WO2017122714A1 - 流量測定可能なガス供給装置、流量計、及び流量測定方法 - Google Patents

流量測定可能なガス供給装置、流量計、及び流量測定方法 Download PDF

Info

Publication number
WO2017122714A1
WO2017122714A1 PCT/JP2017/000762 JP2017000762W WO2017122714A1 WO 2017122714 A1 WO2017122714 A1 WO 2017122714A1 JP 2017000762 W JP2017000762 W JP 2017000762W WO 2017122714 A1 WO2017122714 A1 WO 2017122714A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
shut
flow rate
flow
flow path
Prior art date
Application number
PCT/JP2017/000762
Other languages
English (en)
French (fr)
Inventor
洋平 澤田
池田 信一
西野 功二
正明 永瀬
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to JP2017561152A priority Critical patent/JP6650166B2/ja
Priority to US16/069,126 priority patent/US10895484B2/en
Priority to KR1020187010770A priority patent/KR102031574B1/ko
Priority to CN201780004303.2A priority patent/CN108496064B/zh
Publication of WO2017122714A1 publication Critical patent/WO2017122714A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F3/00Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow
    • G01F3/36Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with stationary measuring chambers having constant volume during measurement
    • G01F3/38Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with stationary measuring chambers having constant volume during measurement having only one measuring chamber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F17/00Methods or apparatus for determining the capacity of containers or cavities, or the volume of solid bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/50Correcting or compensating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/04Compensating or correcting for variations in pressure, density or temperature of gases to be measured
    • G01F15/043Compensating or correcting for variations in pressure, density or temperature of gases to be measured using electrical means
    • G01F15/046Compensating or correcting for variations in pressure, density or temperature of gases to be measured using electrical means involving digital counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0658Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged for the control of a single flow from a plurality of converging flows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F22/00Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
    • G01F22/02Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for involving measurement of pressure

