WO2017130597A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2017130597A1
WO2017130597A1 PCT/JP2016/087505 JP2016087505W WO2017130597A1 WO 2017130597 A1 WO2017130597 A1 WO 2017130597A1 JP 2016087505 W JP2016087505 W JP 2016087505W WO 2017130597 A1 WO2017130597 A1 WO 2017130597A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
gate
region
gate electrode
voltage
Prior art date
Application number
PCT/JP2016/087505
Other languages
English (en)
French (fr)
Inventor
規行 柿本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201680073924.1A priority Critical patent/CN108475675B/zh
Priority to US15/770,258 priority patent/US10438852B2/en
Publication of WO2017130597A1 publication Critical patent/WO2017130597A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823418MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • H01L29/7805Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode in antiparallel, e.g. freewheel diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/87Thyristor diodes, e.g. Shockley diodes, break-over diodes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration

Definitions

  • the present invention relates to a semiconductor device provided with a switching element and a reverse conducting diode.
  • a forward voltage drop (hereinafter referred to as a forward voltage) can be reduced.
  • the IGBT element region is in an on state in consideration of the stability of the operation of the entire system.
  • the gate electrode potential is fixed to the anode potential in order to suppress gate interference in which voltage is applied to the gate electrode.
  • the voltage cannot be fixed in the mode in which the voltage is applied. Therefore, a positive voltage is applied to the gate electrode of the diode element region in such a current region where the positive / negative of the output current cannot be determined. For this reason, the inventors have found a problem that the forward voltage in the diode element region may increase.
  • This disclosure is intended to provide a semiconductor device that achieves both improved recovery characteristics and reduced forward voltage in all current regions.
  • a semiconductor device includes a reverse conduction switching element in which a diode element and a switching element are formed in parallel on the same semiconductor substrate, and a gate voltage applied to a plurality of gate electrodes formed in the reverse conduction switching element.
  • a driving unit to be applied, and a mode determination unit that determines whether the driving is performed in a forward conduction mode in which a current mainly flows in a switching element or a reverse conduction mode in which a current mainly flows in a diode element.
  • the diode element includes a first impurity region of a first conductivity type, a second impurity region of a second conductivity type formed to be joined to the first impurity region, and a first electrode electrically connected to the first impurity region.
  • a first impurity sandwiched between the second impurity region and the third impurity region by applying a predetermined gate voltage to the gate electrode.
  • An inversion layer is generated in the barrier region in the region.
  • the switching element has a first electrode and a second electrode that are common to the diode element, and is turned on by applying a predetermined gate voltage to the gate electrode, and between the first electrode and the second electrode.
  • the plurality of gate electrodes are controlled independently of the first gate voltage to which the first gate voltage for turning on the switching element is input and the first gate voltage, and are equal to the potential of the first electrode, or A second gate electrode to which a second gate voltage having a polarity opposite to the polarity of the first gate voltage is input with reference to the potential of the first electrode.
  • the gate electrode belonging to the diode element includes at least a second gate electrode, and the gate electrode belonging to the switching element includes at least a first gate electrode. Based on the current flowing between the first electrode and the second electrode, the second gate electrode when the mode determination unit determines that the reverse conduction mode or the reverse conduction mode or the forward conduction mode cannot be determined. In addition, a second gate voltage is applied.
  • FIG. 1 is a circuit diagram illustrating a schematic configuration of the inverter according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along the line II-II shown in FIG. 3, showing the detailed structure of the first element or the second element,
  • FIG. 3 is a top view showing a detailed structure of the first element or the second element.
  • FIG. 4 is a diagram illustrating a pattern of a gate voltage applied to the first element or the second element by the driving unit
  • FIG. 5 is a timing chart showing the application timing of the gate voltage.
  • FIG. 6 is a timing chart showing the application timing of the gate voltage.
  • FIG. 1 is a circuit diagram illustrating a schematic configuration of the inverter according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along the line II-II shown in FIG. 3, showing the detailed structure of the first element or the second element
  • FIG. 3 is a top view showing a detailed structure of the first element or the second element.
  • FIG. 4 is
  • FIG. 7 is a timing chart showing the application timing of the gate voltage.
  • FIG. 8 is a cross-sectional view showing a detailed structure of the first element or the second element according to the second embodiment.
  • FIG. 9 is a cross-sectional view showing a detailed structure of the first element or the second element according to the third embodiment, and
  • FIG. 10 is a cross-sectional view showing the structure of the lateral diode.
  • RC-IGBT reverse conducting insulated gate bipolar transistor
  • IGBT element insulated gate bipolar transistor element
  • the inverter 100 includes two reverse conducting insulated gate bipolar transistors 10 and 20 and driving units 30 and 40 for applying a gate voltage to the gate electrodes of the reverse conducting insulated gate bipolar transistors 10 and 20. And a mode determination unit 50 for determining the drive state of each reverse conducting insulated gate bipolar transistor 10, 20.
  • the inverter 100 is configured by connecting two reverse conducting insulated gate bipolar transistors 10 and 20 in series between a power supply voltage VCC and a ground GND.
  • a load 200 is connected to a connection point between the two reverse conducting insulated gate bipolar transistors 10 and 20.
  • the two reverse conducting insulated gate bipolar transistors 10 and 20 the one on the power supply voltage VCC side with respect to the load 200 is referred to as the first element 10, and the one on the ground GND side is referred to as the second element 20.
  • the first element 10 constitutes the upper arm in the inverter 100
  • the second element 20 constitutes the lower arm.
  • the first element 10 and the second element 20 correspond to reverse conduction switching elements.
  • the first element 10 includes an IGBT element 11 corresponding to a switching element and a diode element 12.
  • the diode element 12 is a so-called flywheel diode, and is connected in parallel to the IGBT element 11 so as to be in the forward direction from the emitter to the collector in the IGBT element 11.
  • the second element 20 is equivalent to the first element 10 and has an IGBT element 21 and a diode element 22.
  • the diode element 22 is connected in parallel to the IGBT element 21 so as to be in the forward direction from the emitter to the collector of the IGBT element 21.
  • the first element 10 and the second element 20 are reverse conducting switching elements having a double gate structure and have two types of gate electrodes. Detailed element structures of the first element 10 and the second element 20 will be described in detail later with reference to FIGS.
  • the drive unit includes a first drive unit 30 that controls application of the gate voltage to the first element 10 and a second drive unit 40 that controls application of the gate voltage to the second element 20.
  • the structures of the first drive unit 30 and the second drive unit 40 are equivalent to each other.
  • the drive units 30 and 40 in the present embodiment are connected to two gate wirings, respectively, and have independent gate voltages for the gate electrodes of the first element 10 and the second element having a double gate structure. Can be applied.
  • one of the gate electrodes (first gate electrode 82a described later) can be input with two values of the emitter voltage Ve and + V1, and the other gate electrode (second gate electrode 82b described later) can be + V1, Ve.
  • Three values of -V2 can be input. Note that + V1 is a positive voltage based on the emitter voltage Ve, and ⁇ V2 is a negative voltage based on the emitter voltage Ve.
  • the first gate voltage corresponds to + V1
  • the second gate voltage corresponds to Ve or -V2.
  • the mode determination unit 50 determines the operation mode of the first element 10 and the second element 20.
  • the operation mode distinguishes whether a current mainly flows through the IGBT element or a current mainly flows through the diode element.
  • a state where the current flows mainly through the IGBT element is referred to as a forward conduction mode
  • a state where the current flows mainly through the diode element is referred to as a reverse conduction mode.
  • the mode determination unit 50 in this embodiment determines the operation mode of the first element 10 and the second element 20 based on the direction of the current flowing through the load 200.
  • Inverter 100 includes a load current detection unit 60 connected in series with a load 200.
  • the load current detection unit 60 is an ammeter that detects the load current I flowing through the load 200 including the direction.
  • the load current detection unit 60 sets the case where the load current I flows from the connection point of the first element 10 and the second element 20 toward the load 200 as a positive current, and vice versa as a negative current. Output.
  • the mode determination unit 50 determines the operation mode based on the positive / negative of the load current I output from the load current detection unit 60. Specifically, when the load current I is positive, the current is mainly flowing through the IGBT element 11 in the first element 10 (upper arm) and the diode element 22 in the second element 20 (lower arm). It is. Therefore, the mode determination unit 50 determines the operation mode of the first element 10 as the forward conduction mode, and determines the operation mode of the second element 20 as the reverse conduction mode. On the other hand, when the load current I is negative, the current is mainly flowing through the diode element 12 in the first element 10 and the IGBT element 21 in the second element 20.
  • the mode determination unit 50 determines the operation mode of the first element 10 as the reverse conduction mode, and determines the operation mode of the second element 20 as the forward conduction mode. If the load current I is smaller than the current level at which the mode determination unit 50 can determine the operation mode, the mode determination unit 50 cannot determine the operation mode of the element 10 or 20, but in such a case, the mode determination is impossible.
  • the drive units 30 and 40 are notified of the fact.
  • the mode determination unit 50 notifies the drive units 30 and 40 that the operation mode of the elements 10 and 20 or the mode determination is impossible.
  • the drive units 30 and 40 apply a gate voltage to the gate electrode according to the operation mode.
  • the first element 10 and the second element 20 are reverse conducting insulated gate bipolar transistors equivalent to each other, and will be described without distinction between them. However, the elements common to FIG. Correlate with each other. In FIG. 2, the impurity diffusion layer having the p conductivity type is hatched in the semiconductor substrate 70, but the hatching of the impurity diffusion layer having the n conductivity type is omitted.
  • the reverse conducting insulated gate bipolar transistor which is a reverse conducting switching element in this embodiment, is formed on a semiconductor substrate 70 having a first main surface 70a and a second main surface 70b that is the back surface thereof.
  • the IGBT element 11 that functions as a switching element and the diode element 12 that functions as a diode are formed on the same semiconductor substrate 70.
  • a cathode electrode 71 made of, for example, aluminum is formed on the first main surface 70a.
  • the cathode electrode 71 corresponds to a cathode terminal in the diode element 12 or a collector terminal in the IGBT element 11, and the cathode electrode 71 also serves as both.
  • the cathode electrode 71 corresponds to the first electrode.
  • an n-conductivity type cathode region 72a is formed on the surface layer of the first main surface 70a of the semiconductor substrate 70 so as to be in contact with the cathode electrode 71.
  • a p-conductivity type collector region 72b is formed in the same layer as the cathode region 72a.
