WO2017121158A1 - 处理弹性以太网信号的方法和装置 - Google Patents

处理弹性以太网信号的方法和装置 Download PDF

Info

Publication number
WO2017121158A1
WO2017121158A1 PCT/CN2016/102748 CN2016102748W WO2017121158A1 WO 2017121158 A1 WO2017121158 A1 WO 2017121158A1 CN 2016102748 W CN2016102748 W CN 2016102748W WO 2017121158 A1 WO2017121158 A1 WO 2017121158A1
Authority
WO
WIPO (PCT)
Prior art keywords
lane
pcs
pmd
flexe client
signal
Prior art date
Application number
PCT/CN2016/102748
Other languages
English (en)
French (fr)
Inventor
操时宜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017121158A1 publication Critical patent/WO2017121158A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path

Definitions

  • the present invention relates to the field of communications and, more particularly, to a method and apparatus for processing resilient Ethernet signals.
  • a communication technology in which a transmitting device and a receiving device implement signal transmission through forwarding of a transport network device, and a communication technology such as FlexE (Flexible Ethernet) technology is known to be transmitted at a transmitting device.
  • the signal to the transport network device carries multiple client signals (for example, signals that need to be sent to different receiving devices).
  • the transport network device needs media access control for the received signal (MAC, Media Access Control).
  • the layer performs probing to determine the destination MAC address of the signal, and then forwards the signal according to the destination MAC address to accurately transmit each client signal to the receiving device.
  • the detection of the MAC layer increases the processing load of the transport network equipment, prolongs the processing time of the transport network equipment, and thus affects the forwarding efficiency and system throughput of the transport network equipment.
  • Embodiments of the present invention provide a method and apparatus for processing an elastic Ethernet signal, which can reduce the processing load of the transport network device, reduce the processing time of the transport network device, and improve the forwarding efficiency and system throughput of the transport network device.
  • a method for processing a resilient Ethernet signal comprising: the transmitting device acquiring at least two resilient Ethernet FlexE client signals; the transmitting device assigning the at least two FlexE client signals to the plurality of physical encoders a layer channel PCS lane, and according to the plurality of PCS lanes, generating a physical medium related channel PMD lane signal, wherein the plurality of PCS lanes are divided into at least two PCS lane groups, the at least two FlexE client signals and at least two PCS One-to-one correspondence of the lane groups, each FlexE client signal in the at least two FlexE client signals is assigned to the corresponding PCS lane group, and each PCS lane group in the at least two PCS lane groups includes at least one PCS lane, one PCS The lane belongs to only one PCS lane group; or the PMD lane signal corresponds to at least two PMD lane groups, the at least two FlexE client signals are in one-to-one correspondence with at least two PMD
  • the transport network device can respond to the PCS lane group corresponding to the received signal or The PMD lane group distinguishes at least two FlexE client signals, so the transport network device can accurately transmit the at least two FlexE client signals to the receiving without performing MAC layer detection on the received signal.
  • the end device can reduce the processing load of the transport network device, reduce the processing time of the transport network device, and improve the forwarding efficiency and system throughput of the transport network device.
  • the sending device allocates the at least two FlexE client signals to the multiple PCS lanes, and generates a PMD lane signal according to the multiple PCS lanes, including: The transmitting device determines the number of PCS lanes included in each of the at least two PCS lane groups according to the bandwidth of each FlexE client signal in the at least two FlexE client signals, and assigns each FlexE client signal to Corresponding PCS lane in the PCS lane group; the transmitting device determines the number of PMD lanes included in one PMD lane group according to the bandwidth of each FlexE client signal in the at least two FlexE client signals, and the at least two Each PCS lane in the PCS lane group is adapted to the PMD lane in the one PMD lane group to generate a PMD lane signal.
  • the sending device allocates the at least two FlexE client signals to the multiple PCS lanes, and generates PMD lane according to the multiple PCS lanes.
  • the signal includes: the sending device determines the number of PCS lanes included in each PCS lane group of the at least two PCS lane groups according to the bandwidth of each FlexE client signal in the at least two FlexE client signals, and each path The FlexE client signal is assigned to the PCS lane in the corresponding PCS lane group; the transmitting device is based on each FlexE client signal in the at least two FlexE client signals Bandwidth, determining the number of PMD lanes included in each of the at least two PMD lane groups, and adapting the PCS lanes in the PCS lane group corresponding to each FlexE client signal to the same FlexE client signal. PMD lane in the PMD lane group to generate a PMD lane signal.
  • the sending device allocates the at least two FlexE client signals to the multiple PCS lanes, and generates PMD lane according to the multiple PCS lanes.
  • the signal includes: the sending device determines the number of PCS lanes included in one PCS lane group according to the bandwidth of each FlexE client signal in the at least two FlexE client signals, and assigns at least two FlexE client signals to the one PCS lane a PCS lane in the group; the transmitting device determines the number of PMD lanes included in each of the at least two PMD lane groups based on the bandwidth of each FlexE client signal in the at least two FlexE client signals, and The bit block in the one PCS lane group corresponding to each FlexE client signal is adapted to the PMD lane in the PMD lane group corresponding to the same FlexE client signal to generate a PMD lane signal.
  • the method further includes: the sending device performs encoding processing on the alignment mark AM corresponding to each PCS lane based on the same encoding manner.
  • the processing can be simplified, and the efficiency of the method of processing the elastic Ethernet signal of the present invention can be improved.
  • a method for processing a resilient Ethernet client signal comprising: receiving, by a receiving device, a physical medium related channel PMD lane signal, the PMD lane signal corresponding to at least two PMD lane groups, the at least two PMD lanes
  • the group and the at least two resilient Ethernet FlexE client signals are in one-to-one correspondence, and each of the at least two FlexE client signals is carried in the corresponding PMD lane group, and each of the at least two PMD lane groups
  • the lane group includes at least one PMD lane, and one PMD lane belongs to only one PMD lane group; the receiving device according to the at least two PMD lanes And determining, by the group, at least two physical coding sub-layer channel PCS lane groups, the at least two PMD lane groups and the at least two PCS lane groups are in one-to-one correspondence, and each of the at least two PCS lane groups includes at least one PCS lane, a PCS lane belongs to only one PMD
  • the receiving device can restore the FlexE client signals carried in the PMD lane groups in each PCS lane group by adapting the at least two PMD lane groups to at least two PCS lane groups. Realizing that the receiving device receives FlexE client signals from different transmitting devices at the same time can improve system throughput.
  • the receiving device recovers the at least two FlexE client signals according to the at least two PCS lane groups, including: the receiving end device acquires the first FlexE client a coding mode used by the transmitting end device of the signal to encode the alignment mark AM corresponding to the first FlexE client signal, wherein the first FlexE client signal corresponds to the first PMD lane group; the receiving end device according to the And encoding, by the first PCS lane group, the first FlexE client signal, wherein the first PCS lane group corresponds to the first PMD lane group.
  • a method for processing a resilient Ethernet client signal comprising: the transport network device receiving a physical medium related channel PMD lane signal sent by the transmitting device, the PMD lane signal being that the transmitting device is at least two paths After the FlexE client signal is allocated to the plurality of physical coding sub-layer channels PCS lane, generated according to the multiple PCS lanes; when the PMD lane signal corresponds to at least two PCS lane groups, the transport network device is configured according to the at least two PCS lane groups Encapsulating the signal to generate at least two optical channel data unit ODU groups, wherein the at least two PCS lane groups are in one-to-one correspondence with the at least two ODU groups, each of the at least two ODU groups The ODU group includes at least one ODU, and one ODU belongs to only one ODU group;
  • the transport network device encapsulates the signal according to the at least two PMD lane groups to generate at least two optical channel data unit ODU groups, wherein the at least two PMD lane group and the Each of the at least two ODU groups includes at least one ODU, and one ODU belongs to only one ODU group.
  • an apparatus for processing a resilient Ethernet client signal comprising means for performing the steps of the first aspect and the implementations of the first aspect described above.
  • an apparatus for processing a resilient Ethernet client signal comprising means for performing the steps of the second aspect and the implementations of the first aspect.
  • an apparatus for processing a resilient Ethernet client signal comprising means for performing the steps of the third aspect and the implementations of the first aspect.
  • FIG. 1 is a schematic diagram of an example of a communication system to which a method and apparatus for processing an elastic Ethernet signal according to an embodiment of the present invention is applied.
  • FIG. 2 is a schematic diagram of an example of an apparatus for processing a method of processing an elastic Ethernet signal according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of another example of an apparatus for applying a method of processing an elastic Ethernet signal according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of still another example of an apparatus for applying a method of processing an elastic Ethernet signal according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an interaction process of a method of processing an elastic Ethernet signal, in accordance with an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a bit block distribution process of a transmitting device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a bit block distribution process of a receiving device according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing the structure of an AM according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an encoding manner of an AM according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an encoding manner of an AM according to another embodiment of the present invention.
  • FIG. 11 is a schematic diagram of an interaction process of a method of processing an elastic Ethernet signal according to another embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a bit block distribution process of a transmitting device according to another embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a bit block distribution process of a receiving device according to another embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of an apparatus for processing an elastic Ethernet signal according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of an apparatus for processing an elastic Ethernet signal according to another embodiment of the present invention.
  • 16 is a schematic structural diagram of an apparatus for processing an elastic Ethernet signal according to still another embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of an apparatus for processing an elastic Ethernet signal according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram showing an example of a communication system to which a method and apparatus for processing an elastic Ethernet signal according to an embodiment of the present invention are applied.
  • the communication system comprises at least three communication devices, for example, as shown in FIG. 1, the communication system may include a communication device 110, a communication device 120, and a communication device 130.
  • the communication device 110, the communication device 120, and the communication device communicate with each other over a transport network.
  • the transport network may be, for example, a Wavelength Division Multiplexing (WDM) network, an Optical Transport Network (OTN) network, or the like.
  • WDM Wavelength Division Multiplexing
  • OTN Optical Transport Network
  • the transport network may include a plurality of transport network devices.
  • the communication system may include a transport network device 111, a transport network device 121, and a transport network device 131.
  • the transport network device 111 is communicatively coupled to the communication device 110.
  • the signal transmission process between the communication devices is The example is explained.
  • the communication device 110 when the communication device 110 transmits a signal to other communication devices (eg, the communication device 120 or the communication device 130, etc.), the communication device 110 can generate a signal and transmit the signal to the transport network device 111, thereby transmitting the network.
  • the device 111 can process (eg, encapsulate) the signal to convert the signal into a signal that can be transmitted in the transport network and transmit the signal to the transport network for transmission to the destination receiving device of the signal Other transport network devices for signals.
  • the transport network device 111 may also receive signals from other transport network devices or communication devices that need to be transmitted to the communication device 110, and may process (eg, decapsulate) the signals to convert the signals into a transport network.
  • the device 111 is capable of identifying the signal and transmitting the processed signal to the communication device 110 such that the communication device 110 can parse the received signal to obtain data carried in the signal.
  • the functions of the other communication devices are similar to those of the communication device 110, and the functions of the other transport network devices are similar to those of the transport network device 111, and a detailed description thereof will be omitted herein or omitted.
  • the signal transmitted between any two communication devices may be processed and forwarded through one transport network device, or may be processed and forwarded through multiple transport network devices, and the present invention is not particularly limited. .
  • FIG. 1 the number of communication devices and transport network devices shown in FIG. 1 is merely illustrative, and the present invention is not particularly limited.
  • the communication device can be, for example, A client device such as a personal computer that can communicate via a medium such as Ethernet or optical fiber.
  • the communication device may also be a network device, where the network device may be a server that provides various services for the user device, for example, an SDN server, a World Wide Web (Web) server, and a File Transfer Protocol (FTP).
  • SDN Session Initiation Network
  • Web World Wide Web
  • FTP File Transfer Protocol
  • Servers enterprise critical application servers, and other mission-critical servers (for example, servers providing firewall services), service processing boards (SPUs) in the field of communication (CT, Communication Technology), etc.; Protocol (IP, Internet Protocol)
  • IP Internet Protocol
  • the transport network device may be a WDM, an OTN, or the like.
  • the communication device may be a transmitting end of the signal (ie, a transmitting device), or may be a receiving end of the signal (ie, a receiving device).
  • the transmitting device 200 includes:
  • the control module 210 is configured to calculate the occupied by each FlexE client signal according to the number and bandwidth of the FlexE client signals generated, the currently available PMD lanes, for example, the number of optical lanes and the bandwidth thereof.
  • a PCS lane (or an input lane of the PMA module) and a PMD lane, and further, generate indication information for instructing each MAC transmission module to generate the FlexE client signal, and a bit block distribution manner for indicating the FlexE and PCS lane distribution modules (
  • the indication information of the PCS lane allocation method, the indication information of the bit interleaving mode of the PMA module (or the PMD lane allocation method), and the above indication information are sent to the corresponding module.
  • Multiple (at least two) MAC sending modules 220 for generating more information according to indication information from the control module (for example, indicating a bandwidth of a signal that needs to be generated, etc.)
  • the FlexE client signals (in this case, the FlexE client signal can be, MAC layer signal, MAC layer data or Ethernet message) and send the FlexE client signal to the FlexE and PCS lane distribution modules.
