WO2017152658A1 - 一种超薄型钢结构防火涂料的制备方法 - Google Patents

一种超薄型钢结构防火涂料的制备方法 Download PDF

Info

Publication number
WO2017152658A1
WO2017152658A1 PCT/CN2016/106865 CN2016106865W WO2017152658A1 WO 2017152658 A1 WO2017152658 A1 WO 2017152658A1 CN 2016106865 W CN2016106865 W CN 2016106865W WO 2017152658 A1 WO2017152658 A1 WO 2017152658A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
steel structure
ultra
fireproof coating
thin steel
Prior art date
Application number
PCT/CN2016/106865
Other languages
English (en)
French (fr)
Inventor
杨超
Original Assignee
杨超
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨超 filed Critical 杨超
Publication of WO2017152658A1 publication Critical patent/WO2017152658A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • C09D133/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the present invention relates to a coating and a preparation process thereof, and in particular to a method for preparing an ultra-thin steel structure fireproof coating.
  • steel structures Like other buildings, steel structures also have safety hazards from fire. Although the steel does not burn, its mechanical strength will gradually decrease during the process of increasing temperature. When the temperature of the steel material rises to a certain value, the steel will lose its supporting ability, so the fire resistance of the steel structure is higher than that of the masonry structure. It is much worse than reinforced concrete structures. Generally, when the temperature reaches above 300 °C, the mechanical strength of commonly used construction steels gradually decreases. When the temperature reaches 540 °C, the loss rate can reach 70%, so that the support capacity is completely lost, so 540 °C is usually used in engineering. As the critical temperature of building steel.
  • fire protection for steel structures is a necessary measure.
  • the principle of fire prevention of steel structure is to use a heat-insulating or heat-absorbing material to block the flame to directly burn the steel structure, reduce the speed of heat transfer, and delay the heating of the steel structure and the weakening of the strength.
  • the fire prevention measures of steel structures can be divided into several categories: (1) laying bricks or spraying a layer of concrete mortar on the surface of steel structures; (2) wrapping inorganic fiber cloth and inorganic fiber felt on the surface of steel structure; (3) Fill the hollow steel column with the treated liquid and water; (4) Paste the non-combustion plate on the steel structure column, beam, floor and other structures; (5) Apply fireproof coating on the surface of the steel structure, which is the most applied in practical engineering.
  • the broad and most economical method is to coat steel fire retardant coatings.
  • the present invention is directed to the disadvantages of the prior art, and provides a method for preparing an ultra-thin steel structure fireproof coating, which has excellent fire resistance, water resistance and impact resistance. Such as comprehensive performance, low cost, easy to manufacture, and convenient construction, suitable for promotion.
  • a method for preparing an ultra-thin steel structure fireproof coating comprises the following parts by weight of raw materials: 20-30 parts of thermoplastic acrylic resin; 8-10 parts of ethyl silicate; Oxygen resin IOW methyl silicone oil 22-28 parts; melamine 15-18 parts; dicyandiamide 18-22 parts; lead chloride 8-12 parts; glass flakes 4-6 parts; mica 2.5-3.5 parts; poly (N- Isopropyl acrylamide) modified magnesium hydroxide 1-2 parts; hydroxymethyl cellulose 10-12 parts; styrene 11-12 parts; bentonite 3-4 parts; expandable graphite 5-7 parts; chlorinated paraffin 3-4 servings;
  • the preparation method comprises the following steps:
  • thermoplastic acrylic resin a mixture of methyl methacrylate, ethyl methacrylate, butyl methacrylate and methacrylic acid at a mass ratio of 12-15: 5: 10: 3-5, The mixture is added to the reaction solvent, and the initiator is added dropwise with stirring in a nitrogen atmosphere at 135 ° C, the stirring speed is lOOr/min, and after the completion of the dropwise addition, the temperature is kept at reflux for 1.5-2 h, and then the temperature is cooled uniformly to obtain a thermoplastic acrylic resin;
  • thermoplastic acrylic resin, ethyl silicate, epoxy resin, methyl silicone oil is mixed and stirred uniformly, stirring speed 300-400 r / min, stirring between 30-40 minutes;
  • the poly(N-isopropylacrylamide)-modified magnesium hydroxide has a particle diameter of 12-18 ⁇ m.
  • the expandable graphite has a particle diameter of 50-80 mesh.
  • the bentonite is selected from 801 bentonite.
  • the molecular weight of the modifier poly(anthracene-isopropylacrylamide) in the poly(r-isopropylacrylamide)-modified magnesium hydroxide is 8000 g/mol.
  • the ultra-thin steel structure fireproof coating obtained by the preparation method of the invention uses a combination of thermoplastic acrylic resin, ethyl silicate and epoxy resin, improves the water and chemical resistance of the fireproof coating, and utilizes the polymer
  • the polymer poly(N-isopropylacrylamide) is modified with magnesium hydroxide.
  • the poly(N-isopropylacrylamide) contains a hydrophilic group and acts on the hydroxyl group on the surface of the magnesium hydroxide;
  • the long chain in the high molecular polymer forms a steric hindrance, which reduces the agglomeration of the strong magnesium oxide and forms particles having a smaller particle size.
  • the modified magnesium hydroxide has better dispersibility and compatibility, and greatly improves the flame retardant effect of the coating. Through the synergistic action of the components in the formula, the coating is exposed to fire, the flame retardant effect is good, and the smoke is less. Compared with the prior art, the ultra-thin steel structure fireproof coating of the invention has achieved remarkable improvement in the performance of refractory crucible, water resistance and impact resistance, and is suitable for popularization and application.
  • An ultra-thin steel structure fireproof coating comprising the following parts by weight of raw materials:
  • the thermoplastic acrylic resin is a mixture of methyl methacrylate, ethyl methacrylate, butyl methacrylate and methacrylic acid in a mass ratio of 12:5:10:3, which is added as a raw material.
