WO2017135168A1 - 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、プリント配線板及び半導体装置 - Google Patents

樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、プリント配線板及び半導体装置 Download PDF

Info

Publication number
WO2017135168A1
WO2017135168A1 PCT/JP2017/002999 JP2017002999W WO2017135168A1 WO 2017135168 A1 WO2017135168 A1 WO 2017135168A1 JP 2017002999 W JP2017002999 W JP 2017002999W WO 2017135168 A1 WO2017135168 A1 WO 2017135168A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
group
mass
parts
Prior art date
Application number
PCT/JP2017/002999
Other languages
English (en)
French (fr)
Inventor
鈴木 卓也
成弘 浦濱
潤 若林
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2017565523A priority Critical patent/JP6880510B2/ja
Priority to CN201780009567.7A priority patent/CN108603003B/zh
Priority to KR1020187019176A priority patent/KR20180104290A/ko
Publication of WO2017135168A1 publication Critical patent/WO2017135168A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms

Definitions

  • the present invention relates to a resin composition, a prepreg using the resin composition, a metal foil-clad laminate, a resin sheet, a printed wiring board, and a semiconductor device.
  • a printed wiring board is required to have a low dielectric constant (low Dk) and a low dielectric loss tangent (low Df) in order to reduce signal propagation delay and transmission loss.
  • low Dk low dielectric constant
  • low Df low dielectric loss tangent
  • Patent Document 1 discloses a resin composition having excellent electrical characteristics by using a polyphenylene ether resin in combination with a fluororesin filler.
  • Patent Document 2 discloses a resin composition that is excellent in electrical characteristics and adhesion of a cured product and has good wiring embedding properties by using a norbornene resin in combination with a fluororesin filler.
  • the present invention has been made in view of the above problems, and when used in a multilayer printed wiring board, it has excellent dielectric constant, dielectric loss tangent, fine wiring embedding property, heat resistance, and developability. It is providing a resin composition, a prepreg using the same, a metal foil-clad laminate, a resin sheet, a printed wiring board, and a semiconductor device.
  • the present inventors have found that the above problem can be solved by using a resin composition containing silica-coated fluororesin particles (A) and a resin component (B), and have completed the present invention.
  • the present invention includes the following contents.
  • the content of the silica-coated fluororesin particles (A) in the resin composition is 3 to 400 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition.
  • the resin component (B) is any one selected from the group consisting of maleimide compounds, cyanate ester compounds, epoxy resins, phenol resins, oxetane resins, benzoxazine compounds, and compounds having an ethylenically unsaturated group.
  • the compound having an ethylenically unsaturated group is at least selected from the group consisting of an acid-modified bisphenol F type epoxy (meth) acrylate, a compound represented by the following general formula (1), and dipentaerythritol hexa (meth) acrylate.
  • each of the plurality of R 1 independently represents a hydrogen atom or a methyl group
  • each of the plurality of R 2 independently represents a hydrogen atom or a methyl group
  • each of the plurality of R 3 represents, Independently, it represents a substituent represented by the following formula (2), a substituent represented by the following formula (3), or a hydroxy group.
  • R 4 represents a hydrogen atom or a methyl group
  • the resin composition according to [9], wherein the compound having an ethylenically unsaturated group contains at least a compound represented by the general formula (1).
  • a metal foil-clad laminate comprising the prepreg according to [11] laminated at least one sheet and a metal foil disposed on one side or both sides of the prepreg.
  • a resin sheet comprising the support and the resin composition according to any one of [1] to [10] disposed on a surface of the support.
  • a printed wiring board comprising the resin composition according to any one of [1] to [10].
  • a semiconductor device comprising the resin composition according to any one of [1] to [10].
  • a prepreg, a metal foil-clad laminate, a resin sheet, a printed wiring board, and a semiconductor device can be provided.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be appropriately modified within the scope of the gist.
  • (meth) acryloyl group means both “acryloyl group” and the corresponding “methacryloyl group”
  • “(meth) acrylate” means “acrylate” and the corresponding “methacrylate”.
  • (Meth) acrylic acid means both “acrylic acid” and the corresponding "methacrylic acid”.
  • resin solid content or “resin solid content in the resin composition” means a component in the resin composition excluding the solvent and the filler, unless otherwise specified.
  • the term “solid content of 100 parts by mass” means that the total of the components excluding the solvent and filler in the resin composition is 100 parts by mass.
  • the resin composition of the present embodiment is characterized by containing silica-coated fluororesin particles (A) and a resin component (B).
  • A silica-coated fluororesin particles
  • B resin component
  • the silica-coated fluororesin particles (A) used in the present embodiment are fluororesin particles having silica attached to the surface, and have fluororesin particles and silica particles attached to the fluororesin surface.
  • the method for attaching the silica particles to the surface of the fluororesin particles is not particularly limited, and it can be carried out by simply mixing or applying vibration after mixing.
  • the silica particles can be attached to the surface of the fluororesin particles in a dry state.
  • the mixing ratio of the fluororesin particles and the silica particles is not particularly limited.
  • the fluororesin particles used for the silica-coated fluororesin particles (A) in the present embodiment are not particularly limited, but polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkoxyethylene copolymer (PFA), Tetrafluoroethylene / hexafluoropropylene copolymer (FEP), ethylene / chlorotrifluoroethylene copolymer (PCTFE), ethylene / tetrafluoroethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), etc. Can be mentioned.
  • PTFE is preferable from the viewpoint of excellent electrical characteristics. These can be used alone or in admixture of two or more.
  • the fluororesin particles have a volume average particle size of primary particles of preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less, and even more preferably 3 ⁇ m or less from the viewpoint of improving the embedding property of fine wiring. Further, from the viewpoint of improving electric characteristics, the volume average particle diameter of the primary particles is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, and further preferably 0.02 ⁇ m or more.
  • the “volume average particle diameter” means an arithmetic average diameter of a volume-based particle diameter distribution. The volume average particle diameter can be measured by, for example, a wet laser diffraction / scattering method.
  • the content of the silica particles in the silica-coated fluororesin particles (A) is not particularly limited, but is preferably 0.001% by mass or more based on the mass of the fluororesin particles from the viewpoint of improving fluidity.
  • the content is more preferably 0.005% by mass or more, and further preferably 0.01% by mass or more.
  • the content is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 2% by mass or less.
  • the silica particles are not particularly limited as long as the volume average particle diameter of the primary particles is smaller than the volume average particle diameter of the fluororesin particles.
  • the volume average particle diameter of the primary particles is preferably 200 nm or less, preferably 100 nm or less, more preferably 70 nm or less, and even more preferably 50 nm or less.
  • the volume average particle diameter of the primary particles is preferably 0.3 nm or more, more preferably 0.5 nm or more, and further preferably 1 nm or more.
  • the volume average particle diameter of the primary particles is preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less, further preferably 3 ⁇ m or less, from the viewpoint of improving the embedding property of the fine wiring.
  • the following is even more preferable from the viewpoint of improving the embedding property, dielectric constant and dielectric loss tangent of fine wiring.
  • the volume average particle diameter of the primary particles is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, and further preferably 0.02 ⁇ m or more.
  • PTFE-YA trade name
  • PTFE-YA4 3.0 ⁇ m, trade name
  • the content of the silica-coated fluororesin particles (A) in the resin composition of the present embodiment is not particularly limited, but from the viewpoint of improving the electrical properties of the resin composition, the resin solid content in the resin composition is 100 mass. 3 parts by mass or more, preferably 5 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 15 parts by mass or more, more preferably 30 parts by mass. More preferably, the above is used. Further, from the viewpoint of improving the heat resistance, it is preferably 400 parts by mass or less, more preferably 300 parts by mass or less, and more preferably 200 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition. More preferably, it is more preferably 100 parts by mass or less.
  • the resin component (B) used in the present embodiment is a cured cured product flame retardant required in the field where the resin composition is used in addition to the electrical characteristics obtained by using the silica-coated fluororesin particles (A).
  • Various types can be used depending on properties such as heat resistance, heat resistance, and thermal expansion properties.
  • epoxy resin when adhesiveness is required, epoxy resin, when heat resistance is required, maleimide compound, cyanate ester compound, benzoxazine compound, when thermosetting or photocuring is required, ethylene Examples thereof include a compound having a polymerizable unsaturated group, and a phenol resin, an oxetane resin and the like can also be used.
  • the maleimide compound is not particularly limited as long as it is a compound having one or more maleimide groups in the molecule. Specific examples thereof include, for example, N-phenylmaleimide, N-hydroxyphenylmaleimide, bis (4-maleimidophenyl) methane, 2,2-bis ⁇ 4- (4-maleimidophenoxy) -phenyl ⁇ propane, 4,4 -Diphenylmethane bismaleimide, bis (3,5-dimethyl-4-maleimidophenyl) methane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, bis (3,5-diethyl-4-maleimidophenyl) Methane, phenylmethanemaleimide, o-phenylene bismaleimide, m-phenylene bismaleimide, p-phenylene bismaleimide, o-phenylene biscitraconimide, m-phenylene
  • each of the plurality of R 5 independently represents a hydrogen atom or a methyl group.
  • N 1 represents an integer of 1 or more, preferably an integer of 1 to 10, more preferably 1) Represents an integer of ⁇ 5).
  • each of the plurality of R 6 independently represents a hydrogen atom or a methyl group.
  • N 2 represents an integer of 1 or more, preferably an integer of 1 to 5).
  • These maleimide compounds can be used singly or in appropriate combination of two or more. Among these, from the viewpoint of excellent heat resistance, the maleimide compound represented by the formula (4) and the compound represented by the formula (5) are preferable, and the maleimide compound represented by the formula (4) is more preferable. preferable.
  • a commercially available product can be used as the maleimide compound represented by the formula (4), and examples thereof include BMI-2300 (manufactured by Daiwa Kasei Kogyo Co., Ltd.).
  • a commercially available product may be used as the maleimide compound represented by the formula (5), and examples thereof include MIR-3000 (manufactured by Nippon Kayaku Co., Ltd.).
  • the content of the maleimide compound is not particularly limited, and is preferably 0.01 part by mass to 50 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition. More preferably 0.02 to 45 parts by mass, still more preferably 0.03 to 20 parts by mass, still more preferably 0.1 to 10 parts by mass, and still more preferably. Is 1 to 7 parts by mass.
  • the content of the maleimide compound is within the above range, the heat resistance of the cured product tends to be further improved.
  • the cyanate ester compound is not particularly limited as long as it is a resin having in its molecule an aromatic moiety substituted with at least one cyanate group (cyanate ester group).
  • Ar 1 represents a benzene ring, a naphthalene ring or a single bond of two benzene rings. When there are a plurality of them, they may be the same or different from each other.
  • a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 12 carbon atoms are bonded to each other.
  • the aromatic ring in Ra may have a substituent, and the substituent in Ar 1 and Ra can be selected at any position, p represents the number of cyanate groups bonded to Ar 1 , Each independently represents an integer of 1 to 3.
  • q represents the number of Ra bonded to Ar 1, and 4-p when Ar 1 is a benzene ring, 6-p when Ar 1 is a naphthalene ring, and two benzene rings are In the case of a single bond, it is 8-p.
  • the number of returns is an integer of 0 to 50, and the cyanate ester compound may be a mixture of compounds having different t.
  • a divalent organic group (wherein a hydrogen atom may be substituted with a heteroatom), a divalent organic group having 1 to 10 nitrogen atoms (for example, —N—R—N— (where R is an organic group) )), Carbonyl group (—CO—), carboxy group (—C ( ⁇ O) O—), carbonyl dioxide group (—OC ( ⁇ O) O—), sulfonyl group (—SO 2 —), It represents either a divalent sulfur atom or a divalent oxygen atom.)
  • the alkyl group in Ra in the general formula (6) may have any of a linear or branched chain structure and a cyclic structure (for example, a cycloalkyl group).
  • the hydrogen atom in the alkyl group in the general formula (6) and the aryl group in Ra is substituted with a halogen atom such as a fluorine atom or a chlorine atom, an alkoxyl group such as a methoxy group or a phenoxy group, or a cyano group. Also good.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, 1-ethylpropyl group, 2,2-dimethylpropyl group.
  • aryl group examples include phenyl group, xylyl group, mesityl group, naphthyl group, phenoxyphenyl group, ethylphenyl group, o-, m- or p-fluorophenyl group, dichlorophenyl group, dicyanophenyl group, trifluorophenyl. Group, methoxyphenyl group, and o-, m- or p-tolyl group.
  • alkoxyl group examples include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, and a tert-butoxy group.
  • divalent organic group having 1 to 50 carbon atoms in X of the general formula (6) include alkylene groups such as methylene group, ethylene group, trimethylene group and propylene group, cyclopentylene group, cyclohexylene group, Examples thereof include divalent organic groups having an aromatic ring such as a cycloalkylene group such as trimethylcyclohexylene group, biphenylylmethylene group, dimethylmethylene-phenylene-dimethylmethylene group, fluorenediyl group, and phthalidodiyl group.
  • the hydrogen atom in the divalent organic group may be substituted with a halogen atom such as a fluorine atom or a chlorine atom, an alkoxyl group such as a methoxy group or a phenoxy group, a cyano group, or the like.
  • a halogen atom such as a fluorine atom or a chlorine atom
  • an alkoxyl group such as a methoxy group or a phenoxy group, a cyano group, or the like.
  • Examples of the divalent organic group having 1 to 10 nitrogen atoms in X of the general formula (6) include a group represented by —N—R—N— (R is an organic group), an imino group, a polyimide group, and the like. It is done.
  • examples of the organic group of X in the general formula (6) include those having a structure represented by the following general formula (7) or the following general formula (8).
  • Ar 2 represents a benzenetetrayl group, a naphthalenetetrayl group or a biphenyltetrayl group, and when u is 2 or more, they may be the same as or different from each other.
  • Rb, Rc, Rf, and Rg are each independently an aryl having at least one hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, a trifluoromethyl group, or a phenolic hydroxy group. Indicates a group.
  • Rd and Re are each independently selected from any one of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, and a hydroxy group.
  • . u represents an integer of 0 to 5.
  • Ar 3 represents a benzenetetrayl group, a naphthalenetetrayl group or a biphenyltetrayl group, and when v is 2 or more, they may be the same as or different from each other.
  • Ri and Rj are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, a benzyl group, an alkoxyl group having 1 to 4 carbon atoms, a hydroxy group, a trifluoromethyl group, Or an aryl group substituted with at least one cyanato group.
  • v represents an integer of 0 to 5, but may be a mixture of compounds having different v.
  • examples of X in the general formula (6) include a divalent group represented by the following formula.
  • z represents an integer of 4 to 7.
  • Rk independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Ar 2 in the general formula (7) and Ar 3 in the general formula (8) include two carbon atoms represented by the general formula (7) or two oxygen atoms represented by the general formula (8).
  • a benzenetetrayl group bonded to the 1,4-position or the 1,3-position, the two carbon atoms or the two oxygen atoms are in the 4,4′-position, 2,4′-position, 2,2′-position, 2 , 3′-position, 3,3′-position, or 3,4′-position, and the above two carbon atoms or two oxygen atoms are in the 2,6-position, 1,5-position .
  • Examples thereof include naphthalenetetrayl groups bonded to the 1,6-position, 1,8-position, 1,3-position, 1,4-position, or 2,7-position.
  • Rb, Rc, Rd, Re, Rf and Rg in the general formula (7), and the alkyl group and aryl group in Ri and Rj in the general formula (8) have the same meanings as those in the general formula (6).
  • cyanato-substituted aromatic compound represented by the general formula (6) include cyanatobenzene, 1-cyanato-2-, 1-cyanato-3-, or 1-cyanato-4-methylbenzene, 1 -Cyanato-2-, 1-cyanato-3-, or 1-cyanato-4-methoxybenzene, 1-cyanato-2,3-, 1-cyanato-2,4-, 1-cyanato-2,5-, 1-cyanato-2,6-, 1-cyanato-3,4- or 1-cyanato-3,5-dimethylbenzene, cyanatoethylbenzene, cyanatobutylbenzene, cyanatooctylbenzene, cyanatononylbenzene, 2- (4-cyanaphenyl) -2-phenylpropane (cyanate of 4- ⁇ -cumylphenol), 1-cyanato-4-cyclohexylbenzene, 1-cyanato-4-vinylben 1-cyana
  • 2,2-bis (4-cyanatophenyl) propane prepolymer is preferable from the viewpoint of excellent heat resistance, dielectric constant, and dielectric loss tangent.
  • cyanate ester compounds can be used singly or in combination of two or more.
  • phenol novolak resins and cresol novolak resins phenol, alkyl-substituted phenol or halogen-substituted phenol, formalin, paraformaldehyde, etc. by a known method.
  • Formaldehyde compound in an acidic solution trisphenol novolak resin (reacted hydroxybenzaldehyde and phenol in the presence of an acidic catalyst), fluorene novolak resin (fluorenone compound and 9,9-).
  • Phenol-modified xylene formaldehyde resin by known method, xylene formaldehyde resin and phenol compound Reacted in the presence of an acidic catalyst
  • modified naphthalene formaldehyde resin reacted in a known manner with a naphthalene formaldehyde resin and a hydroxy-substituted aromatic compound in the presence of an acidic catalyst
  • phenol-modified dicyclopentadiene resin Phenol resin having a polynaphthylene ether structure (polyhydric naphthalene compound having two or more phenolic hydroxy groups in one molecule by dehydration condensation in the presence of a basic catalyst), etc.
  • cyanate ester compounds can be used alone or in combination of two or more. Moreover, it is preferable to use these cyanate ester compounds together with the cyanate ester compound represented by the general formula (6) because of excellent heat resistance, dielectric constant, and dielectric loss tangent.
  • phenol novolac type cyanate ester compound naphthol aralkyl type cyanate ester compound, biphenyl aralkyl type cyanate ester compound, naphthylene ether type cyanate ester compound, xylene resin type cyanate ester compound, adamantane skeleton type cyanate ester A compound is preferable, and a naphthol aralkyl cyanate compound is particularly preferable from the viewpoint of heat resistance.
  • the method for producing these cyanate ester compounds is not particularly limited, and a known method can be used. Examples of such production methods include a method of obtaining or synthesizing a hydroxy group-containing compound having a desired skeleton, and modifying the hydroxy group by a known method to form cyanate. Examples of the method for cyanating a hydroxy group include the methods described in Ian Hamerton, “Chemistry and Technology of Cyanate Ester Resins,” “Blackie Academic & Professional”.
  • the cured resin using these cyanate ester compounds has excellent properties such as glass transition temperature, low thermal expansion, and plating adhesion.
  • the content of the cyanate ester compound is not particularly limited, but from the viewpoint of excellent heat resistance, dielectric constant, and dielectric loss tangent, relative to 100 parts by mass of resin solid content in the resin composition.
  • the amount is preferably 0.1 to 50 parts by weight, more preferably 0.2 to 40 parts by weight, still more preferably 0.3 to 20 parts by weight, and still more preferably. It is 0.5 to 10 parts by mass, and even more preferably 1 to 5 parts by mass.
  • epoxy resin if it is a compound which has a 2 or more epoxy group in 1 molecule, a well-known thing can be used suitably, The kind is not specifically limited. Specific examples thereof include, for example, bisphenol A type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol A novolac type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, Cresol novolak type epoxy resin, xylene novolak type epoxy resin, polyfunctional phenol type epoxy resin, naphthalene type epoxy resin, naphthalene skeleton modified novolak type epoxy resin, naphthylene ether type epoxy resin, phenol aralkyl type epoxy resin, anthracene type epoxy resin, Trifunctional phenolic epoxy resin, tetrafunctional phenolic epoxy resin, triglycidyl isocyanurate, glycidyl ester epoxy resin, alicyclic Poxy resin, dicyclopen
  • biphenyl aralkyl type epoxy resins are preferred in terms of flame retardancy and heat resistance.
  • These epoxy resins may be used alone or in combination of two or more.
  • the content of the epoxy resin is not particularly limited, and is preferably 0.1 part by weight to 50 parts by weight, more preferably 0.2 part by weight to 100 parts by weight of the resin solid content in the resin composition. 45 parts by mass, more preferably 5 to 40 parts by mass, still more preferably 10 to 25 parts by mass, still more preferably 15 to 25 parts by mass, and most preferably Is 12 to 20 parts by mass.
  • the content of the epoxy resin is within the above range, flame retardancy and heat resistance tend to be further improved.
  • phenol resin a generally known resin can be used as long as it is a phenol resin having two or more hydroxyl groups in one molecule.
  • phenol resin a generally known resin can be used as long as it is a phenol resin having two or more hydroxyl groups in one molecule.
  • bisphenol A type phenol resin bisphenol E type phenol resin, bisphenol F type phenol resin, bisphenol S type phenol resin, phenol novolac resin, bisphenol A novolac type phenol resin, glycidyl ester type phenol resin, aralkyl novolac type phenol resin, biphenyl Aralkyl type phenolic resin, cresol novolac type phenolic resin, polyfunctional phenolic resin, naphthol resin, naphthol novolac resin, polyfunctional naphthol resin, anthracene type phenolic resin, naphthalene skeleton modified novolak type phenolic resin, phenolaralkyl type phenolic resin, naphthol aralkyl type
  • phenol resins biphenyl aralkyl type phenol resins, naphthol aralkyl type phenol resins, phosphorus-containing phenol resins, and hydroxyl group-containing silicone resins are preferable in terms of flame retardancy. These phenol resins can be used alone or in admixture of two or more.
  • the content of the phenol resin is not particularly limited, and is preferably 0.1 part by mass to 50 parts by mass, and more preferably 0.2 part by mass to 100 parts by mass of the resin solid content in the resin composition.
  • the amount is 45 parts by mass, more preferably 0.3 to 40 parts by mass.
  • oxetane resin generally known oxetane resins can be used.
  • the content of the oxetane resin is not particularly limited, and is preferably 0.1 parts by mass to 50 parts by mass, more preferably 0.2 parts by mass to 100 parts by mass of the resin solid content in the resin composition.
  • the amount is 45 parts by mass, more preferably 0.3 to 40 parts by mass.
  • benzoxazine compound generally known compounds can be used as long as they have two or more dihydrobenzoxazine rings in one molecule.