Definitions

  • the present invention relates to a gas supply device capable of measuring a flow rate, a flow meter, and a flow rate measuring method.
  • JP-T 2009-543061 Japanese Patent No. 4801726
  • the volume (V) in the flow path required for the flow rate measurement by the ROR method is not uniform depending on the arrangement of the flow rate controller, the number of connected flow rate controllers, the piping layout, etc., so the volume before measuring the flow rate (V) needs to be measured in advance.
  • the volume (V) is measured using a flow rate controller, and since the control flow rate of the flow rate controller used for the measurement includes an error, the measured volume (V) may include an error. .
  • the gas supply device is required to save space, but if an accessory device for measuring the flow rate is attached, it will hinder space saving.
  • the present invention further reduces the measurement error of the volume necessary for the flow rate measurement by ROR, and can perform the flow rate measurement of the flow rate controller with higher accuracy, and the gas supply device capable of measuring the flow rate and the flow rate measurement method.
  • the main purpose is to provide
  • an object of the present invention is to provide a flow meter for measuring the flow rate of the flow rate controller, which can save space in the gas supply device.
  • a first aspect of the present invention relates to a gas supply device capable of measuring a flow rate, and a flow rate controller for controlling a flow rate of a flowing gas, and a first provided downstream of the flow rate controller.
  • the first flow between the shutoff valve, the second shutoff valve provided in the first flow path communicating with the downstream side of the first shutoff valve, and the first shutoff valve and the second shutoff valve.
  • a pressure detector for detecting an internal pressure a temperature detector for detecting a temperature in a flow path surrounded by the first cutoff valve, the second cutoff valve, and the third cutoff valve
  • the apparatus applies the Boyle's law to the flow volume surrounded by the first shut-off valve, the second shut-off valve, and the third shut-off valve in the open state and the closed state of the third shut-off valve.
  • the flow rate of the flow rate controller is calculated using the flow path volume and the detected values of the pressure detector and the temperature detector.
  • a detachable joint provided in the second flow path at an upstream position of the volume measuring tank may be provided.
  • a fourth cutoff valve is provided between the third cutoff valve and the volume measuring tank, and the third cutoff valve and the fourth cutoff valve.
  • the joint may be provided between the two.
  • the arithmetic and control unit can be detachably connected to the pressure detector and the temperature detector via an electrical connector.
  • the joint in the second aspect, is provided in the second flow path at a position upstream from the pressure detector and the temperature detector, and the joint at the upstream position from the joint.
  • a fifth shutoff valve may be provided in the second flow path.
  • a plurality of the flow rate controllers are provided, the first cutoff valve is provided downstream of each flow rate controller, and the downstream side of each first cutoff valve is It communicates with the first flow path.
  • a flow meter for controlling a flow rate of flowing gas, and a first cutoff valve provided downstream of the flow rate controller.
  • a second cutoff valve provided in a first flow path communicating with the downstream side of the first cutoff valve, and the first flow path between the first cutoff valve and the second cutoff valve.
  • a gas flow meter for measuring the flow rate of the flow rate controller that is attachable to and detachable from a gas supply device including a branch channel that branches and a fifth shut-off valve provided in the branch channel,
  • the flow meter includes a joint that can be attached to and detached from the branch flow path downstream of the fifth shut-off valve, a third shut-off valve provided in a continuous flow path connected to the joint, and an interior of the continuous flow path.
  • a pressure detector for detecting the pressure of the gas for detecting the pressure of the gas
  • a temperature detector for detecting the temperature inside the continuous flow path A volume measuring tank connected downstream of the third shutoff valve and having a known volume; and an arithmetic control device, wherein the arithmetic control device is configured to connect the first shutoff with the joint connected to the branch flow path.
  • the flow volume surrounded by the valve, the second shut-off valve, and the third shut-off valve is obtained by applying Boyle's law to the open state and the closed state of the third shut-off valve, and the flow volume And the flow rate of the flow rate controller is calculated using the detected values of the pressure detector and the temperature detector.
  • an eighth aspect of the present invention relates to a flow rate measurement method, wherein the first cutoff valve connected to the downstream side of the flow rate controller communicates with the downstream side of the first cutoff valve.
  • the first shutoff valve and the third shutoff valve are closed, the second shutoff valve is opened, and exhaust is performed through the second shutoff valve.
  • 6 steps a seventh step of opening the first shut-off valve and flowing a gas having a set flow rate through the flow rate controller; a closing of the second shut-off valve; a first shut-off valve; a second shut-off valve;
  • a tenth step of detecting a fourth pressure in a flow passage surrounded by the first shut-off valve, the second shut-off valve and the third shut-off valve after a predetermined time has elapsed from the eighth step, and the third pressure And calculating the pressure increase rate from the fourth pressure, And an eleventh step of calculating a flow rate
  • a plurality of the flow controllers are provided in parallel, and a downstream side of each of the flow controllers is communicated with the first flow path. The flow rate of a desired flow rate controller among the plurality of flow rate controllers is measured.
  • the volume measuring tank can be removed from the first flow path through a joint so that the volume measuring tank can be removed, for example, only when the flow controller is installed. Since the volume measuring tank can be removed once the flow path volume is measured, space saving can be achieved. Further, the volume measuring tank can be used for measuring the ROR channel volume of other flow rate controllers and can be reused.
  • FIG. 1 is a block diagram showing a first embodiment of the present invention. It is a flowchart which shows an example of the procedure which measures flow volume Va for verification of the flow measuring method which concerns on this invention. It is a flowchart which shows an example of the flow volume verification procedure of the flow volume measuring method which concerns on this invention. It is a block diagram which shows 2nd Embodiment of this invention. It is a block diagram which shows 3rd Embodiment of this invention. It is a block diagram which shows 4th Embodiment of this invention.
  • FIG. 1 is a block diagram showing a first embodiment of the present invention.
  • a gas supply device 1A capable of measuring a flow rate includes a plurality of flow rate controllers 2 that control the flow rate of the flowing gas, a first cutoff valve 3 provided downstream of the flow rate controller 2, and a downstream side of the first cutoff valve.
  • a second shut-off valve 6 provided in the first flow path 5 communicating with the second shut-off valve 6 and a second flow path 7 branched from the first flow path 5 between the first shut-off valve 3 and the second shut-off valve 6.
  • pressure detection for detecting the pressure in the flow path surrounded by the third shut-off valve 8 provided in the second flow path 7 and the first shut-off valve 3, the second shut-off valve 6, and the third shut-off valve 8.
  • a temperature detector 10 for detecting the temperature in the second flow path upstream of the third cutoff valve 8 surrounded by the first cutoff valve 3, the second cutoff valve 6, and the third cutoff valve 8.
  • a volume measuring tank 11 connected downstream of the third shut-off valve 8; a detachable joint 14 provided in the first branch flow path 7 at an upstream position of the volume measuring tank 11; It comprises a device 12, the.
  • the pressure detector 9 is provided in the second flow path 7 upstream of the third shut-off valve 8, but the pressure in the first flow path 5 and the pressure in the second flow path are substantially equal. Although not shown, the pressure of the gas in the first flow path 5 may be detected by disposing the pressure detector 9 in the first flow path 5.
  • the temperature detector 10 is provided in the second flow path 7 upstream of the third shutoff valve 8, but the temperature in the first flow path 5 and the temperature in the second flow path are the same. Are substantially the same, and although not shown, the temperature of the gas in the first flow path 5 may be detected by arranging the temperature detector 10 in the first flow path 5.
  • the arithmetic and control unit 12 converts the flow volume Va (the volume of the portion indicated by the bold line in FIG. 1) surrounded by the first cutoff valve 3, the second cutoff valve 6, and the third cutoff valve 8 to the third cutoff valve.
  • the flow rate of the flow rate controller 2 is obtained by applying Boyle's law to the open state and the closed state of the valve 8 and using the obtained flow path volume Va and the detected values of the pressure detector 9 and the temperature detector 10. taking measurement.
  • the flow rate controller 2 a known flow rate controller can be used, and a pressure-controlled flow rate controller can be suitably used.
  • the pressure control type flow rate controller controls the flow rate by controlling the upstream pressure P1 of the throttle portion provided in the flow path.
  • the critical expansion condition is a condition in which the fluid passing through the throttle portion has a sound velocity, and the upstream pressure P1 of the throttle portion is about twice or more than the downstream pressure P2 of the throttle portion.