  • a MAC sending module may generate a FlexE client signal, that is, the FlexE and PCS lane distribution modules described later may be based on the MAC sending module from which each FlexE client signal is sent, and multiple FlexEs. The customer signals are distinguished.
  • the functions and specific processing procedures of the MAC transmitting modules may be similar to the prior art, and the present invention is not particularly limited.
  • the FlexE client signal may refer to an Ethernet flow.
  • the FlexE client signal may be all signals that are served by the FlexE layer, for example, may be an Ethernet stream, or may be Synchronous Digital Hierarchy (SDH) signals, OTN signals, Fibre Channel signals in storage networks, and so on. Therefore, in this embodiment, the MAC sending module or the MAC receiving module is only an example and is not limited, and they may also be sending modules or receiving modules of other client signals.
  • SDH Synchronous Digital Hierarchy
  • the FlexE and PCS lane distribution module 230 is configured to perform bit block coding and bit block segmentation on the input data (ie, the FlexE client signal) according to the indication information from the control module (for example, the PCS lane corresponding to each FlexE client signal). Insert FlexE overhead, bit block distribution, and insert alignment markers (AM, Alignment Marker).
  • the bit block distribution (indicated by the indication information from the control module) can implement the following functions: the bit block (or the data block) of the FlexE client layer signal needs to be distributed to the determined PMD lane group (including at least one PMD lane) In a PMD lane group, a bit block corresponding to multiple FlexE client signals cannot be included. Alternatively, the bit blocks of the FlexE client layer signal need to be distributed to the determined PCS lane group (including at least one PCS lane), and one PCS lane group cannot contain the bit block corresponding to the multiple FlexE client signals.
  • a Physical Medium Attachment (PMA) module 240 is configured to, according to the indication information from the control module (for example, the PMD lane corresponding to each FlexE client signal, or the PMD lane to which each PCS lane needs to be adapted),
  • the input PCS lane is adjusted (or adapted) to the output PMD lane by bit interleaving.
  • the above adjustment has the following requirements: the bits of the FlexE client layer signal Blocks (or data blocks) need to be distributed to the determined PMD lane, and a PMD lane cannot contain bit blocks corresponding to multiple FlexE client signals.
  • the transmitting module 250 is configured to process (eg, electro-optical conversion) the signal from the PMA module 240 to generate a transmit signal (eg, an optical signal).
  • FIG. 2 also shows an example of the structure of one of the receiving devices 400. Subsequently, in the detailed description of the method 500 for processing the elastic Ethernet signal according to the embodiment of the present invention, the process of performing the above signal processing on the transmitting device will be described in detail.
  • the receiving device 400 can include:
  • the receiving module 410 is configured to receive a signal (for example, an optical signal) sent by the transmitting device 200 via the transmission network, and may perform, for example, photoelectric conversion processing on the signal to acquire a receiving signal corresponding to one or more PMD lanes.
  • a signal for example, an optical signal
  • the receiving module 410 may perform, for example, photoelectric conversion processing on the signal to acquire a receiving signal corresponding to one or more PMD lanes.
  • the PMA module 420 is configured to adjust multiple PMD lanes to PCS lanes by using bit interleaving.
  • the FlexE and PCS lane rearrangement module 430 is configured to rearrange the PCS lane according to the size of the PCS lane number corresponding to the AM, extract the FlexE overhead, and perform bit block decoding to recover the FlexE client signal. It should be noted that since the PCS lane number corresponding to the AM in the received signal may not start from the PCS lane 0, the FlexE and PCS lane rearrangement modules 430 need only be sorted according to the PCS lane number.
  • the MAC receiving module 440 is configured to decapsulate the FlexE client signal.
  • receiving devices 400 shown in FIG. 2 is merely an exemplary description, and the present invention is not particularly limited.
  • the transmitting end transport network device can serve as an interface of the transport network to the transmitting device.
  • the transmitting transport network device 300 includes:
  • the receiving module 310 is configured to receive the foregoing transmit signal sent by the sending device, and process (eg, photoelectrically convert) the transmit signal to obtain a received signal. At this time, the received signal includes a component corresponding to each FlexE client signal. .
  • the ODU encapsulation module 320 encapsulates each component based on the PMD lane or PCS lane corresponding to each component (or each FlexE client signal) in the received signal to generate multiple optical channel data units (ODU, Optical channel).
  • the Data Units group (each ODU group includes at least one ODU), the encapsulation process has the following requirements: The ODUs in one ODU group cannot be encapsulated into components corresponding to the multi-path FlexE client signals.
  • the transmitting end transport network device 300 may further include an ODU cross mode, an optical channel transport unit (OTU) module, a line side sending module, etc., and the foregoing ODUs may be separately converted by the processing of the foregoing modules.
  • OTU optical channel transport unit
  • the foregoing ODUs may be separately converted by the processing of the foregoing modules.
  • the transmitting end transport network device may also be an optical lane (ie, an example of PMD lane) granularity.
  • a device for performing optical layer cross-scheduling may be an optical cross-connect based on a Micro-Electro-Mechanical System (MEMS) or a Liquid Crystal on Silicon (LCOS). (OXC, optical cross-connect) device.
  • MEMS Micro-Electro-Mechanical System
  • LCOS Liquid Crystal on Silicon
  • the signal transmitted between the transmitting device and the receiving device may be forwarded via one of the transmitting devices (for example, the transmitting transmitting device), or may be transmitted through multiple transmissions in the transport network.
  • the forwarding of the device is not specifically limited.
  • the receiving network may also be configured in the transport network as an interface facing the receiving device.
  • the receiving The end transport network device may include a line side receiving module, an OTU decapsulation module, an ODU cross module, and a sending module, and convert the signal transmitted in the transport network into a signal recognizable by the receiving device and send the signal to the receiving device, and each ODU respectively converts
  • each ODU respectively converts
  • the functions and processes of the above-mentioned modules can be similar to the prior art, detailed descriptions thereof are omitted herein for avoiding redundancy.
  • FIG. 4 is a schematic diagram of an example of a receiving device 500 (for example, the above-described communication device) to which a method for processing an elastic Ethernet signal is applied according to an embodiment of the present invention.
  • the receiving device 500 can receive multiple transmissions at the same time.
  • the signal of the device, as shown in FIG. 4, the receiving device 500 includes:
  • the control module 510 is configured to generate, according to the PMD lane (for example, an optical lane) corresponding to the received signal, an indication information of a bit interleaving manner (or a PCS lane allocation manner) of the PMA module, and is used to indicate the FlexE and the PCS lane distribution module.
  • the indication information of the PCS lane rearrangement mode is sent to the corresponding module.
  • the receiving module 520 is configured to receive a transmit signal sent by multiple sending devices, and may process (eg, photoelectrically convert) the transmit signal to obtain a received signal. At this time, the received signal includes a corresponding PMD lane. Component.
  • the PMA module 530 is configured to adjust (or adapt) the input PMD lane into an output according to the indication information from the control module (for example, the PCS lane to which each PMD lane needs to be adapted).
  • PCS lane The above adjustment has the following requirements: the bit block (or the data block) of the FlexE client layer signal needs to be distributed to the determined PCS lane group (including at least one PCS lane), and the PCS lane in a PCS lane group cannot be Contains a block of bits corresponding to multiple FlexE client signals.
  • the FlexE and PCS lane rearrangement module 540 is configured to rearrange each PCS lane according to the number of the PMD lane and the size of the PMD lane number corresponding to the AM, extract the FlexE overhead, and perform bit block decoding to obtain the information from each transmitting device. FlexE customer signal.
  • the MAC receiving module 550 is configured to decapsulate the FlexE client signal.
  • the function of the transmitting device and the specific process for generating the transmitting signal shown in FIG. 4 may be similar to the prior art, or may be similar to the transmitting device shown in FIG. 2, and the present invention is not particularly limited. Further, the number of transmitting devices shown in FIG. 4 is merely an exemplary description, and the present invention is not particularly limited.
  • the structures of the above-mentioned receiving devices are merely exemplary, and the present invention is not limited thereto as long as the receiving device can implement the functions provided by the above modules. Subsequently, in the detailed description of the method 700 for processing the elastic Ethernet signal according to the embodiment of the present invention, the process of performing the above signal processing on the receiving device will be described in detail.
  • FIG. 5 is a schematic diagram of an interaction process of a method 500 of processing a resilient Ethernet client signal, in accordance with an embodiment of the present invention.
  • a specific process of processing a flexible Ethernet client signal according to an embodiment of the present invention is performed by taking a process in which the communication device 110 transmits data to both the communication device 120 and the communication device 130 via the transport network device 111 as an example. Detailed description.
  • the method 500 includes:
  • the sending device acquires at least two flexible Ethernet FlexE client signals
  • the transmitting device allocates at least two FlexE client signals to a plurality of physical coding sublayer channels PCS lane, and generates a physical medium related channel PMD lane signal according to the plurality of PCS lanes, wherein
  • the plurality of PCS lanes are divided into at least two PCS lane groups, the at least two FlexE client signals are in one-to-one correspondence with at least two PCS lane groups, and each of the at least two FlexE client signals is assigned to Corresponding PCS lane group, each PCS lane group of at least two PCS lane groups includes at least one PCS lane, and one PCS lane belongs to only one PCS lane group; or
  • the PMD lane signal corresponds to at least two PMD lane groups, the at least two FlexE client signals are in one-to-one correspondence with at least two PMD lane groups, and each of the at least two FlexE client signals is assigned to the corresponding one.
  • each of the at least two PMD lane groups includes at least one PMD lane, and one PMD lane belongs to only one PMD lane group.
  • the communication device 110 can acquire a FlexE client signal that needs to be sent to the communication device 120 (ie, one of the at least two FlexE client signals)
  • a FlexE client signal that needs to be sent to the communication device 120
  • FlexE client signal #A An example of a signal, hereinafter, for ease of understanding and explanation, is noted as: FlexE client signal #A
  • FlexE client signal #B An example, the following, for ease of understanding and explanation, Remember: FlexE customer signal #B).
  • the FlexE client signal #A and the FlexE client signal #B may be MAC layer data obtained after MAC layer encapsulation processing (for example, the MAC sending module 220 described above), and The method and process of the MAC layer encapsulation processing may be similar to the prior art.
  • the FlexE client signal may be an Ethernet flow.
  • the FlexE client signal may be all signals using the FlexE as a service layer, for example, an Ethernet stream, an SDH signal, an OTN signal, or The Fiberchannel signal in the storage network and so on. Therefore, in this embodiment, the MAC sending module or the MAC receiving module is only an example and is not limited, and they may also be sending modules or receiving modules of other client signals.
  • the communication device 120 may be the final receiving device of the FlexE client signal #A.
  • the communication device 110 may determine the destination MAC address of the FlexE client signal #A.
  • the FlexE client signal #A needs to be sent to the communication device 120; or, in the embodiment of the invention, the communication device 120 may be a forwarding communication device of the FlexE client signal #A (or the communication device 120 is the FlexE client signal FlexE client)
  • the transmission path of signal #A (excluding the next hop in the device in the transport network), in which case, for example, communication device 110 may determine that the FlexE client signal #A needs to be sent to communication device 120 based on a routing table or the like. .
  • communication device 110 determines that FlexE client signal #B needs to be sent to communication device 130.
  • each FlexE client signal by the above-mentioned communication device 110 is merely an exemplary description, and the present invention is not limited thereto, and other receiving device devices capable of determining each FlexE client signal (or The method of distinguishing each FlexE client signal based on the communication device to be sent to is included in the protection scope of the present invention.
  • communication device 110 may complete the configuration of at least two MAC transmit modules based on the number and bandwidth of MAC layer data.
  • the FlexE client signal #A and the FlexE client signal #B may be generated by different MAC layer modules configured in the communication device 110.
  • the communication device 110 can perform physical layer encapsulation processing on the FlexE client signal #A and the FlexE client signal #B.
  • the physical layer mainly includes: a Reconciliation Sublayer (RS), a Physical Coding Sublayer (PCS), and a Forward Error Correction (FEC). Layer, Physical Medium Attachment (PMA) layer, Physical Medium Dependent (PMD) layer.
  • RS Reconciliation Sublayer
  • PCS Physical Coding Sublayer
  • FEC Forward Error Correction
  • Layer Physical Medium Attachment
  • PMA Physical Medium Attachment
  • PMD Physical Medium Dependent
  • the RS is used to convert the serial data of the MAC layer to the parallel interface of the PCS (The RS adapts the bit serial protocols of the MAC to the parallel format of the PCS service interface).
  • the RS can convert data from the MAC layer (ie, FlexE client signal) into an interface of 40G Media Independent Interface (XLGMII, 40Gigabit Media Independent Interface) or 100G Media Independent Interface (CGMII). Data and the implementation of its reverse process.
  • the processing method and process of the RS may be similar to the prior art, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the PCS mainly completes the physical layer codec. For example, after receiving the data from the RS, the PCS divides the data in units of 64 bits, and adds a 2-bit sync header to form a 66-bit block.