  • the collector region 72 b is adjacent to the cathode region 72 a while being in contact with the cathode electrode 71.
  • the diode element 12 can act as the IGBT 11. Further, the IGBT element 11 can act as the diode element 12.
  • a region where the IGBT element 11 and the diode element 12 are mixed as a function is referred to as a hybrid region, and an interface between the cathode region 72a and the collector region 72b is referred to as a boundary between the diode portion 12 and the IGBT portion 11.
  • the cathode region 72a corresponds to a part of the first impurity region.
  • n conductivity type first drift region 73a is stacked on the cathode region 72a, and an n conductivity type second drift region 73b is stacked on the collector region 72b.
  • the names of the first drift region 73a and the second drift region 73b are separated for convenience, these regions 73a and 73b are continuous regions composed of substantially the same impurity diffusion layer.
  • the first drift region 73a corresponds to a part of the first impurity region.
  • the first sub-anode 74a of p conductivity type is stacked on the first drift region 73a
  • the second sub-anode 74b of p conductivity type is stacked on the second drift region 73b.
  • the sub-anodes 74a and 74b are continuous regions composed of substantially the same impurity diffusion layer.
  • the first sub anode region 74a and the second sub anode region 74b correspond to the third impurity region.
  • the n-conductivity-type first barrier region 75a is laminated on the first sub-anode 74a, and the n-conductivity-type second barrier region 75b is laminated on the second sub-anode 74b.
  • the names of the first barrier region 75a and the second barrier region 75b are separated for convenience, the barrier regions 75a and 75b are continuous regions made of substantially the same impurity diffusion layer.
  • the first barrier region 75a corresponds to a part of the first impurity region.
  • a p conductivity type anode region 76a is stacked on the first barrier region 75a, and a p conductivity type body region 76b is stacked on the second barrier region 75b.
  • the names of the anode region 76a and the body region 76b are separated for convenience, these regions 76a and 76b in the present embodiment are continuous regions made of substantially the same impurity diffusion layer.
  • the anode region 76a corresponds to a second impurity region.
  • the first impurity region is an n conductivity type region including the cathode region 72a, the first drift region 73a, and the first barrier region 75a.
  • the diode element 12 has a structure in which the first sub-anode 74a is embedded in the first impurity region while being separated from the anode region 76a that is the second impurity region.
  • the first sub-anode 74a is formed in a current path for a current flowing between the first drift region 73a and the anode region 76a.
  • the reverse current is limited when the voltage to be switched from forward bias to reverse bias. For this reason, since the reverse recovery current can be reduced as compared with the diode in which the first sub-anode 74a and the first barrier region 75a are not formed, the recovery characteristic can be improved. However, since the pn junction formed by the first sub-anode 74a and the first barrier region 75a inhibits the forward current flow of the diode element 12, the forward voltage VF increases.
  • an n conductivity type emitter region 77 is formed on the surface layer of the second main surface 70b so as to be surrounded by the body region 76b.
  • An anode electrode 78 is formed on second main surface 70b so as to be in contact with emitter region 77, body region 76b, and anode region 76a.
  • the anode electrode 78 corresponds to an anode terminal in the diode element 12 or an emitter terminal in the IGBT element 11.
  • the anode electrode 78 corresponds to the second electrode.
  • the IGBT element 11 has a collector region 72b, a second drift region 73b, a second sub-anode 74b, a second barrier region 75b, a body region 76b, and an emitter region 77 as impurity diffusion layers.
  • the diode element 12 has a cathode region 72a, a first drift region 73a, a first sub-anode 74a, a first barrier region 75a, and an anode region 76a as impurity diffusion layers.
  • the impurity diffusion layers located in substantially the same layer do not prevent the impurity concentrations in the corresponding regions from being different from each other according to the requirements of the electrical characteristics of the IGBT element 11 and the diode element 12.
  • the impurity concentration in the region should be set as appropriate.
  • this reverse conducting insulated gate bipolar transistor has a trench gate 80 formed in the thickness direction of the semiconductor substrate 70 from the second main surface 70b and reaching the drift regions 73a and 73b.
  • the trench gate 80 penetrates the body region 76b, the second barrier region 75b, and the second sub-anode 74b in the IGBT element 11 and reaches the second drift region 73b.
  • the trench gate 80a, The first barrier region 75a and the first sub-anode 74a are penetrated to reach the first drift region 73a.
  • the trench gate 80 extends from the second main surface 70b in the thickness direction of the semiconductor substrate 70 and fills the trench with an insulating film 81 formed on the inner surface of the trench dug until reaching the drift regions 73a and 73b.
  • the conductive gate electrode 82 is formed.
  • the gate electrode 82 and the emitter electrode 78 are insulated from each other through the insulating film 81.
  • the emitter region 77 formed in the IGBT element 11 is formed so as to be in contact with the trench gate 80.
  • a voltage higher than the anode electrode 78 is applied to the gate electrode 82, the channel region is connected to the body region 76b and the second sub-anode 74b. And an output current due to the IGBT operation flows between the anode electrode 78 and the cathode electrode 71.
  • the plurality of gate electrodes 82 in this embodiment are classified into two gate electrodes, a first gate electrode 82a and a second gate electrode 82b.
  • the first gate electrode 82a is connected to the first gate pad G1.
  • the second gate electrode 82b is connected to the second gate pad G2. Independent voltages are applied to the first gate electrode 82a and the second gate electrode 82b, respectively.
  • the first driving unit 30 supplies a voltage to the first gate electrode 82 a and the second gate electrode 82 b in the first element 11.
  • the second drive unit 40 supplies a voltage to the first gate electrode 82a and the second gate electrode 82b in the second element 21.
  • the p conductivity type anode region 76a and the body region 76b, the n conductivity type first and second barrier regions 75a and 75b, and the p conductivity type first and second sub-anodes 74a and 74b are pnp type.
  • a parasitic transistor is formed.
  • the n-conductivity type barrier regions 75a and 75b serve as potential barriers for the holes to the p-conductivity type region, but the barrier height can be controlled by the voltage (gate voltage) applied to the gate electrode 82. It can be done.
  • the diode element 11 can be regarded as a p-conductivity type region in which the first barrier region 75a is inverted and the anode region 76a, the first barrier region 75a, and the first sub-anode 74a are integrated. That is, the diode element 12 is a simple pn junction diode, and the forward voltage VF can be reduced as compared with the diode in which the first sub-anode 74a is formed.
  • the gate voltage V2 is set to a value that can cause at least a channel in the first barrier region 75a.
  • the voltage V2 is set to be equal to or higher than the threshold voltage Vth of the parasitic transistor formed by the anode region 76a, the first barrier region 75a, and the first sub-anode 74a in the diode element 12.
  • the gate voltage V1 is set to a value that can cause a channel in the body region 76b in the IGBT element 11. In other words, the gate voltage V1 is set to a voltage that can turn on the IGBT as the switching element.
  • the n conductivity type corresponds to the first conductivity type
  • the p conductivity type corresponds to the second conductivity type.
  • the conductivity type relationships may be reversed. In this case, the relationship between the anode and the cathode is also reversed.
  • first element 10 and the second element 20 are reverse conduction insulated gate bipolar transistors equivalent to each other, and therefore will be described without distinction.
  • elements common to those in FIGS. 1 and 2 are associated with the reference numerals attached to the first element 10.
  • a cross section taken along line II-II in FIG. 3 corresponds to FIG.
  • the gate electrode 82 is formed in a stripe shape.
  • a gate wiring 83 that electrically connects the gate pads G1, G2 and the gate electrode 82 is formed along the extending direction of the gate electrode 82 on the element region where the IGBT element 11 or the diode element 12 is formed.
  • the gate wiring 83 includes a first gate wiring 83a that connects the first gate pad G1 and the first gate electrode 82a, and a second gate wiring 83b that connects the second gate pad G2 and the second gate electrode 82b. .
  • the potential Ve of the anode electrode 78 (that is, the emitter electrode) and the positive voltage + V1 can be applied to the first gate electrode 82a with reference to Ve. Further, a negative voltage ⁇ V2 can be applied to the second gate electrode 82b with respect to Ve, + V1, and Ve.
  • the gate electrode 82 of the IGBT element 11 includes both the first gate electrode 82a and the second gate electrode 82b. Only the second gate electrode 82 b is assigned to the gate electrode 82 of the diode element 12. That is, the IGBT element 11 can be applied with at least the gate voltage V1 that turns on the IGBT, and can be applied with the gate voltage ⁇ V2 independently of the application of the gate voltage V1. The diode element 12 can be applied with at least a gate voltage ⁇ V2.
  • the second gate electrode 82b is assigned to a region in the vicinity of the boundary between the IGBT element 11 and the diode element 12, that is, a hybrid region. That is, both + V1 and -V2 can be applied to the hybrid region.
  • the first gate electrode 82a and the second gate electrode 82b are alternately arranged in a direction orthogonal to the extending direction of the gate wiring 83, as shown in FIG.
  • the same kind of gate electrodes 82 may be arranged adjacent to each other, but the first gate electrode 82a and the second gate electrode 82b are alternately arranged, which is related to turn-off described in detail later. The effect of increasing the switching speed can be further increased. Further, since the heat source can be dispersed, it is thermally advantageous.
  • the gate electrode 82 does not necessarily have to belong to the first gate electrode 82a or the second gate electrode 82b, and may have a thinned structure in which several gate electrodes 82 are short-circuited to the anode electrode 78. . Since the potential of the gate electrode 82 short-circuited to the anode electrode 78 is fixed to the anode voltage (corresponding to the emitter voltage), the gate capacity of the elements 10 and 20 can be reduced as a whole. Thereby, the drive capability of the drive parts 30 and 40 required in order to drive the elements 10 and 20 can be suppressed.
  • FIG. 4 shows the gate voltage applied to the first gate electrode 82 a and the second gate electrode 82 b corresponding to the operation mode of the first element 10 or the second element 20. Since the first element 10 and the second element 20 are equivalent to each other, the first element 10 will be described unless otherwise specified.
  • the state of the element 10 includes states A to D shown in FIG.
  • the state A is a state in which it can be determined that the load current I is sufficiently large and the device is operating in the forward conduction mode.
  • the state B is actually in the forward conduction mode, the load current I is smaller than the level at which the operation mode can be determined, and the mode determination unit 50 cannot determine whether it is the forward conduction mode or the reverse conduction mode.
  • the state C is a state in which the state B is actually in the reverse conduction mode, but the load current I is smaller than the level at which the operation mode can be determined, and the forward conduction mode or the reverse conduction mode cannot be determined.
  • the state D is a state in which it can be determined that the load current I is sufficiently large and the device is operating in the reverse conduction mode.
  • the drive unit 30 applies the voltage + V1 to both the first gate electrode 82a and the second gate electrode 82b.
  • the element 10 is being driven in the forward conduction mode, and a function as an IGBT is expected. Therefore, the IGBT can be operated by applying the voltage + V1 to both the first gate electrode 82a and the second gate electrode 82b belonging to the region where the IGBT element 11 is formed.
  • + V1 is also applied to the second gate electrode 82b belonging to the region where the diode element 12 is formed.
  • all the gate electrodes 82 to which the diode element 12 belongs are the second gate electrodes 82b, and + V1 is also applied to the hybrid region in the vicinity of the boundary with the IGBT element 11. Therefore, the hybrid region can function as an IGBT.
