ、後輪の角速度を検出し、また、操舵角センサは、例えば、ステアリングコラムに取り付けられ、ステアリングの操舵角を検出しており、検出した角速度及び操舵角に基づいて、移動量及び移動方向を計算可能であり、移動量及び移動方向に基づいて、自車位置を計算可能である。なお、自車位置を検出することができれば、車輪速センサ、操舵角センサに代えて、他のセンサを用いても良い。
 側方カメラ13A(第1撮影手段)は、車両側方両方の画像を連続して撮影するものである。そして、後述するように、連続するカメラ画像から平行投影画像を作成するため、側方カメラ13Aは、側方の水平方向を撮影する角度に取り付けられている。側方カメラ13Aは、例えば、車両のノーズ(前端中央)に取り付けたり、左右両方のドアミラーに各々取り付けたりすれば良いが、車両側方の両方を撮影できれば、どこに取り付けても良い。
 距離計測センサ14(距離計測手段)は、車両側方にある物との距離を水平方向に沿って計測するものである。つまり、車両側方において、走行方向(車長方向)となる水平方向に沿う距離の変化を計測している。距離計測センサ14としては、例えば、超音波センサやレーダなどが用いられる。距離計測センサ14は、例えば、上述した側方カメラ13Aと共に、車両のノーズに取り付けたり、左右両方のドアミラーに取り付けたりすれば良いが、車両側方を計測できれば、どこに取り付けても良い。
 また、距離計測センサ14としては、車両側方にある物との距離を水平方向及び鉛直方向に沿って計測するようにしても良い。この場合、車両側方において、走行方向(車長方向)となる水平方向に沿う距離の変化だけでなく、高さ方向となる鉛直方向に沿う距離の変化も計測している。この場合も、距離計測センサ14としては、例えば、超音波センサやレーダなどが用いられ、1つの超音波センサ又はレーダを用いる場合には、超音波センサ又はレーダを鉛直方向にスキャンするように構成し、複数の超音波センサ又はレーダを用いる場合には、複数の超音波センサ又はレーダが互いに異なる高さを計測するように構成すれば良い。
 タッチパネル15(表示手段)は、平行投影画像と共に駐車領域及び駐車位置を表示するものである。タッチパネル15としては、ナビゲーションシステムのタッチパネルが利用可能である。
 ステアリングアクチュエータ16は、ステアリングハンドル(図示省略)を操作して、車両を操舵している。アクセルアクチュエータ17は、アクセル(図示省略)を操作し、また、ブレーキアクチュエータ18は、ブレーキ(図示省略)を操作しており、アクセルアクチュエータ17及びブレーキアクチュエータ18により、車両の加減速や速度を操作している。
 制御装置20Aは、開始/終了スイッチ11、自車位置センサ12、側方カメラ13A、距離計測センサ14及びタッチパネル15からの入力に基づいて、図2に示すフローチャートの手順により、平行投影画像や駐車領域を表示すると共に、駐車位置を確認し、確認した駐車位置に基づいて、ステアリングアクチュエータ16、アクセルアクチュエータ17及びブレーキアクチュエータ18を自動制御して、車両を駐車位置に誘導するものである。制御装置20Aとしては、例えば、車両で使用されるECU(Electronics Control Unit)などが適用可能であり、このECUは、CPU(Central Processing Unit)やRAM(Random Access Memory)、ROM(Read Only Memory)などを有している。
 制御装置20Aは、具体的には、自車位置計算部21、平行投影画像作成部22A、駐車領域検出部23、駐車領域表示部24A、駐車位置修正部25A及び自動駐車制御部26を有している。これらの構成については、以降において、図2に示すフローチャートと共に説明する。
 図2に示すフローチャートと共に、図1及び図3~図8を参照して、本実施例の自動駐車システムが実施する手順を説明する。なお、ここでは、自車位置センサ12として、車輪速センサ及び操舵角センサを使用するものとし、また、距離計測センサ14として、超音波センサを使用するものとして、以降の説明を行う。