  • bisphenol A type benzoxazine BA-BXZ (trade name, manufactured by Konishi Chemical) bisphenol F type benzoxazine BF-BXZ (trade name, manufactured by Konishi Chemical), bisphenol S type benzoxazine BS-BXZ (trade name, manufactured by Konishi Chemical) ), Phenolphthalein type benzoxazine and the like, but not particularly limited.
  • BA-BXZ trade name, manufactured by Konishi Chemical
  • bisphenol F type benzoxazine BF-BXZ (trade name, manufactured by Konishi Chemical)
  • bisphenol S type benzoxazine BS-BXZ (trade name, manufactured by Konishi Chemical)
  • Phenolphthalein type benzoxazine and the like but not particularly limited. These can be used alone or in combination of two or more.
  • the content of the benzoxazine compound is not particularly limited, and is preferably 0.1 to 50 parts by mass, more preferably 0.2 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition. Is 45 parts by mass, more preferably 0.3 part by mass to 40 parts by mass. When the content of the benzoxazine compound is within the above range, the heat resistance tends to be further improved.
  • a compound having an ethylenically unsaturated group can be used in combination in order to improve thermosetting and curability by active energy rays (for example, photocurability by ultraviolet rays).
  • active energy rays for example, photocurability by ultraviolet rays.
  • the compound which has an ethylenically unsaturated group used for this embodiment will not be specifically limited if it is a compound which has one or more ethylenically unsaturated groups in 1 molecule, For example, (meth) acryloyl group, vinyl group And the like. These can be used alone or in admixture of two or more.
  • a compound having a (meth) acryloyl group methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate, polyethylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate monomethyl ether , Phenylethyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, butanediol di (meth) acrylate, hexanediol di (meth) acrylate, Neopentyl glycol di (meth) acrylate, nonanediol di (meth) acrylate, glycol di (meth) acrylate, diethylenedi (meth) a Relate,
  • urethane (meth) acrylates that have (meth) acryloyl groups and urethane bonds in the same molecule
  • polyester (meth) acrylates that have (meth) acryloyl groups and ester bonds in the same molecule
  • epoxy resins Epoxy (meth) acrylates derived from the above and having a (meth) acryloyl group, and reactive oligomers in which these bonds are used in combination.
  • the urethane (meth) acrylate is a reaction product of a hydroxyl group-containing (meth) acrylate, a polyisocyanate, and other alcohols used as necessary.
  • hydroxyalkyl (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, glycerin (meta) such as glycerin mono (meth) acrylate, glycerin di (meth) acrylate, etc.
  • Sugar alcohol (meth) acrylates such as acrylates, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, toluene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate , Isophorone diisocyanate, norbornene diisocyanate, xylene diisocyanate, hydrogenated xylene diisocyanate Dicyclohexane diisocyanate, and their isocyanurate, by reacting polyisocyanates such as buret reactants, the urethane (meth) acrylates.
  • polyisocyanates such as buret reactants, the urethane (meth) acrylates.
  • the above epoxy (meth) acrylates are carboxylate compounds of a compound having an epoxy group and (meth) acrylic acid.
  • phenol novolac type epoxy (meth) acrylate cresol novolac type epoxy (meth) acrylate, trishydroxyphenylmethane type epoxy (meth) acrylate, dicyclopentadienephenol type epoxy (meth) acrylate, bisphenol A type epoxy (meth) acrylate Bisphenol F type epoxy (meth) acrylate, biphenol type epoxy (meth) acrylate, bisphenol A novolak type epoxy (meth) acrylate, naphthalene skeleton-containing epoxy (meth) acrylate, glyoxal type epoxy (meth) acrylate, heterocyclic epoxy ( And (meth) acrylates, their anhydride-modified epoxy (meth) acrylates, compounds represented by the general formula (1), and the like.
  • R ⁇ 1 > represents a hydrogen atom or a methyl group each independently.
  • R ⁇ 2 > represents a hydrogen atom or a methyl group each independently. Among them, preferably comprises a methyl group from the viewpoint of improving the heat resistance of the cured product, and more preferably all of R 2 is a methyl group.
  • R ⁇ 3 > represents the substituent represented by the said Formula (2), the substituent represented by the said Formula (3), or a hydroxy group each independently. Among these, it is preferable that a hydroxyl group is included from a viewpoint of improving heat resistance. Moreover, in this embodiment, it is also preferable from a viewpoint of improving developability to use the compound containing the substituent represented by said Formula (2) among several R ⁇ 3 >. In the present embodiment, it is also preferable to use a compound containing a substituent represented by the formula (3) among the plurality of R 3 from the viewpoint of improving heat resistance.
  • R 4 represents a hydrogen atom or a methyl group. Among these, a hydrogen atom is preferable from the viewpoint of improving the reactivity of the photocuring reaction.
  • the plurality of R 3 have a ratio of the substituent represented by the formula (2) of 20% or more and 85% or less of all the substituents of R 3 , and the formula (3). Is preferably 5% to 70%, and the hydroxy group is preferably 10% to 75%.
  • the compound represented by the general formula (1) includes at least one of the following compounds (A1) to (A5), which can improve the reactivity of the photocuring reaction, the heat resistance of the cured product, and the developability. It is preferable because it can be improved, more preferably at least the compound (A1) is included, more preferably any two or more of (A1) to (A5), the compound (A1) and the compound (A2) to More preferably, any one or more of (A5) is included.
  • the acid value of the compound represented by the general formula (1) is 30 mgKOH / g or more from the viewpoint of improving developability, and is more preferably 50 mgKOH / g or more because developability is further improved.
  • the acid value of the compound represented by the general formula (1) is 120 mgKOH / g or less, which can further prevent dissolution. It is preferable that it is 110 mgKOH / g or less.
  • the “acid value” in the present embodiment indicates a value measured by a method according to JISK 0070: 1992.
  • Examples of the acid anhydride-modified epoxy acrylate include acid-modified bisphenol F type epoxy acrylate.
  • Commercially available products may be used.
  • Examples of those represented by the general formula (1) include KAYARAD (registered trademark) ZCR-6001H and KAYARAD (registered trademark) manufactured by Nippon Kayaku Co., Ltd.
  • ZCR-6002H KAYARAD (registered trademark) ZCR-6006H
  • KAYARAD (registered trademark) ZCR-6007H KAYARAD (registered trademark) ZCA-601H (trade name), and the like.
  • Examples of the acid-modified bisphenol F type epoxy acrylate include KAYARAD (registered trademark) ZFR-1553H (trade name) manufactured by Nippon Kayaku Co., Ltd.
  • Examples of the compound having a vinyl group include vinyl ethers such as ethyl vinyl ether, propyl vinyl ether, hydroxyethyl vinyl ether, ethylene glycol divinyl ether, and a bifunctional phenylene ether oligomer having a vinyl group.
  • Examples of styrenes include styrene, methyl styrene, ethyl styrene, divinyl benzene, ⁇ -methyl styrene, and oligomers thereof.
  • Other vinyl compounds include triallyl isocyanurate, trimethallyl isocyanurate, bisallyl nadiimide and the like.
  • a bifunctional phenylene ether oligomer having a vinyl group an oligomer of ⁇ -methylstyrene, an acid-modified bisphenol F type epoxy (meth) acrylate, a compound represented by the above general formula (1) and dipentaerythritol hexa (meth) acrylate It is more preferable that it is at least one selected from the group consisting of good heat resistance, dielectric constant, and dielectric loss tangent.
  • thermosetting When thermosetting is required, a bifunctional phenylene ether oligomer having a vinyl group and / or an ⁇ -methylstyrene oligomer is cured well and has good fine wiring embedding and solder heat resistance, dielectric properties. It is preferable because of its excellent ratio and dielectric loss tangent.
  • acid-modified bisphenol F-type epoxy (meth) acrylate the compound represented by the general formula (1)
  • dipentaerythritol hexa (meth) acrylate it is preferable to include the above, because excellent fine wiring embedding property and solder heat resistance, and also excellent in dielectric constant, dielectric loss tangent and developability, it is preferable to use the compound represented by the general formula (1), Since it is excellent in heat resistance, it is more preferable. By including the compound having such an ethylenically unsaturated group, the heat resistance of the resulting cured product tends to be further improved.
  • These compounds having an ethylenically unsaturated group can be used alone or in combination of two or more.
  • these compounds having an ethylenically unsaturated group may contain isomers such as structural isomers and stereoisomers, and two or more compounds having different structures may be used in appropriate combination.
  • the content of the compound having an ethylenically unsaturated group is not particularly limited, and is preferably 0.1 part by mass to 90 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition, and more preferably 0.2 parts by mass to 85 parts by mass.
  • the compound having an ethylenically unsaturated group is within the above range, the solder heat resistance tends to be further improved.
  • thermosetting it can be cured well, and good fine wiring embedding and solder heat resistance, dielectric constant and dielectric loss tangent can be obtained.
  • the content is preferably 5 parts by weight to 90 parts by weight, more preferably 7 parts by weight to 85 parts by weight, and still more preferably 10 parts by weight with respect to 100 parts by weight of the resin solid content in the resin composition. Is 83 parts by mass.
  • the content of the compound having an ethylenically unsaturated group is obtained because good fine wiring embedding property and solder heat resistance, dielectric constant, dielectric loss tangent and developability are obtained.
  • Is preferably 5 parts by weight to 90 parts by weight, more preferably 7 parts by weight to 85 parts by weight, and even more preferably 10 parts by weight to 80 parts by weight with respect to 100 parts by weight of the resin solid content in the resin composition. Parts by mass, and more preferably 10 parts by mass to 73 parts by mass.
  • a filler (C) other than the silica-coated fluororesin particles (A) (hereinafter referred to as other filler (C)) is included within the range in which the characteristics of the present embodiment are not impaired. You may contain.
  • another filler (C) in combination desired properties such as flame retardancy, heat resistance, and thermal expansion properties of the cured product can be improved.
  • fillers (C) are not particularly limited as long as they have insulating properties.
  • At least one selected from the group consisting of silica, aluminum hydroxide, boehmite, magnesium oxide, magnesium hydroxide, and barium sulfate is preferable. These can be used alone or in admixture of two or more. These other fillers (C) may be surface-treated with a silane coupling agent described later.
  • silica is preferable, and fused silica is particularly preferable.
  • Specific examples of silica include SFP-130MC manufactured by Denka Corporation, SC2050-MB, SC2050-MNU, SC1050-MLE, YA010C-MFN, YA050C-MJA manufactured by Admatechs Corporation.
  • the average particle diameter of the other filler (C) is not particularly limited, but the median diameter is preferably 15 ⁇ m or less from the viewpoint of improving the dispersibility of the other filler (C) in the resin composition. From the viewpoint of improving the dispersibility of the other filler (C) in the resin composition, the median diameter is preferably 0.005 ⁇ m or more.
  • median diameter means the number or mass of particles on the larger particle size side and the particle size distribution when the particle size distribution of the powder is divided into two on the basis of a certain particle size.
  • the number or mass on the smaller side means a particle diameter that occupies 50% of the total powder.
  • the median diameter is measured by a wet laser diffraction / scattering method.
  • the content of the other filler (C) is not particularly limited, but from the viewpoint of improving the heat resistance of the cured product, 5 mass with respect to 100 mass parts of the resin composition.
  • Part or more preferably 10 parts by weight or more, more preferably 20 parts by weight or more.
  • it is preferably 400 parts by mass or less, and 350 parts by mass or less with respect to 100 parts by mass of the resin composition. More preferably, it is more preferably 300 parts by mass or less, and still more preferably 100 parts by mass or less.
  • the resin composition of the present embodiment may contain a silane coupling agent and / or a wetting and dispersing agent as long as the characteristics of the present embodiment are not impaired.
  • silane coupling agent and / or the wetting and dispersing agent in combination, desired properties such as the dispersibility of the filler and the adhesive strength between the resin and the filler can be improved.
  • the silane coupling agent is not particularly limited as long as it is a silane coupling agent generally used for the surface treatment of a filler.
  • Specific examples include, for example, vinylsilanes such as vinyltrimethoxysilane and vinyltriethoxysilane, and aminosilanes such as ⁇ -aminopropyltriethoxysilane and N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane; Epoxy silanes such as ⁇ -glycidoxypropyltrimethoxysilane; Acrylic silanes such as ⁇ -acryloxypropyltrimethoxysilane; N- ⁇ - (N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane hydrochloride Cationic silanes such as salts and hydrochlorides of N- (vinylbenzene) -2-aminoethyl-3-aminoprop
  • the content of the silane coupling agent is not particularly limited, but is usually 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin composition.
  • the wetting and dispersing agent is not particularly limited as long as it is a dispersion stabilizer used for coatings. Specific examples include wet dispersing agents such as DISPERBYK (registered trademark) -110, 111, 118, 180, 161, BYK (registered trademark) -W996, W9010, and W903 manufactured by Big Chemie Japan Co., Ltd. . These wetting and dispersing agents can be used alone or in appropriate combination of two or more. In the resin composition of the present embodiment, the content of the wetting and dispersing agent is not particularly limited, but is usually 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin composition.
  • the resin composition of the present embodiment may contain a flame retardant (D) as long as the characteristics of the present embodiment are not impaired.
  • a flame retardant (D) in combination, desired properties such as flame retardancy, heat resistance, and thermal expansion properties of the cured product can be improved.
  • a flame retardant (D) if it has insulation, a well-known thing can be used.
  • examples include brominated organic compounds such as brominated polycarbonate, decabromodiphenylethane, 4,4-dibromobiphenyl, and ethylenebistetrabromophthalimide, but are not particularly limited. These can be used alone or in combination of two or more.
  • the content of the flame retardant (D) is not particularly limited, but is usually 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin composition in the resin composition. The amount is preferably 1 to 10 parts by mass.
  • a resin component maleimide compound, epoxy resin, compound having an ethylenically unsaturated group, phenol resin, oxetane resin, or the like
  • the photocuring initiator (E) may be contained as long as the characteristics of the present embodiment are not impaired.
  • a photocuring initiator (E) Generally a well-known thing can be used in the field
  • benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isobutyl ether, benzoyl peroxide, lauroyl peroxide, acetyl peroxide, parachlorobenzoyl peroxide, di-tert-butyl-di- Organic peroxides exemplified by perphthalate, acetophenone, 2,2-diethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy-2-methyl -Phenylpropan-1-one, diethoxyacetophenone, 1-hydroxylcyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propane- -Acetophenones such as ON, anthraquinones such as 2-eth, 2-
  • Thioxanthones such as acetophenone dimethyl ketal and benzyl dimethyl ketal
  • benzophenones such as benzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, 4,4'-bismethylaminobenzophenone, 2,4,6-trimethyl Phosphine oxides such as benzoyldiphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 1,2-octanedione, 1- [4- Radical photocuring initiators such as oxime esters such as phenylthio)-, 2- (O-benzoyloxime)], and Lewis acids such as p-methoxyphenyldiazonium fluorophosphonate and N, N-diethylaminophenyldiazonium hexafluorophosphonate Diazonium salt, diphenyliodonium hexafluor
  • 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (from the viewpoint of reactivity suitable for multilayer printed wiring board applications and high reliability for metal conductors)
  • a radical photocuring initiator of acetophenones such as ISFacure (registered trademark) 369 manufactured by BASF Japan Ltd. is preferable.
  • photocuring initiators (E) can be used singly or in appropriate combination of two or more, and both radical and cationic initiators may be used in combination.
  • the content of the photocuring initiator (E) in the resin composition of the present embodiment is not particularly limited, but from the viewpoint of sufficiently curing the resin composition with active energy rays and improving heat resistance, the resin composition. It is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, still more preferably 0.3 parts by mass or more, relative to 100 parts by mass of the resin solid content therein. It is still more preferable to set it as 1 mass part or more. Further, from the viewpoint of inhibiting heat curing after photocuring and reducing heat resistance, it is preferably 30 parts by mass or less, and 25 parts by mass or less with respect to 100 parts by mass of the resin solid content in the resin composition. More preferably, it is more preferably 20 parts by mass or less, still more preferably 10 parts by mass or less.
  • thermosetting accelerator In the resin composition of the present embodiment, a thermosetting accelerator can be used in combination as long as the characteristics of the present embodiment are not impaired.
  • the thermosetting accelerator is not particularly limited, and examples thereof include organic peroxides exemplified by benzoyl peroxide, lauroyl peroxide, acetyl peroxide, parachlorobenzoyl peroxide, di-tert-butyl-di-perphthalate, and the like.
  • Azo compounds such as azobisnitrile; N, N-dimethylbenzylamine, N, N-dimethylaniline, N, N-dimethyltoluidine, 2-N-ethylanilinoethanol, tri-n-butylamine, pyridine, quinoline , N-methylmorpholine, triethanolamine, triethylenediamine, tetramethylbutanediamine, tertiary amines such as N-methylpiperidine; phenols such as phenol, xylenol, cresol, resorcin, catechol; lead naphthenate, stearic acid Lead, na Organometallic salts such as zinc tenate, zinc octylate, tin oleate, dibutyltin malate, manganese naphthenate, cobalt naphthenate, and acetylacetone iron; these organic metal salts are dissolved in hydroxyl-containing compounds such as phenol and bisphenol In
  • thermosetting accelerators can be used singly or in appropriate combination of two or more.
  • the content of the thermosetting accelerator is not particularly limited, but is usually 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin composition in the resin composition.
  • the resin composition of the present embodiment may contain a solvent as necessary.
  • a solvent for example, when an organic solvent is used, the viscosity at the time of preparing the resin composition can be adjusted.
  • the kind of solvent will not be specifically limited if it can melt
  • These organic solvents can be used alone or in combination of two or more.
  • thermosetting resins thermoplastic resins and oligomers thereof, elastomers, etc.
  • Flame retardant compound not mentioned so far; combined use of additives and the like is also possible. These are not particularly limited as long as they are generally used.
  • flame retardant compounds include nitrogen-containing compounds such as melamine and benzoguanamine, oxazine ring-containing compounds, phosphate compounds of phosphorus compounds, aromatic condensed phosphate esters, and halogen-containing condensed phosphate esters.
  • Additives include UV absorbers, antioxidants, fluorescent brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, antifoaming agents, surface conditioners, brighteners, polymerization inhibitors, etc. It is done. These components can be used alone or in appropriate combination of two or more. In the resin composition of the present embodiment, the content of other components is not particularly limited, but is usually 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin composition.
  • the resin composition of this embodiment is prepared by appropriately mixing the silica-coated fluororesin particles (A), the resin component (B), and other optional components described above as desired.
  • the resin composition of the present embodiment can be suitably used as a prepreg of the present embodiment, which will be described later, and a varnish for producing a resin sheet.
  • Method for producing resin composition> The manufacturing method of the resin composition of this embodiment is not specifically limited, For example, the method of mix
  • a known process for uniformly dissolving or dispersing each component can be performed as necessary.
  • the dispersibility of the silica-coated fluororesin particles (A) in the resin composition can be improved by performing a stirring and dispersing treatment using a stirring tank provided with a stirrer having an appropriate stirring ability.
  • the stirring, mixing, and kneading processes described above are, for example, a stirring device for dispersion such as an ultrasonic homogenizer, a device for mixing such as a three-roll, ball mill, bead mill, and sand mill, or a revolving or rotating type.
  • an organic solvent can be used as needed.
  • the type of the organic solvent is not particularly limited as long as it can dissolve the resin in the resin composition, and specific examples thereof are as described above.
  • the resin composition of the present embodiment can be used for applications where an insulating resin composition is required, and is not particularly limited, but includes an insulating resin sheet such as a photosensitive film, a photosensitive film with a support, and a prepreg. It can be used for applications such as circuit boards (for laminated boards, multilayer printed wiring boards, etc.), solder resists, underfill materials, die bonding materials, semiconductor encapsulants, hole-filling resins, component-filling resins, and the like. Among these, it can be suitably used as a resin composition for an insulating layer of a multilayer printed wiring board or a solder resist.
  • the prepreg of this embodiment is obtained by impregnating or coating the base material with the resin composition of this embodiment described above.
  • the manufacturing method of a prepreg will not be specifically limited if it is a method of manufacturing a prepreg combining the resin composition of this embodiment, and a base material.
  • the prepreg of the present embodiment is semi-cured by a method such as drying at 120 to 220 ° C. for about 2 to 15 minutes. Can be manufactured.
  • the amount of the resin composition attached to the substrate that is, the amount of the resin composition (including the filler) with respect to the total amount of the prepreg after semi-curing is preferably in the range of 20 to 99% by mass.
  • the base material used when manufacturing the prepreg of the present embodiment known materials used for various printed wiring board materials can be used.
  • glass fibers such as E glass, D glass, L glass, S glass, T glass, Q glass, UN glass, NE glass and spherical glass, inorganic fibers other than glass such as quartz, organic materials such as polyimide, polyamide and polyester
  • woven fabrics such as a fiber and liquid crystal polyester, are mentioned, It does not specifically limit to these.
  • a base material can be used individually by 1 type or in combination of 2 or more types.
  • the thickness of the substrate is not particularly limited, but is preferably in the range of 0.01 to 0.2 mm for use in a laminate, and a woven fabric that has been subjected to ultra-opening treatment or plugging treatment is particularly suitable for dimensional stability.
  • a glass woven fabric surface-treated with a silane coupling agent such as epoxy silane treatment or amino silane treatment is preferable from the viewpoint of moisture absorption heat resistance.
  • a liquid crystal polyester woven fabric is preferable from the viewpoint of electrical characteristics.