  • the sync header is "01" indicating that it is a data block, the sync header is "10" indicating that it is a control block; after cutting into a block, scrambling is performed (the sync header does not need scrambling code); and the 66-bit block after the scrambling code is distributed to the In each physical coding sublayer lane (PCS lane, Physical Coding Sublayer lane), a multi-lane structure is formed.
  • the FEC layer mainly implements the error correction process.
  • the method and process of the FEC layer processing may be similar to the prior art, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the PMA layer is mainly used to implement PCS connection to a variety of physical media.
  • the main functions include: adapting PCS lane to PMD lane, PMD lane number conversion, data clock conversion, and so on.
  • the PMD layer is mainly used to define physical interface parameters that connect to the transmission medium. For example, the optical signal wavelength of the optical interface, the type of fiber to be connected, the transmission distance, and the like.
  • At least two FlexE client letters may be used in the above PCS.
  • the data of the number is allocated to at least two PCS lane groups, or data of at least two FlexE client signals is allocated to the PMD lane group at the above PMA layer, so that the transport network device can correspond to the PCS lane group or PMD corresponding to the received signal.
  • the lane group distinguishes between at least two FlexE client signals.
  • one PCS lane group can carry only one FlexE client signal data
  • one PMD lane group can carry only one FlexE client signal data (ie, Case 1)
  • one PCS lane group can carry only one FlexE client signal.
  • Data, and a PMD lane group can carry data of multiple FlexE client signals (ie, Case 2), or a PCS lane group can carry data of multiple FlexE client signals, and one PMD lane group can carry only one road.
  • the data of the FlexE client signal ie, Case 3).
  • the sending device allocates the at least two FlexE client signals to the multiple PCS lanes, and generates a PMD lane signal according to the multiple PCS lanes, including:
  • the transmitting device determines the number of PCS lanes included in each PCS lane group of the at least two PCS lane groups according to the bandwidth of each FlexE client signal in the at least two FlexE client signals, and allocates each FlexE client signal To the corresponding PCS lane group in the PCS lane group;
  • the transmitting device determines the number of PMD lanes included in each PMD lane group of the at least two PMD lane groups according to the bandwidth of each FlexE client signal in the at least two FlexE client signals, and each FlexE client signal is The PCS lane in the corresponding PCS lane group is adapted to the PMD lane in the PMD lane group corresponding to the same FlexE client signal to generate a PMD lane signal.
  • the communication device 110 may be based on the number of FlexE client signals and the bandwidth requirement of each FlexE client signal (or the amount of data).
  • Each FlexE client signal is assigned a PCS lane group, wherein one PCS lane group includes at least one PCS lane, and one PCS lane group is only assigned to one FlexE client signal, ie, different FlexE client signals are not assigned to the same PCS lane group will not be assigned to the same PCS Lane.
  • the communication device 110 can assign a PCS lane group consisting of one or more PCS lanes to the FlexE client signal #A according to the bandwidth requirement of the FlexE client signal #A (or the amount of data amount) (hereinafter, Easy to understand and distinguish, note: PCS lane group #A), and assign a PCS lane group consisting of one or more PCS lanes to FlexE customer signal #B according to the bandwidth requirement of FlexE customer signal #B (hereinafter, for ease of understanding) And distinguish, note: PCS lane group #B).
  • PCS lane group #A is only assigned to FlexE client signal #A
  • PCS lane group #B is only assigned to FlexE client signal #B.
  • the communication device 110 may negotiate with the transport network device to determine the PCS lane group #A and the PCS lane group #B (ie, mode 1), or the communication device 110 may also be based on the preset at the communication device 110.
  • the PCS lane group #A and the PCS lane group #B (ie, mode 2) are determined in the first mapping relationship with the transport network device. The specific processes of the mode 1 and the mode 2 are described in detail below.
  • the communication device 110 can determine the PCS lane group #A and the conditions of ensuring that only one PCS lane group corresponds to only one receiving device, for example, according to the bandwidth of the FlexE client signal #A and the FlexE client signal #B, and the currently available PCS lane. PCS lane group #B.
  • the method further includes:
  • the first sending device sends first control information to the transport network device, where the first control information is used to indicate a receiving device corresponding to each PCS lane.
  • the communication device 110 may transmit to the transport network device 111 a command to indicate that the PCS lane group #A is assigned to the FlexE client signal #A (ie, a signal that needs to be transmitted to the communication device 120), and the PCS lane group #B is assigned.
  • the FlexE client signals #B i.e., signals that need to be transmitted to the communication device 130
  • information i.e., an example of the first control information.
  • the transport network device 111 can determine, according to the foregoing first control information, that the signal corresponding to the PCS lane group #A (ie, the FlexE client signal #A after the physical layer processing) needs to be sent to the communication device 120 (or, for example, transmit The network device 121) determines that the signal corresponding to the PCS lane group #B (ie, the FlexE client signal #B after the physical layer processing) needs to be transmitted to the communication device 130 (or the transport network device 131).
  • the sending device allocates the at least two FlexE client signals to multiple PCS lanes, including:
  • the sending device allocates a PCS lane group to each FlexE client signal according to the first mapping relationship information and the receiving device of each FlexE client signal, where the first mapping relationship information is preset in the sending end device and the transmitting network device.
  • the first mapping relationship information is used to indicate a communication device corresponding to each PCS lane.
  • the communication device 110 and the transport network device 111 may store information for recording a mapping relationship between each communication device and each PCS lane (that is, an example of the first mapping relationship information).
  • the mapping relationship between each communication device and each PCS lane may indicate that each PCS lane is uniquely assigned to the communication device, that is, one PCS lane only carries data of one FlexE client signal.
  • the communication device 110 can determine the PCS lane(s) corresponding to the communication device 120 based on the first mapping relationship, and, for example, can be from the communication device according to the bandwidth requirement of the FlexE client signal #A. In PCS lane corresponding to 120, PCS lane group #A is determined. Similarly, the communication device 110 can determine the PCS lane(s) corresponding to the communication device 130 based on the first mapping relationship, and, for example, can communicate with the communication according to the bandwidth requirement of the FlexE client signal #B. In the PCS lane corresponding to the device 130, the PCS lane group #B is determined.
  • the transport network device 111 may determine that the data corresponding to the PCS lane group #A (ie, the FlexE client signal #A after the physical layer processing) needs to be sent to the communication device 120 according to the first mapping relationship (or, for example, transmitting The network device 121) and determines that the data corresponding to the PCS lane group #B (i.e., the FlexE client signal #B after the physical layer processing) needs to be transmitted to the communication device 130 (or the transport network device 131).
  • the first mapping relationship or, for example, transmitting The network device 121
  • the data corresponding to the PCS lane group #B i.e., the FlexE client signal #B after the physical layer processing
  • the communication device 110 and the transport network device 111 By causing the communication device 110 and the transport network device 111 to determine the receiving device corresponding to each PCS lane based on the first mapping relationship information, it is possible to negotiate the reception corresponding to each PCS lane group between the communication device 110 and the transport network device 111.
  • Equipment process from It can simplify the communication process and save system communication resources.
  • the communication device 110 may pass the processed FlexE client signal through the RS described above. #A is distributed to each PCS lane in the PCS lane group #A, and the communication device 110 can distribute the processed FlexE client signal #B subjected to the above RS to each PCS lane in the PCS lane group #B.
  • the communication device 110 can insert a 66-bit alignment mark (AM) every 16383 66-bit blocks in the data lane of each FlexE client signal.
  • AM 66-bit alignment mark
  • the main function of AM is to identify the serial number of the PCS lane. Specifically, because the Ethernet of the Multi-lane structure is transmitted between chips or between devices, it is usually transmitted by using multiple physical channels (Physical lanes). Different physical lane transmission delays will cause the PCS lanes to be recovered when receiving. After joining the AM, the receiving device can reorder the PCS lane according to the AM identifier, thereby recovering the correct data.
  • the delay between channels is inevitably introduced (skew If the delay between channels is not processed, a data reorganization error will occur when the PCS accepts the end-to-multi-channel data recovery. But what happens is the channel order, and the order of the data transmitted in each channel is not wrong. If the data is to be correctly recovered at the receiving end, an AM should be added to the PCS lane at the transmitting end to identify which channel the channel data should belong to. According to the AM channel data start flag, the cache data can be used to align the channel data (to eliminate the delay). After the data is aligned, the AM data is assigned to the channel data, and the channel data is sent to the original channel to implement channel rearrangement.
  • MLD multi-lane distribution
  • AM Since AM is not scrambled, AM requires special coding to achieve DC balance (that is, the number of "0” and “1” is equal) and to avoid the occurrence of more “0” or even “1” distribution. (Avoid the receiver clock lock circuit loses lock).
  • FIG. 8 is a schematic diagram showing the structure of an AM according to an embodiment of the present invention, wherein 10 Sync header.
  • M0 to M2 are codes of AM and are used to indicate the PCS lane number.
  • BIP3 is used to perform BIP (Bit Interleaved Parity) verification (ie, an example of error correction).
  • M4 to M6 are the inverse of M0 to M2, and BIP7 is the inverse of BIP3.
  • different coding modes may be used for the AM according to the bit rate requirements of different data.
  • the AM encoding method shown in Fig. 9 can be used.
  • the AM encoding method shown in FIG. 10 can be used.
  • the method further includes:
  • the transmitting device performs encoding processing on the alignment mark AM corresponding to each PCS lane based on the same encoding manner.
  • the AM in the FlexE client signal #A and the FlexE client signal #B can be encoded by the same AM encoding method, which can simplify the processing, thereby improving the processing flexibility of the present invention.
  • the efficiency of the method of net signal can simplify the processing, thereby improving the processing flexibility of the present invention.
  • the communication device 110 may be used for each FlexE client signal according to the number of FlexE client signals and the bandwidth requirement of each FlexE client signal (or the amount of data). Assigning a PMD lane group, wherein one PMD lane group includes at least one PMD lane, and one PMD lane group is only assigned to one FlexE client signal, that is, different FlexE client signals are not assigned to the same PMD lane group. It will not be assigned to the same PMD lane.
  • the communication device 110 can allocate a PMD lane group consisting of one or more PMD lanes to the FlexE client signal #A according to the bandwidth requirement of the FlexE client signal #A (or the amount of data amount) (hereinafter, Easy to understand and distinguish, denoted as: PMD lane group #A), and assign a PMD lane group consisting of one or more PMD lanes to FlexE customer signal #B according to the bandwidth requirement of FlexE customer signal #B (hereinafter, for ease of understanding) And distinguish, note: PMD lane group #B).
  • PMD lane group #A is only assigned to FlexE client signal #A
  • PMD lane group #B is only assigned to FlexE client signal #B.
  • the communication device 110 may negotiate with the transport network device to determine the PMD lane group #A and the PMD lane group #B (ie, mode 3), or the communication device 110 may also be preset based on the communication device 110.
  • the PMD lane group #A and the PMD lane group #B (ie, mode 4) are determined in the second mapping relationship with the transport network device. The specific processes of the mode 3 and the mode 4 are described in detail below.
  • the communication device 110 can be under conditions that ensure that one PMD lane corresponds to only one receiving device (specifically, one PMD lane is only used for PMD processing for FlexE client signals that need to be transmitted to one receiving device), for example, according to FlexE customers.
  • the method further includes:
  • the first sending device sends second control information to the transmitting network device, where the second control information is used to indicate a sending device corresponding to each PMD lane.
  • the communication device 110 may transmit to the transport network device 111 an indication that the PMD lane group #A is assigned to the communication device 120 (or is assigned to a signal that needs to be transmitted to the communication device 120), PMD lane group #B Information (i.e., an example of second control information) assigned to the communication device 130 (or a signal assigned to the communication device 130).
  • PMD lane group #B Information i.e., an example of second control information assigned to the communication device 130 (or a signal assigned to the communication device 130).
  • the transport network device 111 can determine, according to the second control information, that the signal corresponding to the PMD lane group #A (ie, the FlexE client signal #A after the physical layer processing) needs to be sent to the communication device 120 (or, for example, transmit The network device 121) and determines that the signal corresponding to the PMD lane group #B (i.e., the FlexE client signal #B after the physical layer processing) needs to be transmitted to the communication device 130 (or the transport network device 131).
  • the signal corresponding to the PMD lane group #A ie, the FlexE client signal #A after the physical layer processing
  • the communication device 120 or, for example, transmit The network device 121
  • the signal corresponding to the PMD lane group #B i.e., the FlexE client signal #B after the physical layer processing
  • generating, according to the multiple PCS lanes, a physical medium related channel PMD lane signal including:
  • the transmitting device allocates at least one PMD lane group for each FlexE client signal according to the second mapping relationship information and the receiving device of each FlexE client signal, where the second mapping relationship information is preset at the sending end device and the transmitting In the network device, the second mapping relationship information is used to indicate a communication device corresponding to each PMD lane.
  • the communication device 110 and the transport network device 111 may store information for recording a mapping relationship between each communication device and each PMD lane (that is, an example of the second mapping relationship information).
  • the mapping relationship between each communication device and each PMD lane may indicate that each PMD lane is uniquely assigned to the communication device, that is, one PMD lane only carries data of one FlexE client signal.