  • the upstream pressure P1 of the throttle unit is detected by a pressure sensor, and the built-in controller controls the control valve disposed upstream of the throttle unit so that the upstream pressure P1 becomes a predetermined pressure, thereby controlling the flow rate to a predetermined flow rate. Is done.
  • a piezoelectrically driven metal diaphragm control valve can be used as the control valve.
  • the first cutoff valve 3, the second cutoff valve 6, and the third cutoff valve 8 can be, for example, pneumatically driven valves. Drive air is supplied to each shut-off valve via a solenoid valve (not shown).
  • the first shut-off valve 3 can be provided in the vicinity of the gas outlet of the flow rate controller 2.
  • the second cutoff valve 6 is connected to the vacuum pump 20.
  • the pressure detector 9 is preferably a known pressure sensor such as a semiconductor piezoresistive diffusion pressure sensor or a capacitive pressure sensor.
  • a known temperature sensor such as a thermocouple is preferably used.
  • the volume measuring tank 11 has a known volume.
  • a manual fourth shutoff valve 13 is provided between the third shutoff valve 8 and the volume measuring tank 11.
  • a detachable joint 14 is connected between the third cutoff valve 8 and the fourth cutoff valve 13. As shown by the phantom line in FIG. 1, the volume measuring tank 11 can be removed together with the fourth shut-off valve 13 by separating and removing the joint 14. In order to prevent external air and dust, the third cutoff valve 8 and the fourth cutoff valve 13 are closed before the joint 14 is removed.
  • the arithmetic and control unit 12 accommodates an electric circuit board composed of a CPU 12a, a memory 12b, and the like in a box, and is detachably connected to the pressure detector 9 and the temperature detector 10 via an electric connector 16 via a wiring 15. It is connected.
  • the electrical connector 16 can be attached to the cover case 1a that houses the flow rate controller 2 and the like.
  • the arithmetic and control unit 12 includes a connection port 17 a for connecting a communication cable 17 such as an RS-232C cable, and can be connected to an external computer 18 via the communication cable 17.
  • the external computer 18 is a computer that controls a semiconductor manufacturing apparatus such as a film forming apparatus.
  • the arithmetic and control unit 12 is an electromagnetic valve (attached) for turning on / off driving air for operating the first shut-off valve 3, the second shut-off valve 6, and the third shut-off valve 8 directly or through a computer 18 connected by a communication cable 17. Can be controlled.
  • the arithmetic and control unit 12 measures the flow path volume Va indicated by the bold line in FIG. 1 according to the procedure shown in FIG. 2 according to the program stored in the memory 12b.
  • step 1 all the first shut-off valves 3 are closed and the second shut-off valve 6, the third shut-off valve 8, and the fourth shut-off valve 13 are opened. Is implemented. After elapse of the predetermined time t1, in step 2, the second cutoff valve 6 and the third cutoff valve 8 are closed. After elapse of the predetermined time t2, in step 3, any one of the first shut-off valves 3 is opened, and a gas, for example, nitrogen gas is flowed from the flow rate controller 2.
  • a gas for example, nitrogen gas is flowed from the flow rate controller 2.
  • step 4 the first shutoff valve 3 of the flow rate controller 2 that has flowed the gas is closed.
  • step 5 the pressure Pa is detected by the pressure detector 9.
  • the detected pressure Pa is stored in the memory 12b.
  • step 6 the third shut-off valve 8 is opened, and the gas that was in the flow path volume Va is diffused into the volume measuring tank 11.
  • step 7 the pressure Pb is detected by the pressure detector 9.
  • the detected pressure Pb is stored in the memory 12b.
  • Va Pb ⁇ Vb / (Pa ⁇ Pb) (2) Using the above equation (2), the channel volume Va is calculated and stored in the memory 12b (step 8).
  • the volume measuring tank 11 can be detached from the second flow path 7 by separating the joint 14.
  • the channel volume Va is calculated using Boyle's law and is measured by a method that does not depend on the set flow rate Qs of the flow rate controller 2. Accordingly, the measured channel volume Va does not include individual differences or flow rate errors of the flow rate controller 2. Boyle's law holds for an ideal gas, but it can also hold for a real gas in a range where the pressure is low.
  • the calculation control device 12 calculates the flow rate of the flow rate controller 2 by ROR using the flow path volume Va according to the program stored in the memory 12b. Specifically, the calculation is performed according to the flowchart shown in FIG. Referring to FIG. 3, in step 10, all the first shut-off valves 3 and the third shut-off valves 8 are closed, and the second shut-off valve 6 is opened, and the vacuum pump 20 is evacuated to provide a flow path. Volume Va is exhausted. After the predetermined time t4 has elapsed, in step 11, the first shut-off valve 3 of one flow controller 2 whose flow rate is to be measured is opened, and gas flows from the single flow controller 2 at the set flow rate Qs.
  • step 12 the second shutoff valve 6 is closed. As a result, the pressure in the channel volume Va increases.
  • step 13 the pressure Py is measured by the pressure detector 9, and the temperature T is measured by the temperature detector 10.
  • step 16 the flow path volume Va stored in the memory 12b and the temperature T measured by the temperature detector 10 are applied to the following equation (3) to measure the flow rate Qc.
  • R is a gas constant.
  • the channel volume Va is measured by the above equation (2). Therefore, it is possible to measure the flow rate with higher accuracy than before without including individual differences and errors of the flow rate controller 2.
  • the volume measuring tank 11 becomes unnecessary, and can be removed by removing the joint 14. Thereby, space saving of the flow controller 2 can be achieved, for example, the size of the cover case 1a that accommodates the flow controller 2 can be reduced, and the cost can also be reduced.
  • the removed volume measuring tank 11 can be used for measuring the flow path volume Va when measuring the flow rate of another gas supply device.
  • the arithmetic control device 12 can be detached from the gas supply device 1A by removing the electrical connector 16 of the wiring 15 and removing the communication cable 17 connected to the external computer 18. As a result, the gas supply device 1A can be downsized and the cost can be reduced. The removed arithmetic control device 12 can be used for measuring the volume Va when measuring the flow rate of another gas supply device.
  • the second embodiment is a flow meter 1C that can be attached to and detached from the gas supply device 1B.
  • the gas supply device 1 ⁇ / b> B includes a flow rate controller 2 that controls the flow rate of the flowing gas, a first cutoff valve 3 that is provided downstream of the flow rate controller 2, and a first that communicates with the downstream side of the first cutoff valve 3.
  • a second shut-off valve 6 provided in the flow path 5; a branch flow path 7a that branches from the first flow path 5 between the first shut-off valve 3 and the second shut-off valve 6; And a fifth shutoff valve 22 provided.
  • the flow meter 1C includes a joint 21b detachably attached to a joint 21a provided at the end of the branch flow path 7b on the downstream side of the fifth shut-off valve 22, and a second flow path provided in the continuous flow path 7b connected to the joint 21b.
  • the three shutoff valves 8, the pressure detector 9 for detecting the pressure inside the continuous flow path 7b, the temperature detector 10 for detecting the temperature inside the continuous flow path 7b, and the third shutoff valve 8 A volume measuring tank 11 connected downstream and having a known volume, and an arithmetic and control unit 12 are provided.
  • the second flow path 7 branched from the first flow path 5 is formed, and the gas supply capable of measuring the flow rate is formed.
  • a device 1BC is configured.
  • the flow meter 1C including the volume measuring tank 11, the pressure detector 9, the temperature detector 10, and the arithmetic control device 12 is obtained simply by separating and removing the joint 21a and the joint 21b. Can be removed. Further, by incorporating the third shut-off valve 8, the volume measuring tank 11, the pressure detector 9, the temperature detector 10, and the arithmetic control device 12 into one casing 23, it is possible to carry them all together to manufacture other semiconductors. It can be used to measure the flow rate of a flow rate controller attached to a device or the like.
  • the first flow path 5 is branched into two at the downstream end, one of which includes a process gas gas outlet 4a, and the other of which is a purge gas.
  • a gas discharge port 4b is provided, and a first cutoff valve 6 is provided on the primary side of each of the gas discharge ports 4a and 4b.
  • the aspect of the first flow path 5 has various changes depending on the specifications of the semiconductor manufacturing apparatus or the like in which the gas supply device is installed.
  • FIG. 6 is a block diagram showing a fourth embodiment as a modification of the first embodiment.
  • the fifth cutoff valve 25 is provided in the second flow path 7 at the upstream position of the pressure detector 9 and the temperature detector 10, and the fifth cutoff valve 25 is provided.
  • a chamber 26 having a known capacity is additionally connected between the first shut-off valve 8 and the third shut-off valve 8. In the ROR method, if the volume for measuring the rate of pressure increase is small, the verification accuracy may be reduced depending on the flow rate. By providing the chamber 26, it is possible to prevent the flow rate measurement accuracy from being lowered.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • a gas supply apparatus including a plurality of flow controllers is illustrated, but only one flow controller can be included in the gas supply apparatus.
  • the pressure type flow control apparatus was illustrated as a flow controller, a thermal mass flow controller can also be used.
  • the algorithm moves to the next step depending on the time t1 to t4. However, the algorithm may move to the next step depending on the pressure value of the pressure detector 9.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Measuring Volume Flow (AREA)
  • Flow Control (AREA)