  • the driving unit 30 applies the voltage + V1 to the first gate electrode 82b and the voltage ⁇ V2 to the second gate electrode 82b.
  • State B and state C are current regions in which the mode determination unit 50 cannot determine in which operation mode the element 10 is operating. If the element 10 is in the forward conduction mode (state B), the voltage + V1 is applied to the first gate electrode 82a belonging to the IGBT element 11, so that the IGBT 10 can be operated correctly.
  • the voltage ⁇ V2 is applied to the second gate electrode 82b belonging to the IGBT element 11, holes are likely to flow into the body region 76b when the IGBT element 11 is turned off. That is, the hole in which the second drift region 73b exists can easily move to the body region 76b, and the switching speed related to the turn-off can be increased.
  • the diode element 12 can function reliably as a diode.
  • the drive unit 30 applies the emitter voltage Ve to the first gate electrode 82b and the voltage ⁇ V2 to the second gate electrode 82b.
  • the element 10 is being driven in the reverse conduction mode, and a function as a diode is expected. Therefore, an effect of reducing the forward voltage VF can be obtained by applying the voltage ⁇ V2 to the second gate electrode 82b belonging to the region where the diode element 12 is formed.
  • the emitter voltage Ve is applied to the first gate electrode 82a. For this reason, compared with the case where a negative voltage is applied to the first gate electrode 82a with respect to the emitter voltage Ve, the function of applying the negative voltage only needs to be on the second gate electrode 82b side, and the circuit scale can be reduced.
  • the load current I in FIGS. 5 to 7 is synonymous with the load current I shown in FIG. 1, and the load current I is positive when flowing from the connection point between the first element 10 and the second element 20 toward the load 200.
  • the gate voltage applied to the first gate electrode 82a is for switching the IGBT element 11 as an IGBT, and is assumed to repeat a high level and a low level in synchronization with the PWM reference signal.
  • Example synchronized with PWM reference signal As shown in FIG. 5, in this example, the gate voltage applied to the second gate electrode 82b is also applied in synchronization with the PWM reference signal in the same manner as the first gate electrode 82a.
  • the High / Low of the PWM reference signal is in an inverted relationship between the signal corresponding to the first element 10 constituting the upper arm and the signal corresponding to the second element 20 constituting the lower arm.
  • the gate voltage shown in FIG. 4 is effective when the PWM reference signal is High, and the emitter voltage Ve is input to each gate electrode 82 as the gate voltage when the PWM reference signal is Low.
  • the mode determination unit 50 determines that the first element 10 is in the forward conduction mode and the second element 20 is in the reverse conduction mode. Accordingly, the first element 10 operates in the state A. That is, a PWM-controlled gate voltage in which the high level is + V1 and the low level is Ve is applied to both the first gate electrode 82a and the second gate electrode 82b in synchronization with the PWM reference signal.
  • the second element 20 operates in the state D. That is, the emitter voltage Ve is always applied to the first gate electrode 82a, and the PWM-controlled gate voltage having the high level Ve and the low level ⁇ V2 is applied to the second gate electrode 82b. .
  • the mode determination unit 50 cannot determine the operation mode of the first element 10 and the second element 20. Accordingly, the first element 10 and the second element 20 operate in the state B or the state C. That is, a PWM-controlled gate voltage having a high level of + V1 and a low level of Ve is applied to the first gate electrode 82a. A PWM-controlled gate voltage having a high level Ve and a low level ⁇ V2 is applied to the second gate electrode 82b.
  • the mode determination unit 50 determines that the first element 10 is in the reverse conduction mode and the second element 20 is in the forward conduction mode. Accordingly, the first element 10 operates in the state D, and the second element 20 operates in the state A.
  • the gate voltage is opposite to the relationship between the first element 10 and the second element 20 from time t1 to time t2.
  • the mode determination unit 50 cannot determine the operation mode of the first element 10 and the second element 20. Accordingly, the first element 10 and the second element 20 operate in the state B or the state C. That is, the gate voltage changes in the same manner as from time t2 to time t3.
  • the forward voltage VF can be reduced.
  • the PWM reference signal input to the first element 10 and the PWM reference signal input to the second element 20 do not become High at the same time. Since the dead time at which both are low is set for a certain time, the gate voltage to be applied to the diode element 12 during the recovery period of the reverse conducting insulated gate bipolar transistor can be kept at Ve, so that ⁇ V2 is always applied. The recovery loss can be reduced compared to the achieved state.
  • the mode in which the voltage ⁇ V2 is always applied regardless of the PWM reference signal is highly effective in reducing the loss due to the forward voltage VF, but the recovery loss may also increase. This is effective in a system in which the ratio of loss due to the forward voltage VF in the drive loss is large.
  • n conductivity type pillar region 79 In addition to the reverse conducting insulated gate bipolar transistors as the first element 10 and the second element 20 described in the first embodiment, it is preferable to have an n conductivity type pillar region 79 as shown in FIG.
  • the pillar region 79 extends from the second main surface 70b of the semiconductor substrate 70 in the thickness direction, penetrates the anode region 76a or the body region 76b, and reaches the first barrier region 75a and the second barrier region 75b. Yes.
  • the pillar region 79 is a diffusion layer doped with impurities of the same conductivity type as the first and second barrier regions 75a and 75b, and the pillar region 79 and the barrier regions 75a and 75b have substantially the same potential.
  • the anode electrode 78 and the pillar region 79 are short-circuited via the metal-semiconductor interface. Since the pillar region 79 and the first barrier region 75a have substantially the same potential, the potential difference between the first barrier region 75a and the anode electrode 78 is substantially equal to the voltage drop at the metal-semiconductor interface.
  • the voltage drop at the metal-semiconductor junction surface is smaller than the built-in voltage of the pn junction between the anode region 76a and the first barrier region 75a, the injection of holes from the anode region 76a to the first drift region 73a is suppressed.
  • the depletion layer extending from the pn junction interface between the first sub-anode 74 a and the first drift region 73 a has a withstand voltage. Is secured. That is, according to the diode element 12, the withstand voltage against the reverse bias can be improved.
  • the pillar region 79 is formed also in the IGBT element 11 .
  • a hole injection suppressing effect can be achieved.
  • the pillar region 79 is not necessarily formed in the IGBT element 11.
  • the pillar region 79 is provided, and the gate electrodes 82 adjacent to each other are not short-circuited to the anode electrode 78 in the diode element 12 as shown in FIG. It is like that.
  • the gate electrode 82 adjacent to the gate electrode 82 short-circuited with the anode electrode 78 is assigned to the second gate electrode 82b.
  • the diode element 12 since the first barrier region 75a formed in the diode element 12 is in contact with at least one second gate electrode 82b via the insulating film 81, the diode element 12 includes the second gate electrode 82b.
  • the forward voltage VF can be reduced by applying the negative voltage ⁇ V2 to the negative voltage ⁇ V2.
  • the gate capacitance can be reduced by the thinning structure.
  • the vertical insulated gate bipolar transistor having the trench gate 80 has been described as an example.
  • the structure does not necessarily need to have the trench-type gate electrode 82 and does not have to be the vertical type.
  • the present invention can also be applied to a lateral element.
  • a diode having a barrier region and a gate electrode has a p-conductivity type anode region 91 formed on the surface layer of one surface 90 a of an n-conductivity type semiconductor substrate 90.
  • an n-conductivity type barrier region 92 is formed so as to partially surround the one surface 90 a so as to surround the anode region 91.
  • a sub-anode 93 is formed on the opposite side of the anode region 91 with the barrier region 92 interposed therebetween.
  • a metal anode electrode 94 is joined to the anode region 91 on one surface 90a.
  • a cathode electrode 95 is bonded to one surface 90a of the semiconductor substrate 90 where the anode region 91, the barrier region 92, and the sub-anode 93 are not formed.
  • the diode current flows between the anode electrode 94 and the cathode electrode 95.
  • the n conductivity type semiconductor substrate to which the cathode electrode 95 is bonded corresponds to the first impurity region
  • the anode region 91 to which the anode electrode 94 is bonded corresponds to the second impurity region. That is, the diode current flows between the semiconductor substrate near the cathode electrode 95 and the anode region 91, and the sub-anode 93 and the barrier region 92 are located in the current path.
  • a gate electrode 97 is further formed on one surface 90 a where the barrier region 92 is exposed via an insulating film 96.
  • the horizontal diode can improve the recovery characteristics by having the barrier region 92, and the gate electrode 97 can be improved with respect to the potential of the anode region 91.
  • the forward voltage VF can be reduced by applying a negative voltage. Therefore, as in the first embodiment, when the mode determination unit 50 cannot determine the forward conduction mode or the reverse conduction mode, the same effect as that of the first embodiment can be obtained by applying a negative voltage to the gate electrode 97. Can be played.
  • the emitter voltage Ve can be applied only at the timing of inputting the negative voltage ⁇ V2.
  • the voltage + V1 is not applied to the diode element 12, and therefore, the diode characteristics deteriorate due to the application of + V1, particularly the forward voltage. An increase in VF can be suppressed.
  • the switching element may be a MOSFET, for example.
  • the collector region 72b of the switching element region shown in FIGS. 2, 8, and 9 (in the above-described embodiments, the IGBT element 11) is an n-conducting drain region, and serves as a switching element and a diode element. It becomes. That is, the switching element region and the diode element 12 do not have to be created separately.
  • the emitter region 77 shown in FIGS. 2, 8, and 9 becomes a source region. In such an aspect, the region substantially functioning as a switching element and the region functioning as a diode are in a state formed in parallel.
  • the gate electrode 82 is formed in a stripe shape.
  • any shape may be used as long as the gate electrode 82 is divided into at least the first gate electrode 82a and the second gate electrode 82b. It may be formed in a lattice shape.
  • the barrier region 92 and the sub-anode 93 are formed on the IGBT elements 11 and 21 side in the reverse conducting switching element, and the sub-anode 93 is partially formed on the diode elements 12 and 22 side instead of the entire surface. May be.
  • the first electrode and the second electrode in the IGBT elements 11 and 21 and the first electrode and the second electrode in the diode elements 21 and 22 are common gate pads G1 and G1, respectively.
  • the example connected to G2 was demonstrated.
  • the mutual electrodes may be connected outside the element, and the expression of the first electrode and the second electrode common to the diode element includes connection outside the first element 10 or the second element 20.
  • the example in which the first electrode 71 is formed in common in the switching element region and the diode element has been described.
  • the collector electrode in the IGBT elements 11 and 21 and the cathode in the diode elements 21 and 22 are described.
  • the electrodes may be formed separately from each other, and include cases where the electrodes are connected outside the first element 10 or the second element 20.
  • the example in which the second electrode 78 is formed in common in the switching element region and the diode element has been described.
  • the emitter electrode in the IGBT elements 11 and 21 and the anode in the diode elements 21 and 22 are described.
  • the electrodes may be formed separately from each other, and include cases where the electrodes are connected outside the first element 10 or the second element 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Conversion In General (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