  • the metal foil-clad laminate of this embodiment is obtained by laminating and forming at least one prepreg as described above and placing metal foil on one side or both sides thereof. Specifically, it can be produced by laminating one or a plurality of the aforementioned prepregs, placing a metal foil such as copper or aluminum on one side or both sides thereof, and laminating.
  • the metal foil used here will not be specifically limited if it is used for printed wiring board material, Copper foil, such as a rolled copper foil and an electrolytic copper foil, is preferable.
  • the thickness of the metal foil is not particularly limited, but is preferably 2 to 70 ⁇ m, more preferably 3 to 35 ⁇ m.
  • a general laminated board for a printed wiring board and a multilayer board can be applied.
  • a multi-stage press machine a multi-stage vacuum press machine, a continuous molding machine, an autoclave molding machine, etc.
  • laminating and molding at a temperature of 180 to 350 ° C., a heating time of 100 to 300 minutes, and a surface pressure of 20 to 100 kg / cm 2.
  • the metal foil-clad laminate of the present invention can be manufactured.
  • it can also be set as a multilayer board by carrying out the lamination
  • a 35 ⁇ m copper foil is disposed on both surfaces of one prepreg described above, laminated under the above conditions, an inner layer circuit is formed, and blackening treatment is performed on this circuit.
  • the inner circuit board is then formed, and then the inner circuit board and the prepreg are alternately arranged one by one, and the copper foil is further disposed on the outermost layer, and preferably laminated under the above conditions, preferably under vacuum By doing so, a multilayer board can be produced.
  • the resin sheet of this embodiment can be obtained by applying a solution obtained by dissolving the resin composition of this embodiment in a solvent to a support and drying it.
  • the support used here include a polyethylene film, a polypropylene film, a polycarbonate film, a polyethylene terephthalate film, an ethylenetetrafluoroethylene copolymer film, a release film in which a release agent is applied to the surface of these films, and a polyimide.
  • examples thereof include organic film base materials such as films, conductor foils such as copper foil and aluminum foil, and plate-like materials such as glass plates, SUS plates, and FRP, but are not particularly limited.
  • the resin composition layer may be protected with a protective film.
  • a protective film By protecting the resin composition layer side with a protective film, it is possible to prevent adhesion or scratches of dust or the like to the surface of the resin composition layer.
  • a protective film a film made of the same material as the above resin film can be used.
  • the thickness of the protective film is not particularly limited, but is preferably in the range of 1 ⁇ m to 50 ⁇ m, and more preferably in the range of 5 ⁇ m to 40 ⁇ m. When the thickness is less than 1 ⁇ m, the handleability of the protective film tends to be lowered, and when it exceeds 50 ⁇ m, the inexpensiveness tends to be inferior.
  • the protective film preferably has a smaller adhesive force between the resin composition layer and the protective film than the adhesive force between the resin composition layer and the support.
  • a support and a resin sheet are obtained by applying a solution obtained by dissolving the resin composition of the present embodiment in a solvent onto a support using a bar coater, a die coater, a doctor blade, a baker applicator, or the like.
  • a method of producing an integrated laminated sheet can also be set as the single
  • a support is used by forming a sheet in which a solution obtained by dissolving the resin composition of the present embodiment in a solvent is supplied into a mold having a sheet-like cavity and dried. A single layer sheet can also be obtained.
  • the drying conditions for removing the solvent are not particularly limited, but the solvent is likely to remain in the resin composition at a low temperature, and the temperature is high. In some cases, since the curing of the resin composition proceeds, the temperature is preferably 20 to 200 ° C. for 1 to 90 minutes. Further, the thickness of the resin layer of the resin sheet (single layer or laminated sheet) of the present embodiment can be adjusted by the concentration of the resin composition solution and the coating thickness of the present embodiment, and is not particularly limited. Since the solvent tends to remain at the time of drying when the coating thickness is thick, the thickness is preferably 0.1 to 500 ⁇ m.
  • the metal foil-clad laminate and resin sheet of this embodiment can be suitably used as a printed wiring board.
  • the printed wiring board can be manufactured according to a conventional method, and the manufacturing method is not particularly limited.
  • an example of the manufacturing method of the printed wiring board using a metal foil tension laminated board is shown. First, a metal foil clad laminate such as the copper clad laminate described above is prepared. Next, an etching process is performed on the surface of the metal foil-clad laminate to form an inner layer circuit, thereby producing an inner layer substrate.
  • the inner layer circuit surface of the inner layer substrate is subjected to a surface treatment to increase the adhesive strength as necessary, and then the above-described prepreg or the required number of layers are stacked on the inner layer circuit surface, and the outer layer circuit metal foil is laminated on the outer side. Then, it is integrally molded by heating and pressing. In this way, a multilayer laminate is produced in which an insulating layer made of a cured material of the base material and the thermosetting resin composition is formed between the inner layer circuit and the metal foil for the outer layer circuit. Next, after drilling for the through holes and via holes in the multilayer laminate, a plated metal film is formed on the wall surface of the hole to connect the inner layer circuit and the metal foil for the outer layer circuit. A printed wiring board is manufactured by performing an etching process on the metal foil for forming an outer layer circuit.
  • the printed wiring board obtained in the above production example has an insulating layer and a conductor layer formed on the surface of the insulating layer, and the insulating layer includes the above-described resin composition of the present embodiment. That is, the prepreg of the present embodiment described above (the base material and the resin composition of the present embodiment impregnated or coated thereon), the layer of the resin composition of the metal foil-clad laminate of the present embodiment described above (of the present invention).
  • the layer made of the resin composition is composed of an insulating layer containing the resin composition of the present embodiment.
  • the resin sheet of this embodiment can be suitably used as an interlayer insulating layer of a printed wiring board, and can be obtained by stacking and curing one or more of the above-described resin sheets. Specifically, it can be produced by the following method.
  • the resin composition layer side of the resin sheet of this embodiment is molded on one or both sides of the circuit board.
  • the molding conditions ordinary laminates for printed wiring boards and multilayer boards can be applied, and molding can be performed by vacuum lamination.
  • the circuit board include a glass epoxy board, a metal board, a ceramic board, a silicon board, a semiconductor sealing resin board, a polyester board, a polyimide board, a BT resin board, and a thermosetting polyphenylene ether board.
  • the circuit board refers to a board on which a conductor layer (circuit) patterned on one or both sides of the board is formed.
  • a substrate that is a conductor layer (circuit) in which one or both surfaces of the outermost layer of the multilayer printed wiring board are patterned It is included in the circuit board here.
  • the surface of the conductor layer may be previously roughened by blackening, copper etching, or the like.
  • the resin sheet has a protective film
  • the protective film is peeled and removed, and then the resin sheet and the circuit board are preheated as necessary, while the resin composition layer is pressed and heated. Crimp to circuit board.
  • a method of laminating on a circuit board under reduced pressure by a vacuum laminating method is suitably used.
  • the conditions for the laminating step are not particularly limited.
  • the pressure bonding temperature (laminating temperature) is preferably 50 ° C. to 140 ° C.
  • the pressure bonding pressure is preferably 1 kgf / cm 2 to 15 kgf / cm 2
  • the pressure bonding time is preferable. Is preferably laminated for 5 seconds to 300 seconds under reduced pressure with an air pressure of 20 mmHg or less.
  • the laminating step may be a batch type or a continuous type using a roll.
  • the vacuum laminating method can be performed using a commercially available vacuum laminator. As a commercially available vacuum laminator, for example, a 2-stage build-up laminator manufactured by Nikko Materials Co., Ltd. can be exemplified.
  • Hole processing is performed to form via holes and through holes.
  • the hole processing is performed by using any one of known methods such as NC drill, carbon dioxide laser, UV laser, YAG laser, plasma, or a combination of two or more if necessary.
  • the resin sheet is a photocurable resin composition
  • the hole processing can be performed by exposure and development.
  • a post-bake process is performed as necessary before or after the hole processing to form an insulating layer (cured product).
  • the post-bake process include an ultraviolet irradiation process using a high-pressure mercury lamp and a heating process using a clean oven. Case of ultraviolet irradiation can adjust its dose optionally, the irradiation can be carried out, for example 0.05J / cm 2 ⁇ 10J / cm 2 of about dose.
  • the heating conditions may be appropriately selected according to the type and content of the resin component in the resin composition, but are preferably 150 ° C. to 220 ° C. for 20 minutes to 180 minutes, more preferably 160 ° C. It is selected in the range of 30 minutes to 150 minutes at ⁇ 200 ° C.
  • a plated metal film is formed on the wall surface of the hole to conduct the inner layer circuit and the metal foil for the outer layer circuit, and the outer layer circuit is formed by etching the metal foil for the outer layer circuit.
  • a printed wiring board is manufactured by forming.
  • a conductor layer is then formed on the surface of the insulating layer by dry plating or wet plating.
  • dry plating known methods such as vapor deposition, sputtering, and ion plating can be used.
  • vapor deposition method vacuum vapor deposition method
  • a metal film can be formed on the insulating layer by placing the support in a vacuum vessel and evaporating the metal by heating.
  • the support is placed in a vacuum vessel, an inert gas such as argon is introduced, a direct current voltage is applied, the ionized inert gas is made to collide with the target metal, and the struck metal is used.
  • a metal film can be formed on the insulating layer.
  • the surface of the insulating layer is roughened by performing swelling treatment with a swelling liquid, roughening treatment with an oxidizing agent, and neutralization treatment with a neutralizing liquid in this order.
  • the swelling treatment with the swelling liquid is performed by immersing the insulating layer in the swelling liquid at 50 to 80 ° C. for 1 to 20 minutes.
  • the swelling liquid include an alkaline solution, and examples of the alkaline solution include a sodium hydroxide solution and a potassium hydroxide solution.
  • Examples of commercially available swelling liquids include Updes (registered trademark) MDS-37 manufactured by Uemura Kogyo Co., Ltd.
  • the roughening treatment with an oxidizing agent is performed by immersing the insulating layer in an oxidizing agent solution at 60 to 80 ° C. for 5 to 30 minutes.
  • the oxidizing agent include alkaline permanganate solution in which potassium permanganate and sodium permanganate are dissolved in an aqueous solution of sodium hydroxide, dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid and the like. it can.
  • the concentration of permanganate in the alkaline permanganate solution is preferably 5% by mass to 10% by mass.
  • Examples of commercially available oxidizing agents include alkaline permanganate solutions such as Updes (registered trademark) MDE-40 and Updes (registered trademark) ELC-SH manufactured by Uemura Kogyo Co., Ltd.
  • the neutralization treatment with the neutralizing solution is performed by immersing in the neutralizing solution at 30 to 50 ° C. for 1 to 10 minutes.
  • the neutralizing solution is preferably an acidic aqueous solution, and a commercially available product is Updes (registered trademark) MDN-62 manufactured by Uemura Kogyo Co., Ltd.
  • a conductor layer is formed by combining electroless plating and electrolytic plating.
  • a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating.
  • a pattern formation method thereafter for example, a subtractive method, a semi-additive method, or the like can be used.
  • the semiconductor device of this embodiment includes an interlayer insulating layer containing the resin composition of this embodiment, and can be specifically manufactured by the following method.
  • a semiconductor device can be manufactured by mounting a semiconductor chip in a conductive portion of the multilayer printed wiring board of the present embodiment.
  • the conduction location is a location for transmitting an electrical signal in the multilayer printed wiring board, and the location may be the surface or an embedded location.
  • the semiconductor chip is not particularly limited as long as it is an electric circuit element made of a semiconductor.
  • the semiconductor chip mounting method for manufacturing the semiconductor device of the present embodiment is not particularly limited as long as the semiconductor chip functions effectively.
  • the wire bonding mounting method, the flip chip mounting method, and the bump are used. Examples include a mounting method using a none buildup layer (BBUL), a mounting method using an anisotropic conductive film (ACF), and a mounting method using a non-conductive film (NCF).
  • BBUL none buildup layer
  • ACF anisotropic conductive film
  • NCF non-conductive film
  • a semiconductor device can be manufactured by laminating the resin sheet of this embodiment on a semiconductor chip. After lamination, it can be produced by using the same method as the above multilayer printed wiring board.
  • the reaction was completed by stirring at the same temperature for 30 minutes. Thereafter, the reaction solution was allowed to stand to separate an organic phase and an aqueous phase.
  • the organic phase obtained was washed 5 times with 1300 g of water.
  • the electric conductivity of the waste water in the fifth washing with water was 5 ⁇ S / cm, and it was confirmed that the ionic compounds that could be removed were sufficiently removed by washing with water.
  • the organic phase after washing with water was concentrated under reduced pressure, and finally concentrated to dryness at 90 ° C. for 1 hour to obtain 331 g of the desired naphthol aralkyl-type cyanate ester compound (SNCN) (orange viscous product).
  • the obtained SNCN had a mass average molecular weight Mw of 600.
  • the IR spectrum of SNCN showed an absorption of 2250 cm ⁇ 1 (cyanate group) and no absorption of a hydroxy group.
  • the organic layer was washed with a 1N aqueous hydrochloric acid solution and then with pure water.
  • the obtained solution was concentrated with an evaporator, dropped into methanol to solidify, and the solid was collected by filtration and vacuum dried to obtain 503.5 g of a vinyl compound.
  • the number average molecular weight of the vinyl compound was 1187, the weight average molecular weight was 1,675, and the vinyl group equivalent was 590 g / vinyl group.
  • Example 1 Preparation of resin composition and prepreg
  • silica-coated fluororesin particles A
  • silica-coated PTFE filler methyl ethyl ketone hereinafter sometimes abbreviated as MEK
  • MEK silica-coated PTFE filler methyl ethyl ketone
  • slurry 0.5 ⁇ m PTFE-YA (trade name), volume average particle diameter of primary particles 0.5 ⁇ m, non-volatile 20 parts by mass, manufactured by Admatechs Co., Ltd.
  • 250 parts by mass 50 parts by mass in terms of nonvolatile content
  • 2.1 parts by mass of SNCN obtained in Synthesis Example 1, 2,2-bis ( 4-Cyanatophenyl) propane prepolymer (CA210 (trade name), cyanate equivalent weight 139, manufactured by Mitsubishi Gas Chemical Co., Ltd.) 6.6 parts by mass, brominated bisphenol A type epoxy resin (E153 (product) Name), epoxy equivalent 400, secondary hydroxyl group amount 0.3 meq
  • This varnish was diluted with methyl ethyl ketone, impregnated on a 0.1 mm thick E glass woven fabric, and dried by heating at 160 ° C. for 5 minutes to obtain a prepreg having a resin content of 50 mass%.
  • the prepreg is arranged above and below the inner layer circuit board, and 12 ⁇ m thick electrolytic copper foil (3EC-M3-VLP (trade name), manufactured by Mitsui Kinzoku Co., Ltd.) is arranged above and below, pressure 30 kgf / cm 2 , temperature 220 ° C.
  • electrolytic copper foil 3EC-M3-VLP (trade name), manufactured by Mitsui Kinzoku Co., Ltd.
  • Example 2 As silica-coated fluororesin particles (A), a silica-coated PTFE filler MEK slurry (PTFE-YA4 (trade name) with a primary particle volume average particle size of 3.0 ⁇ m, a primary particle volume average particle size of 3.0 ⁇ m, non-volatile A varnish was prepared in the same manner as in Example 1 except that 125 parts by mass (50 parts by mass in terms of non-volatile content) was used (40% by mass, manufactured by Admatechs Co., Ltd.), and the prepreg, metal foil-clad laminate, evaluation A cured product was obtained.
  • PTFE-YA4 trade name
  • Example 3 As silica-coated fluororesin particles (A), silica-coated PTFE filler MEK slurry (0.5 ⁇ m PTFE-YA (trade name), primary particle volume average particle size 0.5 ⁇ m, nonvolatile content 20% by mass, Admatechs Co., Ltd.) Manufactured) 250 parts by mass (50 parts by mass in terms of non-volatile content), as a cyanate ester compound, 2.0 parts by mass of SNCN obtained in Synthesis Example 1, 2,2-bis (4-cyanatophenyl) propane prepolymer (CA210 (trade name), cyanate equivalent 139, manufactured by Mitsubishi Gas Chemical Co., Ltd.) 6.2 parts by mass, as epoxy resin, brominated bisphenol A type epoxy resin (E153 (trade name), epoxy equivalent 400, secondary hydroxyl group
  • Synthesis Example 2 as a compound having an amount of 0.3 meq / g, DIC Corporation) 10.0 parts by mass and an ethylenically unsaturated group 72.8 parts by mass
  • Example 4 (Production of resin composition and resin sheet) As silica-coated fluororesin particles (A), silica-coated PTFE filler MEK slurry (0.5 ⁇ m PTFE-YA (trade name), primary particle volume average particle size 0.5 ⁇ m, nonvolatile content 20% by mass, Admatechs Co., Ltd.) 250 parts by mass (50 parts by mass in terms of nonvolatile content), 2.1 parts by mass of SNCN obtained in Synthesis Example 1 as a cyanate ester compound, 2,2-bis (4-cyanatophenyl) propane prepolymer (CA210 (trade name), cyanate equivalent 139, manufactured by Mitsubishi Gas Chemical Co., Ltd.) 6.6 parts by mass, as epoxy resin, brominated bisphenol A type epoxy resin (E153 (trade name), epoxy equivalent 400, secondary hydroxyl group Obtained in Synthesis Example 2 as a compound having an amount of 0.3 meq / g, manufactured by DIC Corporation) 10.6 parts by mass and having an ethylenically uns
  • silica-coated fluororesin particles A
  • silica-coated PTFE filler MEK slurry 0.5 ⁇ m PTFE-YA (trade name), primary particle volume average particle size 0.5 ⁇ m, nonvolatile content 20% by mass, Admatechs Co., Ltd.) 250 parts by mass (50 parts by mass in terms of non-volatile content)
  • maleimide compound 3.5 parts by mass of maleimide compound (BMI-2300 (trade name), manufactured by Daiwa Kasei Kogyo Co., Ltd.), biphenyl aralkyl as epoxy resin Type epoxy resin (NC3000H (trade name), manufactured by Nippon Kayaku Co., Ltd.) 19.8 parts by mass, a compound having an ethylenically unsaturated group, propylene glycol monomethyl ether acetate of an acid-modified bisphenol F type epoxy acrylate compound , May be abbreviated as PMA.) Solution (KAYARAD (registered trademark) ) Z
  • the obtained laminate was subjected to an exposure step of irradiating ultraviolet rays of 200 mJ / cm 2 , the support was peeled off, and developed with a 1% by mass aqueous sodium carbonate solution to obtain a laminate for evaluation.
  • the resin sheet was irradiated with ultraviolet rays of 200 mJ / cm 2 and further subjected to a post-baking step of heat treatment at 180 ° C. for 120 minutes, and then the support was peeled off to obtain a cured product for evaluation.
  • silica-coated fluororesin particles A
  • silica-coated PTFE filler MEK slurry 0.5 ⁇ m PTFE-YA (trade name), primary particle volume average particle size 0.5 ⁇ m, nonvolatile content 20% by mass, Admatechs Co., Ltd.
  • 100 parts by mass (20 parts by mass in terms of nonvolatile content) 3.5 parts by mass of maleimide compound (BMI-2300 (trade name), manufactured by Daiwa Kasei Kogyo Co., Ltd.), biphenyl aralkyl type epoxy resin ( 19.8 parts by mass of KAYARAD (registered trademark) NC3000H (trade name), manufactured by Nippon Kayaku Co., Ltd., as a compound having an ethylenically unsaturated group, a PMA solution of an acid-modified bisphenol F type epoxy acrylate compound (KAYARAD (registered) Trademark) ZFR-1553H (trade name), non-volatile content 68% by mass, acid value
  • Example 7 As silica-coated fluororesin particles (A), a silica-coated PTFE filler MEK slurry (PTFE-YA4 (trade name) with a primary particle volume average particle size of 3.0 ⁇ m, a primary particle volume average particle size of 3.0 ⁇ m, non-volatile A varnish was prepared in the same manner as in Example 5 except that 125 parts by mass (50 parts by mass in terms of nonvolatile content) of 40% by mass, manufactured by Admatechs Co., Ltd.) was used, and a resin sheet, an evaluation laminate, and evaluation A cured product was obtained.
  • PTFE-YA4 trade name
  • Example 8 As a compound having an ethylenically unsaturated group, a PMA solution of an acid-modified bisphenol F-type epoxy acrylate compound (KAYARAD (registered trademark) ZFR-1553H (trade name), non-volatile content: 68% by mass, acid value: 70 mgKOH / g, Nippon Kayaku Instead of Yakuhin Co., Ltd.), a TrisP-PA epoxy acrylate compound PMA solution represented by formula (4) (KAYARAD (registered trademark) ZCR-6007H (trade name), nonvolatile content 65% by mass, acid value: A varnish was prepared in the same manner as in Example 5 except that 81.2 parts by mass (70% KOH / g, manufactured by Nippon Kayaku Co., Ltd.) (52.8 parts by mass in terms of nonvolatile content) was used. A laminate and a cured product for evaluation were obtained.
  • the KAYARAD (registered trademark) ZCR-6007H is a mixture containing at least one of the compound (
  • a test piece obtained by etching away all copper foil other than half of one side of a metal foil-clad laminate 50 mm ⁇ 50 mm, or a test piece of an evaluation laminate 50 mm ⁇ 50 mm was manufactured by a pressure cooker tester (made by Hirayama Seisakusho, PC- Type 3) was treated at 121 ° C. and 2 atm for 5 hours, and the appearance change after being immersed in a solder at 260 ° C. for 60 seconds was visually observed and evaluated according to the following criteria.
  • The occurrence of blistering is observed in one of five test pieces.
  • X Occurrence of blistering is observed in 2 or more of 5 test pieces.
  • ⁇ Solder heat resistance> A metal foil-clad laminate 50 mm ⁇ 50 mm test piece or an evaluation laminate 50 mm ⁇ 50 mm test piece was floated on 280 ° C. solder for 30 minutes, and visually observed for the presence or absence of appearance abnormality, and evaluated according to the following criteria: did. ⁇ : No occurrence of swelling in 5 test pieces. X: The occurrence of blistering is observed in one or more of the five test pieces.
  • ⁇ Developability> The development surface of the evaluation laminate was visually observed and then observed with a SEM (magnification 1000 times), and the presence or absence of a residue was evaluated according to the following criteria. ⁇ : There is no development residue in the range of 30 mm square, and the developability is excellent. X: There is a development residue in the range of 30 mm square, and the developability is inferior.
  • Examples 1 to 8 are excellent in wiring embedding property and heat resistance, and have a good dielectric constant and dielectric loss tangent. Among them, Example 1, Example 4 and Example 5 have good wiring embedding property and dielectric constant. In Example 8, the heat resistance (Tg) is higher and better. On the other hand, Comparative Examples 1 to 4 are insufficient in wiring embedding property, heat resistance and dielectric constant. Therefore, according to the present invention, a resin composition having excellent dielectric constant, dielectric loss tangent, fine wiring embedding property, heat resistance and developability, prepreg using the same, metal foil-clad laminate, resin sheet, print A wiring board and a semiconductor device are obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