Abstract

流量測定可能なガス供給装置は、流通するガス流量を制御する流量制御器と、前記流量制御器の下流に設けられた第1遮断弁と、第1遮断弁の下流側に連通する前記第1の流路に設けられた第2遮断弁と、前記第1の流路から分岐する第2の流路と、前記第2の流路に設けられた第3遮断弁と、前記第1、第2、及び第3の遮断弁により囲まれる流路内の圧力を検出する圧力検出器と、前記第1、第2、及び第3の遮断弁により囲まれる流路内の温度を検出する温度検出器と、前記第3遮断弁の下流に接続され既知体積を有する体積測定用タンクと、前記第1、第2、及び第3の遮断弁により囲まれる流路体積を、前記第3遮断弁の開状態と閉状態とにボイルの法則を適用することにより求めるとともに、前記流路体積と前記圧力検出器及び前記温度検出器の検出値とを用いて前記流量制御器の流量を演算する演算制御装置と、を備える。

Description

流量測定可能なガス供給装置、流量計、及び流量測定方法
 本発明は、流量測定可能なガス供給装置、流量計、及び流量測定方法に関する。
 従来、半導体製造プロセス等において、プロセスガス等を所定流量で供給するため、流量制御器やバルブ等を備えるガス供給装置が用いられる。この種の流量制御器は、高精度の流量制御が要求されるため、流量を測定し制御精度を検証する必要がある。流量を測定する方法として、圧力上昇率から流量を測定するROR(rate of rise)法(ビルドアップ法とも言う。)が広く知られている(特許文献1、2等)。
 ROR法は、流量制御器で流量を制御したガスを流路に介在した所定の体積(V)内に流し、圧力上昇率(ΔP/Δt)と温度(T)とを測定することによりQ=(ΔP/Δt)×V/RTの関係(Rは気体定数)を用いて流量(Q)を測定する。
特表2009-543061号公報 特許第4801726号公報
 ROR法による流量の測定に必要な流路内の体積(V)は、流量制御器の配置や接続される流量制御器の個数、配管レイアウト等により一様でないため、流量を測定する前に体積(V)を予め測定する必要がある。
 しかしながら、従来のROR法では流量制御器を用いて体積(V)が測定されており、その測定に用いる流量制御器の制御流量に誤差を含むため、測定した体積(V)に誤差を含み得る。
 また、ガス供給装置は、省スペース化が求められるが、流量測定のための付属装置を取り付けると省スペース化の妨げとなる。
 そこで、本発明は、RORによる流量測定に必要な体積の測定誤差をよりいっそう低減し、流量制御器のより高精度の流量測定を行うことができる、流量測定可能なガス供給装置及び流量測定方法を提供することを主たる目的とする。
 併せて、ガス供給装置の省スペース化を図り得る、流量制御器の流量を測定するための流量計を提供することを目的とする。
 上記目的を達成するため、本発明の第1の態様は、流量測定可能なガス供給装置に係り、流通するガス流量を制御する流量制御器と、前記流量制御器の下流に設けられた第1遮断弁と、前記第1遮断弁の下流側に連通する第1の流路に設けられた第2遮断弁と、前記第1遮断弁と前記第2遮断弁との間で前記第1の流路から分岐する第2の流路と、前記第2の流路に設けられた第3遮断弁と、前記第1遮断弁、前記第2遮断弁、及び前記第3遮断弁により囲まれる流路内の圧力を検出するための圧力検出器と、前記第1遮断弁、前記第2遮断弁、及び前記第3遮断弁により囲まれる流路内の温度を検出するための温度検出器と、前記第3遮断弁の下流に接続され既知体積を有する体積測定用タンクと、演算制御装置と、を備え、前記演算制御装置は、前記第1遮断弁、前記第2遮断弁、及び前記第3遮断弁により囲まれる流路体積を、前記第3遮断弁の開状態と閉状態とにボイルの法則を適用することにより求めるとともに、前記流路体積と前記圧力検出器及び前記温度検出器の検出値とを用いて前記流量制御器の流量を演算する。
 本発明の第2の態様は、前記第1の態様において、前記体積測定用タンクの上流位置で前記第2の流路に設けられた着脱可能な継手が備えられ得る。
 本発明の第3の態様は、前記第2の態様において、前記第3遮断弁と前記体積測定用タンクとの間に第4遮断弁が備えられ、前記第3遮断弁と前記第4遮断弁との間に前記継手が設けられ得る。
 本発明の第4の態様は、前記第1の態様において、前記演算制御装置は、電気コネクタを介して、前記圧力検出器及び前記温度検出器と着脱可能に接続され得る。
 本発明の第5の態様は、前記第2の態様において、前記圧力検出器及び前記温度検出器より上流位置で前記第2の流路に前記継手が設けられるとともに、前記継手より上流位置で前記第2の流路に第5遮断弁が備えられ得る。
 本発明の第6の態様は、前記第1の態様において、前記流量制御器が複数個設けられ、各流量制御器の下流に前記第1遮断弁が設けられ、各第1遮断弁の下流側が前記第1の流路に連通している。
 また、上記目的を達成するため、本発明に係る第7の態様は、流量計に係り、流通するガス流量を制御する流量制御器と、前記流量制御器の下流に設けられた第1遮断弁と、前記第1遮断弁の下流側に連通する第1の流路に設けられた第2遮断弁と、前記第1遮断弁と前記第2遮断弁との間で前記第1の流路から分岐する分岐流路と、前記分岐流路に設けられた第5遮断弁と、を備えるガス供給装置に、着脱可能とされて前記流量制御器の流量を測定するための流量計であって、前記流量計は、前記第5遮断弁の下流側で前記分岐流路に着脱可能な継手と、前記継手に接続された継続流路に設けられた第3遮断弁と、前記継続流路の内部の圧力を検出するための圧力検出器と、前記継続流路の内部の温度を検出するための温度検出器と、前記第3遮断弁の下流に接続され既知体積を有する体積測定用タンクと、演算制御装置と、を備え、前記演算制御装置は、前記継手が前記分岐流路に接続された状態で前記第1遮断弁、前記第2遮断弁、及び前記第3遮断弁により囲まれる流路体積を、前記第3遮断弁の開状態と閉状態とにボイルの法則を適用することにより求めるとともに、前記流路体積と前記圧力検出器及び前記温度検出器の検出値とを用いて前記流量制御器の流量を演算する。
 また、上記目的を達成するため、本発明の第8の態様は、流量測定方法に係り、流量制御器の下流側に接続された第1遮断弁、前記第1遮断弁の下流側に連通する第1の流路に設けられた第2遮断弁、及び、前記第1遮断弁と前記第2遮断弁との間で前記第1の流路から分岐する流路に設けられた第3遮断弁により囲まれる流路体積を、前記第3遮断弁の下流側に接続された既知体積を有する体積測定用タンクを用いて測定し、前記流路体積を用いてROR法により前記流量制御器の流量を測定する流量測定方法であって、前記第1遮断弁を閉じるとともに、前記第2遮断弁及び前記第3遮断弁を開き、前記第2遮断弁を通じて排気する第1ステップと、前記第2遮断弁及び前記第3遮断弁を閉じる第2ステップと、前記第1遮断弁を開き、前記流量制御器を通じて設定流量のガスを流した後に前記第1遮断弁を閉じてから、前記第1又は第2の流路内の第1の圧力を検出する第3ステップと、前記第3遮断弁を開き、第1遮断弁、第2遮断弁及び第3遮断弁により囲まれる流路内の第2の圧力を検出する第4ステップと、第1遮断弁、第2遮断弁及び第3遮断弁により囲まれる前記流路体積を、前記第1の圧力、前記第2の圧力、及び前記体積測定用の既知体積を用いてボイルの法則により演算する第5ステップと、を含む。