  • the communication device 110 can determine the PMD lane(s) corresponding to the communication device 120 based on the second mapping relationship, and, for example, can be from the communication device according to the bandwidth requirement of the FlexE client signal #A. In the corresponding PMD lane of 120, the PMD lane group #A is determined. Similarly, the communication device 110 can determine the PMD lane(s) corresponding to the communication device 130 based on the second mapping relationship, and, for example, can communicate with the communication according to the bandwidth requirement of the FlexE client signal #B. In the PMD lane corresponding to the device 130, the PMD lane group #B is determined.
  • the transport network device 111 may determine that the data corresponding to the PMD lane group #A (ie, the FlexE client signal #A after the physical layer processing) needs to be sent to the communication device 120 according to the second mapping relationship (or, for example, transmitting The network device 121) and determines that the data corresponding to the PMD lane group #B (i.e., the FlexE client signal #B after the physical layer processing) needs to be transmitted to the communication device 130 (or the transport network device 131).
  • the second mapping relationship or, for example, transmitting The network device 121
  • the data corresponding to the PMD lane group #B i.e., the FlexE client signal #B after the physical layer processing
  • the communication device 110 and the transport network device 111 By causing the communication device 110 and the transport network device 111 to determine the receiving device corresponding to each PMD lane based on the second mapping relationship information, it is possible to negotiate the reception corresponding to each PMD lane group between the communication device 110 and the transport network device 111.
  • the process of the device which simplifies the communication process and saves system communication resources.
  • the communication device 110 After determining the PMD lane group corresponding to the data of each FlexE client signal as described above, the communication device 110 (for example, the PMA module of the communication device 110) can adapt each PCS lane in the above PCS lane group #A to Each in PMD lane group #A PMD lane to generate a PMD signal corresponding to the FlexE client signal #A (hereinafter, referred to as PMD signal #A for ease of understanding and distinction), and the communication device 110 may each of the above PCS lane group #B
  • the PCS lane is adapted to each PMD lane in the PMD lane group #B to generate a PMD signal corresponding to the FlexE client signal #B (hereinafter, referred to as PMD signal #B for ease of understanding and distinction).
  • the method further includes:
  • the transmitting device performs cross-connection (or cross-scheduling) processing on each PMD lane signal.
  • the communication device 110 may perform physical layer processing for the FlexE client signal #A and the FlexE client signal #B through the same physical layer processing entity, or the communication device 110 may also adopt different The physical layer processing entity performs physical layer processing for the above-described FlexE client signal #A and FlexE client signal #B, respectively, and the present invention is not particularly limited.
  • the communication device 110 may perform, for example, digital-to-analog conversion processing, electro-optical conversion processing, and the like on the data in the PMD lane to which the above is allocated to generate a PMD lane signal to be transmitted to the transmission network device 111. Thereafter, the communication device 110 transmits the generated PMD lane signal to the transport network device 111.
  • the transport network device 111 can parse the signal to determine the receiving device to which the data in the signal needs to be transmitted (or the transport network device in communication with the receiving device).
  • the transport network device 111 can parse the received signal to determine a PMD lane group corresponding to each PMD lane signal. And (for example, according to the second mapping relationship information or the second control information described above), the receiving device to which each PMD lane signal needs to be transmitted is determined.
  • the transport network device 111 may perform ODU encapsulation processing on the PMD lane signal from the transmitting device according to the PMD lane group, so that one ODU is only used to carry signals that need to be transmitted to one receiving device, specifically, the transport network device. 111 may carry a signal that needs to be transmitted to the communication device 120 (or the transport network device 121) (ie, a signal carried by the PMD lane group #A) to an ODU composed of one or more ODUs.
  • ODU group #A ODU group #A
  • ODU group #A ODU group #A
  • the ODU# group A includes only the data in the PMD lane group #A.
  • the transport network device 111 can carry a signal that needs to be transmitted to the communication device 130 (or the transport network device 131) (ie, a signal carried by the PMD lane group #B) to an ODU group composed of one or more ODUs ( Hereinafter, in order to facilitate understanding and distinction, it is recorded as: ODU group #B), wherein the ODU group #B is only used to carry data that needs to be transmitted to the communication device 130 (or the transport network device 131), or The ODU# group B includes only the data in the PMD lane group #B.
  • the transport network device 111 may perform optical layer cross-connection on each PMD lane signal with a granularity of PMD lane (for example, optical lane). Or, in addition, cross-scheduling to transmit each PMD lane signal to the receiving device to which it is transmitted.
  • a granularity of PMD lane for example, optical lane
  • the transport network device 111 can parse the received signal to determine a PCS lane group corresponding to each signal. Further (for example, based on the first mapping relationship information or the first control information described above), the receiving device to which each signal needs to be transmitted is determined.
  • the transport network device 111 may perform ODU encapsulation processing on the signal from the transmitting device according to the PCS lane group, so that one ODU is only used to carry a signal that needs to be transmitted to one receiving device.
  • the transport network device 111 may The signals that need to be transmitted to the communication device 120 (or the transport network device 121) (ie, the signals carried by the PCS lane group #A) are carried in an ODU group composed of one or more ODUs (hereinafter, for ease of understanding and Distinguish, denoted as: ODU group #A'), wherein the ODU group #A' is only used to carry data that needs to be transmitted to the communication device 120 (or the transport network device 121), or the ODU# group A 'Include only the data in this PCS lane group #A.
  • the transport network device 111 can carry each signal (that is, a signal carried by the PCS lane group #B) that needs to be transmitted to the communication device 130 (or the transport network device 131) to an ODU group composed of one or more ODUs.
  • ODU group #B' where the ODU group #B' is only used for the bearer to be transmitted to The data of the communication device 130 (or the transport network device 131), or the ODU# group B, only includes the data in the PCS lane group #B.
  • the transport network device 121 can transmit the received signal (e.g., optical signal) to the communication device 120.
  • the communication device 120 may perform photoelectric conversion processing, analog-to-digital conversion, and the like on the received optical signal to acquire PMD layer data (specifically, data transmitted to one or more PMD lanes of the communication device 120), and
  • the PCS layer data (specifically, data transmitted to one or more PCS lanes of the communication device 120) is acquired by, for example, bit interleaving, and thereafter, the communication device 120 follows the size of the PCS lane number corresponding to the AM.
  • the PCS lane is rearranged and bit block decoded.
  • the communication device 120 Since the PCS lane of the PCS layer sent to the communication device 120 may not start from the PCS lane numbered 0, the communication device 120 only needs to be sorted according to the PCS lane number size. Thereby, the FlexE client signal #A that the communication device 110 needs to transmit to the communication device 120 can be recovered.
  • the processing procedure of the transport network device 131 is similar to the processing procedure of the transport network device 121 described above.
  • the processing procedure of the communication device 130 is similar to the processing procedure of the communication device 120.
  • detailed description thereof will be omitted.
  • FIG. 6 is a schematic diagram of a bit block distribution process of a transmitting device according to an embodiment of the present invention.
  • the bandwidth of the FlexE client signal #A acquired by the communication device 110 is 150G
  • the bandwidth of the FlexE client signal #B acquired is 50G
  • 40 PCS lanes (recorded as: PCS lane #0 to PCS lane #39) are arranged in the communication device 110
  • the PMA layer performs 40:4 conversion, that is, four PMD lanes are arranged in the communication device 110 ( For example, optical lane, recorded as: optical lane #0 ⁇ optical lane #3), each optical lane has a bandwidth of 50G.
  • the communication device 110 and the transport network device 111 can agree that a PCS lane group composed of PCS lane #0 to PCS lane #29 is assigned to the communication device 120, and PCS lane consisting of PCS lane #30 to PCS lane #39 The group is assigned to the communication device 130; or an optical lane group (an example of a PMD lane group) composed of optical lane #0 to optical lane #2 is assigned to the communication device 120, and an optical lane group composed of optical lane #3 is Assigned to the communication device 130.
  • the communication device 110 can assign the FlexE client signal #A to the serial number 0-29.
  • the PCS lane ie, PCS lane #0 to PCS lane #29) assigns the FlexE client signal #B to the PCS lane numbered 30 to 39 (ie, PCS lane #30 to PCS lane #39).
  • the communication device 110 can adapt PCS lane #0 to PCS lane #29 to an optical lane numbered 0 to 2 (ie, optical lane #0 to optical lane #2), and PCS lane #30 to PCS lane #39 Adapted to the optical lane numbered 3 (ie, optical lane #3).
  • the transport network device 111 can transmit the data in the optical lane #0 to the optical lane #2 or the data in the PCS lane #0 to PCS lane #29 to the communication device 120, and the data in the optical lane #3 or the PCS lane #30 The data in the ⁇ PCS lane #39 is transmitted to the communication device 130.
  • the jth bit block in one PCS lane #i can be represented as i-j.
  • "0-1" in Fig. 6 indicates a bit block having a bit number of 1 in PCS lane #0.
  • FIG. 7 is a schematic diagram of a bit block distribution process of a receiving device according to an embodiment of the present invention.
  • two PMD lanes are set in the communication device 130 (for example, optical lane, which is referred to as: optical lane #0' to optical lane #1'), and the bandwidth of each optical lane is 50G, and the PMA layer is provided.
  • a 2:20 conversion is performed, that is, 20 PCS lanes (recorded as: PCS lane #0' to PCS lane #19') are arranged in the communication device 130.
  • the communication device 130 can distribute the bit blocks in the Optical Lane to the PCS lane according to the existing manner, that is, only one channel of the optical lane #0' to optical lane #1' receives the data, PCS lane #0' ⁇ Only 10 channels in PCS lane #19' receive data.
  • the communication device 130 receives the signal transmitted by the communication device 110 through the optical lane #3 through the optical lane #1', and the communication device 130 can adapt the optical lane #1' to 10 channels in PCS lane #0' ⁇ PCS lane#19' (for example, a channel with a single number), therefore, the serial number of the AM identifier in the signal does not match the serial number of the actually assigned PCS lane, for example, PCS lane In #1', it is actually a bit block of PCS lane #30.
  • the communication device 130 only needs to reorder the received bit blocks according to the sequence number corresponding to the AM therein, and it is not necessary to check whether or not the PCS should be received.
  • the serial number of lane matches.
  • one of the optical lanes of the communication device 130 (ie, The PCS lane #0') shown in Fig. 7 is not used.
  • the decapsulated data is sequentially sent to the MAC layer in the order of PCS lane. Since the free bit block is discarded at the PCS layer, the data transmitted by the communication device 110 through the PCS lane #30 to the PCS lane #39 is sequentially sent to the MAC layer in accordance with the conventional practice. Therefore, the prior art can be used in combination.
  • the sending device allocates the at least two FlexE client signals to the multiple PCS lanes, and generates a PMD lane signal according to the multiple PCS lanes, including:
  • the transmitting device determines the number of PCS lanes included in each PCS lane group of the at least two PCS lane groups according to the bandwidth of each FlexE client signal in the at least two FlexE client signals, and allocates each FlexE client signal To the corresponding PCS lane group in the PCS lane group;
  • the sending device determines the number of PMD lanes included in one PMD lane group according to the bandwidth of each FlexE client signal in the at least two FlexE client signals, and adapts each PCS lane in the at least two PCS lane groups to The PMD lane in the one PMD lane group to generate a PMD lane signal.
  • the process of the communication device 110 determining the PCS lane group may be similar to the case 1, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the communication device 110 when the communication device 110 adapts each PCS lane in the PCS lane group to the PMD lane, the data in each PCS lane can be carried in each PMD lane.
  • the communication device 110 can Each PCS lane is adapted to each PMD lane in a manner known in the prior art.
  • the transport network device 111 may perform a PCS layer decapsulation process on the received signal to determine data corresponding to each PCS lane group in the signal, and perform ODU encapsulation on the received signal according to each PCS lane group. Processing so that an ODU is only used to carry signals that need to be transmitted to a receiving device, or an ODU is only used to carry data in a PCS lane group.
  • the transmitting device distributes at least two FlexE client signals to multiple PCS lanes. And generating a PMD lane signal according to the multiple PCS lanes, including:
  • the transmitting device determines the number of PCS lanes included in one PCS lane group according to the bandwidth of each FlexE client signal in the at least two FlexE client signals, and assigns at least two FlexE client signals to the PCS in the one PCS lane group.
  • the transmitting device determines the number of PMD lanes included in each PMD lane group of the at least two PMD lane groups according to the bandwidth of each FlexE client signal in the at least two FlexE client signals, and each FlexE client signal is The corresponding bit block in the one PCS lane group is adapted to the PMD lane in the PMD lane group corresponding to the same FlexE client signal to generate a PMD lane signal.
  • the communication device 110 may allocate each FlexE client signal to multiple PCS lanes. Unlike Case 1 and Case 2, PCS lane is not grouped in Case 3, ie, Each PCS lane carries data (eg, bit blocks) of multiple FlexE client signals. For example, communication device 110 can perform PCS lane assignments in a manner consistent with the prior art.
  • the communication device 110 needs to record the position (or serial number) of the bit block of each FlexE client signal in each PCS lane.
  • the communication device 110 can determine each PMD lane group in the manner described in Case 1, wherein each PMD lane group carries only data of one FlexE client signal. (ie, a bit block), and the communication device 110 can adapt the data of each FlexE client signal to the corresponding PMD according to the position of the bit block of each FlexE client signal recorded in each PCS lane as described above. Lane group.