 本実施例の自動駐車システムは、ドライバが開始/終了スイッチ11をオンにすることにより開始する。例えば、駐車区画が連続して並列に並んでいる駐車場(並列駐車型駐車場)において、駐車区画エリアの入口に自車両が来たとき、開始/終了スイッチ11をオンにすれば良い。
 (ステップS1A)
 開始/終了スイッチ11のオン後、図3に示すように、車両側方にある駐車区画エリアPa(駐車区画P1~P4)の前を横切るようにドライバが自車両を走行させ、走行中にデータ取得を行う。ここで、図3において、符号101は、最初の位置にいる自車両を示し、符号A1は当該位置でのデータ取得を示している。また、符号10iは、最初の位置から移動した後の位置にいる自車両を示し、符号Aiは当該位置でのデータ取得を示しており、符号10nは、最後の位置にいる自車両を示し、符号Anは当該位置でのデータ取得を示している。なお、iは、2以上、n未満の正の整数であり、nは、3以上の正の整数である。
 そして、各位置でのデータ取得A1、…、Ai、…、Anでは、自車位置センサ12において、車輪速センサが角速度を取得し、操舵角センサが操舵角を取得し、側方カメラ13Aが車両側方の水平方向のカメラ画像を取得し(後述の図4参照)、距離計測センサ14(超音波センサ)が自車両の側方に存在する物との距離を計測している(後述の図6参照)。
 (ステップS2)
 自車位置計算部21は、自車両の走行中の移動量及び移動方向に基づいて、自車位置を計算する。具体的には、自車位置センサ12の検出値、つまり、車輪速センサにより検出された角速度に基づいて、移動量を計算し、操舵角センサにより検出されたステアリングの操舵角に基づいて、移動方向を計算し、移動量及び移動方向に基づいて、自車位置を計算する。
 (ステップS3A)
 平行投影画像作成部22Aは、側方カメラ13Aで撮影した連続する複数のカメラ画像から平行投影画像を作成し、作成した平行投影画像をタッチパネル15に出力する。
 例えば、図3に示すように駐車区画エリアPaに駐車車両が駐車している場合には、側方カメラ13Aは、図4に示す連続する複数のカメラ画像G1、…、Gi、…、Gnを撮影することになる。そして、図4に示す連続する複数のカメラ画像G1、…、Gi、…、Gnの中心領域を各々切り出し、切り出した各々の中心領域を、自車位置計算部21で計算された自車位置に対応した位置にずらしながら順次重ね合わせて合成することで、図5に示す平行投影画像Gppを作成し、タッチパネル15に出力する。
 ここで、図4に示すカメラ画像G1、…、Gi、…、Gnは、図3に示したデータ取得A1、…、Ai、…、Anに対応するものとする。また、参考のため、図4のカメラ画像Gi中に、切り出し量duでの中心領域の切り出し部分(点線部分)を示し、図5中に、この切り出し部分に対応する部分(点線部分)を示している。
 (ステップS4)
 駐車領域検出部23は、距離計測センサ14(超音波センサ)が計測した自車両の側方に存在する物のとの距離に基づいて、自車両が駐車可能な駐車領域を検出したかどうかを判断し、駐車領域を検出していない場合にはステップS1Aへ戻り、駐車領域を検出した場合にはステップS5Aへ進む。距離計測センサ14が水平方向に沿って距離を計測している場合には、自車両の車長及び幅より大きい領域を駐車領域として検出し、距離計測センサ14が水平方向及び鉛直方向に沿って距離を計測している場合には、自車両の車長、幅及び高さより大きい領域を駐車領域として検出すれば良い。
 例えば、図3に示すように駐車区画エリアPaに駐車車両が駐車している場合には、図6上方に示すグラフに示すように、駐車区画エリアPaの駐車車両との距離や有無に応じて、計測距離が変化することになる。なお、図6下方には、図6上方のグラフとの対応関係を示すため、平行投影画像作成部22Aで作成した平行投影画像Gpp(図5参照)を併記している。
 図3を参照すると、駐車区画P1、P2及びP4には駐車車両があり、駐車区画P3には駐車車両がなく、また、駐車区画P2の駐車車両は後方側(図中上側)に寄って駐車している。図6上方のグラフにおいて、距離計測センサ14(超音波センサ)が計測した距離は、図3に示す駐車状況を反映しており、駐車区画P3に対応する部分の距離は、駐車区画P1、P2及びP4に対応する部分の距離と比較して、車両1台の長さ以上大きくなっている。また、駐車区画P2に対応する部分の距離は、駐車区画P1及びP4に対応する部分の距離と比較して、駐車車両が後方側に寄って駐車した分だけ大きくなっている。