 本発明の第9の態様は、前記第8の態様において、更に、前記第1遮断弁及び前記第3遮断弁を閉じるとともに、前記第2遮断弁を開き、前記第2遮断弁を通じて排気する第6ステップと、前記第1遮断弁を開き、前記流量制御器を通じて設定流量のガスを流す第7ステップと、前記第2遮断弁を閉じるとともに、前記第1遮断弁、第2遮断弁及び第3遮断弁により囲まれる流路内の第3の圧力を検出する第8ステップと、前記第1遮断弁、第2遮断弁及び第3遮断弁により囲まれる流路内の温度を測定する第9ステップと、前記第8ステップから所定時間経過後、第1遮断弁、第2遮断弁及び第3遮断弁により囲まれる流路内の第4の圧力を検出する第10ステップと、前記第3の圧力及び前記第4の圧力から圧力上昇率を演算し、演算した圧力上昇率と、前記第5のステップにおいて測定された流路体積と、前記第9ステップにおいて測定された温度とを用い、前記流量制御器の流量を演算する第11ステップと、を含み得る。
 本発明の第10の態様は、前記第8の態様において、前記流量制御器は複数が並列状に設けられるとともに、各々の前記流量制御器の下流側が前記第1の流路によって連通しており、複数の流量制御器のうちの所望の流量制御器の流量が測定される。
 本発明によれば、流量の測定に必要な流路体積をボイルの法則を利用して求めるため、測定された流路体積は流量制御器の誤差に影響されない。また、第1の流路から分岐する流路に継手を介して体積測定用タンクを取外し可能とすることにより、流路体積を測定する際、例えば流量制御器の設置時のみ、体積測定用タンクを接続しておけばよく、一度、流路体積を測定した後は体積測定用タンクを取りはすことができるので、省スペース化が図られる。また、体積測定用タンクは、他の流量制御器のROR用流路体積の測定に使用することができ、使い回すことができる。
本発明の第1実施形態を示すブロック図である。 本発明に係る流量測定方法の検証用流量体積Vaを測定する手順の一例を示すフローチャートである。 本発明に係る流量測定方法の流量検証手順の一例を示すフローチャートである。 本発明の第2実施形態を示すブロック図である。 本発明の第3実施形態を示すブロック図である。 本発明の第4実施形態を示すブロック図である。
 本発明の実施形態について、以下に図1~図6を参照して説明する。なお、全図を通し、同一又は類似の構成要素に同符号を付した。
 図1は、本発明の第1実施形態を示すブロック図である。流量測定可能なガス供給装置1Aは、流通するガス流量を制御する複数の流量制御器2と、流量制御器2の下流に設けられた第1遮断弁3と、前記第1遮断弁の下流側に連通する第1の流路5に設けられた第2遮断弁6と、第1遮断弁3と第2遮断弁6との間で第1の流路5から分岐した第2の流路7と、第2の流路7に設けられた第3遮断弁8と、第1遮断弁3、第2遮断弁6、及び第3遮断弁8で囲まれる流路内の圧力を検出する圧力検出器9と、第1遮断弁3、第2遮断弁6、及び第3遮断弁8で囲まれる第3遮断弁8の上流の第2の流路内の温度を検出する温度検出器10と、第3遮断弁8の下流に接続された体積測定用タンク11と、体積測定用タンク11の上流位置で第1分岐流路7に設けられた着脱可能な継手14と、演算制御装置12と、を備える。
 図1において圧力検出器9は第3遮断弁8の上流の第2の流路7に設けられているが、第1の流路5内の圧力と第2の流路内の圧力は実質的に同じであるため、図示しないが、圧力検出器9を第1の流路5に配置することによって、第1の流路5内のガスの圧力を検出してもよい。同様に、図1において温度検出器10は第3遮断弁8の上流の第2の流路7に設けられているが、第1の流路5内の温度と第2の流路内の温度は実質的に同じであるため、図示しないが、温度検出器10を第1の流路5に配置することによって、第1の流路5内のガスの温度を検出してもよい。
 演算制御装置12は、第1遮断弁3、第2遮断弁6、及び第3遮断弁8で囲まれる流路体積Va(図1に太線で示されている部分の体積)を、第3遮断弁8の開状態と閉状態とにボイルの法則を適用することにより求め、求めた流路体積Vaと圧力検出器9及び温度検出器10の検出値とを用いて流量制御器2の流量を測定する。
 流量制御器2は、公知の流量制御器を用いることができ、圧力制御式流量制御器を好適に用いることができる。圧力制御式流量制御器は、流路に設けた絞り部の上流圧力P1を制御することにより、流量を制御する。臨界膨張状態において、オリフィス等の絞り部を通過する流量が上流圧力P1(絶対圧力)にのみ比例し、絞り部の下流圧力P2に依存しないことを利用する。臨界膨張条件は、絞り部を通過する流体が音速となる条件であり、絞り部の上流圧力P1が絞り部の下流圧力P2の約2倍以上である。絞り部の上流圧力P1を圧力センサで検出し、内蔵されたコントローラが、上流圧力P1が所定圧力となるように絞り部の上流に配置した制御弁を制御することにより、流量が所定流量に制御される。制御弁には、圧電駆動式金属ダイヤフラム制御弁が用いられ得る。
 第1遮断弁3、第2遮断弁6、及び、第3遮断弁8は、例えば、空気圧駆動弁とすることができる。駆動エアは、図示しない電磁弁を介して、其々の遮断弁に供給される。第1遮断弁3は、流量制御器2のガス出口近傍に設けられ得る。第2遮断弁6は、真空ポンプ20に接続されている。
 圧力検出器9は、半導体ピエゾ抵抗拡散圧力センサや静電容量形圧力センサ等の公知の圧力センサが好適に用いられる。温度検出器10は、熱電対等の公知の温度センサが好適に用いられる。
 体積測定用タンク11は、既知の体積を有する。第3遮断弁8と体積測定用タンク11との間に手動式の第4遮断弁13が設けられている。第3遮断弁8と第4遮断弁13との間に、着脱可能な継手14が接続されている。図1に仮想線で示すように、継手14を分離して外すことにより、体積測定用タンク11を第4遮断弁13とともに、取り外すことができる。外部空気やゴミを防ぐため、継手14を外す前に、第3遮断弁8及び第4遮断弁13は閉じられる。
 演算制御装置12は、CPU12a、メモリ12b等により構成される電気回路基板をボックス内に収容しており、電気コネクタ16を介して、圧力検出器9及び温度検出器10と着脱可能に配線15により接続されている。電気コネクタ16は、流量制御器2等を収容するカバーケース1aに取り付けることができる。演算制御装置12は、RS-232Cケーブル等の通信ケーブル17を接続するための接続ポート17aを備え、外部のコンピュータ18と通信ケーブル17により接続され得る。外部のコンピュータ18は、例えば成膜装置等の半導体製造装置を制御するコンピュータである。演算制御装置12は、直接、または、通信ケーブル17により接続されたコンピュータ18を通じて、第1遮断弁3、第2遮断弁6、第3遮断弁8を操作する駆動エアをオンオフする電磁弁(付図示)を制御することができる。
 演算制御装置12は、メモリ12bに記憶されたプログラムに従って、図1に太線で示された流路体積Vaを、図2に示す手順により計測する。図2のフローチャートを参照して、ステップ1において、全ての第1遮断弁3が閉じられ、第2遮断弁6、第3遮断弁8、及び第4遮断弁13が開かれた状態で真空引きが実施される。所定時間t1経過後、ステップ2において、第2遮断弁6及び第3遮断弁8が閉じられる。所定時間t2経過後、ステップ3において、何れか一つの第1遮断弁3が開かれ、流量制御器2からガス、例えば窒素ガスが流される。所定時間t3経過後、流路体積Va内の圧力が上昇したところで、ステップ4において、ガスを流していた流量制御器2の第1遮断弁3が閉じられる。ステップ5において、圧力検出器9により圧力Paが検出される。検出された圧力Paは、メモリ12bに記憶される。次に、ステップ6において、第3遮断弁8が開かれ、流路体積Va内にあったガスが体積測定用タンク11内に拡散させられる。ステップ7において、圧力検出器9により圧力Pbが検出される。検出された圧力Pbは、メモリ12bに記憶される。体積測定用タンク11の体積Vtは既知であり、第3遮断弁8から体積測定用タンク11迄の流路内体積Vfも既知である。Vt+Vf=Vbとする。ここでボイルの法則(PV=一定)が適用される。