半導体装置は、同一の半導体基板(70,90)にダイオード素子(12,22)とスイッチング素子(11,21)とが並列して形成された逆導通スイッチング素子(10,20)と、前記逆導通スイッチング素子に形成される複数のゲート電極(82)にゲート電圧を印加する駆動部(30,40)と、主に前記スイッチング素子に電流が流れる順導通モードと、主に前記ダイオード素子に電流が流れる逆導通モードと、のいずれのモードで駆動しているかを判定するモード判定部(50)と、を備える。

Description

半導体装置 関連出願の相互参照
 本出願は、2016年1月27日に出願された日本特許出願番号2016-13713号に基づくもので、ここにその記載内容を援用する。
 スイッチング素子と逆導通ダイオードとが設けられた半導体装置に関する。
 特許文献1に記載のように、逆導通型の絶縁ゲートバイポーラトランジスタ(RC-IGBT)において、IGBT素子領域をオフ状態に切り替えてダイオード素子領域に還流電流が流れる際に、絶縁トレンチゲート電極に負電圧を印加する半導体装置が知られている。
 これによれば、アノード領域から流出したホールが絶縁トレンチゲート電極に沿ってドリフト層に注入されやすくなり、順方向電圧降下(以下、順電圧という)を低減できるとされている。
特開2011-238975号公報
 特許文献1に記載の動作を実現するためには、IGBT素子領域とダイオード素子領域のいずれがオン状態にあるかを判定し、ゲート電圧の極性を切り替える必要がある。例えば一般的なモータ駆動用のインバータ回路などでは、ゲート電圧の極性をモータ電気角周期で切り替えることになる。IGBT素子領域およびダイオード素子領域のいずれがオン状態であるかは、例えば出力電流の正負で判定することができる。しかしながら、インバータ回路のように短い周期で出力電流の正負が切り替わる態様において、電流センサの公差によっては、出力電流の正負判定が精度よく行えない電流領域が生じてしまう。この電流領域は出力電流がゼロ近傍の低電流領域である。
 従来、出力電流の正負が判定不能なこのような電流領域では、システム全体の動作の安定性を考慮してIGBT素子領域がオン状態にあると仮定している。一般的なRC-IGBTにおけるダイオード素子領域はゲート電極に電圧が印加されるゲート干渉を抑制するためにゲート電極の電位がアノード電位に固定されているが、出力電流の極性によってダイオード素子領域に負電圧を印加する態様では電圧の固定はできない。よって、出力電流の正負が判定不能なこのような電流領域ではダイオード素子領域のゲート電極に正電圧が印加されることになる。このため、発明者は、ダイオード素子領域の順電圧が増大してしまう虞がある課題を見出した。
 本開示は、あらゆる電流領域においてリカバリ特性の向上と順電圧の低減とを両立した半導体装置を提供することを目的とする。
 本開示の一態様による半導体装置は、同一の半導体基板にダイオード素子とスイッチング素子とが並列して形成された逆導通スイッチング素子と、逆導通スイッチング素子に形成される複数のゲート電極にゲート電圧を印加する駆動部と、主にスイッチング素子に電流が流れる順導通モードと、主にダイオード素子に電流が流れる逆導通モードと、のいずれのモードで駆動しているかを判定するモード判定部と、を備える。ダイオード素子は、第1導電型の第1不純物領域と、第1不純物領域に接合して形成された第2導電型の第2不純物領域と、第1不純物領域と電気的に接続される第1電極と、第2不純物領域と電気的に接続される第2電極と、さらに、第1不純物領域にあって、第2不純物領域とは離間しつつ第1電極と第2電極との間の電流経路に形成された第2導通型の第3不純物領域と、を有し、ゲート電極に所定のゲート電圧が印加されることにより、第2不純物領域と第3不純物領域に挟まれた第1不純物領域におけるバリア領域に反転層が生じるものである。スイッチング素子は、ダイオード素子と共通した第1電極および第2電極を有するとともに、ゲート電極に所定のゲート電圧が印加されることによりオンの状態とされて第1電極と第2電極との間に電流が流れるものである。複数のゲート電極は、スイッチング素子をオンの状態とする第1ゲート電圧が入力される第1ゲート電極と、第1ゲート電圧とは独立して制御され、第1電極の電位と同一、もしくは、第1電極の電位を基準として第1ゲート電圧の極性と反対の極性となる第2ゲート電圧が入力される第2ゲート電極と、を有する。ダイオード素子に属するゲート電極は、少なくとも第2ゲート電極を含み、スイッチング素子に属するゲート電極は、少なくとも第1ゲート電極を含む。第1電極と第2電極との間を流れる電流に基づいて、モード判定部により、逆導通モードと判定された際、もしくは、逆導通モードか順導通モードかを判定できない際、第2ゲート電極に、第2ゲート電圧が印加される。
 これによれば、逆導通モードにおいて順電圧を低減できることに加えて、逆導通モードか順導通モードかを判定できない際にも、ダイオード素子の順電圧を低減することができる。なお、逆導通モードか順導通モードかを判定できない際に、万一順導通モードであったとしても、モードの判定ができない電流領域においては、IGBT素子の出力電流が十分小さいので、IGBT素子のコレクタ-エミッタ間の飽和電圧の増大は限定的である。したがって、本発明を採用することにより、従来に較べて、逆導通モードか順導通モードかを判定できない際の順電圧の増大に起因する損失を低減することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。図面において、
図1は、第1実施形態に係るインバータの概略構成を示す回路図であり、 図2は、図3に示すII-II線に沿う断面であり、第1素子あるいは第2素子の詳細の構造を示す断面図であり、 図3は、第1素子あるいは第2素子の詳細の構造を示す上面図であり、 図4は、駆動部が第1素子あるいは第2素子に対して印加するゲート電圧のパターンを示す図であり、 図5は、ゲート電圧の印加タイミングを示すタイミングチャートであり、 図6は、ゲート電圧の印加タイミングを示すタイミングチャートであり、 図7は、ゲート電圧の印加タイミングを示すタイミングチャートであり、 図8は、第2実施形態に係る第1素子あるいは第2素子の詳細の構造を示す断面図であり、 図9は、第3実施形態に係る第1素子あるいは第2素子の詳細の構造を示す断面図であり、及び、 図10は、横型ダイオードの構造を示す断面図である。
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下の各図相互において、互いに同一もしくは均等である部分に、同一符号を付与する。
 (第1実施形態)
 最初に、図1を参照して、本実施形態に係る半導体装置の概略構成について説明する。
 本実施形態では、ダイオード素子および絶縁ゲートバイポーラトランジスタ素子(IGBT素子)が同一の半導体基板に形成された逆導通絶縁ゲートバイポーラトランジスタ(RC-IGBT)が、半導体装置たるインバータに適用される形態について説明する。
 図1に示すように、インバータ100は、2つの逆導通絶縁ゲートバイポーラトランジスタ10,20と、各逆導通絶縁ゲートバイポーラトランジスタ10,20のゲート電極にゲート電圧を印加するための駆動部30,40と、各逆導通絶縁ゲートバイポーラトランジスタ10,20の駆動状態を判定するモード判定部50と、を備えている。
 図1に示すように、インバータ100は、電源電圧VCCとグランドGNDの間に2つの逆導通絶縁ゲートバイポーラトランジスタ10,20が直列に接続されて構成されている。2つの逆導通絶縁ゲートバイポーラトランジスタ10,20の接続点には負荷200が接続されている。以下の記載では、2つの逆導通絶縁ゲートバイポーラトランジスタ10,20のうち、負荷200に対して電源電圧VCC側のものを第1素子10と称し、グランドGND側のものを第2素子20と称する。つまり、第1素子10がインバータ100における上アームを構成し、第2素子20が下アームを構成している。第1素子10および第2素子20は、逆導通スイッチング素子に相当する。
 第1素子10は、スイッチング素子に相当するIGBT素子11と、ダイオード素子12とを有している。ダイオード素子12は、いわゆるフライホイールダイオードであり、IGBT素子11におけるエミッタからコレクタに向かって順方向となるように、IGBT素子11に並列に接続されている。
 第2素子20は第1素子10と等価であり、IGBT素子21とダイオード素子22とを有している。ダイオード素子22は、IGBT素子21におけるエミッタからコレクタに向かって順方向となるようにIGBT素子21に並列に接続されている。
 第1素子10および第2素子20はダブルゲート構造の逆導通スイッチング素子であり2種類のゲート電極を有している。第1素子10および第2素子20の詳しい素子構造については図2および図3とともに追って詳述する。
 駆動部は、第1素子10へのゲート電圧の印加を制御する第1駆動部30と、第2素子20へのゲート電圧の印加を制御する第2駆動部40とを有している。第1駆動部30および第2駆動部40の構造は互いに等価である。本実施形態における駆動部30,40は、図1に示すように、それぞれ2つのゲート配線に接続され、ダブルゲート構造を有する第1素子10および第2素子のそれぞれのゲート電極に独立したゲート電圧を印加することができるようになっている。具体的には、一方のゲート電極(後述する第1ゲート電極82a)にはエミッタ電圧Veと+V1の2値が入力でき、他方のゲート電極(後述する第2ゲート電極82b)には+V1、Veおよび-V2の3値が入力できる。なお、+V1とは、エミッタ電圧Veを基準として正の電圧であり、-V2とはエミッタ電圧Veを基準として負の電圧である。
 なお、第1ゲート電圧とは+V1に相当し、第2ゲート電圧とは、Veもしくは-V2に相当する。
 モード判定部50は、第1素子10および第2素子20の動作モードを判定している。ここで、動作モードとは、絶縁ゲートバイポーラトランジスタにおいて、主にIGBT素子に電流が流れているか、あるいは主にダイオード素子に電流が流れているか、を区別するものである。以下の記載では、主にIGBT素子に電流が流れて動作している状態を順導通モードと称し、主にダイオード素子に電流が流れて動作している状態を逆導通モードと称する。
 本実施形態におけるモード判定部50は、負荷200に流れる電流の向きに基づいて第1素子10および第2素子20の動作モードを判定している。インバータ100は、負荷200と直列接続された負荷電流検出部60を備えている。負荷電流検出部60は、負荷200を流れる負荷電流Iを、方向を含めて検出する電流計である。負荷電流検出部60は、負荷電流Iが第1素子10と第2素子20との接続点から負荷200に向かって流れる場合を正の電流とし、その逆を負の電流としてモード判定部50に出力している。
 モード判定部50は、負荷電流検出部60から出力される負荷電流Iの正負に基づいて動作モードを判定している。具体的には、負荷電流Iが正の場合には、主に、第1素子10(上アーム)におけるIGBT素子11および第2素子20(下アーム)におけるダイオード素子22に電流が流れている状態である。よって、モード判定部50は、第1素子10の動作モードを順導通モードと判定し、第2素子20の動作モードを逆導通モードと判定する。一方、負荷電流Iが負の場合には、主に、第1素子10におけるダイオード素子12および第2素子20におけるIGBT素子21に電流が流れている状態である。よって、モード判定部50は、第1素子10の動作モードを逆導通モードと判定し、第2素子20の動作モードを順導通モードと判定する。モード判定部50が動作モードを判定可能な電流レベルよりも負荷電流Iが小さいと、モード判定部50は素子10あるいは素子20の動作モードを判定できないが、そのような場合にはモード判定不可である旨を駆動部30,40に通知する。
 モード判定部50は、素子10,20の動作モード、あるいはモード判定不可である旨を駆動部30,40に通知する。そして駆動部30,40は、動作モードも応じてゲート電極にゲート電圧を印加する。
 次に、図2を参照して、第1素子10および第2素子20の詳しい構造について説明する。なお、第1素子10と第2素子20とは互いに等価な逆導通絶縁ゲートバイポーラトランジスタであるからこれらの区別なく説明するが、図1と共通する要素については第1素子10に付した符号と相互に対応付ける。また、図2において、半導体基板70のうちp導電型となる不純物拡散層にハッチングを付しているが、n導電型となる不純物拡散層のハッチングを省略している。
 本実施形態における逆導通スイッチング素子たる逆導通絶縁ゲートバイポーラトランジスタは、図2に示すように、第1主面70aとその裏面である第2主面70bを有する半導体基板70に形成されている。スイッチング素子としての機能を奏するIGBT素子11とダイオードとしての機能を奏するダイオード素子12は同一の半導体基板70にそれぞれ形成されている。
 第1主面70aには、例えばアルミニウムから成るカソード電極71が形成されている。カソード電極71は、ダイオード素子12におけるカソード端子あるいはIGBT素子11におけるコレクタ端子に相当し、カソード電極71がこれらを互いに兼用している。また、カソード電極71は、第1電極に相当している。
 また、図2に示すように、半導体基板70における第1主面70aの表層においてカソード電極71に接触するようにn導電型のカソード領域72aが形成されている。また、カソード領域72aと同一層にp導電型のコレクタ領域72bが形成されている。コレクタ領域72bはカソード電極71に接触しつつカソード領域72aに隣接している。IGBT素子11とダイオード素子12との境界近傍では、ダイオード素子12がIGBT11として作用し得る。また、IGBT素子11がダイオード素子12として作用し得る。本実施形態では、機能としてIGBT素子11とダイオード素子12が混在する領域を混成領域と称し、カソード領域72aとコレクタ領域72bの界面をダイオード部12とIGBT部11の境界と称する。カソード領域72aは、第1不純物領域の一部に相当している。
 カソード領域72a上にn導電型の第1ドリフト領域73aが積層され、コレクタ領域72b上にn導電型の第2ドリフト領域73bが積層されている。第1ドリフト領域73aおよび第2ドリフト領域73bの名称を便宜的に別にしているが、これらの領域73a、73bは実質同一の不純物拡散層からなる連続した領域である。第1ドリフト領域73aは、第1不純物領域の一部に相当している。