誘電率、誘電正接、微細配線埋め込み性、耐熱性、現像性に優れ、プリント配線板の保護膜、及び層間絶縁層に好適な物性を有する樹脂組成物、それを用いたプリプレグ、金属箔張積層板、樹脂シート、プリント配線板及び半導体装置を提供する。シリカ粒子を表面に付着させたフッ素樹脂粒子(A)及び樹脂成分(B)を含有する樹脂組成物。

Description

樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、プリント配線板及び半導体装置
 本発明は、樹脂組成物、それを用いたプリプレグ、金属箔張積層板、樹脂シート、プリント配線板及び半導体装置に関する。
 近年、電子機器や通信機、パーソナルコンピューター等に広く用いられている半導体の高集積化・微細化はますます加速し、情報通信において用いられるデータ通信の高速化及び大容量化も進んでいる。プリント配線板には、信号の伝搬遅延の短縮、伝送損失の低減を実現するために、低誘電率(低Dk)、及び低誘電正接(低Df)が求められている。これらの要求を実現するために、優れた電気特性(低誘電率・低誘電正接)を有する樹脂組成物を用いる検討が行われている。
 また、プリント配線板の小型化、高密度化により、多層プリント配線板に用いられるビルドアップ層が複層化され、配線の微細化及び高密度化が求められている。そのため、このビルドアップ層に用いられる樹脂組成物には、微細配線を埋め込むために成形時に高い流動性を有すること、及び微細配線を埋め込んだ後に高い耐熱性を有することが求められている。このような樹脂組成物においては、電気特性を良好にするために、フッ素樹脂フィラーの適用が検討されている。例えば、特許文献1においては、フッ素樹脂フィラーと併せて、ポリフェニレンエーテル樹脂を用いることで電気特性に優れた樹脂組成物が開示されている。また、特許文献2においては、フッ素樹脂フィラーと併せて、ノルボルネン系樹脂を用いることで硬化物の電気特性及び密着性に優れ、配線埋め込み性が良好な樹脂組成物が開示されている。   
特表2006-516297号公報 特開2007-177073号公報
 しかし、従来のフッ素樹脂フィラーを用いた硬化物では様々な問題があることを本発明者等は明らかにした。
 例えば、特許文献1においては、得られた硬化物の耐熱性は十分ではない。
 また、特許文献2においては、配線埋め込み後の吸湿耐熱性は十分ではない。
 そこで、本発明は、上記問題点に鑑みてなされてものであり、多層プリント配線板に用いた際に、誘電率、誘電正接、微細配線埋め込み性、耐熱性、現像性を優れたものとする樹脂組成物、それを用いたプリプレグ、金属箔張積層板、樹脂シート、プリント配線板及び半導体装置を提供することにある。
発明を解決するための手段
 本発明者らは、シリカ被覆フッ素樹脂粒子(A)及び樹脂成分(B)を含有する樹脂組成物を用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の内容を含む。
 〔1〕シリカ被覆フッ素樹脂粒子(A)及び樹脂成分(B)を含有する、樹脂組成物。
 〔2〕前記シリカ被覆フッ素樹脂粒子(A)の一次粒子の体積平均粒子径が5μm以下である、〔1〕に記載の樹脂組成物。
 〔3〕前記シリカ被覆フッ素樹脂粒子(A)の樹脂組成物中における含有量が、樹脂組成物中の樹脂固形分100質量部に対し、3~400質量部である、〔1〕又は〔2〕に記載の樹脂組成物。
 〔4〕前記樹脂成分(B)が、マレイミド化合物、シアン酸エステル化合物、エポキシ樹脂、フェノール樹脂、オキセタン樹脂、ベンゾオキサジン化合物及びエチレン性不飽和基を有する化合物からなる群から選択されるいずれか一種以上を含有する、〔1〕~〔3〕のいずれか一項に記載の樹脂組成物。
 〔5〕前記シリカ被覆フッ素樹脂粒子(A)以外の充填材(C)を更に含有する、〔1〕~〔4〕のいずれか一項に記載の樹脂組成物。
 〔6〕難燃剤(D)を更に含有する、〔1〕~〔5〕のいずれか一項に記載の樹脂組成物。
 〔7〕更に、光硬化開始剤(E)を含む、〔1〕~〔6〕のいずれか一項に記載の樹脂組成物。
 〔8〕
 前記エチレン性不飽和基を有する化合物が、ビニル基を有する2官能性フェニレンエーテルオリゴマー及びα-メチルスチレンのオリゴマーからなる群より選択される少なくとも一種以上を含む、〔4〕に記載の樹脂組成物。
 〔9〕
 前記エチレン性不飽和基を有する化合物が、酸変性ビスフェノールF型エポキシ(メタ)アクリレート、下記一般式(1)で表される化合物及びジペンタエリスリトールヘキサ(メタ)アクリレートからなる群より選択される少なくとも一種以上を含む、〔4〕に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
 (式(1)中、複数のRは、各々独立に、水素原子又はメチル基を表し、複数のRは、各々独立に、水素原子又はメチル基を表し、複数のRは、各々独立に、下記式(2)で表される置換基、下記式(3)で表される置換基又はヒドロキシ基を表す。)。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 (式(3)中、Rは、水素原子又はメチル基を表す。)。
 〔10〕
 前記エチレン性不飽和基を有する化合物が、少なくとも前記一般式(1)で表される化合物を含む、〔9〕に記載の樹脂組成物。
 〔11〕基材及び該基材に含浸又は塗布された、〔1〕~〔10〕のいずれか一項に記載の樹脂組成物を有するプリプレグ。
 〔12〕少なくとも1枚以上積層された〔11〕に記載のプリプレグ及び該プリプレグの片面又は両面に配された金属箔を有する、金属箔張積層板。
 〔13〕支持体及び該支持体の表面に配された、〔1〕~〔10〕のいずれか一項に記載の樹脂組成物を有する、樹脂シート。
 〔14〕〔1〕~〔10〕のいずれか一項に記載の樹脂組成物を有する、プリント配線板。
 〔15〕〔1〕~〔10〕のいずれか一項に記載の樹脂組成物を有する、半導体装置。
 本発明によれば、誘電率、誘電正接、微細配線埋め込み性、耐熱性、現像性に優れ、プリント配線板の保護膜、及び層間絶縁層に好適な物性を有する樹脂組成物、それを用いたプリプレグ、金属箔張積層板、樹脂シート、プリント配線板及び半導体装置を提供することができる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明はその要旨の範囲内で、適宜に変形して実施できる。
 なお、本明細書における「(メタ)アクリロイル基」とは「アクリロイル基」及びそれに対応する「メタクリロイル基」の両方を意味し、「(メタ)アクリレート」とは「アクリレート」及びそれに対応する「メタクリレート」の両方を意味し、「(メタ)アクリル酸」とは「アクリル酸」及びそれに対応する「メタクリル酸」の両方を意味する。また、本実施形態において、「樹脂固形分」又は「樹脂組成物中の樹脂固形分」とは、特に断りのない限り、樹脂組成物における、溶剤及び充填材を除いた成分をいい、「樹脂固形分100質量部」とは、樹脂組成物における、溶剤及び充填材を除いた成分の合計が100質量部であることをいうものとする。
 本実施形態の樹脂組成物はシリカ被覆フッ素樹脂粒子(A)及び樹脂成分(B)を含有することを特徴とする。以下、各成分について説明する。
 <シリカ被覆フッ素樹脂粒子(A)>
 本実施形態に用いるシリカ被覆フッ素樹脂粒子(A)は、シリカを表面に付着させたフッ素樹脂粒子であり、フッ素樹脂粒子とそのフッ素樹脂表面に付着したシリカ粒子とを有する。フッ素樹脂粒子の表面にシリカ粒子を付着させる方法としては特に限定されず、単純に混合したり、混合した後に振動を与えたりすることで実施できる。フッ素樹脂粒子表面へのシリカ粒子の付着は乾燥状態にて行うことができる。フッ素樹脂粒子とシリカ粒子との混合割合は特に限定しない。僅かな量であってもシリカ粒子がフッ素樹脂粒子の表面に存在すればシリカ粒子による流動特性改善効果が発現でき、本実施形態の樹脂組成物の配線埋め込み性及び配線埋め込み後の吸湿耐熱性を良好にすることができるものと考えられる。
 本実施形態におけるシリカ被覆フッ素樹脂粒子(A)に用いられるフッ素樹脂粒子としては、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、四フッ化エチレン・パーフルオロアルコキシエチレン共重合体(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、エチレン・クロロトリフルオロエチレン共重合体(PCTFE)、エチレン・四フッ化エチレン共重合体(ETFE)、ポリフッ化ビニリデン(PVDF)等が挙げられる。その中でも、電気特性に優れているという観点から、PTFEが好ましい。これらは一種又は2種以上を適宜混合して使用することも可能である。
 フッ素樹脂粒子は、微細配線の埋め込み性を良好にするという観点から、一次粒子の体積平均粒子径は、5μm以下が好ましく、4μm以下がより好ましく、3μm以下が更に好ましい。また、電気特性を良好にするという観点から、一次粒子の体積平均粒子径は、0.005μm以上が好ましく、0.01μm以上がより好ましく、0.02μm以上が更に好ましい。
 なお、本明細書における「体積平均粒子径」とは、体積基準の粒子径分布の算術平均径を意味する。体積平均粒子径は、例えば、湿式レーザー回折・散乱法により測定することができる。
 シリカ被覆フッ素樹脂粒子(A)におけるシリカ粒子の含有量は特に限定されないが、流動性を良好にするという観点から、フッ素樹脂粒子の質量に対し、0.001質量%以上であることが好ましく、0.005質量%以上であることがより好ましく、0.01質量%以上であることが更に好ましい。また、フッ素樹脂粒子の電気特性を発現させるという観点から、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、2質量%以下であることが更に好ましい。
 シリカ粒子は、一次粒子の体積平均粒子径が前記フッ素樹脂粒子の体積平均粒子径よりも小さければ特に限定されない。その中でも、フッ素樹脂の電気特性を発現させるという観点から、一次粒子の体積平均粒子径は200nm以下であることが好ましく、100nm以下が好ましく、70nm以下がより好ましく、50nm以下が更に好ましい。また、流動性を良好にするという観点から、一次粒子の体積平均粒子径は、0.3nm以上が好ましく、0.5nm以上がより好ましく、1nm以上が更に好ましい。
 シリカ被覆フッ素樹脂粒子(A)は、微細配線の埋め込み性を良好にするという観点から、一次粒子の体積平均粒子径は、5μm以下が好ましく、4μm以下がより好ましく、3μm以下が更に好ましく、2μm以下が微細配線の埋め込み性、誘電率及び誘電正接をより良好にするという観点から、更により好ましい。また、電気特性を良好にするという観点から、一次粒子の体積平均粒子径は、0.005μm以上が好ましく、0.01μm以上がより好ましく、0.02μm以上が更に好ましい。
 このようなシリカ被覆フッ素樹脂粒子は市販品を利用することもでき、例えば、0.5μmPTFE-YA(商品名)、PTFE-YA4(3.0μm、商品名)(以上、(株)アドマテックス製)が挙げられる。
 本実施形態の樹脂組成物におけるシリカ被覆フッ素樹脂粒子(A)の含有量は、特に限定されないが、樹脂組成物の電気特性を良好にするという観点から、樹脂組成物中の樹脂固形分100質量部に対し、3質量部以上とすることが好ましく、5質量部以上とすることがより好ましく、10質量部以上とすることが更に好ましく、15質量部以上とすることが更に好ましく、30質量部以上とすることが更に好ましい。また、耐熱性を良好にするという観点から、樹脂組成物中の樹脂固形分100質量部に対し、400質量部以下とすることが好ましく、300質量部以下とすることがより好ましく、200質量部以下とすることが更に好ましく、100質量部以下とすることが更により好ましい。
 <樹脂成分(B)>
 本実施形態に用いる樹脂成分(B)は、シリカ被覆フッ素樹脂粒子(A)を用いることにより得られる電気特性等に加え、樹脂組成物が用いられる分野で求められる、硬化した硬化物の難燃性、耐熱性、熱膨張特性等の特性に応じて、様々な種類のものを用いることができる。例えば、密着性を求められる場合には、エポキシ樹脂、耐熱性を求められる場合には、マレイミド化合物、シアン酸エステル化合物、ベンゾオキサジン化合物、熱硬化性又は光硬化性を求められる場合には、エチレン性不飽和基を有する化合物等が挙げられ、他にフェノール樹脂、オキセタン樹脂等も用いることができる。
 また、これらは一種又は2種以上を適宜混合して使用することも可能である。
 以下、これら樹脂成分(B)の詳細について説明する。
 <マレイミド化合物>
 マレイミド化合物としては、分子中に一個以上のマレイミド基を有する化合物であれば、特に限定されるものではない。その具体例としては、例えば、N-フェニルマレイミド、N-ヒドロキシフェニルマレイミド、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、4,4-ジフェニルメタンビスマレイミド、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、フェニルメタンマレイミド、o-フェニレンビスマレイミド、m-フェニレンビスマレイミド、p-フェニレンビスマレイミド、o-フェニレンビスシトラコンイミド、m-フェニレンビスシトラコンイミド、p-フェニレンビスシトラコンイミド、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン、3,3-ジメチル-5,5-ジエチル-4,4-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、4,4-ジフェニルエーテルビスマレイミド、4,4-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、4,4-ジフェニルメタンビスシトラコンイミド、2,2-ビス[4-(4-シトラコンイミドフェノキシ)フェニル]プロパン、ビス(3,5-ジメチル-4-シトラコンイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-シトラコンイミドフェニル)メタン、ビス(3,5-ジエチル-4-シトラコンイミドフェニル)メタン、ポリフェニルメタンマレイミド、ノボラック型マレイミド化合物、ビフェニルアラルキル型マレイミド化合物、下記式(4)で表されるマレイミド化合物、下記式(5)で表されるマレイミド化合物、及びこれらマレイミド化合物のプレポリマー、又はマレイミド化合物とアミン化合物のプレポリマー等が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 (式(4)中、複数のRは、各々独立に、水素原子又はメチル基を表す。nは、1以上の整数を表し、好ましくは1~10の整数を表し、より好ましくは1~5の整数を表す。)。
Figure JPOXMLDOC01-appb-C000008
 (式(5)中、複数のRは、各々独立に、水素原子又はメチル基を表す。nは、1以上の整数を表し、好ましくは1~5の整数を表す。)。
 これらのマレイミド化合は1種単独又は2種以上を適宜混合して使用することも可能である。この中でも、耐熱性に優れるという観点から、前記式(4)で表されるマレイミド化合物、及び前記式(5)で表される化合物が好ましく、前記式(4)で表されるマレイミド化合物がより好ましい。前記式(4)で表されるマレイミド化合物としては、市販品を利用することもでき、例えば、BMI-2300(大和化成工業(株)社製)が挙げられる。前記式(5)で表されるマレイミド化合物としては、市販品を利用することもでき、例えば、MIR-3000(日本化薬(株)社製)が挙げられる。
 本実施形態の樹脂組成物において、マレイミド化合物の含有量は、特に制限されず、樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0.01質量部~50質量部であり、より好ましくは0.02質量部~45質量部であり、更に好ましくは0.03質量部~20質量部であり、更により好ましくは0.1質量部~10質量部であり、より更により好ましくは1質量部~7質量部である。マレイミド化合物の含有量が上記範囲内であることにより、硬化物の耐熱性がより向上する傾向にある。
 <シアン酸エステル化合物>
 シアン酸エステル化合物としては、シアナト基(シアン酸エステル基)が少なくとも1個置換された芳香族部分を分子内に有する樹脂であれば特に限定されるものではない。
 例えば一般式(6)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000009
 (ここで、式中、Arは、ベンゼン環、ナフタレン環又は2つのベンゼン環が単結合したものを表す。複数ある場合は互いに同一であっても異なっていても良い。Raは各々独立に水素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、炭素数1~4のアルコキシル基、炭素数1~6のアルキル基と炭素数6~12のアリール基とが結合された基を示す。Raにおける芳香環は置換基を有していてもよく、Ar及びRaにおける置換基は任意の位置を選択できる。pはArに結合するシアナト基の数を示し、各々独立に1~3の整数である。qはArに結合するRaの数を示し、Arがベンゼン環の時は4-p、ナフタレン環の時は6-p、2つのベンゼン環が単結合したものの時は8-pである。tは平均繰り返し数を示し、0~50の整数であり、シアン酸エステル化合物は、tが異なる化合物の混合物であってもよい。Xは、複数ある場合は各々独立に、単結合、炭素数1~50の2価の有機基(水素原子がヘテロ原子に置換されていてもよい。)、窒素数1~10の2価の有機基(例えば-N-R-N-(ここでRは有機基を示す。))、カルボニル基(-CO-)、カルボキシ基(-C(=O)O-)、カルボニルジオキサイド基(-OC(=O)O-)、スルホニル基(-SO-)、2価の硫黄原子又は2価の酸素原子のいずれかを示す。)。
 一般式(6)のRaにおけるアルキル基は、直鎖もしくは分枝の鎖状構造、及び、環状構造(例えばシクロアルキル基等)いずれを有していてもよい。
 また、一般式(6)におけるアルキル基及びRaにおけるアリール基中の水素原子は、フッ素原子、塩素原子等のハロゲン原子、メトキシ基、フェノキシ基等のアルコキシル基、又はシアノ基等で置換されていてもよい。
 アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、1-エチルプロピル基、2,2-ジメチルプロピル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、及びトリフルオロメチル基等が挙げられる。
 アリール基の具体例としては、フェニル基、キシリル基、メシチル基、ナフチル基、フェノキシフェニル基、エチルフェニル基、o-,m-又はp-フルオロフェニル基、ジクロロフェニル基、ジシアノフェニル基、トリフルオロフェニル基、メトキシフェニル基、及びo-,m-又はp-トリル基等が挙げられる。更にアルコキシル基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、及びtert-ブトキシ基等が挙げられる。
 一般式(6)のXにおける炭素数1~50の2価の有機基の具体例としては、メチレン基、エチレン基、トリメチレン基、プロピレン基などのアルキレン基、シクロペンチレン基、シクロヘキシレン基、トリメチルシクロヘキシレン基などのシクロアルキレン基、ビフェニルイルメチレン基、ジメチルメチレン-フェニレン-ジメチルメチレン基、フルオレンジイル基、及びフタリドジイル基等の芳香環を有する2価の有機基が挙げられる。該2価の有機基中の水素原子は、フッ素原子、塩素原子等のハロゲン原子、メトキシ基、フェノキシ基等のアルコキシル基、シアノ基等で置換されていてもよい。
 一般式(6)のXにおける窒素数1~10の2価の有機基としては、-N-R-N-で表される基(Rは、有機基)、イミノ基、ポリイミド基等が挙げられる。
 また、一般式(6)中のXの有機基として、例えば、下記一般式(7)又は下記一般式(8)で表される構造であるものが挙げられる。
Figure JPOXMLDOC01-appb-C000010
 ここで、式中、Arはベンゼンテトライル基、ナフタレンテトライル基又はビフェニルテトライル基を示し、uが2以上の場合、互いに同一であっても異なっていてもよい。Rb、Rc、Rf、及びRgは各々独立に、水素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、トリフルオロメチル基、又はフェノール性ヒドロキシ基を少なくとも1個有するアリール基を示す。Rd及び、Reは各々独立に、水素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、炭素数1~4のアルコキシル基、又はヒドロキシ基のいずれか一種から選択される。uは0~5の整数を示す。
Figure JPOXMLDOC01-appb-C000011
 ここで、式中、Arはベンゼンテトライル基、ナフタレンテトライル基又はビフェニルテトライル基を示し、vが2以上の場合、互いに同一であっても異なっていてもよい。Ri、及びRjは各々独立に、水素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、ベンジル基、炭素数1~4のアルコキシル基、ヒドロキシ基、トリフルオロメチル基、又はシアナト基が少なくとも1個置換されたアリール基を示す。vは0~5の整数を示すが、vが異なる化合物の混合物であってもよい。
 さらに、一般式(6)中のXとしては、下記式で表される2価の基が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 ここで式中、zは4~7の整数を示す。Rkは各々独立に、水素原子又は炭素数1~6のアルキル基を示す。
 一般式(7)のAr及び一般式(8)のArの具体例としては、一般式(7)に示す2個の炭素原子、又は一般式(8)に示す2個の酸素原子が、1,4位又は1,3位に結合するベンゼンテトライル基、上記2個の炭素原子又は2個の酸素原子が4,4‘位、2,4’位、2,2‘位、2,3’位、3,3‘位、又は3,4’位に結合するビフェニルテトライル基、及び、上記2個の炭素原子又は2個の酸素原子が、2,6位、1,5位。1,6位、1,8位、1,3位、1,4位、又は2,7位に結合するナフタレンテトライル基が挙げられる。
 一般式(7)のRb、Rc、Rd、Re、Rf及びRg、並びに一般式(8)のRi、Rjにおけるアルキル基及びアリール基は、上記一般式(6)におけるものと同義である。