  • the transport network device 111 may perform a PMD layer decapsulation process on the received signal to determine data corresponding to each PMD lane group in the signal, and perform ODU encapsulation on the received signal according to each PMD lane group. Processing so that an ODU is only used to carry signals that need to be transmitted to a receiving device, or an ODU is only used to carry data in a PMD lane group.
  • the transport network device 111 may be in PMD lane (for example, optical lane).
  • PMD lane for example, optical lane
  • each PMD lane signal is optically cross-connected, or cross-scheduled, to transmit each PMD lane signal to the receiving device to which it is transmitted.
  • the transport network device can respond to the PCS lane group corresponding to the received signal or The PMD lane group distinguishes at least two FlexE client signals, so the transport network device can accurately transmit the at least two FlexE client signals to the receiving without performing MAC layer detection on the received signal.
  • the end device can reduce the processing load of the transport network device, reduce the processing time of the transport network device, and improve the forwarding efficiency and system throughput of the transport network device.
  • FIG. 11 is a schematic diagram of an interaction process of a method 600 of processing a resilient Ethernet client signal, in accordance with an embodiment of the present invention.
  • the process of receiving the signals transmitted by both the communication device 110 and the communication device 120 via the transport network device 131 is taken as an example for the communication device 130 (ie, an example of the receiving device), and the processing of the embodiment of the present invention is flexible.
  • the specific process of the method of the network client signal is described in detail.
  • the method 600 includes:
  • the receiving device acquires a physical medium related channel PMD lane signal, where the PMD lane signal corresponds to at least two PMD lane groups, and the at least two PMD lane groups and the at least two resilient Ethernet FlexE client signals are in one-to-one correspondence, the at least two FlexEs
  • Each FlexE client signal in the customer signal is carried in the corresponding PMD lane group, and each of the at least two PMD lane groups includes at least one PMD lane, and one PMD lane belongs to only one PMD lane group;
  • the receiving device determines, according to the at least two PMD lane groups, at least two physical coding sub-layer channel PCS lane groups, the at least two PMD lane groups and the at least two PCS lane groups are in one-to-one correspondence, and at least two PCS lane groups
  • Each PCS lane group includes at least one PCS lane, and one PCS lane belongs to only one PMD lane group;
  • the receiving device adapts each PMD lane in each PMD lane group to each PCS lane in the corresponding PCS lane group;
  • the receiving device recovers the at least two FlexE client signals according to the at least two PCS lane groups.
  • the communication device 110 can acquire a FlexE client signal that needs to be transmitted to the communication device 130 (hereinafter, for ease of understanding and explanation, it is recorded as: FlexE client signal #C), and the communication device 120 can acquire the need.
  • the FlexE client signal sent to the communication device 130 (hereinafter, for ease of understanding and explanation, is recorded as: FlexE client signal #D).
  • the FlexE client signal #C and the FlexE client signal #D may be MAC layer data obtained after MAC layer encapsulation processing, and the MAC layer encapsulation processing method and process It can be similar to the prior art, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the communication device 110 can perform physical layer encapsulation processing on the FlexE client signal #C.
  • the communication device 110 may be based on the FlexE client.
  • Signal #C and FlexE client signal #E are the receiving devices, and FlexE client signal #C and FlexE client signal #E are assigned to different PCS lane groups or PMD lane groups to generate PMD lane signals, for example, Optical lane signals.
  • the process can be similar to the processing for the FlexE client signal #A and the FlexE client signal #B performed by the communication device 110 shown in FIG. 5 described above, and a detailed description thereof will be omitted herein for avoiding redundancy.
  • the communication device 110 can assign the FlexE client signal #C to the plurality of PCS lanes in a manner similar to the prior art, and adapt the PCS lane to one or Multiple PMD lanes to generate a PMD lane signal, for example, an Optical lane signal.
  • the communication device 110 transmits the PMD lane signal generated as described above to the transport network device 111.
  • the transport network device 111 can parse the received signal to transmit data corresponding to the FlexE client signal #C to the communication device 130 (or the transport network device 131 communicatively coupled to the communication device 130) ). This process can be compared to the prior art The processing is similar to the processing of the transport network device 111 shown in FIG. 5. Here, in order to avoid redundancy, a detailed description thereof will be omitted.
  • the communication device 120 can transmit data corresponding to the FlexE client signal #D to the communication device 130 via the transport network device 121.
  • the communication device 130 may pass through a PMD lane group consisting of one or more PMD lanes at the same time (hereinafter, for ease of understanding and differentiation, PMD lane group #C)
  • PMD lane group #C The data corresponding to the FlexE client signal #C is received, and the FlexE client signal is received through the PMD lane group consisting of one or more PMD lanes (hereinafter, for easy understanding and differentiation, recorded as PMD lane group #D)
  • PMD lane group #D The data corresponding to D.
  • the indication information indicating the PMD lane group to which each PMD lane belongs is pre-stored in the communication device 130, and one PMD lane group only carries one FlexE client signal (or , a signal from a transmitting device).
  • the communication device 130 may determine a plurality of PCS lane groups, and the plurality of PCS lane groups are in one-to-one correspondence with the plurality of PMD lane groups, and each PCS lane group only carries the corresponding one. PMD lane group data.
  • the communication device 130 may adapt the PMD lane group #C to a PCS lane group composed of one or more PCS lanes by, for example, bit interleaving (hereinafter, For ease of understanding and differentiation, record PCS lane group #C) and adapt PMD lane group #D to PCS lane group consisting of one or more PCS lanes (hereinafter, for ease of understanding and differentiation, record PCS lane Group #D).
  • the communication device 130 eg, the FlexE and PCS lane rearrangement modules of the communication device 130
  • the communication device 130 can recover the FlexE client signal #C based on the data from the PMD lane group #C in the PCS lane group #C;
  • the FlexE client signal #D is restored based on the data from the PMD lane group #D.
  • the communication device 130 (eg, the MAC receiving module of the communication device 130) can perform, for example, Ethernet decapsulation processing on the FlexE client signal #C to obtain data transmitted by the communication device 110; and, can perform the FlexE client signal #D For example, Ethernet decapsulation processing, thereby obtaining data transmitted by the communication device 120.
  • the receiving device recovers the at least two FlexE client signals according to the at least two PCS lane groups, including:
  • the receiving end device recovers the first FlexE client signal according to the encoding mode and the first PCS lane group, wherein the first PCS lane group corresponds to the first PMD lane group.
  • the PCS lane number indicated by the AM may be inconsistent with the sequence number of the PCS lane included in the PCS lane group, or the encoding mode of the transmitting device for the AM does not match the decoding mode of the AM of the communication device 130. Therefore, the communication device 130 only needs to reorder the received bit blocks according to the sequence number corresponding to the AM therein, without checking whether the serial number of the PCS lane that should be received matches, and the communication device 130 according to the encoding mode of the AM. Select the corresponding decoding method to decode.
  • FIG. 12 is a schematic diagram of a bit block distribution process of a transmitting device according to an embodiment of the present invention. As shown in FIG. 12, it is assumed that the bandwidth of the FlexE client signal #C acquired by the communication device 110 is 150G, the bandwidth of the FlexE client signal #D acquired by the communication device 120 is 50G, and 30 PCS lanes are arranged in the communication device 110.
  • the PMA layer performs 30:3 conversion, that is, three PMD lanes are configured in the communication device 110 (for example, optical lane, Optical lane, recorded as: optical lane #0-C ⁇ optical lane #2-C, serial number 0 ⁇ 2), the bandwidth of each optical lane is 50G.
  • PCS lanes (recorded as: PCS lane #0-D to PCS lane #9-D, serial numbers 0 to 9) are arranged, and the PMA layer performs 10:1 conversion, that is, the communication device 110 There is one PMD lane (for example, optical lane, optical lane, recorded as: optical lane #0-D, sequence number 0), and the bandwidth of the optical lane is 50G.
  • PMD lane for example, optical lane, optical lane, recorded as: optical lane #0-D, sequence number 0
  • the bandwidth of the optical lane is 50G.
  • the communication device 110 can assign the FlexE client signal #C to the PCS lane numbered 0 to 29 (ie, PCS lane #0-C to PCS lane #29-C), and the communication device 120 can transmit the FlexE client signal #D Assigned to PCS lane numbered 0 to 9 (ie, PCS Lane#0-D ⁇ PCS lane#9-D).
  • the communication device 110 can adapt the PCS lane #0-C to PCS lane #29-C to an optical lane numbered 0 to 2 (ie, optical lane #0-C to optical lane #2-C), communication Device 120 may adapt PCS lane #0-D ⁇ PCS lane #9-D to an optical lane numbered 0 (ie, optical lane #0-D).
  • FIG. 13 is a schematic diagram of a bit block distribution process of a receiving device according to an embodiment of the present invention.
  • the communication device 130 for example, optical lane, which is referred to as: optical lane #0 to optical lane #3), and the number is 0 to 3
  • each optical lane is provided.
  • the bandwidth is 50G
  • the PMA layer performs a 4:40 conversion, that is, 40 PCS lanes (recorded as: PCS lane #0 to PCS lane #39), numbered 0 to 39) are arranged in the communication device 130.
  • the communication device 130 may group the optical lane #0" to the optical lane #3" according to the size of the data sent by the communication device 110 and the communication device 120, by way of example and not limitation, by optical lane# 0" ⁇ optical lane#2" constitutes PMD lane group #C, which can constitute PMD lane group #D by optical lane #3". That is, the PMD lane group #C is used to receive from optical lane #0-C ⁇ optical lane The signal of #2-C, the PMD lane group #D is used to receive signals from optical lane #0-D.
  • the communication device 130 may determine a plurality of PCS lane groups according to the number of PMD lanes included in each PMD lane group (or the bandwidth of data received by each PMD lane group), where multiple PCS lane groups and A plurality of PMD lane groups are associated with each other, and each PCS lane group is only used to carry data in the corresponding PMD lane group.
  • the PCS lane group may be formed by PCS lane #0" to PCS lane #29". #C, PCS lane group #D can be constituted by PCS lane #30" to PCS lane #39".
  • the communication device 130 can adapt each PMD lane in the PMD lane group #C to each PCS lane in the PCS lane group #C, and adapt each PMD lane in the PMD lane group #D to the PCS lane group# Each PCS lane in D.
  • the communication device 130 can perform PCS lane reordering in the PCS lane group #C to recover the FlexE client signal #C.
  • the communication device 130 can perform PCS lane reordering in the PCS lane group #D to recover the FlexE client signal #D.
  • each data in PCS lane group #D The PCS lane number carried is the serial number of PCS lane #0-D ⁇ PCS lane#9-D, that is, 0-9, and each PCS lane in PCS lane group #D (ie, PCS lane#30) ⁇ PCS The number of lane #39”) is 30 to 39. That is, the serial number of the PCS lane used by the transmitting device and the receiving device does not match, or the serial number indicated by the AM of the data in the PCS lane group #D does not match the serial number of the PCS lane included in the PCS lane group #D.
  • the communication device 130 can re-require whether the PCS lane number corresponding to the AM is consistent with the CS lane number actually used by the communication device 130, and only needs to be re-sized according to the size of the PCS lane number corresponding to the AM of each data in the PCS lane group. Sort it.
  • the encoding mode of the transmitting device may not match the decoding mode of the AM of the communications device 130. Therefore, the communications device 130 needs to obtain the encoding mode of the transmitting device for the AM, and select a corresponding decoding manner according to the encoding mode of the AM. Decode.
  • the receiving device can restore the FlexE client signals carried in the PMD lane groups in each PCS lane group by adapting the at least two PMD lane groups to at least two PCS lane groups. Realizing that the receiving device receives FlexE client signals from different transmitting devices at the same time can improve system throughput.
  • the processing of the receiving device enumerated above is only an exemplary description, and the present invention is not particularly limited.
  • the receiving device may also receive signals from multiple sending devices through the same PMD lane group, that is, each PMD lane bearer. There are multiple signals from the transmitting device.
  • each transmitting device can agree to the AM encoding mode, so that different transmitting devices use different AM encoding modes. Therefore, the receiving device can distinguish the sending device from which the signal is derived according to the AM encoding manner. So that signals from different transmitting devices can be recovered.
  • FIG. 14 is a schematic structural diagram of an apparatus 700 for processing an elastic Ethernet signal according to an embodiment of the present invention. As shown in FIG. 14, the apparatus 700 includes:
  • the obtaining unit 710 is configured to obtain at least two resilient Ethernet FlexE client signals.
  • the generating unit 720 is configured to allocate the at least two FlexE client signals to the plurality of physical coding sublayer channels PCS lane, and generate a physical medium related channel PMD lane signal according to the multiple PCS lanes, where
  • the plurality of PCS lanes are divided into at least two PCS lane groups, the at least two FlexE client signals are in one-to-one correspondence with at least two PCS lane groups, and each of the at least two FlexE client signals is assigned to Corresponding PCS lane group, each PCS lane group of at least two PCS lane groups includes at least one PCS lane, and one PCS lane belongs to only one PCS lane group; or
  • the PMD lane signal corresponds to at least two PMD lane groups, the at least two FlexE client signals are in one-to-one correspondence with at least two PMD lane groups, and each of the at least two FlexE client signals is assigned to the corresponding one.