  • the initiator was added dropwise with stirring in a nitrogen atmosphere at 135 ° C, and the mixture was kept at reflux for 1.5 h after the completion of the dropwise addition. Then, the temperature is lowered uniformly to obtain a thermoplastic acrylic resin.
  • the poly(N-isopropylacrylamide)-modified magnesium hydroxide has a particle diameter of 12-18 ⁇ m
  • the expandable graphite has a particle diameter of 50-80 mesh.
  • the bentonite is selected from 801 bentonite.
  • the molecular weight of the poly(x-isopropylacrylamide) modifier in the poly(rhenium-isopropylacrylamide)-modified magnesium hydroxide is 8000 g/mol.
  • melamine is a foaming agent, and when it is thermally decomposed by fire, it will decompose to generate non-combustible gases such as NH 3 , H 2 0, etc., so that the coating expands to form a sponge.
  • non-combustible gases such as NH 3 , H 2 0, etc.
  • the ultra-thin steel structure fireproof coating of the present invention is prepared according to the following method:
  • thermoplastic acrylic resin, ethyl silicate, epoxy resin, methyl silicone oil is mixed and stirred uniformly, stirring speed 300 r / min, stirring for 30 minutes;
  • An ultra-thin steel structure fireproof coating comprising the following parts by weight of raw materials:
  • the thermoplastic acrylic resin is a mixture of methyl methacrylate, ethyl methacrylate, butyl methacrylate and methacrylic acid in a mass ratio of 15:5:10:5, which is added Reaction solvent
  • the initiator was added dropwise at 135 ° C in a nitrogen atmosphere, and after the completion of the dropwise addition, the mixture was kept under reflux for 2 hours, and then cooled at a uniform rate to obtain a thermoplastic acrylic resin.
  • the poly(N-isopropylacrylamide)-modified magnesium hydroxide has a particle diameter of 12-18 ⁇ m
  • the expandable graphite has a particle diameter of 50-80 mesh.
  • the bentonite is selected from 801 bentonite.
  • the molecular weight of the poly(x-isopropylacrylamide) modifier in the poly(rhenium-isopropylacrylamide)-modified magnesium hydroxide is 8000 g/mol.
  • melamine is a foaming agent, and when it is thermally decomposed by fire, it will decompose to generate non-combustible gases such as NH 3 , H 2 0, etc., so that the coating expands to form a sponge.
  • non-combustible gases such as NH 3 , H 2 0, etc.
  • the ultra-thin steel structure fireproof coating of the present invention is prepared according to the following method:
  • Thermoplastic Acrylic Resin Mixing methyl methacrylate, ethyl methacrylate, butyl methacrylate and methacrylic acid starting materials in the above-mentioned mass ratio, adding the mixture to a reaction solvent, under nitrogen In the atmosphere, the initiator was added dropwise at a temperature of 135 ° C, and the stirring speed was lOOr/min. After the completion of the dropwise addition, the mixture was kept under reflux for 2 hours, and then cooled at a uniform rate to obtain a thermoplastic acrylic resin.
  • thermoplastic acrylic resin, ethyl silicate, epoxy resin, methyl silicone oil is mixed and stirred uniformly, stirring speed 400 r / min, stirring for 40 minutes;
  • An ultra-thin steel structure fireproof coating comprising the following parts by weight of raw materials:
  • thermoplastic acrylic resin is a mixture of methyl methacrylate, ethyl methacrylate, methacrylate and methacrylic acid in a mass ratio of 14:5:10:4, and is added to the reaction.
  • Solvent In the nitrogen atmosphere, the initiator was added dropwise at 135 ° C in a nitrogen atmosphere, and after the completion of the dropwise addition, the mixture was kept under reflux for 1.5 hours, and then cooled at a uniform rate to obtain a thermoplastic acrylic resin.
  • the poly(N-isopropylacrylamide)-modified magnesium hydroxide has a particle diameter of 12-18 ⁇ m
  • the expandable graphite has a particle diameter of 50-80 mesh.
  • the bentonite is selected from 801 bentonite.
  • the molecular weight of the poly(x-isopropylacrylamide) modifier in the poly(rhenium-isopropylacrylamide)-modified magnesium hydroxide is 8000 g/mol.
  • melamine is a foaming agent, and when it is thermally decomposed by fire, it will decompose to generate non-combustible gases such as NH 3 , H 2 0, etc., so that the coating expands to form a sponge.
  • non-combustible gases such as NH 3 , H 2 0, etc.
  • the ultra-thin steel structure fireproof coating of the present invention is prepared according to the following method:
  • Thermoplastic Acrylic Resin Mixing methyl methacrylate, ethyl methacrylate, butyl methacrylate and methacrylic acid raw materials in the above-mentioned mass ratio, adding the mixture to a reaction solvent, under nitrogen In the atmosphere, the initiator was added dropwise at a temperature of 135 ° C, and the stirring speed was lOOr/min. After the completion of the dropwise addition, the mixture was kept under reflux for 1.5 hours, and then cooled at a uniform rate to obtain a thermoplastic acrylic resin.
  • thermoplastic acrylic resin, ethyl silicate, epoxy resin, methyl silicone oil is mixed and stirred uniformly, stirring speed 350 r / min, stirring for 35 minutes;
  • the ultra-thin steel structure fireproof coating prepared in the above embodiments 1-3 adopts the following application modes in the steel structure: [0103]
  • the following operations are performed on the surface of the steel structure: coarse sanding, fine sanding, cold water washing, pickling Rust, cold water descaling, hot water washing, alkaline washing and degreasing, hot water washing, cold water washing, filter paper blotting.
  • the above operation shall be carried out in accordance with the specific conditions in GB8923-88 “Corrosion and derusting grade of steel surface before painting”, and the rust removal grade shall not be lower than St2.5.
  • a modified ultra-thin steel structure fireproof coating produced by a company in Jiangsu, including the following components:
  • Acrylic resin 10 parts, epoxy resin: 20 parts, ammonium phosphate: 8 parts, pentaerythritol: 5 parts, melamine: 2 parts, titanium dioxide: 10 parts, zinc chloride: 10 parts, organic bentonite: 3 parts , hydroxymethyl cellulose: 3 parts, silicone defoamer: 5 parts, polyether modified silicone leveling agent: 3 parts, methyl ethyl ketone oxime: 1 part, ethyl acetate: 16 parts, 200 #Solvent oil mixture: 8 parts, modified nano aluminum hydroxide: 10 parts;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