 図6上方に示すグラフは、距離計測センサ14がある高さ位置の水平方向に沿って距離を計測した場合のデータである。具体的には、自車両の走行方向(車長方向)となる水平方向に沿って、その走行方向に垂直な水平方向(車幅方向)の距離を計測した2次元平面の計測データとなっている。そのため、自車両の側方の水平方向において、駐車可能な駐車領域となる2次元平面上の領域が検出可能となっている。従って、自車両の車長及び幅より大きい2次元平面上の領域が検出されたとき、この領域が駐車領域Ptとして検出されることになる。
 この場合、計測距離が自車両の車長以上ある領域が検出されても、その領域が車幅未満の幅であれば、駐車領域Ptとしては検出されない。
 なお、距離計測センサ14が水平方向及び鉛直方向に沿って距離を計測した場合には、図6上方に示すグラフと同様なデータが高さ位置に応じて複数計測されることになる。つまり、自車両の走行方向(車長方向)となる水平方向に沿って、その進行方向に垂直な水平方向(車幅方向)の距離を複数の高さ位置で計測した3次元空間の計測データとなっている。そのため、自車両の側方の水平方向及び鉛直方向において、駐車可能な駐車領域となる3次元空間内の領域が検出可能となっている。従って、自車両の車長、幅及び高さより大きい3次元空間内の領域が検出されたとき、この領域が駐車領域Ptとして検出されることになる。
 この場合、計測距離が自車両の車長以上ある領域が車幅以上に渡って続いていても、その領域が鉛直方向(高さ方向)において車高未満の高さであれば、駐車領域Ptとして検出されない。また、計測距離が自車両の車長以上ある領域が、鉛直方向(高さ方向)において車高以上に渡って続いていても、その領域が車幅未満の幅であれば、駐車領域Ptとして検出されない。
 なお、ここでは、並列駐車型駐車場を対象としているので、駐車領域Ptの幅として、自車両の車幅を基準として設定しているが、縦列駐車型駐車場を対象とする場合には、駐車領域Ptの幅として、自車両の車長を基準として設定すれば良い。
 上記駐車領域Ptが検出されない場合には、ステップS1Aへ戻り、上記駐車領域Ptが検出されるまで、自車両を走行させて、上述したステップS1A~S4が繰り返されることになる。
 (ステップS5A)
 駐車領域表示部24Aは、上記駐車領域Ptが検出された場合、図7に示すように、平行投影画像Gpp上に上記駐車領域Ptを重畳して表示して、タッチパネル15へ出力しており、タッチパネル15は、出力された画面を表示している。平行投影画像Gppと駐車領域Ptは、共に、自車位置計算部21で計算した自車位置との対応関係が分かっているので、駐車領域Ptは平行投影画像Gpp上の正確な位置に表示することができる。また、距離計測センサ14(超音波センサ)により駐車領域Ptの幅(又は、幅及び高さ)を検出しているので、駐車領域Ptの幅(又は、幅及び高さ)を含めて、平行投影画像Gpp上に表示することができる。
 (ステップS6A)
 駐車位置修正部25Aにおいては、図8に示す画面を用いて、タッチパネル15において、駐車位置の修正を可能とすると共に、最終的な駐車位置の確認を行う。図8に示す画面は、図7に示した画面を含むものであり、駐車位置の修正及び確認を行う機能を更に表示している。
 具体的には、図8に示す画面の上方においては、「駐車位置を確認して下さい。」とメッセージを表示し、平行投影画像Gpp上に表示した駐車領域Pt(二重線参照)を表示すると共に、更に、駐車領域Ptの枠内に、自車両のドア閉鎖時の大きさ(車幅及び車高)を示す第1範囲Ta(点線参照)と、自車両のドア解放時の大きさ(幅及び車高)を示す第2範囲Tb(実線参照)を表示している。駐車領域Pt、第1範囲Ta及び第2範囲Tbは、視認し易くするため、異なる色で表示するようにしており、例えば、駐車領域Ptは緑色、第1範囲Taは青色、第2範囲Tbは赤色で表示している。