 上記一般式(6)で表されるシアナト置換芳香族化合物の具体例としては、シアナトベンゼン、1-シアナト-2-,1-シアナト-3-,又は1-シアナト-4-メチルベンゼン、1-シアナト-2-,1-シアナト-3-,又は1-シアナト-4-メトキシベンゼン、1-シアナト-2,3-,1-シアナト-2,4-,1-シアナト-2,5-,1-シアナト-2,6-,1-シアナト-3,4-又は1-シアナト-3,5-ジメチルベンゼン、シアナトエチルベンゼン、シアナトブチルベンゼン、シアナトオクチルベンゼン、シアナトノニルベンゼン、2-(4-シアナフェニル)-2-フェニルプロパン(4-α-クミルフェノールのシアネート)、1-シアナト-4-シクロヘキシルベンゼン、1-シアナト-4-ビニルベンゼン、1-シアナト-2-又は1-シアナト-3-クロロベンゼン、1-シアナト-2,6-ジクロロベンゼン、1-シアナト-2-メチル-3-クロロベンゼン、シアナトニトロベンゼン、1-シアナト-4-ニトロ-2-エチルベンゼン、1-シアナト-2-メトキシ-4-アリルベンゼン(オイゲノールのシアネート)、メチル(4-シアナトフェニル)スルフィド、1-シアナト-3-トリフルオロメチルベンゼン、4-シアナトビフェニル、1-シアナト-2-又は1-シアナト-4-アセチルベンゼン、4-シアナトベンズアルデヒド、4-シアナト安息香酸メチルエステル、4-シアナト安息香酸フェニルエステル、1-シアナト-4-アセトアミノベンゼン、4-シアナトベンゾフェノン、1-シアナト-2,6-ジ-tert-ブチルベンゼン、1,2-ジシアナトベンゼン、1,3-ジシアナトベンゼン、1,4-ジシアナトベンゼン、1,4-ジシアナト-2-tert-ブチルベンゼン、1,4-ジシアナト-2,4-ジメチルベンゼン、1,4-ジシアナト-2,3,4-トリメチルベンゼン、1,3-ジシアナト-2,4,6-トリメチルベンゼン、1,3-ジシアナト-5-メチルベンゼン、1-シアナト又は2-シアナトナフタレン、1-シアナト4-メトキシナフタレン、2-シアナト-6-メチルナフタレン、2-シアナト-7-メトキシナフタレン、2,2’-ジシアナト-1,1’-ビナフチル、1,3-、1,4-、1,5-、1,6-、1,7-、2,3-、2,6-又は2,7-ジシアナトシナフタレン、2,2’-又は4,4’-ジシアナトビフェニル、4,4’-ジシアナトオクタフルオロビフェニル、2,4’-又は4,4’-ジシアナトジフェニルメタン、ビス(4-シアナト-3,5-ジメチルフェニル)メタン、1,1-ビス(4-シアナトフェニル)エタン、1,1-ビス(4-シアナトフェニル)プロパン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス(4-シアナト-3-メチルフェニル)プロパン、2,2-ビス(2-シアナト-5-ビフェニルイル)プロパン、2,2-ビス(4-シアナトフェニル)ヘキサフルオロプロパン、2,2-ビス(4-シアナト-3,5-ジメチルフェニル)プロパン、1,1-ビス(4-シアナトフェニル)ブタン、1,1-ビス(4-シアナトフェニル)イソブタン、1,1-ビス(4-シアナトフェニル)ペンタン、1,1-ビス(4-シアナトフェニル)-3-メチルブタン、1,1-ビス(4-シアナトフェニル)-2-メチルブタン、1,1-ビス(4-シアナトフェニル)-2,2-ジメチルプロパン、2,2-ビス(4-シアナトフェニル)ブタン、2,2-ビス(4-シアナトフェニル)ペンタン、2,2-ビス(4-シアナトフェニル)ヘキサン、2,2-ビス(4-シアナトフェニル)-3-メチルブタン、2,2-ビス(4-シアナトフェニル)-4-メチルペンタン、2,2-ビス(4-シアナトフェニル)-3,3-ジメチルブタン、3,3-ビス(4-シアナトフェニル)ヘキサン、3,3-ビス(4-シアナトフェニル)ヘプタン、3,3-ビス(4-シアナトフェニル)オクタン、3,3-ビス(4-シアナトフェニル)-2-メチルペンタン、3,3-ビス(4-シアナトフェニル)-2-メチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,2-ジメチルペンタン、4,4-ビス(4-シアナトフェニル)-3-メチルヘプタン、3,3-ビス(4-シアナトフェニル)-2-メチルヘプタン、3,3-ビス(4-シアナトフェニル)-2,2-ジメチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,4-ジメチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,2,4-トリメチルペンタン、2,2-ビス(4-シアナトフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス(4-シアナトフェニル)フェニルメタン、1,1-ビス(4-シアナトフェニル)-1-フェニルエタン、ビス(4-シアナトフェニル)ビフェニルメタン、1,1-ビス(4-シアナトフェニル)シクロペンタン、1,1-ビス(4-シアナトフェニル)シクロヘキサン、2,2-ビス(4-シアナト-3-イソプロピルフェニル)プロパン、1,1-ビス(3-シクロヘキシル-4-シアナトフェニル)シクロヘキサン、ビス(4-シアナトフェニル)ジフェニルメタン、ビス(4-シアナトフェニル)-2,2-ジクロロエチレン、1,3-ビス[2-(4-シアナトフェニル)-2-プロピル]ベンゼン、1,4-ビス[2-(4-シアナトフェニル)-2-プロピル]ベンゼン、1,1-ビス(4-シアナトフェニル)-3,3,5-トリメチルシクロヘキサン、4-[ビス(4-シアナトフェニル)メチル]ビフェニル、4,4-ジシアナトベンゾフェノン、1,3-ビス(4-シアナトフェニル)-2-プロペン-1-オン、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)スルフィド、ビス(4-シアナトフェニル)スルホン、4-シアナト安息香酸-4-シアナトフェニルエステル(4-シアナトフェニル-4-シアナトベンゾエート)、ビス-(4-シアナトフェニル)カーボネート、1,3-ビス(4-シアナトフェニル)アダマンタン、1,3-ビス(4-シアナトフェニル)-5,7-ジメチルアダマンタン、1,3-ビス(3-メチル-4-シアナトフェニル)-5,7-ジメチルアダマンタン、3,3-ビス(4-シアナトフェニル)イソベンゾフラン-1(3H)-オン(フェノールフタレインのシアネート)、3,3-ビス(4-シアナト-3-メチルフェニル)イソベンゾフラン-1(3H)-オン(o-クレゾールフタレインのシアネート)、9,9’-ビス(4-シアナトフェニル)フルオレン、9,9-ビス(4-シアナト-3-メチルフェニル)フルオレン、9,9-ビス(2-シアナト-5-ビフェニルイル)フルオレン、トリス(4-シアナトフェニル)メタン、1,1,1-トリス(4-シアナトフェニル)エタン、1,1,3-トリス(4-シアナトフェニル)プロパン、α,α,α’-トリス(4-シアナトフェニル)-1-エチル-4-イソプロピルベンゼン、1,1,2,2-テトラキス(4-シアナトフェニル)エタン、テトラキス(4-シアナトフェニル)メタン、2,4,6-トリス(N-メチル-4-シアナトアニリノ)-1,3,5-トリアジン、2,4-ビス(N-メチル-4-シアナトアニリノ)-6-(N-メチルアニリノ)-1,3,5-トリアジン、ビス(N-4-シアナト-2-メチルフェニル)-4,4’-オキシジフタルイミド、ビス(N-3-シアナト-4-メチルフェニル)-4,4’-オキシジフタルイミド、ビス(N-4-シアナトフェニル)-4,4’-オキシジフタルイミド、ビス(N-4-シアナト-2-メチルフェニル)-4,4’-(ヘキサフルオロイソプロピリデン)ジフタルイミド、トリス(3,5-ジメチル-4-シアナトベンジル)イソシアヌレート、2-フェニル-3,3-ビス(4-シアナトフェニル)フタルイミジン、2-(4-メチルフェニル)-3,3-ビス(4-シアナトフェニル)フタルイミジン、2-フェニル-3,3-ビス(4-シアナト-3-メチルフェニル)フタルイミジン、1-メチル-3,3-ビス(4-シアナトフェニル)インドリン-2-オン、及び、2-フェニル-3,3-ビス(4-シアナトフェニル)インドリン-2-オン、及びこれらのプレポリマーが挙げられる。
 この中でも、耐熱性、及び誘電率、誘電正接に優れるという観点から、2,2-ビス(4-シアナトフェニル)プロパンのプレポリマーが好ましい。
 これらのシアン酸エステル化合物は、1種単独又は2種以上混合して用いることができる。
 また、上記一般式(6)で表される化合物の別の具体例としては、フェノールノボラック樹脂及びクレゾールノボラック樹脂(公知の方法により、フェノール、アルキル置換フェノール又はハロゲン置換フェノールと、ホルマリンやパラホルムアルデヒドなどのホルムアルデヒド化合物とを、酸性溶液中で反応させたもの)、トリスフェノールノボラック樹脂(ヒドロキシベンズアルデヒドとフェノールとを酸性触媒の存在下に反応させたもの)、フルオレンノボラック樹脂(フルオレノン化合物と9,9-ビス(ヒドロキシアリール)フルオレン類とを酸性触媒の存在下に反応させたもの)、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂及びビフェニルアラルキル樹脂(公知の方法により、Ar-(CHY)(Arはフェニル基を示し、Yはハロゲン原子を示す。以下、この項において同様。)で表されるようなビスハロゲノメチル化合物とフェノール化合物とを酸性触媒若しくは無触媒で反応させたもの、Ar-(CHOR)で表されるようなビス(アルコキシメチル)化合物とフェノール化合物とを酸性触媒の存在下に反応させたもの、又は、Ar-(CHOH)で表されるようなビス(ヒドロキシメチル)化合物とフェノール化合物を酸性触媒の存在下に反応させたもの、あるいは、芳香族アルデヒド化合物とアラルキル化合物とフェノール化合物とを重縮合させたもの)、フェノール変性キシレンホルムアルデヒド樹脂(公知の方法により、キシレンホルムアルデヒド樹脂とフェノール化合物とを酸性触媒の存在下に反応させたもの)、変性ナフタレンホルムアルデヒド樹脂(公知の方法により、ナフタレンホルムアルデヒド樹脂とヒドロキシ置換芳香族化合物を酸性触媒の存在下に反応させたもの)、フェノール変性ジシクロペンタジエン樹脂、ポリナフチレンエーテル構造を有するフェノール樹脂(公知の方法により、フェノール性ヒドロキシ基を1分子中に2つ以上有する多価ヒドロキシナフタレン化合物を、塩基性触媒の存在下に脱水縮合させたもの)等のフェノール樹脂を、上述と同様の方法によりシアネート化したもの等、並びにこれらのプレポリマー等が挙げられる。これらは、特に制限されるものではない。これらのシアン酸エステル化合物は、1種単独又は2種以上混合して用いることができる。また、これらのシアン酸エステル化合物を上記一般式(6)で表されるシアン酸エステル化合物と共に用いることが、耐熱性、誘電率、誘電正接に優れることから好ましい。
 この中でも、フェノールノボラック型シアン酸エステル化合物、ナフトールアラルキル型シアン酸エステル化合物、ビフェニルアラルキル型シアン酸エステル化合物、ナフチレンエーテル型シアン酸エステル化合物、キシレン樹脂型シアン酸エステル化合物、アダマンタン骨格型シアン酸エステル化合物が好ましく、ナフトールアラルキル型シアン酸エステル化合物が、耐熱性の点から、特に好ましい。
 これらのシアン酸エステル化合物の製造方法としては、特に限定されず、公知の方法を用いることができる。かかる製法の例としては、所望の骨格を有するヒドロキシ基含有化合物を入手又は合成し、当該ヒドロキシ基を公知の手法により修飾してシアネート化する方法が挙げられる。ヒドロキシ基をシアネート化する手法としては、例えば、Ian Hamerton,“Chemistry and Technology of Cyanate Ester Resins,”Blackie Academic & Professionalに記載の手法が挙げられる。
 これらのシアン酸エステル化合物を用いた樹脂硬化物は、ガラス転移温度、低熱膨張性、めっき密着性等に優れた特性を有する。
 本実施形態の樹脂組成物において、シアン酸エステル化合物の含有量は、特に限定されないが、耐熱性、誘電率、誘電正接に優れるという観点から、樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0.1質量部~50質量部であり、より好ましくは0.2質量部~40質量部であり、更に好ましくは0.3質量部~20質量部であり、更により好ましくは0.5質量部~10質量部であり、より更により好ましくは1質量部~5質量部である。
 <エポキシ樹脂>
 エポキシ樹脂としては、1分子中に2個以上のエポキシ基を有する化合物であれば、公知のものを適宜使用することができ、その種類は特に限定されない。その具体例としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、キシレンノボラック型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン骨格変性ノボラック型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、アントラセン型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、トリグリシジルイソシアヌレート、グリシジルエステル型エポキシ樹脂、脂環式エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、フェノールアラルキルノボラック型エポキシ樹脂、ナフトールアラルキルノボラック型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ポリオール型エポキシ樹脂、リン含有エポキシ樹脂、グリシジルアミン、ブタジエンなどの二重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物、及びこれらのハロゲン化物が挙げられる。
 この中でも、ビフェニルアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂が、難燃性、耐熱性の面で好ましい。
 これらエポキシ樹脂は、1種単独又は2種以上を適宜混合して使用することも可能である。
 エポキシ樹脂の含有量は、特に制限されず、樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0.1質量部~50質量部であり、より好ましくは0.2質量部~45質量部であり、より好ましくは5質量部~40質量部であり、更により好ましくは10質量部~25質量部であり、より更により好ましくは15質量部~25質量部であり、最も好ましくは12質量部~20質量部である。エポキシ樹脂の含有量が上記範囲内であることにより、難燃性及び耐熱性がより向上する傾向にある。
 <フェノール樹脂>
 フェノール樹脂としては、1分子中に2個以上のヒドロキシル基を有するフェノール樹脂であれば、一般に公知のものを使用できる。例えば、ビスフェノールA型フェノール樹脂、ビスフェノールE型フェノール樹脂、ビスフェノールF型フェノール樹脂、ビスフェノールS型フェノール樹脂、フェノールノボラック樹脂、ビスフェノールAノボラック型フェノール樹脂、グリシジルエステル型フェノール樹脂、アラルキルノボラック型フェノール樹脂、ビフェニルアラルキル型フェノール樹脂、クレゾールノボラック型フェノール樹脂、多官能フェノール樹脂、ナフトール樹脂、ナフトールノボラック樹脂、多官能ナフトール樹脂、アントラセン型フェノール樹脂、ナフタレン骨格変性ノボラック型フェノール樹脂、フェノールアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ビフェニル型フェノール樹脂、脂環式フェノール樹脂、ポリオール型フェノール樹脂、リン含有フェノール樹脂、重合性不飽和炭化水素基含有フェノール樹脂及び水酸基含有シリコーン樹脂類等が挙げられるが、特に制限されるものではない。これらのフェノール樹脂の中では、ビフェニルアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、リン含有フェノール樹脂、水酸基含有シリコーン樹脂が難燃性の点で好ましい。これらのフェノール樹脂は、1種単独又は2種以上を適宜混合して使用することも可能である。
 フェノール樹脂の含有量は、特に制限されず、樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0.1質量部~50質量部であり、より好ましくは0.2質量部~45質量部であり、更に好ましくは0.3質量部~40質量部である。フェノール樹脂の含有量が上記範囲内であることにより、耐熱性がより向上する傾向にある。
 <オキセタン樹脂>
 オキセタン樹脂としては、一般に公知のものを使用できる。例えば、オキセタン、2-メチルオキセタン、2,2-ジメチルオキセタン、3-メチルオキセタン、3,3-ジメチルオキセタン等のアルキルオキセタン、3-メチル-3-メトキシメチルオキセタン、3,3-ジ(トリフルオロメチル)パーフルオキセタン、2-クロロメチルオキセタン、3,3-ビス(クロロメチル)オキセタン、ビフェニル型オキセタン、OXT-101(東亞合成製、商品名)、OXT-121(東亞合成製、商品名)等が挙げられる、特に制限されるものではない。これらは、1種単独で又は2種以上を適宜混合して使用することも可能である。
 オキセタン樹脂の含有量は、特に制限されず、樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0.1質量部~50質量部であり、より好ましくは0.2質量部~45質量部であり、更に好ましくは0.3質量部~40質量部である。オキセタン樹脂の含有量が上記範囲内であることにより、耐熱性がより向上する傾向にある。
 <ベンゾオキサジン化合物>
 ベンゾオキサジン化合物としては、1分子中に2個以上のジヒドロベンゾオキサジン環を有する化合物であれば、一般に公知のものを用いることができる。例えば、ビスフェノールA型ベンゾオキサジンBA-BXZ(小西化学製、商品名)ビスフェノールF型ベンゾオキサジンBF-BXZ(小西化学製、商品名)、ビスフェノールS型ベンゾオキサジンBS-BXZ(小西化学製、商品名)、フェノールフタレイン型ベンゾオキサジン等が挙げられるが、特に制限されるものではない。これらは、一種又は2種以上を適宜混合して使用することも可能である。
 ベンゾオキサジン化合物の含有量は、特に制限されず、樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0.1質量部~50質量部であり、より好ましくは0.2質量部~45質量部であり、更に好ましくは0.3質量部~40質量部である。ベンゾオキサジン化合物の含有量が上記範囲内であることにより、耐熱性がより向上する傾向にある。
 <エチレン性不飽和基を有する化合物>
 本実施形態の樹脂組成物には、熱硬化性及び活性エネルギー線による硬化性(例えば紫外線による光硬化性等)を高めるために、エチレン性不飽和基を有する化合物を併用することも可能である。本実施形態に用いるエチレン性不飽和基を有する化合物は、1分子中に1個以上のエチレン性不飽和基を有する化合物であれば、特に限定されないが、例えば、(メタ)アクリロイル基、ビニル基等を有する化合物が挙げられる。これらは一種又は2種以上を適宜混合して使用することも可能である。
 (メタ)アクリロイル基を有する化合物としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレートモノメチルエーテル、フェニルエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、グリコールジ(メタ)アクリレート、ジエチレンジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルイソシアヌレート、ポリプロピレングリコールジ(メタ)アクリレート、アジピン酸エポキシジ(メタ)アクリレート、ビスフェノールエチレンオキサイドジ(メタ)アクリレート、水素化ビスフェノールエチレンオキサイド(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート、ε-カプロラクトン変性ヒドロキシピバリン酸ネオペングリコールジ(メタ)アクリレート、ε-カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ε-カプロラクトン変性ジペンタエリスリトールポリ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリエチロールプロパントリ(メタ)アクリレート、及びそのエチレンオキサイド付加物、ペンタエリスリトールトリ(メタ)アクリレート、及びそのエチレンオキサイド付加物、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、及びそのエチレンオキサイド付加物等が挙げられる。
 この他にも、(メタ)アクリロイル基とウレタン結合を同一分子内に併せ持つウレタン(メタ)アクリレート類、同様に(メタ)アクリロイル基とエステル結合を同一分子内に併せ持つポリエステル(メタ)アクリレート、エポキシ樹脂から誘導され、(メタ)アクリロイル基を併せ持つエポキシ(メタ)アクリレート類、これらの結合が複合的に用いられている反応性オリゴマー等も挙げられる。
 上記ウレタン(メタ)アクリレート類とは、水酸基含有(メタ)アクリレートとポリイソシアネート、必要に応じて用いられるその他アルコール類との反応物である。例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類、グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート等のグリセリン(メタ)アクリレート類、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の糖アルコール(メタ)アクリレート類と、トルエンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、キシレンジイソシアネート、水添キシレンジイソシアネート、ジシクロヘキサンメチレンジイソシアネート、及びそれらのイソシアヌレート、ビュレット反応物等のポリイソシアネート等を反応させ、ウレタン(メタ)アクリレート類となる。
 上記エポキシ(メタ)アクリレート類とは、エポキシ基を有する化合物と(メタ)アクリル酸とのカルボキシレート化合物である。例えば、フェノールノボラック型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート、トリスヒドロキシフェニルメタン型エポキシ(メタ)アクリレート、ジシクロペンタジエンフェノール型エポキシ(メタ)アクリレート、ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート、ビフェノール型エポキシ(メタ)アクリレート、ビスフェノールAノボラック型エポキシ(メタ)アクリレート、ナフタレン骨格含有エポキシ(メタ)アクリレート、グリオキサール型エポキシ(メタ)アクリレート、複素環式エポキシ(メタ)アクリレート、及びこれらの酸無水物変性エポキシ(メタ)アクリレート、前記一般式(1)で表される化合物等が挙げられる。
 前記一般式(1)中、複数のRは、各々独立に、水素原子又はメチル基を表す。その中でも、光硬化反応の反応性を向上させる観点から水素原子を含むことが好ましく、より好ましくはRの全てが水素原子である。
 複数のRは、各々独立に、水素原子又はメチル基を表す。その中でも、硬化物の耐熱性を向上させる観点からメチル基を含むことが好ましく、より好ましくはRの全てがメチル基である。
 複数のRは、各々独立に、前記式(2)で表される置換基、前記式(3)で表される置換基又はヒドロキシ基を表す。その中でも、耐熱性を向上させる観点から、ヒドロキシル基を含むことが好ましい。また、本実施形態では、複数のRのうち、前記式(2)で表される置換基を含む化合物を用いることも、現像性を向上させる観点から、好ましい。本実施形態では、複数のRのうち、前記式(3)で表される置換基を含む化合物を用いることも、耐熱性を向上させる観点から、好ましい。前記式(3)中、Rは水素原子又はメチル基を表す。その中でも、光硬化反応の反応性を向上させる観点から、水素原子であることが好ましい。
 複数のRは、現像性を向上させる観点から、全てのRの置換基のうち、前記式(2)で表される置換基の比率が20%以上85%以下、前記式(3)で表される置換基の比率が5%以上70%以下、ヒドロキシ基の比率が10%以上75%以下であることが好ましい。
 前記一般式(1)で表される化合物としては、以下の化合物(A1)~(A5)のいずれか一種以上を含むことが、光硬化反応の反応性、硬化物の耐熱性及び現像性を向上させることができるため好ましく、少なくとも化合物(A1)を含むことがより好ましく、(A1)~(A5)のいずれか2種以上を含むこともより好ましく、化合物(A1)及び化合物(A2)~(A5)のいずれか1種以上を含むことがさらに好ましい。化合物(A)としては、少なくとも化合物(A2)及び(A3)を含むことも好ましい。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 前記一般式(1)で表される化合物の酸価は、現像性を向上させる観点から、30mgKOH/g以上であり、より現像性が向上することから、50mgKOH/g以上であることが好ましい。また、活性エネルギー線で硬化させた後に現像液による溶解を防止する観点から、前記一般式(1)で表される化合物の酸価は、120mgKOH/g以下であり、より溶解を防止できることから、110mgKOH/g以下であることが好ましい。なお、本実施形態における「酸価」は、JISK 0070:1992に準じた方法で測定される値を示す。
 酸無水物変性エポキシアクリレートとしては、酸変性ビスフェノールF型エポキシアクリレートが挙げられる。
 これらは市販品を使用しても良く、前記一般式(1)で表されるものとしては、例えば、日本化薬(株)製の、KAYARAD(登録商標)ZCR-6001H、KAYARAD(登録商標)ZCR-6002H、KAYARAD(登録商標)ZCR-6006H、KAYARAD(登録商標)ZCR-6007H、KAYARAD(登録商標)ZCA-601H(以上、商品名)等が挙げられる。また、酸変性ビスフェノールF型エポキシアクリレートとしては、日本化薬(株)製のKAYARAD(登録商標)ZFR-1553H(商品名)が挙げられる。
 ビニル基を有する化合物としては、エチルビニルエーテル、プロピルビニルエーテル、ヒドロキシエチルビニルエーテル、エチレングリコールジビニルエーテル、ビニル基を有する2官能性フェニレンエーテルオリゴマー等のビニルエーテル類が挙げられる。スチレン類としては、スチレン、メチルスチレン、エチルスチレン、ジビニルベンゼン、α-メチルスチレン、及びこれらのオリゴマー等が挙げられる。その他ビニル化合物としては、トリアリルイソシアヌレート、トリメタアリルイソシアヌレート、ビスアリルナジイミド等が挙げられる。
 これらの中でも、ビニル基を有する2官能性フェニレンエーテルオリゴマー、α-メチルスチレンのオリゴマー、酸変性ビスフェノールF型エポキシ(メタ)アクリレート、前記一般式(1)で表される化合物、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート、ビスフェノールA型エポキシ(メタ)アクリレート、ナフタレン骨格含有エポキシ(メタ)アクリレート、ビスアリルナジイミドからなる群より選択される少なくとも一種以上であることが好ましい。ビニル基を有する2官能性フェニレンエーテルオリゴマー、α-メチルスチレンのオリゴマー、酸変性ビスフェノールF型エポキシ(メタ)アクリレート、前記一般式(1)で表される化合物及びジペンタエリスリトールヘキサ(メタ)アクリレートからなる群より選択される一種以上であることが、良好な耐熱性、誘電率、誘電正接が得られる点から、より好ましい。
 熱硬化性が求められる場合には、ビニル基を有する2官能性フェニレンエーテルオリゴマー及び/又はα-メチルスチレンのオリゴマーが、良好に熱硬化し、良好な微細配線の埋め込み性及び半田耐熱性、誘電率、誘電正接に優れることから好ましい。光硬化性が求められる場合には、酸変性ビスフェノールF型エポキシ(メタ)アクリレート、前記一般式(1)で表される化合物及びジペンタエリスリトールヘキサ(メタ)アクリレートからなる群より選択される少なくとも一種以上を含むことが、良好な微細配線の埋め込み性及び半田耐熱性と、誘電率、誘電正接及び現像性にも優れるため好ましく、前記一般式(1)で表される化合物を用いることが、さらに耐熱性に優れるためより好ましい。このような種類のエチレン性不飽和基を有する化合物を含むことにより、得られる硬化物の耐熱性がより向上する傾向にある。
 これらのエチレン性不飽和基を有する化合物は、一種又は2種以上を適宜混合して使用することも可能である。また、これらのエチレン性不飽和基を有する化合物は、構造異性体及び立体異性体などの異性体を含んでいてもよく、互いに構造が異なる化合物を2種以上適宜組み合わせて用いてもよい。