一种超薄型钢结构防火涂料的制备方法,包括如下步骤:(1)以质量比12-15:5:10:3-5混合甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯和甲基丙烯酸原料,将混合物加入反应溶剂中,在氮气气氛中135℃下,搅拌的同时滴加引发剂,搅拌速度100r/min,滴加完毕后保温回流1.5-2h,而后匀速降温,得到热塑性丙烯酸树脂;(2)取热塑性丙烯酸树脂、硅酸乙酯、环氧树脂、甲基硅油混合搅拌均匀,搅拌速度300-400 r/min,搅拌时间30-40分钟;(3)然后加入剩余的其它原料,充分搅拌45-75分钟,搅拌速度350 r/min;(4)将初混料放入砂磨机中砂磨,时间50-60分钟,得浆料;(5)将浆料放入配料缸中搅拌均匀,搅拌速度100-150r/min,时间30分钟。

Description

发明名称:一种超薄型钢结构防火涂料的制备方法 技术领域
[0001] 本发明涉及涂料及其制备工艺, 具体涉及一种超薄型钢结构防火涂料的制备方 法。
背景技术
[0002] 随着人类科技的进步和社会的发展, 以及人们新的生活需求, 各种新型建筑材 料正逐步替代传统建筑材料, 应用于各类新型大型建筑上。 相较砖石和混凝土 材料的建筑体系, 钢结构体系具有强度高、 自重轻、 性能稳定、 韧性好、 安装 容易、 施工周期端、 抗震性能好、 投资回收快、 环境污染少等综合优势而且适 合于批量生产, 使得钢铁成了最佳建筑用结构材料。
[0003] 跟其他建筑一样, 钢结构建筑也有火灾所带来的安全隐患。 由于钢材虽然不会 燃烧, 但其机械强度在温度升高的过程中会逐渐降低, 当钢材料的温度升高到 一定值吋钢材会失去支撑能力, 因而钢结构建筑的耐火性能比砖石结构和钢筋 混凝土结构差很多。 一般在温度达到 300°C以上吋, 常用建筑钢材的机械强度逐 渐降低, 当温度达到 540°C吋, 其损失率可达 70%, 以致完全失去支撑能力, 因 此在工程上通常将 540°C作为建筑钢材的临界温度。
[0004] 将钢结构的耐火极限提高到防火设计规范的耐火极限可以为灭火和人员安全疏 散赢得吋间, 从而达到避免或减少火灾损失的目的。 所以对钢结构进行防火保 护是必要的措施。 钢结构防火的原理是采用绝热或吸热的材料阻隔火焰直接灼 烧钢结构, 降低热量传递的速度, 推迟钢结构升温和强度减弱的吋间。 目前钢 结构的防火措施可以分为几类: (1) 在钢结构表面砌砖或喷覆一层混凝土砂浆 ; (2) 在钢结构表面裹缠无机纤维布和无机纤维毡; (3) 在空心钢柱内填充 处理后的液体和水; (4) 在钢结构柱、 梁、 楼板等构建体上粘贴不燃烧板; ( 5) 在钢结构表面涂覆防火涂料, 在实际工程中应用最广泛且最经济的方法是涂 装钢结构防火涂料。
[0005] 现有技术中已经出现了一些钢结构防火涂料, 实际应用发现, 其耐火吋间、 耐 水性、 耐冲击性等性能仍然存在诸多缺陷, 耐火吋间太短, 严重影响了涂料的 防火效果, 也限制了其推广和应用, 仍需进一步改进。
技术问题
[0006] 发明内容: 本发明针对以上现有技术存在的缺点, 提供了一种超薄型钢结构防 火涂料的制备方法, 该方法制备的防火涂料具有优良的耐火吋间、 耐水性、 耐 冲击性等综合性能, 成本低, 制作简便, 且施工方便, 适于推广使用。
[0007] 本发明的上述目的是通过下述技术方案来实现的:
[0008] 一种超薄型钢结构防火涂料的制备方法, 所述超薄型钢结构防火涂料包括以下 重量份数的原料: 取热塑性丙烯酸树脂 20-30份; 硅酸乙酯 8-10份; 环氧树脂 IOW 甲基硅油 22- 28份; 三聚氰胺 15-18份; 双氰胺 18-22份; 氯化铅 8-12份; 玻璃鳞片 4-6份; 云母 2.5-3.5份; 聚 (N-异丙基丙烯酰胺)改性氢氧化镁 1-2份; 羟 甲基纤维素 10-12份; 苯乙烯 11-12份; 膨润土 3-4份; 可膨胀石墨 5-7份; 氯化石 蜡 3-4份;
[0009] 所述制备方法包括如下步骤:
[0010] ( 1) 热塑性丙烯酸树脂的制备: 以质量比 12-15: 5: 10: 3-5混合甲基丙烯酸 甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸丁酯和甲基丙烯酸原料, 将混合物加入反 应溶剂中, 在氮气气氛中 135°C下, 搅拌的同吋滴加引发剂, 搅拌速度 lOOr/min , 滴加完毕后保温回流 1.5-2h, 而后匀速降温, 得到热塑性丙烯酸树脂;
[0011] (2) 按照上述重量份数将取热塑性丙烯酸树脂、 硅酸乙酯、 环氧树脂、 甲基 硅油混合搅拌均匀, 搅拌速度 300-400 r/min, 搅拌吋间 30-40分钟;
[0012] (3) 然后加入剩余的其它原料, 充分搅拌 45-75分钟, 搅拌速度 350 r/min, 得 初混料;
[0013] (4) 砂磨: 将步骤 (3) 所得初混料放入砂磨机中砂磨, 吋间 50-60分钟, 得 装料;
[0014] (5) 搅拌: 将步骤 (4) 所得浆料放入配料缸中搅拌均匀, 搅拌速度 100-150Γ/ min, 吋间 30分钟, 制得超薄型钢结构防火涂料产品。