 ここでは、左側方の平行投影画像Gppを表示しているので、画面上に「左側方映像」と表示しているが、図中右横側の黒矢印をドライバがタッチすれば、右側方の平行投影画像Gppに切り替わり、画面上に「右側方映像」と表示される。
 また、図8に示す画面の下方においては、自車両自身の映像と共に、上述した第1範囲Ta及び第2範囲Tbを表示している。自車両自身の映像の下に表示された左矢印については、左矢印をドライバが1回タッチする度に、駐車領域Ptの枠内において、上述した第1範囲Ta及び第2範囲Tbが左に所定量ずつ移動して、設定する駐車位置を左側に所定距離ずつ移動することになる。同じく、右矢印についても、右矢印をドライバが1回タッチする度に、駐車領域Ptの枠内において、上述した第1範囲Ta及び第2範囲Tbが右に所定量ずつ移動して、設定する駐車位置を右側に所定距離ずつ移動することになる。このような操作により、駐車位置の修正を行っている。
 更に、自車両自身の映像の上に表示された上矢印にドライバがタッチすると、平行投影画像Gpp上の駐車領域Ptの枠内に、自車両自身の映像が表示され、上述した左矢印及び右矢印をドライバがタッチすることにより、自車両自身の映像と共に、駐車位置を変更可能となる。そして、画面上の駐車位置が希望通りの位置であることを確認できたら、画面右下に表示された「OK」ボタンをドライバがタッチすれば、確認完了となる。つまり、確認時の第1範囲Ta及び第2範囲Tbの位置が最終的な駐車位置となる。
 (ステップS7~S8)
 自動駐車制御部26は、上述した手順により確認した駐車位置に自車両を誘導するように、ステアリングアクチュエータ16を用いて、自車両のステアリングハンドルを自動制御して、自車両を操舵し、また、アクセルアクチュエータ17及びブレーキアクチュエータ18を用いて、アクセル及びブレーキを自動制御して、自車両の加減速や速度を操作する。そして、駐車位置に自車両が停車後、ドライバが上述した開始/終了スイッチ11をオフにすると、自動駐車は終了することになる。
 なお、ステップS7~S8では、ステアリングハンドル、アクセル及びブレーキを自動制御して、自車両の自動駐車を行っているが、ステアリングハンドルのみを自動制御とし、アクセル及びブレーキはドライバにより操作を行い、自車両の駐車支援を行うようにしても良い。つまり、自動駐車支援システムとしても良い。
 以上説明したように、走行中に取得したカメラ画像から作成した平行投影画像Gppを使用することで、目標駐車区画が隣接駐車車両の陰にならず、視認性を向上させることができる。また、作成した平行投影画像Gpp上に、駐車領域Ptだけでなく、ドア閉鎖時の第1範囲Ta及びドア解放時の第2範囲Tbを表示しているので、駐車領域Ptへ駐車した際の隣接障害物との余裕度を確認でき、駐車位置の修正、確認が容易になる。この結果、ドライバが希望する位置に、例えば、駐車領域Ptの枠内の中心又は左寄り又は右寄りの位置に、駐車位置を容易に修正可能となる。また、駐車領域Ptが、幅だけでなく、高さ方向の情報も含んでいる場合には、例えば、背の高い車両を駐車する際にも、駐車領域Ptの大きさ(幅及び高さ)を視覚的に確認することができる。
[実施例2]
 図9は、本実施例の自動駐車システムを示すブロック図であり、図10は、図9に示した自動駐車システムが実施する手順を説明するフローチャートである。
 本実施例の自動駐車システムは、基本的には、図1に示した実施例1の自動駐車システムと略同等の構成を有し、また、本実施例の自動駐車システムが実施する手順についても、基本的には、図2に示した実施例1の自動駐車システムが実施する手順と略同等である。
 主な相違点は、図9に示す本実施例の自動駐車システムは、図1に示した実施例1の自動駐車システムとは、側方カメラ13Aに加えて、前方カメラ13B(第2撮影手段)を備え、平行投影画面作成部22Aに代えて、制御装置20Bにおいて、鳥瞰画像作成部22Bを有する点である。また、図10に示す本実施例の自動駐車システムが実施する手順は、図2に示した実施例1の自動駐車システムが実施する手順とは、ステップS3Aに代えて、ステップS3Bとしている点である。なお、上述した相違点に伴い、後述するように、駐車領域表示部24B、駐車位置修正部25Bは、内容が一部相違し、また、ステップS1B、S5B、S6Bも、内容が一部相違してくる。