 第1ドリフト領域73a上にp導電型の第1サブアノード74aが積層され、第2ドリフト領域73b上にp導電型の第2サブアノード74bが積層されている。第1サブアノード74aおよび第2サブアノード74bの名称を便宜的に別にしているが、これらのサブアノード74a、74bは実質同一の不純物拡散層からなる連続した領域である。なお、第1サブアノード領域74aおよび第2サブアノード領域74bは、第3不純物領域に相当している。
 第1サブアノード74a上にn導電型の第1バリア領域75aが積層され、第2サブアノード74b上にn導電型の第2バリア領域75bが積層されている。第1バリア領域75aおよび第2バリア領域75bの名称を便宜的に別にしているが、これらのバリア領域75a、75bは実質同一の不純物拡散層からなる連続した領域である。第1バリア領域75aは、第1不純物領域の一部に相当している。
 第1バリア領域75a上にp導電型のアノード領域76aが積層され、第2バリア領域75b上にp導電型のボディ領域76bが積層されている。アノード領域76aおよびボディ領域76bの名称を便宜的に別にしているが、本実施形態におけるこれらの領域76a、76bは実質同一の不純物拡散層からなる連続した領域である。なお、アノード領域76aは、第2不純物領域に相当する。
 なお、第1不純物領域とは、カソード領域72a、第1ドリフト領域73a、第1バリア領域75aを含むn導電型の領域である。そして、ダイオード素子12は、第1サブアノード74aが第2不純物領域たるアノード領域76aから離間しつつ第1不純物領域内に埋め込まれた構造となっている。第1サブアノード74aは、第1ドリフト領域73aとアノード領域76aとの間を流れる電流の電流経路に形成されている。
 ダイオード素子12において、上記した第1サブアノード74aおよび第1バリア領域75aが形成されていることにより、アノード領域76aから第1ドリフト領域73aへのホールの注入が抑制され、ダイオード素子12に印加される電圧が順バイアスから逆バイアスに切り替わった際における逆電流が制限される。このため、第1サブアノード74aおよび第1バリア領域75aが形成されていないダイオードに較べて逆回復電流を小さくできるのでリカバリ特性を向上させることができる。ただし、第1サブアノード74aおよび第1バリア領域75aにより形成されるpn接合がダイオード素子12の順方向電流の流れを阻害するため順電圧VFは大きくなる。
 また、第2主面70bの表層には、ボディ領域76bに囲まれるようにn導電型のエミッタ領域77が形成されている。そして、エミッタ領域77、ボディ領域76b、およびアノード領域76aに接触するようにして第2主面70b上にアノード電極78が形成されている。アノード電極78は、ダイオード素子12におけるアノード端子あるいはIGBT素子11におけるエミッタ端子に相当している。また、アノード電極78は、第2電極に相当する。
 図2に示すように、IGBT素子11は、不純物拡散層として、コレクタ領域72b、第2ドリフト領域73b、第2サブアノード74b、第2バリア領域75b、ボディ領域76bおよびエミッタ領域77を有している。一方、ダイオード素子12は、不純物拡散層として、カソード領域72a、第1ドリフト領域73a、第1サブアノード74a、第1バリア領域75aおよびアノード領域76aを有している。
 実質同一の層に位置する各不純物拡散層は、IGBT素子11およびダイオード素子12の電気的特性の要求に応じて、対応する領域の不純物濃度を互いに異なる濃度とすることを妨げるものではなく、これらの領域の不純物濃度は適宜設定されるべきである。
 さらに、この逆導通絶縁ゲートバイポーラトランジスタは、第2主面70bから半導体基板70の厚さ方向に形成されてドリフト領域73a,73bに達するトレンチゲート80を有している。トレンチゲート80は、IGBT素子11にあってはボディ領域76b、第2バリア領域75b、第2サブアノード74bを貫通して第2ドリフト領域73bに達し、ダイオード素子12にあってはアノード領域76a、第1バリア領域75a、第1サブアノード74aを貫通して第1ドリフト領域73aに達している。
 トレンチゲート80は、第2主面70bから半導体基板70の厚さ方向に延びてドリフト領域73a,73bに達するまで掘られたトレンチの内面に成膜された絶縁膜81と、トレンチを埋めるように形成された導電性のゲート電極82から成る。ゲート電極82とエミッタ電極78は絶縁膜81を介しているため互いに絶縁されている。また、IGBT素子11に形成されたエミッタ領域77はトレンチゲート80に接するように形成され、ゲート電極82にアノード電極78よりも高い電圧が印加されるとボディ領域76bおよび第2サブアノード74bにチャネルが形成されてアノード電極78とカソード電極71の間にIGBT動作による出力電流が流れる。
 本実施形態における複数のゲート電極82は、第1ゲート電極82aと第2ゲート電極82bの2つのゲート電極とに分類される。第1ゲート電極82aは第1ゲートパッドG1に接続されている。第2ゲート電極82bは第2ゲートパッドG2に接続されている。第1ゲート電極82aと第2ゲート電極82bにはそれぞれ独立した電圧が印加される。図1に示すように、第1駆動部30は、第1素子11における第1ゲート電極82aおよび第2ゲート電極82bに電圧を供給している。同様に、第2駆動部40は、第2素子21における第1ゲート電極82aおよび第2ゲート電極82bに電圧を供給している。
 ところで、p導電型のアノード領域76aおよびボディ領域76bと、n導電型の第1、第2バリア領域75a,75bと、p導電型の第1、第2サブアノード74a,74bは、pnp型の寄生トランジスタを形成している。n導電型のバリア領域75a,75bは、ホールにとってはp導電型の領域に対してポテンシャル障壁となるが、ゲート電極82に印加される電圧(ゲート電圧)によってその障壁高さを制御することができるようになっている。
 すでに説明したように、第2ゲート電極82bには特に、アノード電極78(第2電極に相当し、IGBTではエミッタ電極と称される)の電圧よりもV2だけ低い電圧を印加できるようになっている。すなわち、第2ゲート電極82bの電位を、アノード電極78に対して負電位にすることができるようになっている。これにより、バリア領域75a,75bのポテンシャル障壁を消失するように障壁高さを変動させることができる。これにより、ダイオード素子11は、第1バリア領域75aが反転してアノード領域76a、第1バリア領域75aおよび第1サブアノード74aが一体的なp導電型の領域と見なせる。つまり、ダイオード素子12は単純なpn接合ダイオードとなり、第1サブアノード74aが形成されたダイオードに較べて順電圧VFを低減することができる。
 本実施形態において、ゲート電圧V2は、少なくとも第1バリア領域75aにチャネルを生じさせることができる値に設定されている。換言すれば、電圧V2は、ダイオード素子12において、アノード領域76aと、第1バリア領域75aと、第1サブアノード74aとにより形成される寄生トランジスタの閾値電圧Vth以上となるように設定されている。一方、ゲート電圧V1は、IGBT素子11において、ボディ領域76bにチャネルを生じさせることのできる値に設定されている。換言すれば、ゲート電圧V1はスイッチング素子たるIGBTをオンの状態にすることのできる電圧に設定されている。
 なお、本実施形態におけるn導電型は、第1導電型に相当し、p導電型は第2導電型に相当する。導電型の関係性は互いに逆であっても良い。この場合、アノードとカソードの関係も逆になる。
 次に、図3を参照して、本実施形態における第1素子10および第2素子20の平面レイアウトについて説明する。なお、第1素子10と第2素子20とは互いに等価な逆導通絶縁ゲートバイポーラトランジスタであるからこれらの区別なく説明する。また、符号について、図1および図2と共通する要素は第1素子10に付した符号と相互に対応付ける。図3におけるII-II線に沿う断面が図2に相当する。
 図3に示すように、本実施形態における絶縁ゲートバイポーラトランジスタは、ゲート電極82がストライプ状に形成されている。ゲートパッドG1,G2とゲート電極82とを互いに電気的に接続するゲート配線83は、IGBT素子11あるいはダイオード素子12が形成された素子領域上において、ゲート電極82の延設方向に沿って形成されている。ゲート配線83は、第1ゲートパッドG1と第1ゲート電極82aとを接続する第1ゲート配線83aと、第2ゲートパッドG2と第2ゲート電極82bとを接続する第2ゲート配線83bとを含む。
 上記したように、第1ゲート電極82aには、アノード電極78(すなわち、エミッタ電極)の電位Ve、および、Veを基準にして正の電圧+V1が印加可能とされている。また、第2ゲート電極82bには、Ve、+V1、そしてVeを基準にして負の電圧-V2が印加可能とされている。
 この絶縁ゲートバイポーラトランジスタにおいて、IGBT素子11のゲート電極82には第1ゲート電極82aと第2ゲート電極82bの両方が含まれる。そして、ダイオード素子12のゲート電極82には第2ゲート電極82bのみが割り当てられている。つまり、IGBT素子11は、IGBTをオンの状態にするゲート電圧V1が少なくとも印加可能にされているとともに、ゲート電圧V1の印加とは独立してゲート電圧-V2が印加可能にされている。また、ダイオード素子12は、ゲート電圧-V2が少なくとも印加可能にされている。
 また、図3に示すように、IGBT素子11とダイオード素子12との境界近傍の領域、すなわち混成領域には、第2ゲート電極82bが割り当てられている。つまり、混成領域には、+V1と-V2の両方が印加可能になっている。
 なお、IGBT素子11が形成された領域では、図3に示すように、ゲート配線83の延設方向に直交する方向において、第1ゲート電極82aと第2ゲート電極82bとが交互に配置されていることが好ましい。もちろん、同種のゲート電極82が互いに隣り合うように配置しても構わないが、第1ゲート電極82aと第2ゲート電極82bとが交互に配置されていることによって、後に詳述するターンオフに係るスイッチング速度を速くする効果をより大きくすることができる。また、発熱源を分散させることができるので、熱的に有利である。
 また、ゲート電極82は、必ずしも全てのゲート電極82が第1ゲート電極82aあるいは第2ゲート電極82bに属する必要はなく、いくつかのゲート電極82がアノード電極78に短絡された間引き構造としても良い。アノード電極78に短絡されたゲート電極82の電位はアノード電圧(エミッタ電圧に相当)に固定されるので、素子10,20全体としてゲート容量を小さくすることができる。これにより、素子10,20を駆動するために必要な駆動部30,40のドライブ能力を抑制することができる。
 次に、図4を参照して、本実施形態における半導体装置、とくに第1素子10および第2素子20の動作とともに、作用効果について説明する。図4は、第1ゲート電極82aおよび第2ゲート電極82bに印加されるゲート電圧を、第1素子10あるいは第2素子20の動作モードに対応して図示したものである。第1素子10と第2素子20とは互いに等価であるから、とくに断らない限り第1素子10について説明する。
 素子10の状態には、図4に示すA~Dの状態がある。状態Aは、負荷電流Iが十分大きく、順導通モードで動作中であることが判定可能な状態である。状態Bは、実際は順導通モードであるものの、負荷電流Iが動作モードを判定可能なレベルに比べて小さく、モード判定部50が順導通モードか逆導通モードかを判定できない状態である。状態Cは、状態Bは、実際は逆導通モードであるものの、負荷電流Iが動作モードを判定可能なレベルに比べて小さく、順導通モードか逆導通モードかを判定できない状態である。状態Dは、負荷電流Iが十分大きく、逆導通モードで動作中であることが判定可能な状態である。
 状態Aにおいて、駆動部30は、第1ゲート電極82aと第2ゲート電極82bの両方に電圧+V1を印加する。状態Aは素子10が順導通モードで駆動中であり、IGBTとしての機能が期待される。よって、IGBT素子11が形成された領域に属する第1ゲート電極82aと第2ゲート電極82bの両方に電圧+V1を印加することによりIGBTとして動作させることができる。一方、ダイオード素子12が形成された領域に属する第2ゲート電極82bにも+V1が印加される。本実施形態においては、ダイオード素子12の属するゲート電極82はすべて第2ゲート電極82bであり、IGBT素子11との境界近傍である混成領域にも+V1が印加される。よって、混成領域をIGBTとして機能させることができる。
 状態Bおよび状態Cにおいて、駆動部30は、第1ゲート電極82bに電圧+V1を印加するとともに、第2ゲート電極82bに電圧-V2を印加する。状態Bおよび状態Cは、モード判定部50では素子10がいずれの動作モードで動作中かを判定できない電流領域である。仮に、素子10が順導通モードであった(状態B)とすれば、IGBT素子11に属する第1ゲート電極82aには電圧+V1が印加されているので、IGBTとして正しく動作させることができる。また、IGBT素子11に属する第2ゲート電極82bに電圧-V2が印加されているので、IGBT素子11のターンオフ時において、ボディ領域76bにホールが流入しやすい状態となる。すなわち、第2ドリフト領域73bの存在するホールがボディ領域76bに移動しやすくなり、ターンオフに係るスイッチング速度を速くすることができる。
 一方、仮に素子10が逆導通モードであった(状態C)としても、ダイオード素子12の属する第2ゲート電極82bには電圧-V2が印加されているので、順電圧VFを低減する効果を奏することができる。また、上記のとおり、IGBT素子11をIGBTとして動作させるために第1ゲート電極82aには電圧+V1が印加されているが、IGBT素子11とダイオード素子12との境界近傍である混成領域にも第2ゲート電極82bによって電圧-V2が印加されているので、第1ゲート電極82aに電圧+V1が印加されることによるゲート干渉を抑制することができる。すなわち、ダイオード素子12をダイオードとして確実に機能させることができる。