   Pa・Va=Pb・(Va+Vb)・・・(1)
 ⇔ Va=Pb・Vb/(Pa-Pb)・・・(2)
 上記式(2)を用いて、流路体積Vaが演算され、メモリ12bに記憶される(ステップ8)。
 流路体積Vaがメモリ12bに記憶された後、体積測定用タンク11は、継手14を分離させることにより、第2の流路7から取り外すことができる。
 上記のように、流路体積Vaは、ボイルの法則を利用して演算しており、流量制御器2の設定流量Qsに依存しない方法により測定される。従って、測定された流路体積Vaは、流量制御器2の個体差や流量誤差を含まない。ボイルの法則は、理想気体について成立するが、実在気体においても圧力が低い範囲で成立し得る。
 演算制御装置12は、メモリ12bに記憶されたプログラムに従い、流路体積Vaを用いて、RORにより流量制御器2の流量を演算する。具体的には図3に示すフローチャートに従って演算する。図3を参照して、ステップ10において、全ての第1遮断弁3と第3遮断弁8とが閉じられ、第2遮断弁6が開かれた状態で真空ポンプ20により真空引きされ、流路体積Vaが排気される。所定時間t4が経過した後、ステップ11において、流量測定すべき一つの流量制御器2の第1遮断弁3を開き、その一つの流量制御器2から設定流量Qsでガスを流す。所定時間t5が経過してガスの流れが安定した後、ステップ12において、第2遮断弁6が閉じられる。その結果、流路体積Va内の圧力が上昇する。第2遮断弁6を閉じてから、ステップ13において、圧力検出器9により圧力Pyが測定され、温度検出器10により温度Tが測定される。所定時間Δtが経過した時に、ステップ14において、圧力検出器9により圧力Pxが検出される。時間Δtは、圧力検出器9のサンプリング周期からカウントすることができる。ステップ15において、Py-Px=ΔPが演算される。ステップ16において、メモリ12bに記憶された流路体積Va、温度検出器10により測定された温度Tを下記式(3)にあてはめ、流量Qcを測定する。下記式(3)においてRは気体定数である。
 Qc=(ΔP/Δt)×Va/RT・・・(3)
 上記のようにして測定した流量Qcのデータは、例えば、外部コンピュータ18に送られ、外部コンピュータ18において、流量制御器2の設定された流量Qsと比較検証が行われ得る。
 上記説明から明らかなように、流路体積Vaは、上記式(2)により測定される。そのため、流量制御器2の個体差や誤差を含まず、従来よりも精度の高い流量の測定が可能となる。
 また、流路体積Vaを測定しメモリ12bに記憶させた後は、体積測定用タンク11は不要となるので、継手14を外すことにより、取り外すことができる。それにより、流量制御器2を収容するカバーケース1aを小型化できる等、流量制御器2の省スペース化を図ることができるし、コストを削減することもできる。また、取り外された体積測定用タンク11は、別のガス供給装置の流量測定時における流路体積Vaの測定に利用することができる。
 さらに、演算制御装置12は、配線15の電気コネクタ16を外し、外部のコンピュータ18に接続されている通信ケーブル17を外すことで、ガス供給装置1Aから取り外すことができる。それにより、ガス供給装置1Aの小型化を図ることができるし、コストを削減することもできる。取り外された演算制御装置12は、別のガス供給装置の流量測定時における体積Vaの測定に利用することができる。
 次に、本発明の第2実施形態について、以下に図4を参照して説明する。なお、上記第1実施形態と同様の構成要素には同符号を付している。第2実施形態は、ガス供給装置1Bに着脱可能な流量計1Cである。
 ガス供給装置1Bは、流通するガス流量を制御する流量制御器2と、流量制御器2の下流に設けられた第1遮断弁3と、第1遮断弁3の下流側に連通する第1の流路5に設けられた第2遮断弁6と、第1遮断弁3と第2遮断弁6との間で第1の流路5から分岐する分岐流路7aと、分岐流路7aに設けられた第5遮断弁22と、を備えている。
 流量計1Cは、第5遮断弁22の下流側で分岐流路7bの末端部に設けられた継手21aに着脱可能な継手21bと、継手21bに接続された継続流路7bに設けられた第3遮断弁8と、継続流路7bの内部の圧力を検出するための圧力検出器9と、継続流路7bの内部の温度を検出するための温度検出器10と、第3遮断弁8の下流に接続され既知体積を有する体積測定用タンク11と、演算制御装置12と、を備えている。
 継手21aと継手21bとを連結し分岐流路7aと継続流路7bとを接続することによって第1流路5から分岐する第2の流路7が形成されるとともに、流量測定可能なガス供給装置1BCが構成される。
 第2実施形態の構成によれば、継手21a及び継手21bを分離して外すだけで、体積測定用タンク11、圧力検出器9、温度検出器10、演算制御装置12を、備える流量計1Cを取り外すことができる。また、第3遮断弁8、体積測定用タンク11、圧力検出器9、温度検出器10、演算制御装置12を、一つのケーシング23に組み込み、まとめて持ち運び可能とすることにより、他の半導体製造装置等に取り付けられる流量制御器の流量測定に利用することができる。
 次に、本発明の第3実施形態について、以下に図5を参照して説明する。なお、上記第1実施形態と同様の構成要素には同符号を付している。第3実施形態の流量測定可能なガス供給装置1Dは、第1の流路5が下流端部で2本に分岐しており、一方はプロセスガスのガス排出口4aを備え、他方はパージガスのガス排出口4bを備え、ガス排出口4a、4bの各々の一次側に第1遮断弁6が設けられる。第1の流路5の態様は、ガス供給装置が設置される半導体製造装置等の仕様によって様々な変更態様がある。
 図6は、第1実施形態の変更態様としての第4実施形態を示すブロック図である。第4実施形態の流量測定可能なガス供給装置1Eでは、圧力検出器9及び温度検出器10の上流位置で第2の流路7に第5遮断弁25が設けられると共に、第5遮断弁25と第3遮断弁8との間に既知容量のチャンバ26が追加的に接続されている。ROR法では、圧力上昇率を測定する際の体積が小さいと流量によっては検証精度が低下する場合があり、チャンバ26を設けることにより、流量測定精度の低下を防ぐことができる。
 本発明は、上記の実施形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更が可能である。例えば、上記実施形態では複数の流量制御器を備えるガス供給装置を例示したが、流量制御器はガス供給装置に一つだけ備えることもできる。また、上記実施形態では、流量制御器として圧力式流量制御装置を例示したが、熱式質量流量制御器を用いることもできる。図2及び図3のフローチャートでは、時間t1~t4により、次のステップに移るアルゴリズムとしたが、圧力検出器9の圧力値により次のステップに移るアルゴリズムとすることもできる。
1A、1BC、1D、1E 流量測定可能なガス供給装置
1B ガス供給装置
1C 流量計
2 流量制御器
3 第1遮断弁
4a、4b ガス排出口
5 第1の流路
6 第2遮断弁
7 第2の流路
7a 分岐流路
7b 継続流路
8 第3遮断弁
9 圧力検出器
10 温度検出器
11 体積測定用タンク
12 演算制御装置
13 第4遮断弁
14,21 継手
16 電気コネクタ
22 第5遮断弁
Va 流路体積