[0015] 进一步地, 所述超薄型钢结构防火涂料包括以下重量份数的原料: 热塑性丙烯 酸树脂 20份; 硅酸乙酯 10份; 环氧树脂 15份; 甲基硅油 28份; 三聚氰胺 18份; 双氰胺 22份; 氯化铅 10份; 玻璃鳞片 6份; 云母 3份; 聚 (N-异丙基丙烯酰胺)改性 氢氧化镁 1份; 羟甲基纤维素 12份; 苯乙烯 12份; 膨润土 3份; 可膨胀石墨 7份; 氯化石蜡 4份。
[0016] 进一步地, 所述超薄型钢结构防火涂料包括以下重量份数的原料: 热塑性丙烯 酸树脂 25份; 硅酸乙酯 8份; 环氧树脂 13份; 甲基硅油 25份; 三聚氰胺 16份; 双氰胺 18份; 氯化铅 8份; 玻璃鳞片 5份; 云母 2.5份; 聚 (N-异丙基丙烯酰胺)改 性氢氧化镁 1.5份; 羟甲基纤维素 10份; 苯乙烯 11份; 膨润土 3.5份; 可膨胀石墨 6份; 氯化石蜡 3份。
[0017] 进一步地, 所述超薄型钢结构防火涂料包括以下重量份数的原料: 热塑性丙烯 酸树脂 30份; 硅酸乙酯 8份; 环氧树脂 10份; 甲基硅油 22份; 三聚氰胺 15份; 双氰胺 20份; 氯化铅 12份; 玻璃鳞片 4份; 云母 3.5份; 聚 (N-异丙基丙烯酰胺)改 性氢氧化镁 2份; 羟甲基纤维素 11份; 苯乙烯 12份; 膨润土 4份; 可膨胀石墨 5份 ; 氯化石蜡 3.5份。
[0018] 进一步地 , 所述聚 (N-异丙基丙烯酰胺)改性氢氧化镁的粒径为 12-18μηι。
[0019] 进一步地, 所述可膨胀石墨粒径 50-80目。
[0020] 进一步地, 所述膨润土选用 801膨润土。
[0021] 进一步地 , 所述聚 (Ν-异丙基丙烯酰胺)改性氢氧化镁中改性剂聚 (Ν-异丙基丙烯 酰胺)的分子量为 8000g/mol。
[0022] 本发明所述的制备方法得到的超薄型钢结构防火涂料使用了热塑性丙烯酸树脂 、 硅酸乙酯、 环氧树脂的组合, 提高了防火涂料的耐水耐化学性能, 同吋利用 高分子聚合物聚 (N-异丙基丙烯酰胺)对氢氧化镁进行改性, 一方面, 聚 (N-异丙 基丙烯酰胺)中含有亲水基团, 与氢氧化镁表面的羟基发生作用; 另一方面, 高 分子聚合物中的长链形成空间位阻作用, 降低了强氧化镁发生团聚, 形成粒径 较小的粒子。 改性后的氢氧化镁具有更好的分散性和相容性, 大大提高了涂料 的阻燃效果。 通过配方中各组分协同作用, 使涂层遇到火灾吋, 阻燃效果好, 发烟少。 与现有技术相比, 本发明的超薄型钢结构防火涂料在耐火吋间、 耐水 性、 耐冲击性的性能方面取得显著改进, 适于推广应用。
问题的解决方案 发明的有益效果
本发明的实施方式
[0023] 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合实施例对本 发明的技术方案进行清楚、 完整地描述。 显然, 所描述的实施例是本发明的一 部分, 而不是全部的实施例。 基于所描述的本发明的实施例, 本领域普通技术 人员在无需创造性劳动的前提下所获得的所有其他实施例, 都属于本发明保护 的范围。
[0024] 实施例 1 :
[0025] 一种超薄型钢结构防火涂料, 包括以下重量份数的原料:
[0026] 热塑性丙烯酸树脂 20份;
[0027] 硅酸乙酯 10份;
[0028] 环氧树脂 15份;
[0029] 甲基硅油 28份;
[0030] 三聚氰胺 18份;
[0031] 双氰胺 22份;
[0032] 氯化铅 10份;
[0033] 玻璃鳞片 6份;
[0034] 云母 3份;
[0035] 聚 (N-异丙基丙烯酰胺)改性氢氧化镁 1份;
[0036] 羟甲基纤维素 12份;
[0037] 苯乙烯 12份;
[0038] 膨润土 3份;
[0039] 可膨胀石墨 7份;
[0040] 氯化石蜡 4份。
[0041] 所述热塑性丙烯酸树脂是以甲基丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸丁 酯和甲基丙烯酸的质量比为 12: 5: 10: 3的混合物为原料, 将其加入反应溶剂 中, 在氮气气氛中 135°C下, 搅拌的同吋滴加引发剂, 滴加完毕后保温回流 1.5h , 而后匀速降温, 得到热塑性丙烯酸树脂。 优选地, 所述聚 (N-异丙基丙烯酰胺) 改性氢氧化镁的粒径为 12-18μηι, 所述可膨胀石墨粒径 50-80目。 优选地, 所述 膨润土选用 801膨润土。 进一步地, 所述聚 (Ν-异丙基丙烯酰胺)改性氢氧化镁中 改性剂聚 (Ν-异丙基丙烯酰胺)的分子量为 8000g/mol。
[0042] 在本发明的超薄型钢结构防火涂料中, 三聚氰胺为发泡剂, 当它遇火受热分解 吋, 会分解产生不燃性气体 NH 3、 H 20等, 使涂层膨胀形成海绵状多孔炭化层
[0043] 本发明的超薄型钢结构防火涂料, 按照下列方法进行制备:
[0044] ( 1) 热塑性丙烯酸树脂的制备: 以质量比 12: 5: 10: 3混合甲基丙烯酸甲酯 、 甲基丙烯酸乙酯、 甲基丙烯酸丁酯和甲基丙烯酸原料, 将混合物加入反应溶 齐 1J中, 在氮气气氛中 135°C下, 搅拌的同吋滴加引发剂, 搅拌速度 lOOr/min, 滴 加完毕后保温回流 1.5h, 而后匀速降温, 得到热塑性丙烯酸树脂。
[0045] (2) 按照上述重量份数将取热塑性丙烯酸树脂、 硅酸乙酯、 环氧树脂、 甲基 硅油混合搅拌均匀, 搅拌速度 300 r/min, 搅拌吋间 30分钟;
[0046] (3) 然后加入剩余的其它原料, 充分搅拌 75分钟, 搅拌速度 350 r/min, 得初 混料;
[0047] (4) 砂磨: 将步骤 (3) 所得初混料放入砂磨机中砂磨, 吋间 50分钟, 得浆料
[0048] (5) 搅拌: 将步骤 (4) 所得浆料放入配料缸中搅拌均匀, 搅拌速度 lOOr/min
, 吋间 30分钟, 制得超薄型钢结构防火涂料产品。
[0049] 对制得的超薄型钢结构防火涂料进行性能的测试结果见表 1 :
[0050]
Figure imgf000007_0001
实施例 2:
[0051] 一种超薄型钢结构防火涂料, 包括以下重量份数的原料:
[0052] 取热塑性丙烯酸树脂 25份;
[0053] 硅酸乙酯 8份;
[0054] 环氧树脂 13份;
[0055] 甲基硅油 25份;
[0056] 三聚氰胺 16份;
[0057] 双氰胺 18份;
[0058] 氯化铅 8份;
[0059] 玻璃鳞片 5份;
[0060] 云母 2.5份;
[0061] 聚 (N-异丙基丙烯酰胺)改性氢氧化镁 1.5份;
[0062] 羟甲基纤维素 10份;
[0063] 苯乙烯 11份;
[0064] 膨润土 3.5份;
[0065] 可膨胀石墨 6份;
[0066] 氯化石蜡 3份。
[0067] 所述热塑性丙烯酸树脂是以甲基丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸丁 酯和甲基丙烯酸的质量比为 15: 5: 10: 5的混合物为原料, 将其加入反应溶剂 中, 在氮气气氛中 135°C下, 搅拌的同吋滴加引发剂, 滴加完毕后保温回流 2h, 而后匀速降温, 得到热塑性丙烯酸树脂。 优选地, 所述聚 (N-异丙基丙烯酰胺)改 性氢氧化镁的粒径为 12-18μηι, 所述可膨胀石墨粒径 50-80目。 优选地, 所述膨 润土选用 801膨润土。 进一步地, 所述聚 (Ν-异丙基丙烯酰胺)改性氢氧化镁中改 性剂聚 (Ν-异丙基丙烯酰胺)的分子量为 8000g/mol。
[0068] 在本发明的超薄型钢结构防火涂料中, 三聚氰胺为发泡剂, 当它遇火受热分解 吋, 会分解产生不燃性气体 NH 3、 H 20等, 使涂层膨胀形成海绵状多孔炭化层
[0069] 本发明的超薄型钢结构防火涂料, 按照下列方法进行制备:
[0070] ( 1) 热塑性丙烯酸树脂的制备: 以所述质量比混合甲基丙烯酸甲酯、 甲基丙 烯酸乙酯、 甲基丙烯酸丁酯和甲基丙烯酸原料, 将混合物加入反应溶剂中, 在 氮气气氛中 135°C下, 搅拌的同吋滴加引发剂, 搅拌速度 lOOr/min, 滴加完毕后 保温回流 2h, 而后匀速降温, 得到热塑性丙烯酸树脂。
[0071] (2) 按照上述重量份数将取热塑性丙烯酸树脂、 硅酸乙酯、 环氧树脂、 甲基 硅油混合搅拌均匀, 搅拌速度 400 r/min, 搅拌吋间 40分钟;
[0072] (3) 然后加入剩余的其它原料, 充分搅拌 45分钟, 搅拌速度 350 r/min, 得初 混料;
[0073] (4) 砂磨: 将步骤 (3) 所得初混料放入砂磨机中砂磨, 吋间 50分钟, 得浆料
[0074] (5) 搅拌: 将步骤 (4) 所得浆料放入配料缸中搅拌均匀, 搅拌速度 lOOr/min
, 吋间 40分钟, 制得超薄型钢结构防火涂料产品。
[0075] 对制得的超薄型钢结构防火涂料进行性能的测试结果见表 2:
[0076]
Figure imgf000009_0001
实施例 3:
[0077] 一种超薄型钢结构防火涂料, 包括以下重量份数的原料:
[0078] 取热塑性丙烯酸树脂 30份;
[0079] 硅酸乙酯 8份;
[0080] 环氧树脂 10份;
[0081] 甲基硅油 22份;
[0082] 三聚氰胺 15份;
[0083] 双氰胺 20份;
[0084〗 氯化铅 12份;
[0085] 玻璃鳞片 4份;
[0086] 云母 3.5份;
[0087] 聚 (N-异丙基丙烯酰胺)改性氢氧化镁 2份;
[0088] 羟甲基纤维素 11份;
[0089] 苯乙烯 12份;
[0090] 膨润土 4份;
[0091] 可膨胀石墨 5份;
[0092] 氯化石蜡 3.5份。
[0093] 所述热塑性丙烯酸树脂是以甲基丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸 酯和甲基丙烯酸的质量比为 14: 5: 10: 4的混合物为原料, 将其加入反应溶剂 中, 在氮气气氛中 135°C下, 搅拌的同吋滴加引发剂, 滴加完毕后保温回流 1.5h , 而后匀速降温, 得到热塑性丙烯酸树脂。 优选地, 所述聚 (N-异丙基丙烯酰胺) 改性氢氧化镁的粒径为 12-18μηι, 所述可膨胀石墨粒径 50-80目。 优选地, 所述 膨润土选用 801膨润土。 进一步地, 所述聚 (Ν-异丙基丙烯酰胺)改性氢氧化镁中 改性剂聚 (Ν-异丙基丙烯酰胺)的分子量为 8000g/mol。