  • each of the at least two PMD lane groups includes at least one PMD lane, and one PMD lane belongs to only one PMD lane group.
  • the generating unit is specifically configured to determine, according to a bandwidth of each FlexE client signal in the at least two FlexE client signals, a quantity of PCS lanes included in each PCS lane group of the at least two PCS lane groups, and Assign each FlexE client signal to the PCS lane in the corresponding PCS lane group;
  • the generating unit is specifically configured to determine, according to a bandwidth of each FlexE client signal in the at least two FlexE client signals, a quantity of PCS lanes included in each PCS lane group of the at least two PCS lane groups, and Assign each FlexE client signal to the PCS lane in the corresponding PCS lane group;
  • the PCS lane in the PCS lane group is adapted to the PMD lane in the PMD lane group corresponding to the same FlexE client signal to generate a PMD lane signal.
  • the generating unit is configured to determine, according to the bandwidth of each FlexE client signal in the at least two FlexE client signals, the number of PCS lanes included in one PCS lane group, and allocate the at least two FlexE client signals to the In a PCS lane group PCS lane;
  • the generating unit is specifically configured to perform encoding processing on the alignment mark AM corresponding to each PCS lane based on the same encoding manner.
  • Each unit or module in the device 700 is used to perform the actions and functions performed by the transmitting device (for example, the communication device 110) in the above method 500.
  • the transmitting device for example, the communication device 110
  • the transmitting device for example, the communication device 110
  • the transport network device can respond to the PCS lane group corresponding to the received signal or The PMD lane group distinguishes at least two FlexE client signals, so the transport network device can accurately transmit the at least two FlexE client signals to the receiving without performing MAC layer detection on the received signal.
  • the end device can reduce the processing load of the transport network device, reduce the processing time of the transport network device, and improve the forwarding efficiency and system throughput of the transport network device.
  • FIG. 15 is a schematic structural diagram of an apparatus 800 for processing an elastic Ethernet signal according to an embodiment of the present invention. As shown in FIG. 15, the apparatus 800 includes:
  • the receiving unit 810 is configured to receive a physical medium related channel PMD lane signal sent by the sending device, where the PMD lane signal is that the sending device allocates at least two FlexE client signals to the plurality of physical coding sublayer channels PCS lane, according to the Generated by PCS lane;
  • the generating unit 820 is configured to: when the PMD lane signal corresponds to at least two PCS lane groups, the transport network device performs encapsulation processing on the signal according to the at least two PCS lane groups to generate at least two lights a channel data unit ODU group, wherein the at least two PCS lane groups are in one-to-one correspondence with the at least two ODU groups, and each of the at least two ODU groups includes at least one ODU, and one ODU is only In an ODU group;
  • the transport network device When the signal corresponds to at least two PMD lane groups, the transport network device performs encapsulation processing on the signals according to the at least two PMD lane groups to generate at least two optical channel data unit ODU groups, where The at least two PMD lane groups are in one-to-one correspondence with the at least two ODU groups, and each of the at least two ODU groups includes at least one ODU, and one ODU belongs to only one ODU group.
  • Each unit or module in the device 800 is used to perform the actions and functions performed by the transmitting end transport network device (for example, the transport network device 111) in the above method 500.
  • the transmitting end transport network device for example, the transport network device 111
  • FIG. 16 is a schematic structural diagram of an apparatus 900 for processing an elastic Ethernet signal according to an embodiment of the present invention. As shown in FIG. 16, the apparatus 900 includes:
  • the acquiring unit 910 is configured to acquire a physical medium related channel PMD lane signal, where the PMD lane signal corresponds to at least two PMD lane groups, and the at least two PMD lane groups and the at least two resilient Ethernet FlexE client signals are in one-to-one correspondence.
  • Each of the FlexE client signals in at least two FlexE client signals is carried in the corresponding PMD lane group, and each of the at least two PMD lane groups includes at least one PMD lane, and one PMD lane belongs to only one PMD lane group. ;
  • a determining unit 920 configured to determine, according to the at least two PMD lane groups, at least two physical coding sublayer channel PCS lane groups, the at least two PMD lane groups and the at least two PCS lane groups are in one-to-one correspondence, at least two Each PCS lane group in the PCS lane group includes at least one PCS lane, and one PCS lane belongs to only one PMD lane group;
  • the adapting unit 930 is configured to adapt each PMD lane in each PMD lane group to each PCS lane in the corresponding PCS lane group;
  • the recovery unit 940 is configured to recover the at least two FlexE client signals according to the at least two PCS lane groups.
  • the acquiring unit is further configured to acquire, by using a coding mode used by the sending end device of the first FlexE client signal to encode the alignment mark AM corresponding to the first FlexE client signal, where the first FlexE client signal is used.
  • a coding mode used by the sending end device of the first FlexE client signal to encode the alignment mark AM corresponding to the first FlexE client signal, where the first FlexE client signal is used.
  • the recovery unit is specifically configured to recover according to the coding mode and the first PCS lane group.
  • the first FlexE client signal is output, wherein the first PCS lane group corresponds to the first PMD lane group.
  • Each unit or module in the device 900 is used to perform the actions and functions performed by the receiving device (for example, the communication device 130) in the above method 600, and a detailed description thereof will be omitted herein to avoid redundancy.
  • the receiving device can restore the FlexE client signals carried in the PMD lane groups in each PCS lane group by adapting the at least two PMD lane groups to at least two PCS lane groups. Realizing that the receiving device receives FlexE client signals from different transmitting devices at the same time can improve system throughput.
  • the method and apparatus for transmitting data provided by the embodiments of the present invention may be applied to a computer, which includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a CPU, a Memory Management Unit (MMU), and a memory (also referred to as a memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, such as a Linux system, a Unix system, an Android system, an iOS system, or a Windows system.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software.
  • FIG. 17 is a schematic structural diagram of an apparatus 1000 for processing an elastic Ethernet signal according to an embodiment of the present invention.
  • the apparatus 1000 includes a processor 1010 and a transceiver 1020, and a processor 1010 and a transceiver. 1020 is connected.
  • the device 1000 further includes a memory 1030.
  • the memory 1030 is coupled to the processor 1010.
  • the device 1000 includes a bus system 1040.
  • the processor 1010, the memory 1030, and the transceiver 1020 can be connected by a bus system 1040.
  • the memory 1030 can be used to store instructions for executing the instructions stored by the memory 1030 to control the transceiver 1020 to receive information or signal.
  • the device 1000 for processing the elastic Ethernet signal may be a signal transmitting device, for example, for performing the sending device in the method 500 above (for example, The actions and functions performed by the communication device 110), in this case:
  • the processor 1010 is configured to acquire at least two resilient Ethernet FlexE client signals
  • the processor 1010 is configured to allocate the at least two FlexE client signals to the plurality of physical coding sublayer channels PCS lane, and generate a physical medium related channel PMD lane signal according to the multiple PCS lanes, where
  • the plurality of PCS lanes are divided into at least two PCS lane groups, the at least two FlexE client signals are in one-to-one correspondence with at least two PCS lane groups, and each of the at least two FlexE client signals is assigned to Corresponding PCS lane group, each PCS lane group of at least two PCS lane groups includes at least one PCS lane, and one PCS lane belongs to only one PCS lane group; or
  • the PMD lane signal corresponds to at least two PMD lane groups, the at least two FlexE client signals are in one-to-one correspondence with at least two PMD lane groups, and each of the at least two FlexE client signals is assigned to the corresponding one.
  • each of the at least two PMD lane groups includes at least one PMD lane, and one PMD lane belongs to only one PMD lane group.
  • the processor 1010 is configured to determine, according to a bandwidth of each FlexE client signal in the at least two FlexE client signals, a number of PCS lanes included in each of the at least two PCS lane groups, and Each FlexE client signal is assigned to the PCS lane in the corresponding PCS lane group, and is used to determine the number of PMD lanes included in one PMD lane group according to the bandwidth of each FlexE client signal in the at least two FlexE client signals. And adapting each PCS lane in the at least two PCS lane groups to the PMD lane in the one PMD lane group to generate a PMD lane signal.
  • the processor 1010 is configured to determine, according to a bandwidth of each FlexE client signal in the at least two FlexE client signals, a number of PCS lanes included in each of the at least two PCS lane groups, and Assigning each FlexE client signal to the PCS lane in the corresponding PCS lane group; for determining each of the at least two PMD lane groups based on the bandwidth of each FlexE client signal in the at least two FlexE client signals
  • the PMD lane group includes the number of PMD lanes, and the PCS lane in the PCS lane group corresponding to each FlexE client signal is adapted to the PMD lane in the PMD lane group corresponding to the same FlexE client signal to generate a PMD lane signal.
  • the processor 1010 is configured to determine, according to the bandwidth of each FlexE client signal in the at least two FlexE client signals, the number of PCS lanes included in one PCS lane group, and allocate the at least two FlexE client signals to the a PCS lane in a PCS lane group; and determining the number of PMD lanes included in each of the at least two PMD lane groups based on the bandwidth of each FlexE client signal in the at least two FlexE client signals, and The bit block in the one PCS lane group corresponding to each FlexE client signal is adapted to the PMD lane in the PMD lane group corresponding to the same FlexE client signal to generate a PMD lane signal.
  • the processor 1010 is configured to perform encoding processing on the alignment mark AM corresponding to each PCS lane based on the same encoding manner.
  • the transport network device can respond to the PCS lane group corresponding to the received signal or The PMD lane group distinguishes at least two FlexE client signals, so the transport network device can accurately transmit the at least two FlexE client signals to the receiving without performing MAC layer detection on the received signal.
  • the end device can reduce the processing load of the transport network device, reduce the processing time of the transport network device, and improve the forwarding efficiency and system throughput of the transport network device.
  • the device 1000 for processing the elastic Ethernet signal may be a transport network device, for example, for performing the actions and functions performed by the transmitting transport network device (for example, the transport network device 111) in the foregoing method 500.
  • the transmitting transport network device for example, the transport network device 111
  • the processor 1010 is configured to control the control transceiver 1020 to receive a physical medium related channel PMD lane signal sent by the sending device, where the PMD lane signal is that the sending device allocates at least two FlexE client signals to multiple physical coding sublayer channels PCS After lane, generated according to the plurality of PCS lanes;
  • the processor 1010 is configured to: when the PMD lane signal corresponds to at least two PCS lane groups, the transport network device performs encapsulation processing on the signal according to the at least two PCS lane groups to generate at least two lights.
  • a channel data unit ODU group wherein the at least two PCS lane groups are in one-to-one correspondence with the at least two ODU groups, and each of the at least two ODU groups includes at least one ODU, and one ODU is only In an ODU group;
  • the processor 1010 is configured to: when the signal corresponds to at least two PMD lane groups, the transport network device performs encapsulation processing on the signal according to the at least two PMD lane groups to generate at least two optical channel data units.
  • An ODU group wherein the at least two PMD lane groups are in one-to-one correspondence with the at least two ODU groups, and each of the at least two ODU groups includes at least one ODU, and one ODU belongs to only one ODU group. .
  • the device 1000 for processing the elastic Ethernet signal may be a receiving device of the signal, for example, for performing the actions and functions performed by the receiving device (for example, the communication device 130) in the method 600 described above. under:
  • the processor 1010 is configured to control the transceiver 1020 to acquire a physical medium related channel PMD lane signal, where the PMD lane signal corresponds to at least two PMD lane groups, the at least two PMD lane groups and at least two resilient Ethernet FlexE client signals and one Correspondingly, each FlexE client signal of the at least two FlexE client signals is carried in the corresponding PMD lane group, and each of the at least two PMD lane groups includes at least one PMD lane, and one PMD lane belongs only to a PMD lane group;
  • the processor 1010 is configured to determine, according to the at least two PMD lane groups, at least two physical coding sub-layer channel PCS lane groups, the at least two PMD lane groups and the at least two PCS lane groups are in one-to-one correspondence, at least two Each PCS lane group in the PCS lane group includes at least one PCS lane, and one PCS lane belongs to only one PMD lane group;
  • the processor 1010 is configured to adapt each PMD lane in each PMD lane group to each PCS lane in the corresponding PCS lane group;
  • the processor 1010 is configured to recover the at least two FlexE client signals according to the at least two PCS lane groups.
  • the processor 1010 is configured to obtain an encoding manner used by the sending end device of the first FlexE client signal to encode the alignment mark AM corresponding to the first FlexE client signal, where the first FlexE client signal is used.
  • the processor 1010 is configured to obtain an encoding manner used by the sending end device of the first FlexE client signal to encode the alignment mark AM corresponding to the first FlexE client signal, where the first FlexE client signal is used.
  • the processor 1010 is configured to obtain an encoding manner used by the sending end device of the first FlexE client signal to encode the alignment mark AM corresponding to the first FlexE client signal, where the first FlexE client signal is used.