Claims (10)

  1.  流通するガス流量を制御する流量制御器と、
     前記流量制御器の下流に設けられた第1遮断弁と、
     前記第1遮断弁の下流側に連通する第1の流路に設けられた第2遮断弁と、
     前記第1遮断弁と前記第2遮断弁との間で前記第1の流路から分岐する第2の流路と、
     前記第2の流路に設けられた第3遮断弁と、
     前記第1遮断弁、前記第2遮断弁、及び前記第3遮断弁により囲まれる流路内の圧力を検出するための圧力検出器と、
     前記第1遮断弁、前記第2遮断弁、及び前記第3遮断弁により囲まれる流路内の温度を検出するための温度検出器と、
     前記第3遮断弁の下流に接続され既知体積を有する体積測定用タンクと、
     演算制御装置と、を備え、
     前記演算制御装置は、前記第1遮断弁、前記第2遮断弁、及び前記第3遮断弁により囲まれる流路体積を、前記第3遮断弁の開状態と閉状態とにボイルの法則を適用することにより求めるとともに、前記流路体積と前記圧力検出器及び前記温度検出器の検出値とを用いて前記流量制御器の流量を演算する、
    流量測定可能なガス供給装置。
  2.  前記体積測定用タンクの上流位置で前記第2の流路に設けられた着脱可能な継手を備える、請求項1に記載の流量測定可能なガス供給装置。
  3.  前記第3遮断弁と前記体積測定用タンクとの間に第4遮断弁を備え、前記第3遮断弁と前記第4遮断弁との間に前記継手が設けられている、請求項2に記載の流量測定可能なガス供給装置。
  4.  前記演算制御装置が、電気コネクタを介して、前記圧力検出器及び前記温度検出器と着脱可能に接続されている、請求項1に記載の流量測定可能なガス供給装置。
  5.  前記圧力検出器及び前記温度検出器より上流位置で前記第2の流路に前記継手が設けられるとともに、前記継手より上流位置で前記第2の流路に第5遮断弁を備える、請求項2に記載の流量測定可能なガス供給装置。
  6.  前記流量制御器を複数個備え、各流量制御器の下流に前記第1遮断弁が設けられ、各第1遮断弁の下流側が前記第1の流路に連通している、請求項1に記載の流量測定可能なガス供給装置。
  7.  流通するガス流量を制御する流量制御器と、前記流量制御器の下流に設けられた第1遮断弁と、前記第1遮断弁の下流側に連通する第1の流路に設けられた第2遮断弁と、前記第1遮断弁と前記第2遮断弁との間で前記第1の流路から分岐する分岐流路と、前記分岐流路に設けられた第5遮断弁と、を備えるガス供給装置に、着脱可能とされて前記流量制御器の流量を測定するための流量計であって、
     前記第5遮断弁の下流側で前記分岐流路に着脱可能な継手と、
     前記継手に接続された継続流路に設けられた第3遮断弁と、
     前記継続流路の内部の圧力を検出するための圧力検出器と、
     前記継続流路の内部の温度を検出するための温度検出器と、
     前記第3遮断弁の下流に接続され既知体積を有する体積測定用タンクと、
     演算制御装置と、を備え、
     前記演算制御装置は、前記継手が前記分岐流路に接続された状態で前記第1遮断弁、前記第2遮断弁、及び前記第3遮断弁により囲まれる流路体積を、前記第3遮断弁の開状態と閉状態とにボイルの法則を適用することにより求めるとともに、前記流路体積と前記圧力検出器及び前記温度検出器の検出値とを用いて前記流量制御器の流量を演算する、
     前記流量計。
  8.  流量制御器の下流側に接続された第1遮断弁、前記第1遮断弁の下流側に連通する第1の流路に設けられた第2遮断、及び、前記第1遮断弁と前記第2遮断弁との間で前記第1の流路から分岐する流路に設けられた第3遮断弁により囲まれる流路体積を、前記第3遮断弁の下流側に接続された既知体積を有する体積測定用タンクを用いて測定し、前記流路体積を用いてROR法により前記流量制御器の流量を測定する流量測定方法であって、
     前記第1遮断弁を閉じるとともに、前記第2遮断弁及び前記第3遮断弁を開き、前記第2遮断弁を通じて排気する第1ステップと、
     前記第2遮断弁及び前記第3遮断弁を閉じる第2ステップと、
     前記第1遮断弁を開き、前記流量制御器を通じて設定流量のガスを流した後に前記第1遮断弁を閉じてから、前記第1又は第2の流路内の第1の圧力を検出する第3ステップと、
     前記第3遮断弁を開き、前記第1遮断弁、第2遮断弁及び第3遮断弁により囲まれる流路内の第2の圧力を検出する第4ステップと、
     前記前記第1遮断弁、第2遮断弁及び第3遮断弁により囲まれる前記流路体積を、前記第1の圧力、前記第2の圧力、及び前記体積測定用の既知体積を用いてボイルの法則により演算する第5ステップと、
     を含む、前記流量測定方法。
  9.  前記第1遮断弁及び前記第3遮断弁を閉じるとともに、前記第2遮断弁を開き、前記第2遮断弁を通じて排気する第6ステップと、
     前記第1遮断弁を開き、前記流量制御器を通じて設定流量のガスを流す第7ステップと、
     前記第2遮断弁を閉じるとともに、前記第1遮断弁、第2遮断弁及び第3遮断弁により囲まれる流路内の第3の圧力を検出する第8ステップと、
     前記第1遮断弁、第2遮断弁及び第3遮断弁により囲まれる流路内の温度を測定する第9ステップと、
     前記第8ステップから所定時間経過後、第1遮断弁、第2遮断弁及び第3遮断弁により囲まれる流路内の第4の圧力を検出する第10ステップと、
     前記第3の圧力及び前記第4の圧力から圧力上昇率を演算し、演算した圧力上昇率と、前記第5のステップにおいて測定された流路体積と、前記第9ステップにおいて測定された温度とを用い、前記流量制御器の流量を演算する第11ステップと、
    を含む、請求項8に記載の流量測定方法。
  10.  前記流量制御器は複数が並列状に設けられるとともに、各々の前記流量制御器の下流側が前記第1の流路によって連通しており、複数の流量制御器のうちの所望の流量制御器の流量が測定される、請求項8に記載の流量測定方法。
PCT/JP2017/000762 2016-01-15 2017-01-12 流量測定可能なガス供給装置、流量計、及び流量測定方法 WO2017122714A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017561152A JP6650166B2 (ja) 2016-01-15 2017-01-12 流量測定可能なガス供給装置、流量計、及び流量測定方法
US16/069,126 US10895484B2 (en) 2016-01-15 2017-01-12 Gas supply device capable of measuring flow rate, flowmeter, and flow rate measuring method
KR1020187010770A KR102031574B1 (ko) 2016-01-15 2017-01-12 유량 측정 가능한 가스 공급 장치, 유량계, 및 유량 측정 방법
CN201780004303.2A CN108496064B (zh) 2016-01-15 2017-01-12 能够测定流量的气体供给装置、流量计以及流量测定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016006622 2016-01-15
JP2016-006622 2016-01-15