 以下、上述した相違点を中心に、図10に示すフローチャートに沿って、本実施例の自動駐車システムを説明する。なお、ここでは、実施例1と同等の構成、手順については同じ符号を付し、重複する説明は省略又は簡略にしている。
 本実施例の自動駐車システムも、実施例1と同様に、ドライバが開始/終了スイッチ11をオンにすることにより開始する。
 (ステップS1B)
 本実施例において、ステップS1Bでも、実施例1と略同様に、走行中にデータ取得を行う。本実施例でも、自車位置センサ12において、車輪速センサが角速度を取得し、操舵角センサが操舵角を取得し、側方カメラ13Aが車両側方の水平方向のカメラ画像を取得し、距離計測センサ14(超音波センサ)が自車両の側方に存在する物との距離を計測しているが、本実施例では、更に、前方カメラ13Bが車両前方のカメラ画像を取得している。
 前方カメラ13Bは、走行中に車両前方を撮影するものであり、後述するように、前方カメラ13Bのカメラ画像から鳥瞰画像を作成するため、前方カメラ13Bは、前方を撮影する角度に取り付けられている。前方カメラ13Bは、例えば、車両のノーズに取り付けられているが、車両前方を撮影できれば、どこに取り付けても良い。
 (ステップS2)
 自車位置計算部21は、実施例1と同様に、自車両の走行中の移動量及び移動方向に基づいて、自車位置を計算する。
 (ステップS3B)
 鳥瞰画像作成部22Bは、以下の手順により、側方カメラ13Aによる平行投影画像と前方カメラ13Bによる現在のカメラ画像とを組み合わせることにより、ドライバ視点の鳥瞰画像を作成している。
 鳥瞰画像作成部22Bでは、図11に示す実空間の上面図において、路面Sに垂直な仮想平面F1~F5を設定している。具体的には、自車両10の前端中央をドライバの想定位置Cとし、この想定位置Cを基準として、左側方に2m離れた位置に、車長方向に沿った仮想平面F1、F2を設定し、前方に2m離れた位置に、車幅方向に沿った仮想平面F3を設定し、右側方に2m離れた位置に、車長方向に沿った仮想平面F4、F5を設定している。これは、通常、ドライバが駐車を行う際に、駐車区画から1m程度離れた位置を走行することと、左右側方を撮影する側方カメラ13Aが車幅約2mの自車両10のノーズ位置に取り付けられていることを反映している。側方カメラ13Aが左右のドアミラー位置に取り付けられている場合、仮想平面F1、F2は、左側の側方カメラ13Aから左側方に1m程度、仮想平面F4、F5は、右側の側方カメラ13Aから右側方に1m程度とするのが良い。また、仮想平面F1及びF5は、車長方向において、想定位置Cの位置より車両後方側とし、仮想平面F2及びF4は、車長方向において、想定位置Cの位置より車両前方側としている。なお、想定位置Cは、ここでは、前方カメラ13Bのカメラ位置となる。
 そして、鳥瞰画像作成部22Bでは、仮想平面F1及びF5については、実施例1で説明した平行投影画像作成部22Aと同様に、側方カメラ13Aで撮影した連続する複数のカメラ画像から平行投影画像を作成し、作成した平行投影画像を仮想平面F1及びF5に投影している。加えて、鳥瞰画像作成部22Bでは、仮想平面F2~F4に対しては、前方カメラ13Bで撮影している現在のカメラ画像(リアルタイム画像)を仮想平面F2~F4に投影している。
 そして、鳥瞰画像作成部22Bでは、平行投影画像を投影した仮想平面F1及びF5と、リアルタイム画像を投影した仮想平面F2~F4とに基づいて、ドライバ視点に近い想定位置Cから見た鳥瞰画像を作成し、作成した鳥瞰画像をタッチパネル15に出力している(図12参照)。
(ステップS4)
 駐車領域検出部23は、実施例1と同様に、距離計測センサ14(超音波センサ)が計測した距離に基づいて、駐車領域Ptを検出したかどうかを判断し、駐車領域Ptを検出していない場合にはステップS1Bへ戻り、駐車領域Ptを検出した場合にはステップS5Bへ進む。
(ステップS5B)