 エチレン性不飽和基を有する化合物の含有量は、特に制限されず、樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0.1質量部~90質量部であり、より好ましくは0.2質量部~85質量部である。エチレン性不飽和基を有する化合物が上記範囲内であることにより、半田耐熱性がより向上する傾向にある。特に、熱硬化性が求められる場合には、良好に熱硬化し、良好な微細配線の埋め込み性及び半田耐熱性、誘電率、誘電正接が得られることから、エチレン性不飽和基を有する化合物の含有量は、樹脂組成物中の樹脂固形分100質量部に対して、好ましくは5質量部~90質量部であり、より好ましくは7質量部~85質量部であり、更に好ましくは10質量部~83質量部である。また、光硬化性が求められる場合には、良好な微細配線の埋め込み性及び半田耐熱性と、誘電率、誘電正接及び現像性が得られることから、エチレン性不飽和基を有する化合物の含有量は、樹脂組成物中の樹脂固形分100質量部に対して、好ましくは5質量部~90質量部であり、より好ましくは7質量部~85質量部であり、更に好ましくは10質量部~80質量部であり、更により好ましくは10質量部~73質量部である。
 <シリカ被覆フッ素樹脂粒子(A)以外の充填材(C)>
 本実施形態の樹脂組成物には、本実施形態の特性を損なわれない範囲において、シリカ被覆フッ素樹脂粒子(A)以外の充填材(C)(以下、他の充填材(C)という)を含有していてもよい。他の充填材(C)を併用することで、硬化物の難燃性、耐熱性、熱膨張特性など所望する特性を向上させることができる。
 他の充填材(C)としては、絶縁性を有するものであれば、特に限定されないが、例えば、天然シリカ、溶融シリカ、合成シリカ、アモルファスシリカ、アエロジル、中空シリカ等のシリカ類、ホワイトカーボン、チタンホワイト、酸化亜鉛、酸化マグネシウム、酸化ジルコニウム等の酸化物、窒化ホウ素、凝集窒化ホウ素、窒化ケイ素、窒化アルミニウム、硫酸バリウム、水酸化アルミニウム、水酸化アルミニウム加熱処理品(水酸化アルミニウムを加熱処理し、結晶水の一部を減じたもの)、ベーマイト、水酸化マグネシウム等の金属水和物、酸化モリブデンやモリブデン酸亜鉛等のモリブデン化合物、ホウ酸亜鉛、錫酸亜鉛、アルミナ、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、E-ガラス、A-ガラス、NE-ガラス、C-ガラス、L-ガラス、D-ガラス、S-ガラス、M-ガラスG20、ガラス短繊維(Eガラス、Tガラス、Dガラス、Sガラス、Qガラス等のガラス微粉末類を含む。)、中空ガラス、球状ガラスなど無機系の充填材の他、スチレン型、ブタジエン型、アクリル型などのゴムパウダー、コアシェル型のゴムパウダー、並びにシリコーンレジンパウダー、シリコーンゴムパウダー、シリコーン複合パウダーなど有機系の充填材などが挙げられる。その中でも、シリカ、水酸化アルミニウム、ベーマイト、酸化マグネシウム、水酸化マグネシウム、及び硫酸バリウムからなる群から選択される一種以上であることが好ましい。これらは一種又は2種以上を適宜混合して使用することも可能である。
 これらの他の充填材(C)は、後述のシランカップリング剤などで表面処理されていてもよい。
 特に、硬化物の耐熱性を向上させるという観点から、シリカが好ましく、溶融シリカがとりわけ好ましい。シリカの具体例としては、デンカ(株)製のSFP-130MC等、(株)アドマテックス製のSC2050―MB、SC2050―MNU、SC1050-MLE、YA010C-MFN、YA050C-MJA等が挙げられる。
 他の充填材(C)の平均粒子径は特に限定されないが、樹脂組成物中の他の充填材(C)の分散性を良好にするという観点から、メジアン径として15μm以下が好ましい。また、樹脂組成物中の他の充填材(C)の分散性を良好にするという観点から、メジアン径は、0.005μm以上が好ましい。
 なお、本明細書における「メジアン径」とは、ある粒子径を基準として粉体の粒度分布を2つに分けた場合に、より粒径が大きい側の粒子の個数又は質量と、より粒径が小さい側の個数又は質量とが、全粉体の夫々50%を占めるような粒子径を意味する。メジアン径は、湿式レーザー回折・散乱法により測定される。
 本実施形態の樹脂組成物において、他の充填材(C)の含有量は、特に限定されないが、硬化物の耐熱性を向上させるという観点から、樹脂組成物100質量部に対して、5質量部以上とすることが好ましく、10質量部以上とすることがより好ましく、20質量部以上とすることが更に好ましい。また、樹脂組成物の現像性や微細配線の埋め込み性を良好にするという観点から、樹脂組成物100質量部に対して、400質量部以下とすることが好ましく、350質量部以下とすることがより好ましく、300質量部以下とすることが更に好ましく、100質量部以下とすることが更により好ましい。
 <シランカップリング剤及び湿潤分散剤>
 本実施形態の樹脂組成物には、本実施形態の特性が損なわれない範囲において、シランカップリング剤及び/又は湿潤分散剤を含有していてもよい。シランカップリング剤及び/又は湿潤分散剤を併用することで、充填材の分散性、樹脂と充填材の接着強度など所望する特性を向上させることができる。
 シランカップリング剤としては、一般に充填材の表面処理に使用されているシランカップリング剤であれば、特に限定されるものではない。具体例としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシランなどのビニルシラン系、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン等のアミノシラン系;γ-グリシドキシプロピルトリメトキシシラン等のエポキシシラン系;γ-アクリロキシプロピルトリメトキシシラン等のアクリルシラン系;N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩、N-(ビニルベンゼン)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩等のカチオニックシラン系;フェニルシラン系のシランカップリング剤等が挙げられる。これらのシランカップリング剤は、1種単独又は2種以上を適宜組み合わせて使用することも可能である。
 本実施形態の樹脂組成物において、シランカップリング剤の含有量は、特に限定されないが、通常、樹脂組成物100質量部に対して、0.1~10質量部である。
 湿潤分散剤としては、塗料用に使用されている分散安定剤であれば、特に限定されるものではない。具体例としては、例えば、ビッグケミー・ジャパン(株)製のDISPERBYK(登録商標)-110、111、118、180、161、BYK(登録商標)-W996、W9010、W903等の湿潤分散剤が挙げられる。これら湿潤分散剤は、1種単独又は2種以上を適宜混合して使用することも可能である。
 本実施形態の樹脂組成物において、湿潤分散剤の含有量は、特に限定されないが、通常、樹脂組成物100質量部に対して、0.1~10質量部である。
 <難燃剤(D)>
 本実施形態の樹脂組成物には、本実施形態の特性を損なわれない範囲において、難燃剤(D)を含有していてもよい。難燃剤(D)を併用することで、硬化物の難燃性、耐熱性、熱膨張特性など所望する特性を向上させることができる。
 難燃剤(D)としては、絶縁性を有するものであれば、一般に公知のものを用いることができる。例えば、臭素化ポリカーボネート、デカブロモジフェニルエタン、4,4-ジブロモビフェニル、エチレンビステトラブロモフタルイミド等の臭素化有機化合物が挙げられるが、特に制限されるものではない。これらは、1種単独又は2種以上を適宜混合して使用することも可能である。
 本実施形態の樹脂組成物において、難燃剤(D)の含有量は、特に限定されないが、通常、樹脂組成物中の樹脂組成物100質量部に対して、0.1~10質量部であり、好ましくは1~10質量部である。
 <光硬化開始剤(E)>
 本実施形態の樹脂組成物には、樹脂成分(B)として紫外線などによる光硬化可能な樹脂成分(マレイミド化合物、エポキシ樹脂、エチレン性不飽和基を有する化合物、フェノール樹脂、オキセタン樹脂等)を用いる場合には、その光硬化性を向上させるため、本実施形態の特性が損なわれない範囲において、光硬化開始剤(E)を含有していてもよい。
 光硬化開始剤(E)としては、特に限定されないが、一般に光硬化性樹脂組成物に用いられる分野で公知のものを使用することができる。
 例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類、過酸化ベンゾイル、ラウロイルパーオキサイド、アセチルパーオキサイド、パラクロロベンゾイルパーオキサイド、ジ-tert-ブチル-ジ-パーフタレート等で例示される有機過酸化物、アセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-ヒドロキシンクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン等のアセトフェノン類、2-エチルアントラキノン、2-t-ブチルアントラキノン、2-クロロアントラキノン、2-アミルアントラキノン等のアントラキノン類、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン等のチオキサントン類、アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類、ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、4,4’-ビスメチルアミノベンゾフェノン等のベンゾフェノン類、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等のホスフィンオキサイド類、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]等のオキシムエステル類等のラジカル型光硬化開始剤や、p-メトキシフェニルジアゾニウムフロロホスホネート、N,N-ジエチルアミノフェニルジアゾニウムヘキサフロロホスホネート等のルイス酸のジアゾニウム塩、ジフェニルヨードニウムヘキサフロロホスホネート、ジフェニルヨードニウムヘキサフロロアンチモネート等のルイス酸のヨードニウム塩、トリフェニルスルホニウムヘキサフロロホスホネート、トリフェニルスルホニウムヘキサフロロアンチモネート等のルイス酸のスルホニウム塩、トリフェニルホスホニウムヘキサフロロアンチモネート等のルイス酸のホスホニウム塩、その他のハロゲン化物、トリアジン系開始剤、ボーレート系開始剤、及びその他の光酸発生剤等のカチオン系光重合開始剤が挙げられる。
 その中でも、多層プリント配線板用途に適した反応性があり、金属導体に対する信頼性が高いという観点から、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(BASFジャパン(株)製、Irgacure(登録商標)369)等のアセトフェノン類のラジカル型光硬化開始剤が好ましい。
 これらの光硬化開始剤(E)は、1種単独又は2種以上を適宜混合して使用することも可能であり、ラジカル系とカチオン系の双方の開始剤を併せて用いても良い。
 本実施形態の樹脂組成物における光硬化開始剤(E)の含有量は、特に限定されないが、樹脂組成物を活性エネルギー線で十分に硬化させ、耐熱性を向上させるという観点から、樹脂組成物中の樹脂固形分100質量部に対して、0.1質量部以上とすることが好ましく、0.2質量部以上とすることがより好ましく、0.3質量部以上とすることが更に好ましく、1質量部以上とすることが更により好ましい。また、光硬化後の熱硬化を阻害し耐熱性を低下させるという観点から、樹脂組成物中の樹脂固形分100質量部に対して、30質量部以下とすることが好ましく、25質量部以下とすることがより好ましく、20質量部以下とすることが更に好ましく、10質量部以下とすることが更により好ましい。
 <熱硬化促進剤>
 本実施形態の樹脂組成物においては、本実施形態の特性が損なわれない範囲において、熱硬化促進剤を併用することも可能である。熱硬化促進剤としては、特に限定されないが、例えば、過酸化ベンゾイル、ラウロイルパーオキサイド、アセチルパーオキサイド、パラクロロベンゾイルパーオキサイド、ジ-tert-ブチル-ジ-パーフタレート等で例示される有機過酸化物;アゾビスニトリル等のアゾ化合物;N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン、N,N-ジメチルトルイジン、2-N-エチルアニリノエタノール、トリ-n-ブチルアミン、ピリジン、キノリン、N-メチルモルホリン、トリエタノールアミン、トリエチレンジアミン、テトラメチルブタンジアミン、N-メチルピペリジンなどの第3級アミン類;フェノール、キシレノール、クレゾール、レゾルシン、カテコールなどのフェノール類;ナフテン酸鉛、ステアリン酸鉛、ナフテン酸亜鉛、オクチル酸亜鉛、オレイン酸錫、ジブチル錫マレート、ナフテン酸マンガン、ナフテン酸コバルト、アセチルアセトン鉄などの有機金属塩;これら有機金属塩をフェノール、ビスフェノールなどの水酸基含有化合物に溶解してなるもの;塩化錫、塩化亜鉛、塩化アルミニウムなどの無機金属塩;ジオクチル錫オキサイド、その他のアルキル錫、アルキル錫オキサイドなどの有機錫化合物;1,2-ジメチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2,4,5-トリフェニルイミダゾール等のイミダゾール化合物などが挙げられる。
 これら熱硬化促進剤は、1種単独又は2種以上を適宜混合して使用することも可能である。
 本実施形態の樹脂組成物において、熱硬化促進剤の含有量は、特に限定されないが、通常、樹脂組成物中の樹脂組成物100質量部に対して、0.1~10質量部である。
 <有機溶剤>
 本実施形態の樹脂組成物には、必要に応じて溶剤を含有していてもよい。例えば、有機溶剤を用いると、樹脂組成物の調製時における粘度を調整することができる。溶剤の種類は、樹脂組成物中の樹脂の一部又は全部を溶解可能なものであれば、特に限定されない。その具体例としては、特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルセルソルブ等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド等のアミド類;プロピレングリコールモノメチルエーテル及びそのアセテートが挙げられる。
 これら有機溶剤は、1種単独又は2種以上を適宜混合して使用することも可能である。
 <その他の成分>
 本実施形態の樹脂組成物には、本実施形態の特性が損なわれない範囲において、これまでに挙げられていない熱硬化性樹脂、熱可塑性樹脂及びそのオリゴマー、エラストマー類等の種々の高分子化合物;これまでに挙げられていない難燃性の化合物;添加剤等の併用も可能である。これらは一般に使用されているものであれば、特に限定されるものではない。例えば、難燃性の化合物では、メラミンやベンゾグアナミン等の窒素含有化合物、オキサジン環含有化合物、及びリン系化合物のホスフェート化合物、芳香族縮合リン酸エステル、含ハロゲン縮合リン酸エステル等が挙げられる。添加剤としては、紫外線吸収剤、酸化防止剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、表面調整剤、光沢剤、重合禁止剤等が挙げられる。これらの成分は、1種単独又は2種以上を適宜混合して使用することも可能である。
 本実施形態の樹脂組成物において、その他の成分の含有量は、特に限定されないが、通常、樹脂組成物100質量部に対して、それぞれ0.1~10質量部である。
 本実施形態の樹脂組成物は、シリカ被覆フッ素樹脂粒子(A)、樹脂成分(B)及び所望に応じて上述したその他の任意成分を適宜混合することにより調製される。本実施形態の樹脂組成物は、後述する本実施形態のプリプレグ、及び樹脂シートを作製する際のワニスとして、好適に使用することができる。
 <樹脂組成物の製造方法>
 本実施形態の樹脂組成物の製造方法は、特に限定されず、例えば、上述した各成分を順次溶剤に配合し、十分に攪拌する方法が挙げられる。
 樹脂組成物の製造時には、必要に応じて各成分を均一に溶解又は分散させるための公知の処理(攪拌、混合、混練処理等)を行うことができる。具体的には、適切な攪拌能力を有する攪拌機を付設した攪拌槽を用いて攪拌分散処理を行うことにより、樹脂組成物に対するシリカ被覆フッ素樹脂粒子(A)の分散性を向上させることができる。上記の攪拌、混合、混練処理は、例えば、超音波ホモジナイザー等の分散を目的とした攪拌装置、三本ロール、ボールミル、ビーズミル、サンドミル等の混合を目的とした装置、又は、公転又は自転型の混合装置等の公知の装置を用いて適宜行うことができる。また、本実施形態の樹脂組成物の調製時においては、必要に応じて有機溶剤を使用することができる。有機溶剤の種類は、樹脂組成物中の樹脂を溶解可能なものであれば、特に限定されず、その具体例は、上述したとおりである。
 <用途>
 本実施形態の樹脂組成物は、絶縁性の樹脂組成物が必要とされる用途に使用することができ、特に限定されないが、感光性フィルム、支持体付き感光性フィルム、プリプレグ等の絶縁樹脂シート、回路基板(積層板用途、多層プリント配線板用途等)、ソルダーレジスト、アンダーフィル材、ダイボンディング材、半導体封止材、穴埋め樹脂、部品埋め込み樹脂等の用途に使用することができる。中でも、多層プリント配線板の絶縁層用樹脂組成物やソルダーレジストとして好適に使用することができる。
 <プリプレグ>
 本実施形態のプリプレグは、上述した本実施形態の樹脂組成物を基材に含浸又は塗布させたものである。プリプレグの製造方法は、本実施形態の樹脂組成物と基材とを組み合わせてプリプレグを製造する方法であれば、特に限定されない。具体的には、本実施形態の樹脂組成物を基材に含浸又は塗布させた後、120~220℃で2~15分程度乾燥させる方法等によって半硬化させることで、本実施形態のプリプレグを製造することができる。このとき、基材に対する樹脂組成物の付着量、すなわち半硬化後のプリプレグの総量に対する樹脂組成物量(充填材を含む。)は、20~99質量%の範囲であることが好ましい。
 本実施形態のプリプレグを製造する際に使用する基材としては、各種プリント配線板材料に用いられている公知のものを使用することができる。例えば、Eガラス、Dガラス、Lガラス、Sガラス、Tガラス、Qガラス、UNガラス、NEガラス、球状ガラス等のガラス繊維、クォーツ等のガラス以外の無機繊維、ポリイミド、ポリアミド、ポリエステル等の有機繊維、液晶ポリエステル等の織布が挙げられるが、これらに特に限定されるものではない。基材の形状としては、織布、不織布、ロービング、チョップドストランドマット、サーフェシングマット等が知られているが、いずれであっても構わない。基材は、1種単独で又は2種以上を組み合わせて用いることができる。また、基材の厚みは、特に限定されないが、積層板用途であれば0.01~0.2mmの範囲が好ましく、特に超開繊処理や目詰め処理を施した織布が、寸法安定性の観点から好適である。さらに、エポキシシラン処理、アミノシラン処理などのシランカップリング剤などで表面処理したガラス織布は吸湿耐熱性の観点から好ましい。また、液晶ポリエステル織布は、電気特性の面から好ましい。
 <金属箔張積層板>
 本実施形態の金属箔張積層板は、上述したプリプレグを少なくとも1枚以上重ね、その片面もしくは両面に金属箔を配して積層成形したものである。具体的には、前述のプリプレグを一枚あるいは複数枚重ね、その片面もしくは両面に銅やアルミニウムなどの金属箔を配置して、積層成形することにより作製することができる。ここで使用する金属箔は、プリント配線板材料に用いられているものであれば、特に限定されないが、圧延銅箔や電解銅箔等の銅箔が好ましい。また、金属箔の厚みは、特に限定されないが、2~70μmが好ましく、3~35μmがより好ましい。成形条件としては、通常のプリント配線板用積層板及び多層板の手法が適用できる。例えば、多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機などを使用し、温度180~350℃、加熱時間100~300分、面圧20~100kg/cmで積層成形することにより本発明の金属箔張積層板を製造することができる。また、上記のプリプレグと、別途作製した内層用の配線板とを組み合わせて積層成形することにより、多層板とすることもできる。多層板の製造方法としては、例えば、上述したプリプレグ1枚の両面に35μmの銅箔を配置し、上記条件にて積層形成した後、内層回路を形成し、この回路に黒化処理を実施して内層回路板を形成し、その後、この内層回路板と上記のプリプレグとを交互に1枚ずつ配置し、さらに最外層に銅箔を配置して、上記条件にて好ましくは真空下で積層成形することにより、多層板を作製することができる。
 <樹脂シート>
 他方、本実施形態の樹脂シートは、上記の本実施形態の樹脂組成物を溶剤に溶解させた溶液を支持体に塗布し乾燥することで得ることができる。ここで用いる支持体としては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム、ポリエチレンテレフタレートフィルム、エチレンテトラフルオロエチレン共重合体フィルム、並びにこれらのフィルムの表面に離型剤を塗布した離型フィルム、ポリイミドフィルム等の有機系のフィルム基材、銅箔、アルミ箔等の導体箔、ガラス板、SUS板、FRP等の板状のものが挙げられるが、特に限定されるものではない。
 さらに、本実施形態における樹脂シートにおいて、その樹脂組成物層は、保護フィルムで保護されていてもよい。
 樹脂組成物層側を保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。保護フィルムとしては上記の樹脂フィルムと同様の材料により構成されたフィルムを用いることができる。保護フィルムの厚さは特に限定されないが、1μm~50μmの範囲であることが好ましく、5μm~40μmの範囲であることがより好ましい。厚さが1μm未満では、保護フィルムの取り扱い性が低下する傾向があり、50μmを超えると廉価性に劣る傾向がある。なお、保護フィルムは、樹脂組成物層と支持体との接着力に対して、樹脂組成物層と保護フィルムとの接着力の方が小さいものが好ましい。
 塗布方法としては、例えば、本実施形態の樹脂組成物を溶剤に溶解させた溶液を、バーコーター、ダイコーター、ドクターブレード、ベーカーアプリケーター等で支持体上に塗布することで支持体と樹脂シートが一体となった積層シートを作製する方法が挙げられる。また、乾燥後に、積層シートから支持体を剥離又はエッチングすることで、樹脂シート単独となる単層シートとすることもできる。なお、上記の本実施形態の樹脂組成物を溶剤に溶解させた溶液を、シート状のキャビティを有する金型内に供給し乾燥する等してシート状に成形することで、支持体を用いることなく単層シートを得ることもできる。
 なお、本実施形態の樹脂シート(単層あるいは積層シート)の作製において、溶剤を除去する際の乾燥条件は、特に限定されないが、低温であると樹脂組成物中に溶剤が残り易く、高温であると樹脂組成物の硬化が進行することから、20℃~200℃の温度で1~90分間が好ましい。また、本実施形態の樹脂シート(単層あるいは積層シート)の樹脂層の厚みは、本実施形態の樹脂組成物の溶液の濃度と塗布厚みにより調整することができ、特に限定されないが、一般的には塗布厚みが厚くなると乾燥時に溶剤が残り易くなることから、0.1~500μmが好ましい。
 <プリント配線板>
 本実施形態の金属箔張積層板及び樹脂シートは、プリント配線板として好適に使用することができる。プリント配線板は、常法にしたがって製造することができ、その製造方法は特に限定されない。以下、金属箔張積層板を用いたプリント配線板の製造方法の一例を示す。まず、上述した銅張積層板等の金属箔張積層板を用意する。次に、金属箔張積層板の表面にエッチング処理を施して内層回路の形成を行い、内層基板を作製する。この内層基板の内層回路表面に、必要に応じて接着強度を高めるための表面処理を行い、次いでその内層回路表面に上述したプリプレグ又は所要枚数重ね、さらにその外側に外層回路用の金属箔を積層し、加熱加圧して一体成形する。このようにして、内層回路と外層回路用の金属箔との間に、基材及び熱硬化性樹脂組成物の硬化物からなる絶縁層が形成された多層の積層板が製造される。次いで、この多層の積層板にスルーホールやバイアホール用の穴あけ加工を施した後、この穴の壁面に内層回路と外層回路用の金属箔とを導通させるめっき金属皮膜を形成し、さらに外層回路用の金属箔にエッチング処理を施して外層回路を形成することで、プリント配線板が製造される。
 上記の製造例で得られるプリント配線板は、絶縁層と、この絶縁層の表面に形成された導体層とを有し、絶縁層が上述した本実施形態の樹脂組成物を含む構成となる。すなわち、上述した本実施形態のプリプレグ(基材及びこれに含浸又は塗布された本実施形態の樹脂組成物)、上述した本実施形態の金属箔張積層板の樹脂組成物の層(本発明の樹脂組成物からなる層)が、本実施形態の樹脂組成物を含む絶縁層から構成されることになる。
 以下、樹脂シートを用いたプリント配線板の製造方法の一例を示す。本実施形態の樹脂シートは、プリント配線板の層間絶縁層として好適に使用することができ、上述した樹脂シートを1枚以上重ねて硬化して得ることができる。具体的には以下の方法により製造することができる。
 本実施形態の樹脂シートの樹脂組成物層側を回路基板の片面又は両面に成形する。成型条件としては、通常のプリント配線板用積層板及び多層板の手法が適用でき、真空ラミネートにより成形することもできる。回路基板としては、例えば、ガラスエポキシ基板、金属基板、セラミック基板、シリコン基板、半導体封止樹脂基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等が挙げられる。なお、ここで回路基板とは、上記のような基板の片面又は両面にパターン加工された導体層(回路)が形成された基板をいう。また、導体層と絶縁層とを交互に積層してなる多層プリント配線板において、該多層プリント配線板の最外層の片面又は両面がパターン加工された導体層(回路)となっている基板も、ここでいう回路基板に含まれる。なお、導体層表面には、黒化処理、銅エッチング等により予め粗化処理が施されていてもよい。成型工程において、樹脂シートが保護フィルムを有している場合には該保護フィルムを剥離除去した後、必要に応じて樹脂シート及び回路基板をプレヒートし、樹脂組成物層を加圧及び加熱しながら回路基板に圧着する。本実施形態の樹脂シートにおいては、真空ラミネート法により減圧下で回路基板にラミネートする方法が好適に用いられる。