  • the processor 1010 is configured to obtain an encoding manner used by the sending end device of the first FlexE client signal to encode the alignment mark AM corresponding to the first FlexE client signal, where the first FlexE client signal is used.
  • the processor 1010 is configured to obtain an encoding manner used by the sending end device of the first FlexE client signal to encode the alignment mark AM corresponding to the first Flex
  • the processor 1010 is configured to recover the first FlexE client signal according to the encoding mode and the first PCS lane group, where the first PCS lane group and the first PMD lane The group corresponds.
  • the receiving device can restore the FlexE client signals carried in each PMD lane group in each PCS lane group by adapting the at least two PMD lane groups to at least two PCS lane groups. Realizing that the receiving device receives FlexE client signals from different transmitting devices at the same time can improve system throughput.
  • the processor 1010 may be a central processing unit (“CPU"), and the processor 1010 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 1030 can include read only memory and random access memory and provides instructions and data to the processor 1010.
  • a portion of the memory 1030 can also include a non-volatile random access memory.
  • the memory 1030 can also store information of the device type.
  • the bus system 1040 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 1040 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1010 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1030, and the processor 1010 reads the information in the memory 1030 and performs the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be directed to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the present invention contributes in essence or to the prior art or Portions of the technical solution may be embodied in the form of a software product stored in a storage medium, including instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to execute All or part of the steps of the method described in various embodiments of the invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Communication Control (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例提供一种处理弹性以太网信号的方法和装置,该方法包括:获取至少两路FlexE客户信号;将该至少两路FlexE客户信号分配至多个PCS lane,并根据该多个PCS lane,生成PMD lane信号,其中,多个PCS lane被划分为至少两个PCS lane组,至少两路FlexE客户信号和至少两个PCS lane组一一对应,至少两路FlexE客户信号中的每路FlexE客户信号被分配至所对应的PCS lane组;或PMD lane信号对应至少两个PMD lane组,至少两路FlexE客户信号和至少两个PMD lane组一一对应,至少两路FlexE客户信号中的每路FlexE客户信号被分配至所对应的PMD lane组。能够减轻传送网设备的处理负担,减少传送网设备的处理时间,改善传送网设备的转发效率和***吞吐量。

Description

处理弹性以太网信号的方法和装置 技术领域
本发明涉及通信领域,并且更具体地,涉及处理弹性以太网信号的方法和装置。
背景技术
目前,已知一种通信技术,发送设备和接收设备通过传送网设备的转发实现信号传输,并且,已知一种通信技术,例如,弹性以太网(FlexE,Flexible Ethernet)技术,在发送设备发送给传送网设备的信号中携带有多路客户信号(例如,需要发送至不同接收设备的信号),此情况下,传送网设备需要对所接收到的信号的媒体访问控制(MAC,Media Access Control)层进行探测,以确定所述信号的目的MAC地址,进而根据该目的MAC地址,对信号进行转发,以将各客户信号准确地发送至接收设备。
但是,对MAC层进行探测增加了传送网设备的处理负担,延长了传送网设备的处理时间,进而影响了传送网设备的转发效率和***吞吐量。
发明内容
本发明实施例提供一种处理弹性以太网信号的方法和装置,能够减轻传送网设备的处理负担,减少传送网设备的处理时间,改善传送网设备的转发效率和***吞吐量。
第一方面,提供了一种处理弹性以太网信号的方法,该方法包括:发送设备获取至少两路弹性以太网FlexE客户信号;该发送设备将该至少两路FlexE客户信号分配至多个物理编码子层通道PCS lane,并根据该多个PCS lane,生成物理介质相关通道PMD lane信号,其中该多个PCS lane被划分为至少两个PCS lane组,该至少两路FlexE客户信号和至少两个PCS lane组一一对应,该至少两路FlexE客户信号中的每路FlexE客户信号被分配至所对应的PCS lane组,至少两个PCS lane组中的每个PCS lane组包括至少一个PCS lane,一个PCS  lane仅属于一个PCS lane组;或该PMD lane信号对应至少两个PMD lane组,该至少两路FlexE客户信号和至少两个PMD lane组一一对应,该至少两路FlexE客户信号中的每路FlexE客户信号被分配至所对应的PMD lane组,该至少两个PMD lane组中的每个PMD lane组包括至少一个PMD lane,一个PMD lane仅属于一个PMD lane组。
根据上述处理弹性以太网信号的方法,通过使发送设备将至少两路FlexE客户信号分配至至少两个PCS lane组或PMD lane组,传送网设备能够根据所接收到的信号所对应PCS lane组或PMD lane组,对该至少两路FlexE客户信号进行区分,因此,传送网设备能够在无需对所接收到的信号进行MAC层探测的情况下,将该至少两路FlexE客户信号准确地发送至接收端设备,能够减轻传送网设备的处理负担,减少传送网设备的处理时间,改善传送网设备的转发效率和***吞吐量。
结合第一方面,在第一方面的第一种实现方式中,该发送设备将该至少两路FlexE客户信号分配至多个PCS lane,并根据该多个PCS lane,生成PMD lane信号,包括:该发送设备根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PCS lane组中的每个PCS lane组包括的PCS lane的数量,并将每路FlexE客户信号分配至所对应的PCS lane组中的PCS lane;该发送设备根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定一个PMD lane组包括的PMD lane的数量,并将该至少两个PCS lane组中的各PCS lane适配至该一个PMD lane组中的PMD lane,以生成PMD lane信号。
结合第一方面及其上述实现方式,在第一方面的第二种实现方式中,该发送设备将该至少两路FlexE客户信号分配至多个PCS lane,并根据该多个PCS lane,生成PMD lane信号,包括:该发送设备根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PCS lane组中的每个PCS lane组包括的PCS lane的数量,并将每路FlexE客户信号分配至所对应的PCS lane组中的PCS lane;该发送设备根据该至少两路FlexE客户信号中的每路FlexE客户信号 的带宽,确定至少两个PMD lane组中的每个PMD lane组包括的PMD lane的数量,并将每路FlexE客户信号所对应的PCS lane组中的PCS lane适配至同一FlexE客户信号所对应的PMD lane组中的PMD lane,以生成PMD lane信号。
结合第一方面及其上述实现方式,在第一方面的第三种实现方式中,该发送设备将该至少两路FlexE客户信号分配至多个PCS lane,并根据该多个PCS lane,生成PMD lane信号,包括:该发送设备根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定一个PCS lane组包括的PCS lane的数量将该至少两路FlexE客户信号分配至该一个PCS lane组中的PCS lane;该发送设备根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PMD lane组中的每个PMD lane组包括的PMD lane的数量,并将每路FlexE客户信号所对应的该一个PCS lane组中的比特块适配至同一FlexE客户信号所对应的PMD lane组中的PMD lane,以生成PMD lane信号。
结合第一方面及其上述实现方式,在第一方面的第四种实现方式中,当该该多个PCS lane被划分为至少两个PCS lane组时,在将该至少两路FlexE客户信号分配至多个PCS lane的过程中,该方法还包括:该发送设备基于相同的编码方式,对每个PCS lane所对应的对齐标记AM进行编码处理。
根据上述处理弹性以太网信号的方法,由于使用相同的编码方式对各路信号中的AM进行编码处理,能够简化处理过程,从而能够提高本发明的处理弹性以太网信号的方法的效率。
第二方面,提供了一种处理弹性以太网客户信号的方法,该方法包括:接收设备获取物理介质相关通道PMD lane信号,该PMD lane信号对应至少两个PMD lane组,该至少两个PMD lane组和至少两路弹性以太网FlexE客户信号和一一对应,该至少两路FlexE客户信号中的每路FlexE客户信号承载于所对应的PMD lane组,至少两个PMD lane组中的每个PMD lane组包括至少一个PMD lane,一个PMD lane仅属于一个PMD lane组;该接收设备根据该至少两个PMD lane 组,确定至少两个物理编码子层通道PCS lane组,该至少两个PMD lane组和该至少两个PCS lane组一一对应,至少两个PCS lane组中的每个PCS lane组包括至少一个PCS lane,一个PCS lane仅属于一个PMD lane组;该接收设备将每个PMD lane组中的各PMD lane适配至所对应的PCS lane组中的各PCS lane;该接收设备根据该至少两个PCS lane组,恢复出该至少两路FlexE客户信号。
根据上述处理弹性以太网信号的方法,通过使接收设备将至少两个PMD lane组适配至至少两个PCS lane组,在各PCS lane组分别恢复各PMD lane组中承载的FlexE客户信号,能够实现接收设备在同一时段接收来自不同发送设备的FlexE客户信号,能够提高***吞吐量。
结合第二方面,在第二方面的第一种实现方式中,该接收设备根据该至少两个PCS lane组,恢复出该至少两路FlexE客户信号,包括:该接收端设备获取第一FlexE客户信号的发送端设备对该第一FlexE客户信号所对应的对齐标记AM进行编码处理时使用的编码方式,其中,该第一FlexE客户信号与第一PMD lane组相对应;该接收端设备根据该编码方式和第一PCS lane组,恢复出该第一FlexE客户信号,其中,该第一PCS lane组与该第一PMD lane组相对应。
第三方面,提供了一种处理弹性以太网客户信号的方法,该方法包括:传送网设备接收发送设备发送的物理介质相关通道PMD lane信号,该PMD lane信号是该发送设备在将至少两路FlexE客户信号分配至多个物理编码子层通道PCS lane后,根据该多个PCS lane生成的;当该PMD lane信号对应至少两个PCS lane组时,该传送网设备根据该至少两个PCS lane组,对该信号进行封装处理,以生成至少两个光通道数据单元ODU组,其中,该至少两个PCS lane组与该至少两个ODU组一一对应,该至少两个ODU组中的每个ODU组包括至少一个ODU,一个ODU仅属于一个ODU组;
当该PMD lane信号对应至少两个PMD lane组,该传送网设备根据该至少两个PMD lane组,对该信号进行封装处理,以生成至少两个光通道数据单元ODU组,其中,该至少两个PMD lane组与该 至少两个ODU组一一对应,该至少两个ODU组中的每个ODU组包括至少一个ODU,一个ODU仅属于一个ODU组。
第四方面,提供了一种处理弹性以太网客户信号的装置,包括用于执行上述第一方面以及第一方面的各实现方式中的各步骤的单元。
第五方面,提供了一种处理弹性以太网客户信号的装置,包括用于执行上述第二方面以及第一方面的各实现方式中的各步骤的单元。
第六方面,提供了一种处理弹性以太网客户信号的装置,包括用于执行上述第三方面以及第一方面的各实现方式中的各步骤的单元。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是适用本发明实施例的处理弹性以太网信号的方法和装置的通信***的一例的示意图。
图2是适用本发明实施例的处理弹性以太网信号的方法的设备的一例的示意图。
图3是适用本发明实施例的处理弹性以太网信号的方法的设备的另一例的示意图。
图4是适用本发明实施例的处理弹性以太网信号的方法的设备的再一例的示意图。
图5是根据本发明一实施例的处理弹性以太网信号的方法的交互过程的示意图。