 駐車領域Ptが検出された場合、駐車領域表示部24Bは、図12に示すように、鳥瞰画像上に駐車領域Ptを重畳して表示し、当該画面をタッチパネル15へ出力する。このとき、駐車領域表示部24Bは、自車両10が前進している間は、画面上に、自車両10の進行方向Mを表示すると共に、検出した駐車領域Ptまでの経路Rを表示する。
 ここで、図3のように駐車場に平行に走行しているときの平行投影画像(下記式2)及び経路Rの表示方法について説明する。リアルタイム画像を投影した仮想平面F2~F4においては、ピンホールカメラモデル基づいて、経路Rを表示する。
 平行投影画像を投影した仮想平面F1及びF5においては、以下に説明するように、下記式3、式4に基づいて、経路Rを表示する。
 まず、現在の自車位置を、位置:x(t)、y(t)、姿勢:rz(t)とし、直前の自車位置を、x(t-1)、y(t-1)、rz(t-1)とし、平行投影画像作成開始時の自車位置を、x(0)、y(0)、rz(0)とする。
 ピンホールカメラモデルのカメラ画像の場合、例えば、図13に示すように、距離L離れた位置にある物体が、カメラ水平軸(x軸)に沿って、距離d=x(t)-x(t-1)移動したとすると、カメラ画像上ではdu移動する。このduは、歪み補正後のカメラ画像の焦点距離をfpとすると、下記式1で表される。
 du=k×d …式1
 但し、k=fp/L
 従って、カメラ画像上の切り出し量(切り出し画素)は、du[pixel]となり、平行投影画像I(u,v)と現在のカメラ画像I’(u’,v’)との対応に関しては、以下の式2の通りとなる。なお、図4及び図5で説明したように、図4に示したカメラ画像から切り出し量duで切り出した切り出し部分(点線部分)は、図5に示した平行投影画像の点線部分に対応し、これらは、以下の式2の関係となる。
 I(u,v)=I’(u’,v’)、u=u’-(w-du)/2+k×d0、v=v’ …式2
 但し、d0=x(t)-x(0)、(w-du)/2≦u’≦(w+du)/2
 (w:カメラ画像のu’方向画素数)
 また、平行投影画像I(u,v)とカメラから見た3次元座標(x,y,z)との対応に関しては、以下の式3、4の通りである。
 u軸方向:u=k×x+u0、u0=wpano-du/2 …式3
 v軸方向:v=fp×y/z+v0、v0=h/2 …式4
 (wpano:平行投影画像のu軸方向画素数、h:平行投影画像のv軸方向画素数)
 そして、平行投影画像を投影した仮想平面F1及びF5においては、上記式3及び式4に従って、検出した駐車位置Ptへの経路Rが作成されることになる。
(ステップS6B)
 駐車位置修正部25Bにおいては、図12に示す鳥瞰画像を含む画面を用いて、タッチパネル15において、駐車位置の修正を可能とすると共に、最終的な駐車位置の確認を行う。
(ステップS7~S8)
 自動駐車制御部26は、実施例1と同様に、確認した駐車位置に自車両を誘導するように、自動駐車を開始し、駐車位置に自車両が停車後、ドライバが上述した開始/終了スイッチ11をオフにすると、自動駐車は終了することになる。
 従来は、駐車車両などの路面上の物体は伸びた表示となっていたので、駐車可能な領域をドライバが認識しにくかった。しかしながら、本実施例では、上述したように、平行投影画像を含む鳥瞰画像を用いており、ドライバの視点に近い画像となるため、駐車領域Ptをドライバが認識し易くなる。また、公知のアラウンドビューモニタと比較しても、周囲環境を確認しやすい画像が表示されることになる。更に、実施例1と比較しても、検出した駐車領域Ptがドライバにより判り易く表示されることになる。
 本発明は、車両全般、例えば、乗用車、建設車両、農業車両、産業車両などに適用可能である。
 12 自車位置センサ
 13A 側方カメラ
 13B 前方カメラ
 14 距離計測センサ
 15 タッチパネル
 16 ステアリングアクチュエータ
 17 アクセルアクチュエータ
 18 ブレーキアクチュエータ
 20A、20B 制御装置
 21 自車位置計算部
 22A 平行投影画像作成部
 22B 鳥瞰画像作成部
 23 駐車領域検出部
 24A、24B 駐車領域表示部
 25A、25B 駐車位置修正部
 26 自動駐車制御部