Publications (1)

Publication Number Publication Date
WO2017122714A1 true WO2017122714A1 (ja) 2017-07-20

Family

ID=59311049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000762 WO2017122714A1 (ja) 2016-01-15 2017-01-12 流量測定可能なガス供給装置、流量計、及び流量測定方法

Country Status (6)

Country Link
US (1) US10895484B2 (ja)
JP (1) JP6650166B2 (ja)
KR (1) KR102031574B1 (ja)
CN (1) CN108496064B (ja)
TW (1) TWI633283B (ja)
WO (1) WO2017122714A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110892357A (zh) * 2017-07-31 2020-03-17 株式会社富士金 流体控制***以及流量测定方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10684159B2 (en) * 2016-06-27 2020-06-16 Applied Materials, Inc. Methods, systems, and apparatus for mass flow verification based on choked flow
JP6929566B2 (ja) * 2017-02-10 2021-09-01 株式会社フジキン 流量測定方法および流量測定装置
JP7061932B2 (ja) * 2018-06-08 2022-05-02 東京エレクトロン株式会社 流量測定方法および流量測定装置
US10760944B2 (en) * 2018-08-07 2020-09-01 Lam Research Corporation Hybrid flow metrology for improved chamber matching
US20220212123A1 (en) * 2020-10-14 2022-07-07 Wyatt Technology Corporation Managing solvent associated with a field flow fractionator
CN114440133A (zh) * 2021-12-17 2022-05-06 河南平高电气股份有限公司 用于sf6充气、放气回收装置的监测模块及流量计纠偏方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5703032B2 (ja) * 2011-01-06 2015-04-15 株式会社フジキン ガス供給装置用流量制御器の流量測定方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT965889B (it) * 1971-07-21 1974-02-11 Hkg Gmbh Sistema di ammucchiamento di materiali di forma sferica in un contenitore di reazione nucleare
US5367910A (en) * 1992-03-12 1994-11-29 Curtin Matheson Scientific, Inc. Method and apparatus for measuring gas flow using Boyle's law
JP3863505B2 (ja) * 2003-06-20 2006-12-27 忠弘 大見 圧力センサ及び圧力制御装置並びに圧力式流量制御装置の自動零点補正装置
US7412986B2 (en) * 2004-07-09 2008-08-19 Celerity, Inc. Method and system for flow measurement and validation of a mass flow controller
US7474968B2 (en) 2005-03-25 2009-01-06 Mks Instruments, Inc. Critical flow based mass flow verifier
JP4648098B2 (ja) * 2005-06-06 2011-03-09 シーケーディ株式会社 流量制御機器絶対流量検定システム
JP4866682B2 (ja) * 2005-09-01 2012-02-01 株式会社フジキン 圧力センサを保有する流量制御装置を用いた流体供給系の異常検出方法
CN101395453B (zh) * 2006-03-07 2010-09-29 喜开理株式会社 气体流量检验单元
JP4870633B2 (ja) * 2007-08-29 2012-02-08 シーケーディ株式会社 流量検定システム及び流量検定方法
JP4598044B2 (ja) * 2007-10-29 2010-12-15 シーケーディ株式会社 流量検定故障診断装置、流量検定故障診断方法及び流量検定故障診断プログラム
US8639464B2 (en) * 2008-01-18 2014-01-28 Dresser, Inc. Flow meter diagnostic processing
EP2250471A4 (en) * 2008-02-27 2013-07-31 Daniel Measurement & Control METHOD AND SYSTEM FOR DEBITMETER DEMONSTRATION
JP5346628B2 (ja) * 2009-03-11 2013-11-20 株式会社堀場エステック マスフローコントローラの検定システム、検定方法、検定用プログラム
JP5538119B2 (ja) * 2010-07-30 2014-07-02 株式会社フジキン ガス供給装置用流量制御器の校正方法及び流量計測方法
JP5430621B2 (ja) * 2011-08-10 2014-03-05 Ckd株式会社 ガス流量検定システム及びガス流量検定ユニット
WO2013123617A1 (en) * 2012-02-22 2013-08-29 Agilent Technologies, Inc. Mass flow controllers and methods for auto-zeroing flow sensor without shutting off a mass flow controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5703032B2 (ja) * 2011-01-06 2015-04-15 株式会社フジキン ガス供給装置用流量制御器の流量測定方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110892357A (zh) * 2017-07-31 2020-03-17 株式会社富士金 流体控制***以及流量测定方法
JPWO2019026700A1 (ja) * 2017-07-31 2020-05-28 株式会社フジキン 流体制御システムおよび流量測定方法
JP7208634B2 (ja) 2017-07-31 2023-01-19 株式会社フジキン 流体制御システムおよび流量測定方法

Also Published As

Publication number Publication date
TWI633283B (zh) 2018-08-21
US20190017855A1 (en) 2019-01-17
US10895484B2 (en) 2021-01-19
JP6650166B2 (ja) 2020-02-19
CN108496064A (zh) 2018-09-04
CN108496064B (zh) 2020-05-22
KR20180054748A (ko) 2018-05-24
KR102031574B1 (ko) 2019-10-14
JPWO2017122714A1 (ja) 2018-11-01
TW201802438A (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
WO2017122714A1 (ja) 流量測定可能なガス供給装置、流量計、及び流量測定方法
KR101532594B1 (ko) 가스 공급 장치용 유량 제어기의 유량 측정 방법
TWI488017B (zh) Pressure flow control device with flow monitor, and its memory method and actual gas monitoring flow output confirmation method
TWI642910B (zh) 流量控制機器、流量控制機器的流量校正方法、流量測定機器及使用流量測定機器的流量測定方法
US8910529B2 (en) Gas flow-rate verification system and gas flow-rate verification unit
US10883866B2 (en) Pressure-based flow rate control device and malfunction detection method therefor
KR101707877B1 (ko) 유량 모니터 부착 유량 제어 장치
JP6754648B2 (ja) ガス供給系の検査方法、流量制御器の校正方法、及び、二次基準器の校正方法
TWI731159B (zh) 流量比率控制裝置、儲存流量比率控制裝置用程式的程式記錄媒體以及流量比率控制方法
TW200710374A (en) Absolute flow rate calibration system in flow rate control device
JP2008286812A (ja) 差圧式流量計
CN104748809B (zh) 基于调压器的智能计量仪及计量方法
KR102162046B1 (ko) 유량 측정 방법 및 유량 측정 장치
JP4512827B2 (ja) 漏洩検査方法及び装置
JP7131561B2 (ja) 質量流量制御システム並びに当該システムを含む半導体製造装置及び気化器
JP5752521B2 (ja) 診断装置及びその診断装置を備えた流量制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561152

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187010770

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738468

Country of ref document: EP

Kind code of ref document: A1