[0094] 在本发明的超薄型钢结构防火涂料中, 三聚氰胺为发泡剂, 当它遇火受热分解 吋, 会分解产生不燃性气体 NH 3、 H 20等, 使涂层膨胀形成海绵状多孔炭化层
[0095] 本发明的超薄型钢结构防火涂料, 按照下列方法进行制备:
[0096] ( 1) 热塑性丙烯酸树脂的制备: 以所述质量比混合甲基丙烯酸甲酯、 甲基丙 烯酸乙酯、 甲基丙烯酸丁酯和甲基丙烯酸原料, 将混合物加入反应溶剂中, 在 氮气气氛中 135°C下, 搅拌的同吋滴加引发剂, 搅拌速度 lOOr/min, 滴加完毕后 保温回流 1.5h, 而后匀速降温, 得到热塑性丙烯酸树脂。
[0097] (2) 按照上述重量份数将取热塑性丙烯酸树脂、 硅酸乙酯、 环氧树脂、 甲基 硅油混合搅拌均匀, 搅拌速度 350 r/min, 搅拌吋间 35分钟;
[0098] (3) 然后加入剩余的其它原料, 充分搅拌 60分钟, 搅拌速度 350 r/min, 得初 混料;
[0099] (4) 砂磨: 将步骤 (3) 所得初混料放入砂磨机中砂磨, 吋间 55分钟, 得浆料
[0100] (5) 搅拌: 将步骤 (4) 所得浆料放入配料缸中搅拌均匀, 搅拌速度 120r/min
, 吋间 35分钟, 制得超薄型钢结构防火涂料产品。
[0101] 对制得的超薄型钢结构防火涂料进行性能的测试结果见表 3:
[0102]
Figure imgf000011_0001
上述实施例 1-3所制备的超薄型钢结构防火涂料在钢结构中采用下列应用方式: [0103] 对钢结构表面分别进行以下操作: 粗砂纸打磨, 细砂纸打磨, 冷水冲洗, 酸洗 除锈, 冷水除锈, 热水冲洗, 碱洗除油, 热水冲洗, 冷水冲洗, 滤纸吸干。 上 述操作按照 GB8923-88 《涂装前钢材表面锈蚀和除锈等级》 中具体条件进行, 除 锈等级不低于 St2.5。
[0104] 在经过预处理的钢结构表面进行喷涂, 先喷涂第一次防火涂料, 待第一层防火 涂料干燥后再喷涂第二层, 然后修正边角接口等部位并进行检验。
[0105] 对比例 1 :
[0106] 江苏某公司生产的一种改性超薄型钢结构防火涂料, 包括以下组分:
[0107] 丙烯酸树脂: 10份, 环氧树脂树脂: 20份, 磷酸铵: 8份, 季戊四醇: 5份, 三 聚氰胺: 2份, 二氧化钛: 10份, 氯化锌: 10份, 有机膨润土: 3份, 羟甲基纤 维素: 3份, 有机硅类消泡剂: 5份, 聚醚改性聚硅氧烷类流平剂: 3份, 甲乙酮 肟: 1份, 乙酸乙酯 : 16份, 200#溶剂油的混合物: 8份, 改性纳米氢氧化铝: 10 份;
[0108] 制备方法如下:
[0109] ( 1 ) 将丙烯酸树脂和环氧树脂加入到装有溶剂乙酸乙酯与 200 #溶剂油的混合 物的分散缸中搅拌 10min, 搅拌速度为 SOr/min;
[0110] (2) 向步骤 (1) 分散缸中加入脱水催化剂磷酸铵、 成炭剂季戊四醇、 发泡剂 三聚氰胺和颜填料二氧化钛和氯化锌的混合物, 预分散 18min,搅拌速度为 165r/m in, 然后再向分散缸中加入改性纳米氢氧化铝继续搅拌 20min待用, 搅拌速度为 4 20r/min;
[0111] (3) 将步骤 (2) 分散缸中的混合物转入磨砂机中, 然后加入助剂, 在高剪切 力作用下高速砂磨 40min, 控制混合物的细度≤50μ, 即得到改性超薄型钢结构防 火涂料。
[0112] 对制得的改性超薄型钢结构防火涂料进行性能的测试结果见表 4:
Figure imgf000012_0001
对比例 2:
[0114] 江苏某公司生产的一种防火涂料, 具体为:
[0115] 将酚醛树脂 60份, 硼酸锌 40份, 氢氧化铝 30份, 磷酸三酯 12份, 三氧化二锑 8 份, 石棉纤维 12份, 石墨球 10份, 三氧化二钒 12份, 甲基丙烯酸甲酯 80份, 甲 基丙烯酸月桂酯 20份, 苯乙烯 12份, 甲基丙烯酸丁酯 150份, 甲基丙烯酸 20份放 入反应器中, 不断搅拌, 混合完全后加热至 75°C, 均匀搅拌后即得产品。
[0116] 对制得的防火涂料进行性能的测试结果见表 5:
[0117]
Figure imgf000013_0001
由表 1-5所得到的测试结果可知, 本发明的超薄型钢结构防火涂料在耐火时间、 耐水性、 耐冲击性的性能方面均比对比例 1、 2以及其他现有防火涂料得到明显 提高, 提高了现有超薄型钢结构防火涂料的综合性能, 适于推广应用。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员应当 理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部 分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质 脱离本发明各实施例技术方案的范围。