 状態Dにおいて、駆動部30は、第1ゲート電極82bにエミッタ電圧Veを印加するとともに、第2ゲート電極82bに電圧-V2を印加する。状態Dは素子10が逆導通モードで駆動中であり、ダイオードとしての機能が期待される。よって、ダイオード素子12が形成された領域に属する第2ゲート電極82bに電圧-V2を印加することにより順電圧VFを低減する効果を奏することができる。一方、第1ゲート電極82aにはエミッタ電圧Veが印加されている。このため、第1ゲート電極82aはエミッタ電圧Veを基準に負電圧が印加される場合に較べて、負電圧を印加する機能は第2ゲート電極82b側だけでよく、回路規模を小さくできる。
 次に、図5~図7を参照して、第2ゲート電極82bにゲート電圧-V2を印加する具体的なタイミングについて、3通りの例で説明する。なお、図5~7における負荷電流Iは図1に示す負荷電流Iと同義であり、負荷電流Iは第1素子10と第2素子20との接続点から負荷200に向かって流れる場合を正の電流としている。また、第1ゲート電極82aに印加されるゲート電圧はIGBT素子11をIGBTとしてスイッチング動作させるためのものであり、PWM基準信号に同期してハイレベルとローレベルとを繰り返しているとする。
 <PWM基準信号に同期する実施例>
 図5に示すように、この例では、第2ゲート電極82bに印加されるゲート電圧も、第1ゲート電極82aと同様にPWM基準信号に同期して印加される。PWM基準信号のHigh/Lowは、上アームを構成する第1素子10に対応するものと、下アームを構成する第2素子20に対応するものとで互いに反転した関係になっている。PWM基準信号がHighの期間において、図4に示すゲート電圧が有効となり、PWM基準信号がLowの期間はエミッタ電圧Veがゲート電圧として各ゲート電極82に入力される。
 時刻t1~時刻t2において、モード判定部50は、第1素子10が順導通モードであり、第2素子20が逆導通モードであると判定する。したがって、第1素子10は状態Aで動作する。つまり、PWM基準信号に同期してハイレベルが+V1とされ、ローレベルがVeとされるPWM制御されたゲート電圧が第1ゲート電極82aと第2ゲート電極82bの両方に印加される。一方、第2素子20は状態Dで動作する。つまり、第1ゲート電極82aには、常にエミッタ電圧Veが印加され、第2ゲート電極82bには、ハイレベルがVeとされローレベルが-V2とされるPWM制御されたゲート電圧が印加される。
 時刻t2~時刻t3において、モード判定部50は、第1素子10および第2素子20の動作モードを判定することができない。したがって、第1素子10および第2素子20は、状態Bまたは状態Cで動作する。つまり、第1ゲート電極82aには、ハイレベルが+V1とされローレベルがVeとされるPWM制御されたゲート電圧が印加される。第2ゲート電極82bには、ハイレベルがVeとされローレベルが-V2とされるPWM制御されたゲート電圧が印加される。
 時刻t3~時刻t4において、モード判定部50は、第1素子10が逆導通モードであり、第2素子20が順導通モードであると判定する。したがって、第1素子10は状態Dで動作し、第2素子20が状態Aで動作する。ゲート電圧は、時刻t1~時刻t2における第1素子10と第2素子20との関係と逆の関係にある。
 時刻t4~時刻t5において、モード判定部50は、第1素子10および第2素子20の動作モードを判定することができない。したがって、第1素子10および第2素子20は、状態Bまたは状態Cで動作する。つまり、ゲート電圧は、時刻t2~時刻t3と同様に変化する。
 この例では、状態Cあるいは状態Dの逆導通モードにおいて、ダイオード素子12にエミッタ電圧Veに対して負の電圧-V2を印加するので順電圧VFを低減することができる。これに加えて、一般的な駆動回路にて実施される通り、第1素子10に入力されるPWM基準信号と、第2素子20に入力されるPWM基準信号が、同時にHighにならないように、双方がLowとなるデットタイムが一定時間設定されていることより、逆導通絶縁ゲートバイポーラトランジスタのリカバリ期間にダイオード素子12に印加するゲート電圧をVeにしておくことができるため、常に-V2が印加された状態に比べてリカバリ損失を低減することができる。
 <常に負電圧が印加される実施例>
 図6に示すように、この例では、状態B~Dにおいて第2ゲート電極82bに印加されるゲート電圧が-V2であるとき、PWM基準信号に依らず常に電圧-V2が印加される。この例でも、ダイオード素子12にエミッタ電圧Veに対して負の電圧-V2を印加するので順電圧VFを低減することができる。また、IGBT素子11においてボディ領域76bへホールが流入しやすい状況をつくることができ、ターンオフに係るスイッチング速度を速くすることができる。ただし、上述したPWM基準信号に同期する動作に比べて、V2の大きさを小さく設定することが好ましい。これは、V2の大きさを過剰に設定すると逆導通によるダイオード電流が大きい状態では、ダイオード素子12におけるリカバリ損失が大きくなるためである。この例のように、PWM基準信号に依らず常に電圧-V2が印加されるような態様は、順電圧VFによる損失の低減効果が高いが、リカバリ損失も増大する虞があるため、システム全体の駆動損失に占める順電圧VFによる損失の割合が大きいシステムにおいて有効である。
 <ダイオード電流の大きさに依存して負電圧が印加される例>
 PWM基準信号に依らず常に電圧-V2が印加される態様では、上記したように、ダイオード電流が大きい場合にリカバリ損失が増大してしまう虞がある。これを解決するため、この例では、図7に示すように、ダイオード電流、ひいては負荷電流Iに閾値を設ける。負荷電流Iの大きさが閾値より小さい場合には第2ゲート電極82bに電圧-V2が印加され、負荷電流Iの大きさが閾値以上の場合は、第2ゲート電極82bに電圧Veが印加される。これにより、ダイオード電流が大きい場合のリカバリ損失を低減することができる。
 (第2実施形態)
 第1実施形態において説明した第1素子10、第2素子20たる逆導通絶縁ゲートバイポーラトランジスタに加えて、図8に示すように、n導電型のピラー領域79を有していることが好ましい。ピラー領域79は、半導体基板70の第2主面70bから厚さ方向に延び、アノード領域76aあるいはボディ領域76bを貫通して第1バリア領域75a、第2バリア領域75bに至るように形成されている。ピラー領域79は、第1、第2バリア領域75a,75bと同一の導電型の不純物がドープされた拡散層であり、ピラー領域79とバリア領域75a,75bとは略同電位である。
 ピラー領域79を有することにより、アノード電極78とカソード電極71の間に順バイアスが印加されると、アノード電極78とピラー領域79は金属-半導体接合面を介して短絡する。ピラー領域79と第1バリア領域75aはほぼ同電位であるため、第1バリア領域75aとアノード電極78の電位差は金属-半導体接合面での電圧降下とほぼ等しくなる。金属-半導体接合面での電圧降下は、アノード領域76aと第1バリア領域75aの間のpn接合のビルトイン電圧よりも小さいので、アノード領域76aから第1ドリフト領域73aへのホールの注入が抑制される。
 アノード電極78とカソード電極71の間の電圧が順バイアスから逆バイアスに切り替わると、ダイオード素子12では、順バイアスの印加時においてアノード領域76aから第1ドリフト領域73aへのホールの注入が抑制されているから、リカバリ電流が小さく、リカバリ時間が短い。
 また、このダイオード素子12では、アノード電極78とカソード電極71の間に逆バイアスが印加されると、第1サブアノード74aと第1ドリフト領域73aの間のpn接合の界面から伸びる空乏層によって耐圧が確保される。すなわち、このダイオード素子12によれば、逆バイアスに対する耐圧を向上することができる。
 なお、本実施形態ではピラー領域79がIGBT素子11にも形成される例を示したが、少なくともダイオード素子12に形成されていればホール注入抑制効果を奏することができる。このため、必ずしもIGBT素子11にピラー領域79が形成されている必要はない。
 (第3実施形態)
 第1実施形態において図3を参照して平面レイアウトについて説明した間引き構造について、本実施形態において具体的に説明する。本実施形態では、第2実施形態において説明したように、ピラー領域79を備える態様であって、図9に示すように、ダイオード素子12において、互いに隣り合うゲート電極82をアノード電極78と短絡させないようになっている。換言すれば、アノード電極78と短絡したゲート電極82に隣接するゲート電極82は、第2ゲート電極82bに割り当てられている。これによれば、ダイオード素子12に形成された第1バリア領域75aは、少なくとも一つの第2ゲート電極82bに、絶縁膜81を介して接しているので、ダイオード素子12は、第2ゲート電極82bに負電圧-V2が印加されることによる順電圧VFの低減効果を奏することができる。また、間引き構造によるゲート容量の低減効果を奏することもできる。
 なお、本実施形態では、逆導通絶縁ゲートバイポーラトランジスタがピラー領域79を有する構成について説明したが、第1実施形態のようにピラー領域79を有さない構造についても同様である。
 (その他の実施形態)
 以上、本発明の好ましい実施形態について説明したが、本発明は上記した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。
 上記した各実施形態では、トレンチゲート80を有する縦型の絶縁ゲートバイポーラトランジスタを例に説明したが、必ずしもトレンチ型のゲート電極82を有する構造である必要はないし縦型である必要もない。図10に示すように、横型素子についても本発明を適用可能である。バリア領域とゲート電極とを有するダイオードは、図10に示すように、n導電型の半導体基板90における一面90aの表層に、p導電型のアノード領域91が形成されている。そして、アノード領域91を取り囲むように、n導電型のバリア領域92が一面90aに一部が露出しつつ形成されている。さらに、バリア領域92を挟んでアノード領域91の反対側にサブアノード93が形成されている。アノード領域91には金属製のアノード電極94が一面90aにおいて接合されている。また、アノード領域91、バリア領域92およびサブアノード93が形成されていない半導体基板90の一面90aにカソード電極95が接合されている。
 ダイオード電流はアノード電極94とカソード電極95の間を流れる。この例では、カソード電極95が接合されたn導電型の半導体基板が第1不純物領域に相当し、アノード電極94が接合されたアノード領域91が第2不純物領域に相当する。つまり、ダイオード電流はカソード電極95近傍の半導体基板とアノード領域91の間を流れ、その電流経路にサブアノード93とバリア領域92が位置している。この横型のダイオードは、さらに、バリア領域92が露出した一面90a上に、絶縁膜96を介してゲート電極97が形成されている。第1実施形態において説明した縦型のダイオード素子12と同様に、横型のダイオードでも、バリア領域92を有することによりリカバリ特性を向上させることができ、ゲート電極97にアノード領域91の電位に対して負の電圧を印加することにより順電圧VFを低減することができる。よって、第1実施形態と同様に、モード判定部50が順導通モードか逆導通モードかを判定できない場合には、ゲート電極97に負の電圧を印加することにより第1実施形態と同様の効果を奏することができる。
 また、上記した各実施形態において、負電圧-V2を入力するタイミングでエミッタ電圧Veを印加するに留めることもできる。この場合は、負電圧印加による順電圧VFの低減効果は小さいものの、ダイオード素子12に電圧+V1が印加されることはないので、+V1が印加されることに起因するダイオード特性の悪化、とくに順電圧VFの増加を抑制することができる。
 また、上記した各実施形態において、ダイオード素子12に並列するスイッチング素子としてIGBT素子11を採用する例について説明したが、スイッチング素子は例えばMOSFETであっても良い。MOSFETの場合、図2、図8および図9に示すスイッチング素子領域(上記した各実施形態ではIGBT素子11)のコレクタ領域72bがn導電型のドレイン領域となり、スイッチング素子とダイオード素子を兼ねた領域となる。つまり、スイッチング素子領域とダイオード素子12とを作り分けることはしなくともよい。なお、図2、図8および図9に示したエミッタ領域77はソース領域となる。このような態様では、実質的にスイッチング素子として機能する領域と、ダイオードとして機能する領域とが並列に形成された状態にある。
 また、上記した各実施形態では、ゲート電極82がストライプ状に形成された例について説明したが、少なくとも第1ゲート電極82aと第2ゲート電極82bとに分けられていれば任意形状で良く、例えば格子状に形成されていても良い。
 また、逆導通スイッチング素子におけるIGBT素子11,21側には必ずしもバリア領域92およびサブアノード93を形成する必要はなく、ダイオード素子12,22側においてもサブアノード93は全面ではなく部分的に形成されていても良い。
 また、上記した各実施形態では、IGBT素子11,21における第1電極および第2電極と、ダイオード素子21,22における第1電極および第2電極とが、素子内においてそれぞれ共通のゲートパッドG1,G2に接続される例について説明した。しかしながら、互いの電極は素子外において接続されても良く、ダイオード素子と共通した第1電極および第2電極、との表現は、第1素子10あるいは第2素子20外部での接続も含むものである。
 さらに、上記した各実施形態では、スイッチング素子領域とダイオード素子において第1電極71が共通して形成される例について説明したが、IGBT素子11,21におけるコレクタ電極と、ダイオード素子21,22におけるカソード電極とをそれぞれ別体として形成してもよく、互いの電極が第1素子10あるいは第2素子20外部で接続される場合も含むものである。
 また、上記した各実施形態では、スイッチング素子領域とダイオード素子において第2電極78が共通して形成される例について説明したが、IGBT素子11,21におけるエミッタ電極と、ダイオード素子21,22におけるアノード電極とをそれぞれ別体として形成してもよく、互いの電極が第1素子10あるいは第2素子20外部で接続される場合も含むものである。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (8)