Claims (6)

  1.  車両の側方の駐車区画の前を走行中に、前記車両の側方の画像を撮影する第1撮影手段と、
     前記走行中に、前記車両の側方にある物との距離を水平方向に沿って計測する距離計測手段と、
     前記車両の走行中の移動量及び移動方向に基づいて、自車位置を計算する自車位置計算部と、
     前記第1撮影手段で撮影された複数の前記画像に基づいて、平行投影画像を作成する平行投影画像作成部と、
     前記距離計測手段で計測された水平方向における前記距離に基づいて、前記車両の車長及び幅より大きい領域を駐車領域として検出する駐車領域検出部と、
     前記自車位置計算部で計算された前記自車位置に基づいて、前記平行投影画像作成部で作成された前記平行投影画像上に、前記駐車領域検出部で検出された前記駐車領域を重畳して表示して、出力する駐車領域表示部と、
     前記駐車領域表示部から出力された前記平行投影画像と前記駐車領域とを表示する表示手段と、を有する
    ことを特徴とする駐車領域表示システム。
  2.  請求項1に記載の駐車領域表示システムにおいて、
     前記距離計測手段は、前記車両の側方にある物との距離を更に鉛直方向に沿って計測するものであり、
     前記駐車領域検出部は、前記距離計測手段で計測された水平方向及び鉛直方向における前記距離に基づいて、前記車両の車長、幅及び高さより大きい領域を駐車領域として検出する
    ことを特徴とする駐車領域表示システム。
  3.  請求項1又は請求項2に記載の駐車領域表示システムにおいて、
     前記平行投影画像作成部は、前記第1撮影手段で撮影された複数の前記画像の中心領域を各々切り出すと共に、各々の前記中心領域を前記自車位置計算部で計算された前記自車位置に対応した位置にずらしながら重ね合わせて前記平行投影画像を作成する
    ことを特徴とする駐車領域表示システム。
  4.  請求項1から請求項3のいずれか1つに記載の駐車領域表示システムにおいて、
     前記走行中に、前記車両の前方の画像を撮影する第2撮影手段と、
     前記平行投影画像作成部で作成された前記平行投影画像と、前記第2撮影手段で撮影された現在の画像とを組み合わせて、ドライバ視点の鳥瞰画像を作成する鳥瞰画像作成部と、を更に有し、
     前記駐車領域表示部は、前記鳥瞰画像作成部で作成された前記鳥瞰画像上に、前記駐車領域検出部で検出された前記駐車領域を重畳して表示して、出力する
    ことを特徴とする駐車領域表示システム。
  5.  請求項1から請求項4のいずれか1つに記載の駐車領域表示システムにおいて、
     前記車両のドア閉鎖時の大きさを示す第1範囲とドア開放時の大きさを示す第2範囲とを前記駐車領域内に表示し、前記表示手段に出力して、前記駐車領域内における前記第1範囲及び前記第2範囲の位置を修正可能とすると共に、確認時の前記第1範囲及び前記第2範囲の位置を駐車位置とする駐車位置修正部を更に有する
    ことを特徴とする駐車領域表示システム。
  6.  請求項5に記載の駐車領域表示システムと、
     前記車両のステアリングを操舵するアクチュエータとを少なくとも有し、
     前記駐車領域表示システムにより前記駐車位置を確認し、前記アクチュエータにより前記ステアリングを操舵して、確認時の前記駐車位置に前記車両を誘導する
    ことを特徴とする自動駐車システム。
PCT/JP2017/008560 2016-03-07 2017-03-03 駐車領域表示システム及びそれを用いた自動駐車システム WO2017154787A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-043286 2016-03-07
JP2016043286A JP2017159687A (ja) 2016-03-07 2016-03-07 駐車領域表示システム及びそれを用いた自動駐車システム