Claims

权利要求书
[权利要求 1] 一种超薄型钢结构防火涂料的制备方法, 其特征在于, 所述超薄型钢 结构防火涂料包括以下重量份数的原料: 取热塑性丙烯酸树脂 20-30 份; 硅酸乙酯 8-10份; 环氧树脂 10-15份; 甲基硅油 22- 28份; 三聚氰 胺
15-18份; 双氰胺 18-22份; 氯化铅 8-12份; 玻璃鳞片 4-6份; 云母 2.5-3 .5份; 聚 (N-异丙基丙烯酰胺)改性氢氧化镁 1-2份; 羟甲基纤维素 10-1 2份; 苯乙烯 11-12份; 膨润土 3-4份; 可膨胀石墨 5-7份; 氯化石蜡 3-4 份;
所述制备方法包括如下步骤:
( 1) 热塑性丙烯酸树脂的制备: 以质量比 12-15: 5: 10: 3-5混合甲 基丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸丁酯和甲基丙烯酸原料 , 将混合物加入反应溶剂中, 在氮气气氛中 135°C下, 搅拌的同吋滴 加引发剂, 搅拌速度 lOOr/min, 滴加完毕后保温回流 1.5-2h, 而后匀 速降温, 得到热塑性丙烯酸树脂;
(2) 按照上述重量份数将取热塑性丙烯酸树脂、 硅酸乙酯、 环氧树 脂、 甲基硅油混合搅拌均匀, 搅拌速度 300-400 r/min, 搅拌吋间 30-40 分钟;
(3) 然后加入剩余的其它原料, 充分搅拌 45-75分钟, 搅拌速度 350 r/min, 得初混料;
(4) 砂磨: 将步骤 (3) 所得初混料放入砂磨机中砂磨, 吋间 50-60 分钟, 得浆料;
(5) 搅拌: 将步骤 (4) 所得浆料放入配料缸中搅拌均匀, 搅拌速度 100-150r/min, 吋间 30分钟, 制得超薄型钢结构防火涂料产品。
[权利要求 2] 根据权利要求 1所述的超薄型钢结构防火涂料的制备方法, 其特征在 于, 所述超薄型钢结构防火涂料包括以下重量份数的原料: 热塑性丙 烯酸树脂 20份; 硅酸乙酯 10份; 环氧树脂 15份; 甲基硅油 28份; 三 聚氰胺 18份; 双氰胺 22份; 氯化铅 10份; 玻璃鳞片 6份; 云母 3份; 聚 (N-异丙基丙烯酰胺)改性氢氧化镁 1份; 羟甲基纤维素 12份; 苯乙 烯 12份; 膨润土 3份; 可膨胀石墨 7份; 氯化石蜡 4份。
根据权利要求 1所述的超薄型钢结构防火涂料的制备方法, 其特征在 于, 所述超薄型钢结构防火涂料包括以下重量份数的原料: 热塑性丙 烯酸树脂 25份; 硅酸乙酯 8份; 环氧树脂 13份; 甲基硅油 25份; 三聚 氰胺
16份; 双氰胺 18份; 氯化铅 8份; 玻璃鳞片 5份; 云母 2.5份; 聚 (N-异 丙基丙烯酰胺)改性氢氧化镁 1.5份; 羟甲基纤维素 10份; 苯乙烯 11份
; 膨润土 3.5份; 可膨胀石墨 6份; 氯化石蜡 3份。
根据权利要求 1所述的超薄型钢结构防火涂料的制备方法, 其特征在 于, 所述超薄型钢结构防火涂料包括以下重量份数的原料: 热塑性丙 烯酸树脂 30份; 硅酸乙酯 8份; 环氧树脂 10份; 甲基硅油 22份; 三聚 氰胺
15份; 双氰胺 20份; 氯化铅 12份; 玻璃鳞片 4份; 云母 3.5份; 聚 (N- 异丙基丙烯酰胺)改性氢氧化镁 2份; 羟甲基纤维素 11份; 苯乙烯 12份 ; 膨润土 4份; 可膨胀石墨 5份; 氯化石蜡 3.5份。
根据权利要求 1所述的超薄型钢结构防火涂料的制备方法, 其特征在 于: 所述聚 (N-异丙基丙烯酰胺)改性氢氧化镁的粒径为 12- 18μηι。 根据权利要求 1所述的超薄型钢结构防火涂料的制备方法, 其特征在 于: 所述可膨胀石墨粒径 50-80目。
根据权利要求 1所述的超薄型钢结构防火涂料的制备方法, 其特征在 于: 所述膨润土选用 801膨润土。
根据权利要求 1所述的超薄型钢结构防火涂料的制备方法, 其特征在 于: 所述聚 (Ν-异丙基丙烯酰胺)改性氢氧化镁中改性剂聚 (Ν-异丙基
PCT/CN2016/106865 2016-03-08 2016-11-23 一种超薄型钢结构防火涂料的制备方法 WO2017152658A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610128152.9 2016-03-08
CN201610128152.9A CN105778755A (zh) 2016-03-08 2016-03-08 一种超薄型钢结构防火涂料的制备方法

Publications (1)

Publication Number Publication Date
WO2017152658A1 true WO2017152658A1 (zh) 2017-09-14

Family

ID=56387155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106865 WO2017152658A1 (zh) 2016-03-08 2016-11-23 一种超薄型钢结构防火涂料的制备方法

Country Status (2)