  1.  同一の半導体基板(70,90)にダイオード素子(12,22)とスイッチング素子(11,21)とが並列して形成された逆導通スイッチング素子(10,20)と、
     前記逆導通スイッチング素子に形成される複数のゲート電極(82)にゲート電圧を印加する駆動部(30,40)と、
     主に前記スイッチング素子に電流が流れる順導通モードと、主に前記ダイオード素子に電流が流れる逆導通モードと、のいずれのモードで駆動しているかを判定するモード判定部(50)と、を備え、
     前記ダイオード素子は、
     第1導電型の第1不純物領域(72a,73a,75a)と、
     前記第1不純物領域に接合して形成された第2導電型の第2不純物領域(76a,91)と、
     前記第1不純物領域と電気的に接続される第1電極(71,95)と、
     前記第2不純物領域と電気的に接続される第2電極(78,94)と、
     さらに、前記第1不純物領域にあって、前記第2不純物領域とは離間しつつ前記第1電極と前記第2電極との間の電流経路に形成された第2導通型の第3不純物領域(74a,93)と、を有し、
     前記ゲート電極に所定のゲート電圧が印加されることにより、前記第2不純物領域と前記第3不純物領域に挟まれた前記第1不純物領域におけるバリア領域(75a,92)に反転層が生じるものであり、
     前記スイッチング素子は、
     前記ダイオード素子と共通した前記第1電極および前記第2電極を有するとともに、前記ゲート電極に所定のゲート電圧が印加されることによりオンの状態とされて前記第1電極と前記第2電極との間に電流が流れるものであり、
     前記複数のゲート電極は、
     前記スイッチング素子をオンの状態とする第1ゲート電圧が入力される第1ゲート電極(82a)と、
     前記第1ゲート電圧とは独立して制御され、前記第2電極の電位と同一、もしくは、前記第2電極の電位を基準として前記第1ゲート電圧の極性と反対の極性となる第2ゲート電圧が入力される第2ゲート電極(82b)と、を有し、
     前記ダイオード素子に属する前記ゲート電極は、少なくとも前記第2ゲート電極を含み、前記スイッチング素子に属する前記ゲート電極は、少なくとも前記第1ゲート電極を含み、
     前記第1電極と前記第2電極との間を流れる電流に基づいて、前記モード判定部により、前記逆導通モードと判定された際、もしくは、前記逆導通モードか前記順導通モードかを判定できない際、前記第2ゲート電極に、前記第2ゲート電圧が印加される半導体装置。
  2.  前記駆動部は、前記逆導通モードと判定された際、もしくは、前記逆導通モードか前記順導通モードかを判定できない際、ハイレベルとローレベルの2値を少なくとも有しPWM制御されたゲート電圧を前記第2ゲート電極に印加するものであり、
     前記ローレベルは、前記第2電極の電位を基準として前記第1ゲート電圧の極性と反対の極性である請求項1に記載の半導体装置。
  3.  前記駆動部は、前記逆導通モードと判定された際、もしくは、前記逆導通モードか前記順導通モードかを判定できない際、常に前記第2電極の電位を基準として前記第1ゲート電圧の極性と反対の極性であるゲート電圧を前記第2ゲート電極に印加する請求項1に記載の半導体装置。
  4.  前記駆動部は、前記逆導通モードと判定された際、前記第1電極と前記第2電極との間に流れるダイオード電流の大きさが所定の閾値以上の場合に、前記第2電極の電位と同一のゲート電圧を前記第2ゲート電極に印加し、
     前記ダイオード電流の大きさが所定の閾値より小さい場合に、前記第2電極の電位を基準として前記第1ゲート電圧の極性と反対の極性であるゲート電圧を前記第2ゲート電極に印加する請求項1に記載の半導体装置。
  5.  前記ダイオード素子が形成される領域と、前記スイッチング素子が形成される領域との境界となる混成領域における前記ゲート電極は、前記第2電極の電位を基準として前記第1ゲート電圧の極性と反対の極性であるゲート電圧が印加可能である請求項1~4のいずれか1項に記載の半導体装置。
  6.  前記ダイオード素子が形成される領域と、前記スイッチング素子が形成される領域との境界となる混成領域における前記ゲート電極は、前記第1ゲート電圧が印加可能である請求項1~5のいずれか1項に記載の半導体装置。
  7.  前記スイッチング素子に属する前記ゲート電極は、前記第2ゲート電極を含む請求項1~6のいずれか1項に記載の半導体装置。
  8.  前記駆動部は、前記逆導通モードと判定された際、前記第1ゲート電極に印加されるゲート電圧を前記第2電極の電位と同一とする請求項1~7のいずれか1項に記載の半導体装置。
PCT/JP2016/087505 2016-01-27 2016-12-16 半導体装置 WO2017130597A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680073924.1A CN108475675B (zh) 2016-01-27 2016-12-16 半导体装置
US15/770,258 US10438852B2 (en) 2016-01-27 2016-12-16 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-013713 2016-01-27
JP2016013713A JP6414090B2 (ja) 2016-01-27 2016-01-27 半導体装置