Publications (1)

Publication Number Publication Date
WO2017154787A1 true WO2017154787A1 (ja) 2017-09-14

Family

ID=59789599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008560 WO2017154787A1 (ja) 2016-03-07 2017-03-03 駐車領域表示システム及びそれを用いた自動駐車システム

Country Status (2)

Country Link
JP (1) JP2017159687A (ja)
WO (1) WO2017154787A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019056872A1 (zh) * 2017-09-19 2019-03-28 广州汽车集团股份有限公司 全自动泊车方法及全自动泊车***
CN111200689A (zh) * 2018-11-19 2020-05-26 阿尔派株式会社 移动体用投影装置、便携终端、程序
CN112644462A (zh) * 2019-10-11 2021-04-13 丰田自动车株式会社 驻车辅助装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6990874B2 (ja) * 2017-09-14 2022-01-12 パナソニックIpマネジメント株式会社 駐車支援装置および車両
CN109455177B (zh) * 2018-10-25 2020-12-15 广州小鹏汽车科技有限公司 一种自动泊车的安全距离警示方法及车载终端
JP2020107308A (ja) * 2018-12-27 2020-07-09 財團法人工業技術研究院Industrial Technology Research Institute 駐車スポット検出システム
JP2020142690A (ja) * 2019-03-07 2020-09-10 パナソニックIpマネジメント株式会社 表示制御装置、駐車支援装置、および表示制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001114048A (ja) * 1999-10-20 2001-04-24 Matsushita Electric Ind Co Ltd 車載運転支援情報表示装置
JP2004074988A (ja) * 2002-08-21 2004-03-11 Mitsubishi Motors Corp 駐車支援装置
JP2005335568A (ja) * 2004-05-27 2005-12-08 Denso Corp 駐車支援装置
JP2008044529A (ja) * 2006-08-16 2008-02-28 Nissan Motor Co Ltd 駐車支援装置、自動車、及び駐車支援方法
JP2010274814A (ja) * 2009-05-29 2010-12-09 Fujitsu Ten Ltd 画像生成装置及び画像表示システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001114048A (ja) * 1999-10-20 2001-04-24 Matsushita Electric Ind Co Ltd 車載運転支援情報表示装置
JP2004074988A (ja) * 2002-08-21 2004-03-11 Mitsubishi Motors Corp 駐車支援装置
JP2005335568A (ja) * 2004-05-27 2005-12-08 Denso Corp 駐車支援装置
JP2008044529A (ja) * 2006-08-16 2008-02-28 Nissan Motor Co Ltd 駐車支援装置、自動車、及び駐車支援方法
JP2010274814A (ja) * 2009-05-29 2010-12-09 Fujitsu Ten Ltd 画像生成装置及び画像表示システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019056872A1 (zh) * 2017-09-19 2019-03-28 广州汽车集团股份有限公司 全自动泊车方法及全自动泊车***
US11338798B2 (en) 2017-09-19 2022-05-24 Guangzhou Automobile Group Co., Ltd. Full-automatic parking method and system
CN111200689A (zh) * 2018-11-19 2020-05-26 阿尔派株式会社 移动体用投影装置、便携终端、程序
CN111200689B (zh) * 2018-11-19 2022-05-03 阿尔派株式会社 移动体用投影装置、便携终端及便携终端的显示方法
CN112644462A (zh) * 2019-10-11 2021-04-13 丰田自动车株式会社 驻车辅助装置

Also Published As

Publication number Publication date
JP2017159687A (ja) 2017-09-14

Similar Documents

Publication Publication Date Title
WO2017154787A1 (ja) 駐車領域表示システム及びそれを用いた自動駐車システム
US11528413B2 (en) Image processing apparatus and image processing method to generate and display an image based on a vehicle movement
JP3947375B2 (ja) 駐車補助装置
JP4412380B2 (ja) 運転支援装置、運転支援方法及びコンピュータプログラム
JP3645196B2 (ja) 画像合成装置
JP5003946B2 (ja) 駐車支援装置
JP5212748B2 (ja) 駐車支援装置
JP4914458B2 (ja) 車両周辺表示装置
JP5454934B2 (ja) 運転支援装置
JP5309442B2 (ja) 駐車支援方法及び駐車支援装置
US9156402B2 (en) Wide view vehicle periphery image generation apparatus
WO2015104860A1 (ja) 画像表示制御装置および画像表示システム
WO2009151053A1 (ja) 駐車支援装置及び駐車支援方法
WO2012039234A1 (ja) 駐車支援装置
JP2009292457A (ja) 車両周辺表示装置
JP5182137B2 (ja) 車両周辺表示装置
JP5516988B2 (ja) 駐車支援装置
KR20180085718A (ko) 차량의 차량 주변환경 내 가림 영역 산출 방법 및 장치
JP4797877B2 (ja) 車両用映像表示装置及び車両周囲映像の表示方法
JP2004240480A (ja) 運転支援装置
WO2010134240A1 (ja) 駐車支援装置、駐車支援方法及び駐車支援プログラム
JP2010042811A (ja) 車両周辺表示装置
JP2016175549A (ja) 安全確認支援装置、安全確認支援方法
JP5617396B2 (ja) 運転支援装置
KR20100021046A (ko) 자동차용 표시장치 및 그 제어 방법

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763127

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763127

Country of ref document: EP

Kind code of ref document: A1