Country Link
CN (1) CN105778755A (zh)
WO (1) WO2017152658A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105778755A (zh) * 2016-03-08 2016-07-20 杨超 一种超薄型钢结构防火涂料的制备方法
CN106318198A (zh) * 2016-09-18 2017-01-11 北京佑琳生科技有限公司 一种水性纳米树脂室外超薄型钢结构防火涂料
CN106752598A (zh) * 2016-12-13 2017-05-31 天长市银狐漆业有限公司 一种抗刮擦可膨胀石墨水性超薄型钢结构防火涂料及其制备方法
CN106590299A (zh) * 2016-12-13 2017-04-26 天长市银狐漆业有限公司 一种耐热可膨胀石墨水性超薄型钢结构防火涂料及其制备方法
CN106590300A (zh) * 2016-12-13 2017-04-26 天长市银狐漆业有限公司 一种致密性好可膨胀石墨水性超薄型钢结构防火涂料及其制备方法
CN106590292A (zh) * 2016-12-13 2017-04-26 天长市银狐漆业有限公司 一种铝粉防腐可膨胀石墨水性超薄型钢结构防火涂料及其制备方法
CN106590301A (zh) * 2016-12-13 2017-04-26 天长市银狐漆业有限公司 一种抗老化阻燃可膨胀石墨水性超薄型钢结构防火涂料及其制备方法
CN106590298A (zh) * 2016-12-13 2017-04-26 天长市银狐漆业有限公司 一种高硬度可膨胀石墨水性超薄型钢结构防火涂料及其制备方法
CN106590302A (zh) * 2016-12-13 2017-04-26 天长市银狐漆业有限公司 一种防辐射可膨胀石墨水性超薄型钢结构防火涂料及其制备方法
CN106590291A (zh) * 2016-12-13 2017-04-26 天长市银狐漆业有限公司 一种耐腐蚀可膨胀石墨水性超薄型钢结构防火涂料及其制备方法
CN106752538A (zh) * 2017-01-11 2017-05-31 合肥英索莱特新材料科技有限公司 膨胀型钢结构防火涂料
CN107189677A (zh) * 2017-05-19 2017-09-22 成都协恒科技有限公司 一种集装箱的环保防火涂料
CN109280450B (zh) * 2018-08-02 2020-10-16 广东鑫皇冠新材料有限公司 一种环氧丙烯酸树脂阻燃涂料及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1380368A (zh) * 2002-04-11 2002-11-20 海洋化工研究院 膨胀型防火涂料
CN1709996A (zh) * 2005-07-07 2005-12-21 复旦大学 一种低烟超薄膨胀型钢结构防火涂料及其制备方法
CN102492345A (zh) * 2011-12-20 2012-06-13 天津市澳美化工涂料有限公司 阻燃型防腐清漆及其制备方法
CN103992723A (zh) * 2014-05-19 2014-08-20 安徽嘉木橡塑工业有限公司 一种钢结构防火涂料
CN104673056A (zh) * 2015-03-11 2015-06-03 江苏欣安新材料技术有限公司 一种改性超薄型钢结构防火涂料及其制备工艺
CN104673022A (zh) * 2015-03-11 2015-06-03 江苏欣安新材料技术有限公司 一种超薄耐候钢结构防火涂料及其制备工艺
CN105038463A (zh) * 2015-09-07 2015-11-11 章俊 一种防火建筑涂料
CN105062289A (zh) * 2015-09-07 2015-11-18 章俊 一种防火耐蚀涂料的制备方法
CN105062291A (zh) * 2015-09-07 2015-11-18 章俊 一种防火涂料的制备方法
CN105694566A (zh) * 2016-03-08 2016-06-22 杨超 一种超薄型钢结构防火涂料
CN105778595A (zh) * 2016-04-15 2016-07-20 刘云 一种建筑物防火涂料
CN105778755A (zh) * 2016-03-08 2016-07-20 杨超 一种超薄型钢结构防火涂料的制备方法
CN105802306A (zh) * 2016-04-15 2016-07-27 刘云 一种建筑物防火涂料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100513495C (zh) * 2005-12-22 2009-07-15 北京首创纳米科技有限公司 水性环保超薄膨胀型钢结构防火涂料及其制备方法
CN105038573B (zh) * 2015-08-26 2017-12-22 深圳市锦翔友连新材料有限公司 一种防火涂料

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1380368A (zh) * 2002-04-11 2002-11-20 海洋化工研究院 膨胀型防火涂料
CN1709996A (zh) * 2005-07-07 2005-12-21 复旦大学 一种低烟超薄膨胀型钢结构防火涂料及其制备方法
CN102492345A (zh) * 2011-12-20 2012-06-13 天津市澳美化工涂料有限公司 阻燃型防腐清漆及其制备方法
CN103992723A (zh) * 2014-05-19 2014-08-20 安徽嘉木橡塑工业有限公司 一种钢结构防火涂料
CN104673056A (zh) * 2015-03-11 2015-06-03 江苏欣安新材料技术有限公司 一种改性超薄型钢结构防火涂料及其制备工艺
CN104673022A (zh) * 2015-03-11 2015-06-03 江苏欣安新材料技术有限公司 一种超薄耐候钢结构防火涂料及其制备工艺
CN105038463A (zh) * 2015-09-07 2015-11-11 章俊 一种防火建筑涂料
CN105062289A (zh) * 2015-09-07 2015-11-18 章俊 一种防火耐蚀涂料的制备方法
CN105062291A (zh) * 2015-09-07 2015-11-18 章俊 一种防火涂料的制备方法
CN105694566A (zh) * 2016-03-08 2016-06-22 杨超 一种超薄型钢结构防火涂料
CN105778755A (zh) * 2016-03-08 2016-07-20 杨超 一种超薄型钢结构防火涂料的制备方法
CN105778595A (zh) * 2016-04-15 2016-07-20 刘云 一种建筑物防火涂料
CN105802306A (zh) * 2016-04-15 2016-07-27 刘云 一种建筑物防火涂料的制备方法

Also Published As

Publication number Publication date
CN105778755A (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
WO2017152658A1 (zh) 一种超薄型钢结构防火涂料的制备方法
CN102827519B (zh) 一种防火漆
CN102850905B (zh) 水性膨胀型钢结构防火涂料及其制备方法
CN104098344B (zh) 一种陶瓷纤维加气砖及其制备方法
CN103992086B (zh) 一种耐火耐水加气砖及其制备方法
CN105694566A (zh) 一种超薄型钢结构防火涂料
CN102643589A (zh) 室内用水性超薄型钢结构防火涂料及其制备方法
KR20090116042A (ko) 발포성 내화도료 조성물 및 이를 이용한 건축물에 내화성부여 방법
CN104327619A (zh) 水性膨胀型钢结构防火涂料及其制备方法
CN104449316A (zh) 一种保温隔音涂料
KR20030025361A (ko) 표면개질 팽창펄라이트 및 그 용도
CN109943112A (zh) 一种用于空气净化的生态型光催化防火涂料及其制备方法
CN105802436A (zh) 一种纳米膨胀型透明防火涂料及其制备方法
JP3740566B2 (ja) 発泡耐火積層体及びその形成方法
CN107140926A (zh) 一种石膏基钢结构防火保护材料
CN106833249A (zh) 一种水性超薄型钢结构防火涂料及其制备方法
CN107057420A (zh) 无机薄型膨胀钢结构防火涂料及其制备方法
CN110172299A (zh) 一种水性瓷化反光外墙涂料及其制备方法和应用
CN103992083B (zh) 一种水渣高强度加气砖及其制备方法
CN103992084B (zh) 一种高韧性加气砖及其制备方法
CN110723955B (zh) 一种防火材料及其制备方法
WO2018033219A1 (de) Poröser formkörper in gestalt einer dämmputzschicht oder einer dämmplatte
CN113913042A (zh) 一种硅酸镁水泥基薄型钢结构防火涂料及其使用方法
JP2610549B2 (ja) 耐火被覆組成物
CN106186972B (zh) 一种回收料制备干粉砂浆的方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893301

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893301

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 28/06/2019)