 ラミネート工程の条件は、特に限定されるものではないが、例えば、圧着温度(ラミネート温度)を好ましくは50℃~140℃とし、圧着圧力を好ましくは1kgf/cm2~15kgf/cm2、圧着時間を好ましくは5秒間~300秒間とし、空気圧を20mmHg以下とする減圧下でラミネートするのが好ましい。また、ラミネート工程は、バッチ式であってもロールを用いる連続式であってもよい。真空ラミネート法は、市販の真空ラミネーターを使用して行うことができる。市販の真空ラミネーターとしては、例えば、ニッコー・マテリアルズ(株)製2ステージビルドアップラミネーター等を挙げることができる。
 穴加工処理は、ビアホール、スルーホール等の形成のために実施される。穴加工処理は、NCドリル、炭酸ガスレーザー、UVレーザー、YAGレーザー、プラズマ等の公知の方法のうち何れか1種を用い、或いは必要により2種以上を組み合わせて行う。樹脂シートが光硬化性樹脂組成物の場合は露光、現像により穴加工処理を実施することもできる。
 穴加工処理前又は処理後に必要に応じてポストベーク工程を実施し絶縁層(硬化物)を形成する。ポストベーク工程としては、高圧水銀ランプによる紫外線照射工程やクリーンオーブンを用いた加熱工程等が挙げられる。紫外線を照射させる場合は必要に応じてその照射量を調整することができ、例えば0.05J/cm~10J/cm程度の照射量で照射を行うことができる。また加熱の条件は、樹脂組成物中の樹脂成分の種類、含有量などに応じて適宜選択すればよいが、好ましくは150℃~220℃で20分間~180分間の範囲、より好ましくは160℃~200℃で30分間~150分間の範囲で選択される。
 絶縁層表面に導体層が有る場合、穴の壁面に内層回路と外層回路用の金属箔とを導通させるめっき金属皮膜を形成し、さらに外層回路用の金属箔にエッチング処理を施して外層回路を形成することで、プリント配線板が製造される。
 絶縁層表面に導体層が無い場合、次に、乾式めっき又は湿式めっきによりや絶縁層表面に導体層を形成する。乾式めっきとしては、蒸着法、スパッタリング法、イオンプレーティング法等の公知の方法を使用することができる。蒸着法(真空蒸着法)は、例えば、支持体を真空容器内に入れ、金属を加熱蒸発させることにより絶縁層上に金属膜形成を行うことができる。スパッタリング法も、例えば、支持体を真空容器内に入れ、アルゴン等の不活性ガスを導入し、直流電圧を印加して、イオン化した不活性ガスをターゲット金属に衝突させ、叩き出された金属により絶縁層上に金属膜形成を行うことができる。
 湿式めっきの場合は、形成された絶縁層の表面に対して、膨潤液による膨潤処理、酸化剤による粗化処理及び中和液による中和処理をこの順に行うことによって絶縁層表面を粗化する。膨潤液による膨潤処理は、絶縁層を50℃~80℃で1分間~20分間膨潤液に浸漬させることで行われる。膨潤液としてはアルカリ溶液が挙げられ、該アルカリ溶液としては、水酸化ナトリウム溶液、水酸化カリウム溶液等が挙げられる。市販されている膨潤液としては、例えば、上村工業(株)製のアップデス(登録商標)MDS-37等を挙げることができる。
 酸化剤による粗化処理は、絶縁層を60℃~80℃で5分間~30分間酸化剤溶液に浸漬させることで行われる。酸化剤としては、例えば、水酸化ナトリウムの水溶液に過マンガン酸カリウムや過マンガン酸ナトリウムを溶解したアルカリ性過マンガン酸溶液、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等を挙げることができる。また、アルカリ性過マンガン酸溶液における過マンガン酸塩の濃度は5質量%~10質量%とするのが好ましい。市販されている酸化剤としては、例えば、上村工業(株)製アップデス(登録商標)MDE-40、アップデス(登録商標)ELC-SH等のアルカリ性過マンガン酸溶液が挙げられる。中和液による中和処理は、30℃~50℃で1分間~10分間中和液に浸漬させることで行われる。中和液としては、酸性の水溶液が好ましく、市販品としては、上村工業(株)製のアップデス(登録商標)MDN-62が挙げられる。
 次いで、無電解めっきと電解めっきとを組み合わせて導体層を形成する。また導体層とは逆パターンのメッキレジストを形成し、無電解めっきのみで導体層を形成することもできる。その後のパターン形成の方法として、例えば、サブトラクティブ法、セミアディティブ法などを用いることができる。
 <半導体装置>
 本実施形態の半導体装置は、本実施形態の樹脂組成物を含む層間絶縁層を備え、具体的には以下の方法により製造することができる。本実施形態の多層プリント配線板の導通箇所に、半導体チップを実装することにより半導体装置を製造することができる。ここで、導通箇所とは、多層プリント配線板における電気信号を伝える箇所のことであって、その場所は表面であっても、埋め込まれた箇所であってもいずれでも構わない。また、半導体チップは半導体を材料とする電気回路素子であれば特に限定されない。
 本実施形態の半導体装置を製造する際の半導体チップの実装方法は、半導体チップが有効に機能しさえずれば、特に限定されないが、具体的には、ワイヤボンディング実装方法、フリップチップ実装方法、バンプなしビルドアップ層(BBUL)による実装方法、異方性導電フィルム(ACF)による実装方法、非導電性フィルム(NCF)による実装方法、などが挙げられる。
 また、本実施形態の樹脂シートを半導体チップにラミネートすることによっても、半導体装置を製造することができる。ラミネート後は前述の多層プリント配線板と同様の方法を用いて製造することができる。
 以下、合成例、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例になんら限定されるものではない。
 〔合成例1〕
 (シアン酸エステル化合物の合成)
 1-ナフトールアラルキル樹脂(新日鉄住金化学株式会社製)300g(OH基換算1.28mol)及びトリエチルアミン194.6g(1.92mol)(ヒドロキシ基1molに対して1.5mol)をジクロロメタン1800gに溶解させ、これを溶液1とした。
 塩化シアン125.9g(2.05mol)(ヒドロキシ基1molに対して1.6mol)、ジクロロメタン293.8g、36%塩酸194.5g(1.92mol)(ヒドロキシ基1モルに対して1.5モル)、水1205.9gを、撹拌下、液温-2~-0.5℃に保ちながら、溶液1を30分かけて注下した。溶液1注下終了後、同温度にて30分撹拌した後、トリエチルアミン65g(0.64mol)(ヒドロキシ基1molに対して0.5mol)をジクロロメタン65gに溶解させた溶液(溶液2)を10分かけて注下した。溶液2注下終了後、同温度にて30分撹拌して反応を完結させた。
 その後反応液を静置して有機相と水相を分離した。得られた有機相を水1300gで5回洗浄した。水洗5回目の廃水の電気伝導度は5μS/cmであり、水による洗浄により、除けるイオン性化合物は十分に除けられたことを確認した。
 水洗後の有機相を減圧下で濃縮し、最終的に90℃で1時間濃縮乾固させて目的とするナフトールアラルキル型のシアン酸エステル化合物(SNCN)(橙色粘性物)を331g得た。得られたSNCNの質量平均分子量Mwは600であった。また、SNCNのIRスペクトルは2250cm-1(シアン酸エステル基)の吸収を示し、且つ、ヒドロキシ基の吸収は示さなかった。
 〔合成例2〕
 (ビニル基を有する2官能性フェニレンエーテルオリゴマー体の合成)
 攪拌装置、温度計、空気導入管、じゃま板のついた12Lの縦長反応器にCuBr23.88g(17.4mmol)、N,N’-ジ-t-ブチルエチレンジアミン0.75g(4.4mmol)、n-ブチルジメチルアミン28.04g(277.6mmol)、トルエン2600gを仕込み、反応温度40℃にて攪拌を行い、あらかじめ2300gのメタノールに溶解させた2,2’,3,3’,5,5’-ヘキサメチル-(1,1’-ビフェノール)-4,4’-ジオール129.3g(0.48mol)、2,6-ジメチルフェノール233.7g(1.92mol)、2,3,6-トリメチルフェノール64.9g(0.48mol)、N,N’-ジ-t-ブチルエチレンジアミン0.51g(2.9mmol)、n-ブチルジメチルアミン10.90g(108.0mmol)の混合溶液を、窒素と空気とを混合して酸素濃度8%に調製した混合ガスを5.2L/minの流速でバブリングを行いながら230分かけて滴下し、攪拌を行った。滴下終了後、エチレンジアミン四酢酸四ナトリウム19.89g(52.3mmol)を溶解した水1500gを加え、反応を停止した。水層と有機層を分液し、有機層を1Nの塩酸水溶液、次いで純水で洗浄した。得られた溶液をエバポレーターで50wt%に濃縮し、2官能性フェニレンエーテルオリゴマー体のトルエン溶液を836.5g得た。2官能性フェニレンエーテルオリゴマー体の数平均分子量は986、重量平均分子量は1530、水酸基当量が471であった。
 (ビニル化合物の合成)
 攪拌装置、温度計、還流管を備えた反応器に2官能性フェニレンエーテルオリゴマー体のトルエン溶液836.5g、ビニルベンジルクロライド(商品名CMS-P、AGCセイミケミカル(株)製)162.6g、塩化メチレン1600g、ベンジルジメチルアミン12.95g、純水420g、30.5wt% NaOH水溶液178.0gを仕込み、反応温度40℃で攪拌を行った。24時間攪拌を行った後、有機層を1Nの塩酸水溶液、次いで純水で洗浄した。得られた溶液をエバポレーターで濃縮し、メタノール中へ滴下して固形化を行い、濾過により固体を回収、真空乾燥してビニル化合物503.5gを得た。ビニル化合物の数平均分子量は1187、重量平均分子量は1675、ビニル基当量は590g/ビニル基であった。
 〔実施例1〕
 (樹脂組成物及びプリプレグの作成)
 シリカ被覆フッ素樹脂粒子(A)として、シリカコートPTFEフィラーのメチルエチルケトン(以下、MEKと略す場合がある)スラリー(0.5μmPTFE-YA(商品名)、一次粒子の体積平均粒子径0.5μm、不揮発分20質量%、(株)アドマテックス製)250質量部(不揮発分換算で50質量部)、シアン酸エステル化合物として、合成例1で得られたSNCN2.1質量部、2,2-ビス(4-シアナトフェニル)プロパンのプレポリマー(CA210(商品名)、シアネート当量139、三菱瓦斯化学(株)製)6.6質量部、エポキシ樹脂として、臭素化ビスフェノールA型エポキシ樹脂(E153(商品名)、エポキシ当量400、2級水酸基量0.3meq/g、DIC(株)製)10.6質量部、エチレン性不飽和基を有する化合物として、合成例2で得られたビニル化合物(数平均分子量は1187、ビニル基当量は590g/ビニル基)77.5質量部、α-メチルスチレンオリゴマー(KA3085(商品名)、質量平均分子量:664、米国Eastman Chemical Company製)3.2質量部、その他の充填材(C)として、ビニルシラン処理シリカのMEKスラリー(SC2050MNU(商品名)、メジアン径0.5μm、不揮発分70質量%、(株)アドマテックス製)71.4質量部(不揮発分換算で50質量部)を混合してワニス(樹脂組成物の溶液)を得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのEガラス織布に含浸塗工し、160℃で5分間加熱乾燥して、樹脂含有量50質量%のプリプレグを得た。
 (内層回路基板の作成)
 最小配線ピッチが10μmの内層回路を形成したガラス布基材BT樹脂両面銅張積層板(銅箔厚さ12μm、厚み0.2mm、三菱瓦斯化学(株)製CCL(登録商標)-HL832NS(商品名))の両面をメック(株)製CZ8100(商品名)にて銅表面の粗化処理を行って内層回路基板を得た
 (金属箔張積層体の作成)
 前記プリプレグを内層回路基板上下に配置し、12μm厚の電解銅箔(3EC-M3-VLP(商品名)、三井金属(株)製)を上下に配置し、圧力30kgf/cm、温度220℃で120分間の積層成型を行うことで内層回路基板と樹脂組成物層と銅箔が積層された金属箔張積層体を得た。
 (評価用硬化物の作製)
 前記プリプレグを4枚重ねて12μm厚の電解銅箔(3EC-M3-VLP(商品名)、三井金属(株)製)を上下に配置し、圧力30kgf/cm、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.4mmの金属箔張積層板を得た。得られた金属箔張積層板の全金属箔をエッチング除去し、評価用硬化物を得た。
 〔実施例2〕
 シリカ被覆フッ素樹脂粒子(A)として、一次粒子の体積平均粒子径が3.0μmのシリカコートPTFEフィラーのMEKスラリー(PTFE-YA4(商品名)、一次粒子の体積平均粒子径3.0μm、不揮発分40質量%、(株)アドマテックス製)を125質量部(不揮発分換算で50質量部)用いた以外は実施例1と同様にしてワニスを調製し、プリプレグ、金属箔張積層体、評価用硬化物を得た。
 〔実施例3〕
 シリカ被覆フッ素樹脂粒子(A)として、シリカコートPTFEフィラーのMEKスラリー(0.5μmPTFE-YA(商品名)、一次粒子の体積平均粒子径0.5μm、不揮発分20質量%、(株)アドマテックス製)250質量部(不揮発分換算で50質量部)、シアン酸エステル化合物として、合成例1で得られたSNCN2.0質量部、2,2-ビス(4-シアナトフェニル)プロパンのプレポリマー(CA210(商品名)、シアネート当量139、三菱瓦斯化学(株)製)6.2質量部、エポキシ樹脂として、臭素化ビスフェノールA型エポキシ樹脂(E153(商品名)、エポキシ当量400、2級水酸基量0.3meq/g、DIC(株)製)10.0質量部、エチレン性不飽和基を有する化合物としてとして、合成例2で得られたビニル化合物(数平均分子量は1187、ビニル基当量は590g/ビニル基)72.8質量部、α-メチルスチレンオリゴマー(KA3085(商品名)、質量平均分子量:664、米国Eastman Chemical Company製)3.0質量部、その他の充填材(C)として、ビニルシラン処理シリカのMEKスラリー(SC2050MNU(商品名)、メジアン径0.5μm、不揮発分70質量%、(株)アドマテックス製)71.4質量部(不揮発分換算で50質量部)、難燃剤(D)として、臭素化ポリカーボネート(FG8500(商品名)、帝人(株)製、臭素含量58重量%)6質量部を混合してワニスを得た。以降は実施例1と同様にして、プリプレグ、金属箔張積層体、評価用硬化物を得た。
 〔実施例4〕
 (樹脂組成物及び樹脂シートの作成)
 シリカ被覆フッ素樹脂粒子(A)として、シリカコートPTFEフィラーのMEKスラリー(0.5μmPTFE-YA(商品名)、一次粒子の体積平均粒子径0.5μm、不揮発分20質量%、(株)アドマテックス製)250質量部(不揮発分換算で50質量部)、シアン酸エステル化合物として、合成例1で得られたSNCN2.1質量部、2,2-ビス(4-シアナトフェニル)プロパンのプレポリマー(CA210(商品名)、シアネート当量139、三菱瓦斯化学(株)製)6.6質量部、エポキシ樹脂として、臭素化ビスフェノールA型エポキシ樹脂(E153(商品名)、エポキシ当量400、2級水酸基量0.3meq/g,DIC(株)製)10.6質量部、エチレン性不飽和基を有する化合物として、合成例2で得られたビニル化合物(数平均分子量は1187、ビニル基当量は590g/ビニル基)77.5質量部、α-メチルスチレンオリゴマー(KA3085(商品名)、質量平均分子量:664、米国Eastman Chemical Company製)3.2質量部、その他の充填材(C)として、ビニルシラン処理シリカのMEKスラリー(SC2050MNU(商品名)、メジアン径0.5μm、不揮発分70質量%、(株)アドマテックス製)71.4質量部(不揮発分換算で50質量部)を混合してワニスを得た。これらのワニスを厚さ12μmの電解銅箔(3EC-M2S-VLP(商品名)、三井金属(株)製)上に塗布し、120℃で5分間加熱乾燥して、銅箔を支持体とし樹脂組成物層の厚さが40μmである樹脂シートを得た。
 (金属箔張積層体の作成)
 前記銅箔を支持体とした樹脂シートの樹脂面を実施例1で用いた内層回路基板上に配置し、圧力30kgf/cm、温度220℃で120分間の積層成型を行うことで内層回路基板と樹脂組成物層と銅箔が積層された金属箔張積層体を得た。
 (評価用硬化物の作製)
 得られた金属箔張積層体の全金属箔をエッチング除去し、評価用硬化物を得た。
 〔比較例1〕
 シリカ被覆フッ素樹脂粒子(A)の代わりにPTFE分散液(EXP.FD-030(商品名)、メジアン径0.5μm、不揮発分40質量%、DIC(株)製)を125質量部(不揮発分換算で50質量部)用いた以外は実施例3と同様にしてワニスを調製し、プリプレグ、金属箔張積層体、評価用硬化物を得た。
 〔比較例2〕
 シリカ被覆フッ素樹脂粒子(A)を用いず、その他の充填材(C)として、ビニルシラン処理シリカのMEKスラリー(SC2050MNU(商品名)、メジアン径0.5μm、不揮発分70質量%、(株)アドマテックス製)を142.9質量部(不揮発分換算で100質量部)用いた以外は実施例1と同様にしてワニスを調製し、プリプレグ、金属箔張積層体、評価用硬化物を得た。
 〔実施例5〕
 シリカ被覆フッ素樹脂粒子(A)として、シリカコートPTFEフィラーのMEKスラリー(0.5μmPTFE-YA(商品名)、一次粒子の体積平均粒子径0.5μm、不揮発分20質量%、(株)アドマテックス製)250質量部(不揮発分換算で50質量部)、マレイミド化合物として、マレイミド化合物(BMI-2300(商品名)、大和化成工業(株)製)3.5質量部、エポキシ樹脂として、ビフェニルアラルキル型エポキシ樹脂(NC3000H(商品名)、日本化薬(株)製)19.8質量部、エチレン性不飽和基を有する化合物として、酸変性ビスフェノールF型エポキシアクリレート化合物のプロピレングリコールモノメチルエーテルアセテート(以下、PMAと略す場合がある。)溶液(KAYARAD(登録商標)ZFR-1553H(商品名)、不揮発分68質量%、酸価:70mgKOH/g、日本化薬(株)製)77.6質量部(不揮発分換算で52.8質量部)、ジペンタエリスリトールヘキサアクリレート(KAYARAD(登録商標)DPHA(商品名)、日本化薬(株)製)18.9質量部、光硬化開始剤(E)として、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(Irgacure(登録商標)369(商品名)、BASFジャパン(株)製)5質量部を配合し、超音波ホモジナイザーで攪拌してワニス(樹脂組成物の溶液)を得た。これらのワニスを厚さ38μmのPETフィルム(ユニピール(登録商標)TR1-38、ユニチカ(株)製、商品名)上に塗布し、80℃で7分間加熱乾燥して、PETフィルムを支持体とし樹脂組成物層の厚さが40μmである樹脂シートを得た。
 (評価用積層体の作製)
 前記PETフィルムを支持体とした樹脂シートの樹脂面を実施例1で用いた内層回路基板上に配置し、真空ラミネーター(ニッコー・マテリアルズ(株)製)を用いて、30秒間真空引き(5.0MPa以下)を行った後、圧力10kgf/cm、温度70℃で30秒間の積層成形を行った。さらに圧力10kgf/cm、温度70℃で60秒間の積層成形を行うことで内層回路基板と樹脂組成物層と支持体が積層された積層体を得た。得られた積層体に200mJ/cmの紫外線を照射する露光工程を施し、支持体をはがし取って、1質量%の炭酸ナトリウム水溶液で現像し、評価用積層体とした。
 (評価用硬化物の作製)
 前記樹脂シートに200mJ/cmの紫外線を照射し、さらに180℃、120分間加熱処理するポストベーク工程を施した後、支持体をはがし取って評価用硬化物とした。
 〔実施例6〕
 シリカ被覆フッ素樹脂粒子(A)として、シリカコートPTFEフィラーのMEKスラリー(0.5μmPTFE-YA(商品名)、一次粒子の体積平均粒子径0.5μm、不揮発分20質量%、(株)アドマテックス製)100質量部(不揮発分換算で20質量部)、マレイミド化合物(BMI-2300(商品名)、大和化成工業(株)製)3.5質量部、エポキシ樹脂として、ビフェニルアラルキル型エポキシ樹脂(KAYARAD(登録商標)NC3000H(商品名)、日本化薬(株)製)19.8質量部、エチレン性不飽和基を有する化合物として、酸変性ビスフェノールF型エポキシアクリレート化合物のPMA溶液(KAYARAD(登録商標)ZFR-1553H(商品名)、不揮発分68質量%、酸価:70mgKOH/g、日本化薬(株)製)77.6質量部(不揮発分換算で52.8質量部)、ジペンタエリスリトールヘキサアクリレート(KAYARAD(登録商標)DPHA(商品名)、日本化薬(株)製)18.9質量部、その他の充填材(C)として、エポキシシラン処理シリカのMEKスラリー(SC2050MB(商品名)、メジアン径0.5μm、不揮発分70質量%、(株)アドマテックス製)42.9質量部(不揮発分換算で30質量部)、光硬化開始剤(E)として、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(Irgacure(登録商標)369(商品名)、BASFジャパン(株)製)5質量部を配合し、超音波ホモジナイザーで攪拌してワニスを得た。以降は実施例5と同様にして樹脂シート、評価用積層体、評価用硬化物を得た。
 〔実施例7〕
 シリカ被覆フッ素樹脂粒子(A)として、一次粒子の体積平均粒子径が3.0μmのシリカコートPTFEフィラーのMEKスラリー(PTFE-YA4(商品名)、一次粒子の体積平均粒子径3.0μm、不揮発分40質量%、(株)アドマテックス製)を125質量部(不揮発分換算で50質量部)用いた以外は実施例5と同様にしてワニスを調製し、樹脂シート、評価用積層体、評価用硬化物を得た。
 〔実施例8〕
 エチレン性不飽和基を有する化合物として、酸変性ビスフェノールF型エポキシアクリレート化合物のPMA溶液(KAYARAD(登録商標)ZFR-1553H(商品名)、不揮発分68質量%、酸価:70mgKOH/g、日本化薬(株)製)の代わりに、式(4)で表されるTrisP-PAエポキシアクリレート化合物のPMA溶液(KAYARAD(登録商標)ZCR-6007H(商品名)、不揮発分65質量%、酸価:70mgKOH/g、日本化薬(株)製)を81.2質量部(不揮発分換算で52.8質量部)用いた以外は実施例5と同様にしてワニスを調製し、樹脂シート、評価用積層体、評価用硬化物を得た。
 なお、前記KAYARAD(登録商標)ZCR-6007Hは、上記化合物(A1)及び上記化合物(A2)~(A5)のいずれか一種以上を含む混合物である。
 〔比較例3〕
 シリカ被覆フッ素樹脂粒子(A)の代わりにPTFE分散液(EXP.FD-030(商品名)、メジアン径0.5μm、不揮発分40質量%、DIC(株)製)を125質量部(不揮発分換算で50質量部)用いた以外は実施例5と同様にしてワニスを調製し、樹脂シート、評価用積層体、評価用硬化物を得た。
 〔比較例4〕
 シリカ被覆フッ素樹脂粒子(A)を用いず、その他の充填材(C)として、エポキシシラン処理シリカのMEKスラリー(SC2050MB(商品名)、メジアン径0.5μm、不揮発分70質量%、(株)アドマテックス製)を71.4質量部(不揮発分換算で50質量部)用いた以外は実施例5と同様にしてワニスを調製し、樹脂シート、評価用積層体、評価用硬化物を得た。
 〔物性測定評価〕
 金属箔張積層体、評価用積層体及び評価用硬化物を、以下の方法により測定し、評価した。それらの結果をまとめて表1~3に示す。
 <配線埋め込み性>
 金属箔張積層体50mm×50mmのサンプルの片面の半分以外の全銅箔をエッチング除去した試験片、もしくは評価用積層体50mm×50mmの試験片を、プレッシャークッカー試験機(平山製作所製、PC-3型)で121℃、2気圧で5時間処理後、260℃のはんだ中に60秒浸漬した後の外観変化を目視で観察し、以下の基準で評価した。
 ◎:試験片5個中、フクレ発生が認められない。
 ○:試験片5個中、1個でフクレ発生が認められる。
 ×:試験片5個中、2個以上でフクレ発生が認められる。
 <半田耐熱性>
 金属箔張積層体50mm×50mmの試験片、もしくは評価用積層体50mm×50mmの試験片を、280℃はんだに30分間フロートさせて、外観異常の有無を目視で観察し、以下の基準で評価した。
 ○:試験片5個中、フクレ発生が認められない。
 ×:試験片5個中、1個以上でフクレ発生が認められる。
 <誘電率、誘電正接>
 評価用硬化物の試験片を、空洞共振器摂動法(Agilent(登録商標)8722ES、アジレントテクノロジー社製)にて10GHzの誘電率、及び誘電正接を測定した。
 <現像性>
 評価用積層体の現像面を目視で観察した後、SEMにて観察(倍率1000倍)し、残渣の有無を下記基準で評価した。
 ○:30mm角の範囲に現像残渣はなく、現像性が優れている。
 ×:30mm角の範囲に現像残渣があり、現像性が劣っている。
 <耐熱性(ガラス転移温度)>
 評価用硬化物をDMA装置(TAインスツルメント社製動的粘弾性測定装置DMAQ800(商品名))を用いて10℃/分で昇温し、LossModulusのピーク位置をガラス転移温度(Tg)とした。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 表1、表2及び表3から明らかなように、実施例1~8は配線埋め込み性、及び耐熱性に優れており、誘電率、誘電正接が良好である。その中でも、実施例1、実施例4及び実施例5が配線埋め込み性、誘電率が良好である。実施例8はさらに耐熱性(Tg)が高く良好である。これに対し、比較例1~4は配線埋め込み性、耐熱性及び誘電率のいずれかが不十分である。従って、本発明によれば、誘電率、誘電正接、微細配線埋め込み性、耐熱性、現像性を優れたものとする樹脂組成物、それを用いたプリプレグ、金属箔張積層板、樹脂シート、プリント配線板及び半導体装置が得られる。
 