Publications (1)

Publication Number Publication Date
WO2017130597A1 true WO2017130597A1 (ja) 2017-08-03

Family

ID=59398955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087505 WO2017130597A1 (ja) 2016-01-27 2016-12-16 半導体装置

Country Status (4)

Country Link
US (1) US10438852B2 (ja)
JP (1) JP6414090B2 (ja)
CN (1) CN108475675B (ja)
WO (1) WO2017130597A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017104A1 (ja) * 2017-07-18 2019-01-24 富士電機株式会社 半導体装置
JP7095303B2 (ja) 2018-02-14 2022-07-05 富士電機株式会社 半導体装置
WO2019159657A1 (ja) 2018-02-14 2019-08-22 富士電機株式会社 半導体装置
WO2019159391A1 (ja) 2018-02-14 2019-08-22 富士電機株式会社 半導体装置
JP7002431B2 (ja) * 2018-10-09 2022-01-20 三菱電機株式会社 半導体装置
JP2020109901A (ja) * 2019-01-04 2020-07-16 株式会社東芝 制御回路、半導体装置及び電気回路装置
JP7353891B2 (ja) 2019-09-20 2023-10-02 株式会社東芝 半導体装置及び半導体回路
JP7456113B2 (ja) 2019-10-11 2024-03-27 富士電機株式会社 半導体装置
JP7352437B2 (ja) 2019-10-25 2023-09-28 株式会社東芝 半導体装置
JP7352443B2 (ja) 2019-11-01 2023-09-28 株式会社東芝 半導体装置の制御方法
JP7319601B2 (ja) 2019-11-01 2023-08-02 株式会社東芝 半導体装置
JP7302469B2 (ja) * 2019-12-24 2023-07-04 株式会社デンソー 半導体装置
JP7233387B2 (ja) * 2020-01-24 2023-03-06 三菱電機株式会社 半導体モジュール
JP7335190B2 (ja) 2020-03-23 2023-08-29 株式会社東芝 半導体装置
JP7456902B2 (ja) * 2020-09-17 2024-03-27 株式会社東芝 半導体装置
JP7490604B2 (ja) * 2021-03-22 2024-05-27 株式会社東芝 半導体装置
DE102022107009A1 (de) 2022-03-24 2023-09-28 Infineon Technologies Ag Dual-gate-leistungshalbleitervorrichtung und verfahren zum steuern einer dual-gateleistungshalbleitervorrichtung
CN116504822B (zh) * 2023-05-29 2024-02-09 上海林众电子科技有限公司 基于沟槽栅的逆导型igbt

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072848A (ja) * 2006-09-14 2008-03-27 Mitsubishi Electric Corp 半導体装置
JP2009065105A (ja) * 2007-09-10 2009-03-26 Toyota Motor Corp 給電装置とその駆動方法
JP2009253004A (ja) * 2008-04-07 2009-10-29 Toyota Motor Corp 半導体素子と半導体装置とその駆動方法
JP2014063960A (ja) * 2012-09-24 2014-04-10 Denso Corp 半導体装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828112A (en) * 1995-09-18 1998-10-27 Kabushiki Kaisha Toshiba Semiconductor device incorporating an output element having a current-detecting section
JP4765252B2 (ja) * 2004-01-13 2011-09-07 株式会社豊田自動織機 温度検出機能付き半導体装置
JP4380726B2 (ja) * 2007-04-25 2009-12-09 株式会社デンソー ブリッジ回路における縦型mosfet制御方法
DE102008045410B4 (de) * 2007-09-05 2019-07-11 Denso Corporation Halbleitervorrichtung mit IGBT mit eingebauter Diode und Halbleitervorrichtung mit DMOS mit eingebauter Diode
JP4840370B2 (ja) 2008-01-16 2011-12-21 トヨタ自動車株式会社 半導体装置とその半導体装置を備えている給電装置の駆動方法
WO2009101868A1 (ja) * 2008-02-14 2009-08-20 Toyota Jidosha Kabushiki Kaisha 逆導通半導体素子の駆動方法と半導体装置及び給電装置
JP2010263149A (ja) 2009-05-11 2010-11-18 Toyota Motor Corp 半導体装置
WO2012018073A1 (ja) * 2010-08-04 2012-02-09 ローム株式会社 パワーモジュールおよび出力回路
JP2013026534A (ja) 2011-07-25 2013-02-04 Toyota Central R&D Labs Inc 半導体装置
JP4947230B2 (ja) * 2011-08-29 2012-06-06 トヨタ自動車株式会社 半導体装置
JP5742672B2 (ja) 2011-11-02 2015-07-01 株式会社デンソー 半導体装置
JP6064371B2 (ja) 2012-05-30 2017-01-25 株式会社デンソー 半導体装置
JP2014073055A (ja) * 2012-10-01 2014-04-21 Denso Corp 電子回路
JP5949646B2 (ja) 2013-04-10 2016-07-13 株式会社デンソー 半導体装置
GB2520617B (en) * 2013-10-22 2020-12-30 Abb Schweiz Ag RC-IGBT with freewheeling SiC diode
WO2015068203A1 (ja) * 2013-11-05 2015-05-14 トヨタ自動車株式会社 半導体装置
JP6459791B2 (ja) 2014-07-14 2019-01-30 株式会社デンソー 半導体装置およびその製造方法
JP2016092163A (ja) 2014-11-03 2016-05-23 株式会社デンソー 半導体装置
JP6350298B2 (ja) 2015-01-21 2018-07-04 株式会社デンソー 半導体装置
JP6439460B2 (ja) 2015-01-23 2018-12-19 株式会社デンソー 駆動装置
CN104835841B (zh) * 2015-05-08 2018-10-26 邓华鲜 Igbt芯片的结构
WO2017037917A1 (ja) * 2015-09-03 2017-03-09 三菱電機株式会社 電力変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072848A (ja) * 2006-09-14 2008-03-27 Mitsubishi Electric Corp 半導体装置
JP2009065105A (ja) * 2007-09-10 2009-03-26 Toyota Motor Corp 給電装置とその駆動方法
JP2009253004A (ja) * 2008-04-07 2009-10-29 Toyota Motor Corp 半導体素子と半導体装置とその駆動方法
JP2014063960A (ja) * 2012-09-24 2014-04-10 Denso Corp 半導体装置

Also Published As

Publication number Publication date
US20180308757A1 (en) 2018-10-25
JP2017135255A (ja) 2017-08-03
CN108475675A (zh) 2018-08-31
JP6414090B2 (ja) 2018-10-31
US10438852B2 (en) 2019-10-08
CN108475675B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
JP6414090B2 (ja) 半導体装置
JP6652173B2 (ja) 半導体装置
JP6117640B2 (ja) 半導体装置及び駆動システム
US8890252B2 (en) Semiconductor device having switching element and free wheel diode and method for controlling the same
JP4506808B2 (ja) 半導体装置
JP4577425B2 (ja) 半導体装置
JP5229288B2 (ja) 半導体装置およびその制御方法
JP6658021B2 (ja) 半導体装置
JP5488256B2 (ja) 電力用半導体装置
JP2004296831A (ja) 半導体装置
JP2016115763A (ja) 逆導通igbt
WO2018016284A1 (ja) 半導体装置
JP6283468B2 (ja) 逆導通igbt
WO2018016282A1 (ja) 半導体装置
JP6579273B2 (ja) 半導体集積回路
JP6226101B2 (ja) 半導体集積回路
US20150287715A1 (en) Switching element and a diode being connected to a power source and an inductive load
JP2014063960A (ja) 半導体装置
JP6413467B2 (ja) 半導体装置
JP5072043B2 (ja) 半導体装置
JP6088401B2 (ja) 逆導通igbt
CN106663658B (zh) 半导体集成电路
JP3491049B2 (ja) 整流素子およびその駆動方法
JP2014175367A (ja) 逆導通igbt
JP6370952B2 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888181

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15770258

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888181

Country of ref document: EP

Kind code of ref document: A1