Claims (15)

  1.  シリカ被覆フッ素樹脂粒子(A)及び樹脂成分(B)を含有する、樹脂組成物。
  2.  前記シリカ被覆フッ素樹脂粒子(A)の一次粒子の体積平均粒子径が5μm以下である、請求項1に記載の樹脂組成物。
  3.  前記シリカ被覆フッ素樹脂粒子(A)の樹脂組成物中における含有量が、樹脂組成物中の樹脂固形分100質量部に対し、3~400質量部である、請求項1又は2に記載の樹脂組成物。
  4.  前記樹脂成分(B)が、マレイミド化合物、シアン酸エステル化合物、エポキシ樹脂、フェノール樹脂、オキセタン樹脂、ベンゾオキサジン化合物及びエチレン性不飽和基を有する化合物からなる群から選択されるいずれか一種以上を含有する、請求項1~3のいずれか一項に記載の樹脂組成物。
  5.  前記シリカ被覆フッ素樹脂粒子(A)以外の充填材(C)を更に含有する、請求項1~4のいずれか一項に記載の樹脂組成物。
  6.  難燃剤(D)を更に含有する、請求項1~5のいずれか一項に記載の樹脂組成物。
  7.  更に、光硬化開始剤(E)を含有する、請求項1~6のいずれか一項に記載の樹脂組成物。
  8.  前記エチレン性不飽和基を有する化合物が、ビニル基を有する2官能性フェニレンエーテルオリゴマー及びα-メチルスチレンのオリゴマーからなる群より選択される少なくとも一種以上を含む、請求項4に記載の樹脂組成物。
  9.  前記エチレン性不飽和基を有する化合物が、酸変性ビスフェノールF型エポキシ(メタ)アクリレート、下記一般式(1)で表される化合物及びジペンタエリスリトールヘキサ(メタ)アクリレートからなる群より選択される少なくとも一種以上を含む、請求項4に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     (式(1)中、複数のRは、各々独立に、水素原子又はメチル基を表し、複数のRは、各々独立に、水素原子又はメチル基を表し、複数のRは、各々独立に、下記式(2)で表される置換基、下記式(3)で表される置換基又はヒドロキシ基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
     (式(3)中、Rは、水素原子又はメチル基を表す。)
  10.  前記エチレン性不飽和基を有する化合物が、少なくとも前記一般式(1)で表される化合物を含む、請求項9に記載の樹脂組成物。
  11.  基材及び該基材に含浸又は塗布された、請求項1~10のいずれか一項に記載の樹脂組成物を有するプリプレグ。
  12.  少なくとも1枚以上積層された請求項11に記載のプリプレグ及び該プリプレグの片面又は両面に配された金属箔を有する、金属箔張積層板。
  13.  支持体及び該支持体の表面に配された、請求項1~10のいずれか一項に記載の樹脂組成物を有する、樹脂シート。
  14.  請求項1~10のいずれか一項に記載の樹脂組成物を有する、プリント配線板。
  15.  請求項1~10のいずれか一項に記載の樹脂組成物を有する、半導体装置。
     
PCT/JP2017/002999 2016-02-02 2017-01-27 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、プリント配線板及び半導体装置 WO2017135168A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017565523A JP6880510B2 (ja) 2016-02-02 2017-01-27 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、プリント配線板及び半導体装置
CN201780009567.7A CN108603003B (zh) 2016-02-02 2017-01-27 树脂组合物、预浸料、覆金属箔层叠板、树脂片、印刷电路板及半导体装置
KR1020187019176A KR20180104290A (ko) 2016-02-02 2017-01-27 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트, 프린트 배선판 및 반도체 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016017670 2016-02-02
JP2016-017670 2016-02-02
JP2016-032826 2016-02-24
JP2016032826 2016-02-24

Publications (1)

Publication Number Publication Date
WO2017135168A1 true WO2017135168A1 (ja) 2017-08-10

Family

ID=59499736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002999 WO2017135168A1 (ja) 2016-02-02 2017-01-27 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、プリント配線板及び半導体装置

Country Status (5)

Country Link
JP (1) JP6880510B2 (ja)
KR (1) KR20180104290A (ja)
CN (1) CN108603003B (ja)
TW (1) TWI781918B (ja)
WO (1) WO2017135168A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019001965A (ja) * 2017-06-19 2019-01-10 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、金属張積層板及びプリント配線板
KR20190020623A (ko) * 2017-08-21 2019-03-04 아지노모토 가부시키가이샤 수지 조성물
JP2019038930A (ja) * 2017-08-24 2019-03-14 味の素株式会社 樹脂組成物
JP2019119818A (ja) * 2018-01-09 2019-07-22 味の素株式会社 樹脂組成物
WO2019181139A1 (ja) * 2018-03-22 2019-09-26 太陽インキ製造株式会社 熱硬化性樹脂組成物、ドライフィルム、硬化物、および、電子部品
JP2019179200A (ja) * 2018-03-30 2019-10-17 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
KR20190129655A (ko) * 2018-05-11 2019-11-20 삼성전자주식회사 저손실 절연 수지 조성물, 및 이를 이용한 절연 필름
WO2020158956A1 (ja) 2019-02-01 2020-08-06 三菱瓦斯化学株式会社 分解性樹脂組成物、分解性硬化物、及び、掘削用ダウンホールツール
WO2020166288A1 (ja) * 2019-02-12 2020-08-20 ナミックス株式会社 光硬化性樹脂組成物及びそれを硬化させて得られる硬化物
JP2021102714A (ja) * 2019-12-25 2021-07-15 Dic株式会社 (メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物及び物品
WO2021193505A1 (ja) * 2020-03-25 2021-09-30 Agc株式会社 複合粒子、複合粒子の製造方法、液状組成物、積層体の製造方法及びフィルムの製造方法
JP2022510017A (ja) * 2018-12-04 2022-01-25 ダイキン・フルオロケミカルズ・(チャイナ)・カンパニー・リミテッド ポリテトラフルオロエチレン組成物の製造方法、ポリテトラフルオロエチレン組成物、成形品、導電性チューブ、熱伝導性フィルム及びccl用基板
WO2022045237A1 (ja) * 2020-08-31 2022-03-03 Agc株式会社 液状組成物及び凸部付き基材
WO2022153931A1 (ja) * 2021-01-13 2022-07-21 Agc株式会社 液状組成物の製造方法及び組成物
CN117042327A (zh) * 2022-12-27 2023-11-10 珠海浩奕电子科技有限公司 一种高强度低介电常数印刷电路板及其制备工艺
CN115996990B (zh) * 2020-08-31 2024-06-11 Agc株式会社 液状组合物及带凸部基材

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7322877B2 (ja) * 2018-06-01 2023-08-08 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、及びプリント配線板
CN110876231A (zh) * 2018-09-03 2020-03-10 昆山雅森电子材料科技有限公司 高接着强度lcp基板及制备方法
KR102311641B1 (ko) * 2018-11-23 2021-10-13 주식회사 엘지화학 수지 조성물, 이를 포함하는 프리프레그, 이를 포함하는 적층판, 및 이를 포함하는 수지 부착 금속박
JP7060825B2 (ja) * 2019-01-11 2022-04-27 ダイキン工業株式会社 フッ素樹脂組成物、フッ素樹脂シート、積層体及び回路用基板
CN116813824A (zh) * 2019-01-22 2023-09-29 三菱瓦斯化学株式会社 树脂组合物、树脂片、多层印刷布线板、及半导体装置
US11073187B2 (en) * 2019-03-29 2021-07-27 Advics Co., Ltd. Brake pad and under-layer material composition
WO2022141019A1 (en) * 2020-12-29 2022-07-07 Dupont Electronics, Inc. Composite particulate material, process and use thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107746A (ja) * 1991-10-15 1993-04-30 Shin Etsu Chem Co Ltd リソグラフイー用ペリクル
JP2001040182A (ja) * 1999-07-27 2001-02-13 Nitto Denko Corp 半導体封止用エポキシ樹脂組成物およびそれを用いた半導体装置
JP2001253999A (ja) * 2000-03-13 2001-09-18 Sumitomo Bakelite Co Ltd エポキシ樹脂成形材料及び半導体装置
JP2006169328A (ja) * 2004-12-14 2006-06-29 Nippon Kayaku Co Ltd 感光性樹脂組成物及びその硬化皮膜を有するフィルム
JP2007182493A (ja) * 2006-01-06 2007-07-19 Sekisui Chem Co Ltd 絶縁材料用硬化性組成物、絶縁材料、及び電子部品装置の製造方法及び電子部品装置
WO2007129662A1 (ja) * 2006-05-08 2007-11-15 Sekisui Chemical Co., Ltd. 絶縁材料、電子部品装置の製造方法及び電子部品装置
JP2012007150A (ja) * 2010-06-23 2012-01-12 Samsung Electro-Mechanics Co Ltd 絶縁樹脂組成物及びこれを用いて製造された印刷回路基板
JP2013014663A (ja) * 2011-07-01 2013-01-24 Fuji Electric Co Ltd ポリマーナノコンポジット樹脂組成物
JP2014210843A (ja) * 2013-04-17 2014-11-13 株式会社カネカ 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5352940B2 (ja) * 2005-12-28 2013-11-27 住友ベークライト株式会社 樹脂組成物、積層体、配線板および配線板の製造方法
JP5194750B2 (ja) * 2007-12-05 2013-05-08 日立化成株式会社 プリプレグ、および積層板
JP2011256271A (ja) 2010-06-09 2011-12-22 Jnc Corp 硬化性組成物およびその用途、ならびに新規化合物
JP2012214776A (ja) * 2011-03-31 2012-11-08 Panasonic Corp 透明基板用エポキシ組成物、プリプレグ、及び透明基板
JP6552159B2 (ja) * 2013-04-19 2019-07-31 株式会社アドマテックス シリカ被覆有機物粒子およびその製造方法
JP6052094B2 (ja) * 2013-08-06 2016-12-27 信越化学工業株式会社 ポリテトラフルオロエチレンパウダー組成物の製造方法及びこれを含む樹脂組成物の製造方法
JP2015209480A (ja) * 2014-04-25 2015-11-24 三井・デュポンフロロケミカル株式会社 フッ素樹脂組成物
CN107001753B (zh) * 2014-12-12 2020-02-28 大金工业株式会社 聚四氟乙烯组合物
JP6754999B2 (ja) * 2015-03-05 2020-09-16 パナソニックIpマネジメント株式会社 樹脂組成物、低誘電率樹脂シート、プリプレグ、金属箔張り積層板、高周波回路基板および多層配線基板

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107746A (ja) * 1991-10-15 1993-04-30 Shin Etsu Chem Co Ltd リソグラフイー用ペリクル
JP2001040182A (ja) * 1999-07-27 2001-02-13 Nitto Denko Corp 半導体封止用エポキシ樹脂組成物およびそれを用いた半導体装置
JP2001253999A (ja) * 2000-03-13 2001-09-18 Sumitomo Bakelite Co Ltd エポキシ樹脂成形材料及び半導体装置
JP2006169328A (ja) * 2004-12-14 2006-06-29 Nippon Kayaku Co Ltd 感光性樹脂組成物及びその硬化皮膜を有するフィルム
JP2007182493A (ja) * 2006-01-06 2007-07-19 Sekisui Chem Co Ltd 絶縁材料用硬化性組成物、絶縁材料、及び電子部品装置の製造方法及び電子部品装置
WO2007129662A1 (ja) * 2006-05-08 2007-11-15 Sekisui Chemical Co., Ltd. 絶縁材料、電子部品装置の製造方法及び電子部品装置
JP2012007150A (ja) * 2010-06-23 2012-01-12 Samsung Electro-Mechanics Co Ltd 絶縁樹脂組成物及びこれを用いて製造された印刷回路基板
JP2013014663A (ja) * 2011-07-01 2013-01-24 Fuji Electric Co Ltd ポリマーナノコンポジット樹脂組成物
JP2014210843A (ja) * 2013-04-17 2014-11-13 株式会社カネカ 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6998527B2 (ja) 2017-06-19 2022-01-18 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、金属張積層板及びプリント配線板
JP2019001965A (ja) * 2017-06-19 2019-01-10 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、金属張積層板及びプリント配線板
KR102514145B1 (ko) * 2017-08-21 2023-03-27 아지노모토 가부시키가이샤 수지 조성물
JP2019035051A (ja) * 2017-08-21 2019-03-07 味の素株式会社 樹脂組成物
CN109423010A (zh) * 2017-08-21 2019-03-05 味之素株式会社 树脂组合物
KR20190020623A (ko) * 2017-08-21 2019-03-04 아지노모토 가부시키가이샤 수지 조성물
CN109423010B (zh) * 2017-08-21 2023-02-28 味之素株式会社 树脂组合物
JP2019038930A (ja) * 2017-08-24 2019-03-14 味の素株式会社 樹脂組成物
JP2019119818A (ja) * 2018-01-09 2019-07-22 味の素株式会社 樹脂組成物
WO2019181139A1 (ja) * 2018-03-22 2019-09-26 太陽インキ製造株式会社 熱硬化性樹脂組成物、ドライフィルム、硬化物、および、電子部品
JP2019167426A (ja) * 2018-03-22 2019-10-03 太陽インキ製造株式会社 熱硬化性樹脂組成物、ドライフィルム、硬化物、および、電子部品
JP7169076B2 (ja) 2018-03-22 2022-11-10 太陽インキ製造株式会社 熱硬化性樹脂組成物、ドライフィルム、硬化物、および、電子部品
JP7053345B2 (ja) 2018-03-30 2022-04-12 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP2019179200A (ja) * 2018-03-30 2019-10-17 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
KR20190129655A (ko) * 2018-05-11 2019-11-20 삼성전자주식회사 저손실 절연 수지 조성물, 및 이를 이용한 절연 필름
KR102051374B1 (ko) * 2018-05-11 2020-01-08 삼성전자주식회사 저손실 절연 수지 조성물, 및 이를 이용한 절연 필름
JP7304949B2 (ja) 2018-12-04 2023-07-07 ダイキン・フルオロケミカルズ・(チャイナ)・カンパニー・リミテッド ポリテトラフルオロエチレン組成物の製造方法、ポリテトラフルオロエチレン組成物、成形品、導電性チューブ、熱伝導性フィルム及びccl用基板
JP2022510017A (ja) * 2018-12-04 2022-01-25 ダイキン・フルオロケミカルズ・(チャイナ)・カンパニー・リミテッド ポリテトラフルオロエチレン組成物の製造方法、ポリテトラフルオロエチレン組成物、成形品、導電性チューブ、熱伝導性フィルム及びccl用基板
WO2020158956A1 (ja) 2019-02-01 2020-08-06 三菱瓦斯化学株式会社 分解性樹脂組成物、分解性硬化物、及び、掘削用ダウンホールツール
WO2020166288A1 (ja) * 2019-02-12 2020-08-20 ナミックス株式会社 光硬化性樹脂組成物及びそれを硬化させて得られる硬化物
JP7401917B2 (ja) 2019-02-12 2023-12-20 ナミックス株式会社 光硬化性樹脂組成物及びそれを硬化させて得られる硬化物
EP3925993A4 (en) * 2019-02-12 2022-11-09 Namics Corporation PHOTO-CURING RESIN COMPOSITION AND CURED PRODUCT MADE BY CURING THEREOF
JPWO2020166288A1 (ja) * 2019-02-12 2021-12-16 ナミックス株式会社 光硬化性樹脂組成物及びそれを硬化させて得られる硬化物
JP7434886B2 (ja) 2019-12-25 2024-02-21 Dic株式会社 (メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物及び物品
JP2021102714A (ja) * 2019-12-25 2021-07-15 Dic株式会社 (メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物及び物品
WO2021193505A1 (ja) * 2020-03-25 2021-09-30 Agc株式会社 複合粒子、複合粒子の製造方法、液状組成物、積層体の製造方法及びフィルムの製造方法
CN115996990A (zh) * 2020-08-31 2023-04-21 Agc株式会社 液状组合物及带凸部基材
WO2022045237A1 (ja) * 2020-08-31 2022-03-03 Agc株式会社 液状組成物及び凸部付き基材
CN115996990B (zh) * 2020-08-31 2024-06-11 Agc株式会社 液状组合物及带凸部基材
WO2022153931A1 (ja) * 2021-01-13 2022-07-21 Agc株式会社 液状組成物の製造方法及び組成物
CN117042327A (zh) * 2022-12-27 2023-11-10 珠海浩奕电子科技有限公司 一种高强度低介电常数印刷电路板及其制备工艺
CN117042327B (zh) * 2022-12-27 2024-01-30 珠海浩奕电子科技有限公司 一种高强度低介电常数印刷电路板及其制备工艺

Also Published As

Publication number Publication date
JPWO2017135168A1 (ja) 2018-11-29
CN108603003B (zh) 2021-07-20
TWI781918B (zh) 2022-11-01
KR20180104290A (ko) 2018-09-20
CN108603003A (zh) 2018-09-28
JP6880510B2 (ja) 2021-06-02
TW201739820A (zh) 2017-11-16

Similar Documents

Publication Publication Date Title
JP6880510B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、プリント配線板及び半導体装置
TWI814832B (zh) 樹脂組成物、預浸體、覆金屬箔疊層板、樹脂片及印刷配線板
EP3272782B1 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JP6939784B2 (ja) 樹脂組成物、樹脂シート、多層プリント配線板及び半導体装置
WO2018139368A1 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP6819921B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP6010874B1 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂複合シート、及びプリント配線板
WO2015119121A1 (ja) プリント配線板用樹脂組成物、プリプレグ、金属箔張り積層板、樹脂複合シート、及びプリント配線板
JP6913305B2 (ja) 樹脂組成物、樹脂シート、多層プリント配線板及び半導体装置
JP2017088745A (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP2017052884A (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
CN110506066B (zh) 树脂组合物、预浸料、覆金属箔层叠板、树脂片及印刷电路板
JP6972495B2 (ja) 樹脂組成物、樹脂シート、多層プリント配線板及び半導体装置
JP6836740B2 (ja) 樹脂組成物、樹脂シート、プリント配線板及び半導体装置
JP6618036B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP6857325B2 (ja) 樹脂組成物、樹脂シート、プリント配線板及び半導体装置
JP6718588B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
EP3290454B1 (en) Resin composition, prepreg, metal-foil-clad laminate, resin sheet, and printed wiring board
CN112204108A (zh) 树脂组合物、预浸料、覆金属箔层叠板、树脂片、及印刷电路板
TW201920448A (zh) 樹脂組成物、預浸體、覆金屬箔疊層板、樹脂片及印刷電路板
JP2018009126A (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP2017114919A (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747325

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017565523

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187019176

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747325

Country of ref document: EP

Kind code of ref document: A1