图6是根据本发明一实施例的发送设备的比特块分发过程的示意图。
图7是根据本发明一实施例的接收设备的比特块分发过程的示意图。
图8是根据本发明一实施例的AM的结构的示意图。
图9是根据本发明一实施例的AM的编码方式的示意图。
图10是根据本发明另一实施例的AM的编码方式的示意图。
图11是根据本发明另一实施例的处理弹性以太网信号的方法的交互过程的示意图。
图12是根据本发明另一实施例的发送设备的比特块分发过程的示意图。
图13是根据本发明另一实施例的接收设备的比特块分发过程的示意图。
图14是根据本发明一实施例的处理弹性以太网信号的装置的示意性结构图。
图15是根据本发明另一实施例的处理弹性以太网信号的装置的示意性结构图。
图16是根据本发明再一实施例的处理弹性以太网信号的装置的示意性结构图。
图17是根据本发明一实施例的处理弹性以太网信号的设备的示意性结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
首先,结合图1对适用本发明实施例的处理弹性以太网信号的方法和装置的通信***的架构以及该通信***中各设备的功能和结构进行说明。图1示出了本发明实施例的处理弹性以太网信号的方法和装置所适用于的通信***的一例的示意性结构图。
在本发明实施例中,该通信***包括至少三个通信设备,例如,如图1所示,该通信***可以包括通信设备110,通信设备120和通信设备130。
并且,在本发明实施例中,该通信设备110,通信设备120和通 信设备130彼此之间通过传送网络进行通信。
作为示例而非限定,在本发明实施例中,该传送网络可以是例如,波分复用(WDM,Wavelength Division Multiplexing)、光传送网(OTN,Optical Transport Network)网络等。
在本发明实施例中,传送网络可以包括多个传送网设备,例如,如图1所示,该通信***可以包括传送网设备111,传送网设备121和传送网设备131。
如图1所示,传送网设备111与通信设备110通信连接,以下,不失一般性,以传送网设备111与通信设备110之间的交互为例,对通信设备之间的信号传输过程为例进行说明。
具体地说,通信设备110在向其他通信设备(例如,通信设备120或通信设备130等)发送信号时,该通信设备110可以生成信号,并将该信号传输至传送网设备111,从而传送网设备111可以对该信号进行处理(例如,封装处理),以将该信号转换为能够在传送网络中传输的信号,并将该信号传输至该传输网络中用于向该信号的目的接收设备传输信号的其他传送网设备。
另外,传送网设备111还可以从其他传送网设备或通信设备接收需要发送至通信设备110的信号,并且,可以对该信号进行处理(例如,解封装处理),以将该信号转换为传送网设备111能够识别的信号,并将处理后的信号传输给通信设备110,从而通信设备110能够对所接受到的信号进行解析以获取承载于所述信号中的数据。
其他通信设备的功能与通信设备110的功能相似,其他传送网设备的功能与传送网设备111的功能相似,这里为了避免赘述,或省略其详细说明。
另外,在本发明实施例中,在任意两个通信设备之间传输的信号可以经由一个传送网设备的处理和转发,也可以经由多个传送网设备的处理和转发,本发明并未特别限定。
应理解,图1所示的通信设备和传送网设备的数量仅为示例性说明,本发明并未特别限定。
作为示例而非限定,在本发明实施例中,通信设备可以是例如, 个人计算机等客户端设备,该客户端设备能够经以太网或光纤等媒介进行通信。
在本发明实施例中,通信设备还可以是网络设备,网络设备可以是为用户设备提供各种业务的服务器,例如,SDN服务器,万维网(Web)服务器、文件传输协议(FTP,File Transfer Protocol)服务器、企业关键应用服务器和其它关键任务服务器(例如,提供防火墙服务的服务器)、通信(CT,Communication Technology)领域中的业务处理单板(SPU,Service Process Unit)等;通信设备还可以是网际协议(IP,Internet Protocol)通信网中的交换机、路由器,或者存储网络中的存储设备等。
作为示例而非限定,在本发明实施例中,传送网设备可以是WDM、OTN等设备。
在本发明实施例中,该通信设备可以是信号的发送端(即,发送设备),也可以是信号的接收端(即,接收设备)。下面,结合图2至图4对本发明的处理弹性以太网信号的传输过程所涉及的各设备的结构和功能进行详细说明。
A.发送设备
图2是适用本发明实施例的处理弹性以太网信号的方法的发送设备200(例如,上述通信设备)的一例的示意图,如图2所示,该发送设备200包括:
控制模块210,用于根据所需要生成的FlexE客户信号的数量及带宽、当前可使用的PMD lane,例如,光通道(optical lane)的数量及其带宽,计算出每一路FlexE客户信号所占据的PCS lane(或者说,PMA模块的输入lane)和PMD lane,进而,生成用于指示各MAC发送模块生成该FlexE客户信号的指示信息、用于指示FlexE及PCS lane分发模块的比特块分发方式(或者说,PCS lane分配方式)的指示信息、PMA模块的比特间插方式(或者说,PMD lane分配方式)的指示信息,并将上述指示信息下发至相应的模块。
多个(至少两个)MAC发送模块220:用于根据来自控制模块的指示信息(例如,可以指示所需要生成的信号的带宽等),生成多 个FlexE客户信号(此时,FlexE客户信号可以是,MAC层信号、MAC层数据或以太网报文),并将该FlexE客户信号发送给FlexE及PCS lane分发模块。需要说明的是,在本发明实施例中,一个MAC发送模块可以生成一个FlexE客户信号,即,后述FlexE及PCS lane分发模块可以根据各FlexE客户信号所来自的MAC发送模块,对多个FlexE客户信号进行区分,另外,各MAC发送模块的功能和具体处理过程可以与现有技术相似,本发明并未特别限定。还需要说明的是,FlexE客户信号可以是指以太网流(Ethernet flow),在本发明中,FlexE客户信号可以是所有以FlexE为服务层的信号,例如,可以是以太网流,也可以是同步数字体系(SDH,Synchronous Digital Hierarchy)信号、OTN信号、存储网中的光纤通道(Fiberchannel)信号等等。因此,在本实施例中,MAC发送模块或MAC接收模块只是做为一个示例而非限定,它们也可以是其他客户信号的发送模块或接收模块。
FlexE及PCS lane分发模块230,用于根据来自控制模块的指示信息(例如,各FlexE客户信号所对应的PCS lane),对输入的数据(即,FlexE客户信号)进行比特块编码、比特块分割、***FlexE开销、比特块分发以及***对齐标记(AM,Alignment Marker)。其中,(来自控制模块的指示信息所指示的)比特块分发可以实现如下功能:一路FlexE客户层信号的比特块(或者说,数据块)需要分发到确定的PMD lane组(包括至少一个PMD lane)中,一个PMD lane组中不能包含对应多路FlexE客户信号的比特块。或者,一路FlexE客户层信号的比特块需要分发到确定的PCS lane组(包括至少一个PCS lane)中,一个PCS lane组中不能包含对应多路FlexE客户信号的比特块。
物理媒介附加(PMA,Physical Medium Attachment)模块240,用于根据来自控制模块的指示信息(例如,各FlexE客户信号所对应的PMD lane,或者,各PCS lane所需要适配至的PMD lane),将输入的PCS lane采用bit间插的方式调整(或者说,适配)为输出的PMD lane。其中,上述调整具有以下要求:一路FlexE客户层信号的比特 块(或者说,数据块)需要分发到确定的PMD lane中,一个PMD lane中不能包含对应多路FlexE客户信号的比特块。
发送模块250,用于对来自PMA模块240的信号进行处理(例如,电光转换),以生成发射信号(例如,光信号)。
应理解,以上列举的发送设备的结构仅为示例性说明,本发明并未限定于此,只要发送设备能够实现上述各模块所提供的功能即可。
另外,如上所述生成的发射信号需要经由传送网传输至多个接收设备(与上述多个FlexE客户层信号一一对应)。不失一般性,图2还示出了其中一个接收设备400的结构的一例。随后在对本发明实施例的处理弹性以太网信号的方法500的详细说明中,对该发送设备进行上述信号处理的过程进行详细说明。
如图2所示,该接收设备400可以包括:
接收模块410,用于接收发送设备200经由传送网发送的信号(例如,光信号),并且,可以对该信号进行例如,光电转换处理,以获取对应一个或多个PMD lane的接收信号。
PMA模块420,用于采用bit间插的方式将多个PMD lane调整为PCS lane。
FlexE及PCS lane重排模块430,用于按照AM对应的PCS lane序号的大小对PCS lane进行重排,提取FlexE开销及进行比特块解码,以恢复出FlexE客户信号。需要说明的是,由于接收信号中的AM对应的PCS lane序号有可能不是从PCS lane 0开始的,因此FlexE及PCS lane重排模块430只需要按照PCS lane序号大小排序即可。
MAC接收模块440,用于对FlexE客户信号进行解封装。
应理解,图2所示的接收设备400的数量仅为示例性说明,本发明并未特别限定。
B.发送端传送网设备
发送端传送网设备可以作为传送网面向该发送设备的接口。
图3是适用本发明实施例的处理弹性以太网信号的方法的发送端传送网设备300的一例的示意图,如图3所示,该发送端传送网设备300包括:
接收模块310,用于接收发送设备发送的上述发射信号,并且,可以对该发射信号进行处理(例如,光电转换),以获取接收信号,此时,该接收信号包括对应各FlexE客户信号的分量。
ODU封装模块320,基于该接收信号中的各分量(或者说,各FlexE客户信号)所对应的PMD lane或PCS lane,对各分量进行封装,以生成多个光通道数据单元(ODU,Optical channel Data Unit)组(每个ODU组包括至少一个ODU),该封装过程具有以下要求:一个ODU组中的ODU不能封装进对应于多路FlexE客户信号的分量。
此外,该发送端传送网设备300还可以包括ODU交叉模、光通道传送单元(OTU,Optical channel Transport Unit)封装模块、线路侧发送模块等,通过上述模块的处理,可以将上述各ODU分别转换为能够在传送网中传输的信号,并且,上述模块的功能和处理过程,可以和现有技术相似,这里,为了避免赘述,省略其详细说明。
应理解,以上列举的发送端传送网设备的结构仅为示例性说明,本发明并未限定于此,例如,该发送端传送网设备还可以是以optical lane(即,PMD lane的一例)粒度进行光层交叉调度的设备,此情况下,该发送端传送网设备可以为基于微机电***(MEMS,Micro-Electro-Mechanical System)或者硅基液晶(LCOS,Liquid Crystal on Silicon)的光交叉连接(OXC,optical cross-connect)设备。
并且,在本发明实施例中,发送设备和接收设备之间传输的信号可以经由传送网中的一个传输设备(例如,上述发送端传送设备)的转发,也可以经由传送网中的多个传输设备(包括,上述发送端传送设备)的转发,本发明并未特别限定,例如,在传送网中还可以配置接收端传送网设备,作为面向接收设备的接口,作为示例而非限定,该接收端传送网设备可以包括线路侧接收模块、OTU解封装模块、ODU交叉模块和发送模块,将上述在传送网中传输的信号转换为接收设备能够识别的信号并发送至接收设备,各ODU分别转换为能够在传送网中传输的信号,并且,上述模块的功能和处理过程,可以和现有技术相似,这里,为了避免赘述,省略其详细说明。
C.接收设备
图4是适用本发明实施例的处理弹性以太网信号的方法的接收设备500(例如,上述通信设备)的一例的示意图,如图4所示该接收设备500可以在同一时段接收来自多个发送设备的信号,如图4所示,该接收设备500包括:
控制模块510,用于根据接收信号所对应的PMD lane(例如,optical lane)生成PMA模块的比特间插方式(或者说,PCS lane分配方式)的指示信息、用于指示FlexE及PCS lane分发模块的PCS lane重排方式的指示信息,并将上述指示信息下发至相应的模块。
接收模块520,用于接收来自多个发送设备发送的发射信号,并且,可以对该发射信号进行处理(例如,光电转换),以获取接收信号,此时,该接收信号包括对应各PMD lane的分量。
PMA模块530,用于根据来自控制模块的指示信息(例如,各PMD lane所需要适配至的PCS lane),将输入的PMD lane采用bit间插的方式调整(或者说,适配)为输出的PCS lane。其中,上述调整具有以下要求:一路FlexE客户层信号的比特块(或者说,数据块)需要分发到确定的PCS lane组(包括至少一个PCS lane)中,一个PCS lane组中的PCS lane中不能包含对应多路FlexE客户信号的比特块。
FlexE及PCS lane重排模块540,用于根据PMD lane的编号以及AM对应的PMD lane序号的大小对各PCS lane进行重排,提取FlexE开销及进行比特块解码,以获取对来自各发送设备的FlexE客户信号。
MAC接收模块550,用于对FlexE客户信号进行解封装。
需要说明的是,图4所示的发送设备的功能和生成发射信号的具体过程可以与现有技术相似,也可以与图2所示发送设备相似,本发明并未特别限定。并且,图4所示的发送设备的数量仅为示例性说明,本发明并未特别限定。
应理解,以上列举的接收设备的结构仅为示例性说明,本发明并未限定于此,只要接收设备能够实现上述各模块所提供的功能即可。 随后在对本发明实施例的处理弹性以太网信号的方法700的详细说明中,对该接收设备进行上述信号处理的过程进行详细说明。
下面,结合图5~13图,对本发明实施例的在上述发送设备中执行的处理弹性以太网信号的方法的交互过程进行详细说明。
图5是根据本发明一实施例的处理弹性以太网客户信号的方法500的交互过程的示意图。以下,为了便于理解和说明,以通信设备110经由传送网设备111向通信设备120和通信设备130双方传输数据的过程为例,对本发明实施例的处理弹性以太网客户信号的方法的具体过程进行详细说明。
如图5所示,在发送设备侧,该方法500包括:
发送设备获取至少两路弹性以太网FlexE客户信号;
该发送设备将该至少两路FlexE客户信号分配至多个物理编码子层通道PCS lane,并根据该多个PCS lane,生成物理介质相关通道PMD lane信号,其中
该多个PCS lane被划分为至少两个PCS lane组,该至少两路FlexE客户信号和至少两个PCS lane组一一对应,该至少两路FlexE客户信号中的每路FlexE客户信号被分配至所对应的PCS lane组,至少两个PCS lane组中的每个PCS lane组包括至少一个PCS lane,一个PCS lane仅属于一个PCS lane组;或
该PMD lane信号对应至少两个PMD lane组,该至少两路FlexE客户信号和至少两个PMD lane组一一对应,该至少两路FlexE客户信号中的每路FlexE客户信号被分配至所对应的PMD lane组,该至少两个PMD lane组中的每个PMD lane组包括至少一个PMD lane,一个PMD lane仅属于一个PMD lane组。
具体地说,如图5所示,通信设备110(例如,通信设备110的MAC发送模块)可以获取需要发送给通信设备120的FlexE客户信号(即,至少两路FlexE客户信号中的一路FlexE客户信号的一例,以下,为了便于理解和说明,记做:FlexE客户信号#A),以及需要发送给通信设备130的FlexE客户信号(即,至少两路FlexE客户信号中的一路FlexE客户信号的另一例,以下,为了便于理解和说明, 记做:FlexE客户信号#B)。
作为示例而非限定,在本发明实施例中,该FlexE客户信号#A和FlexE客户信号#B可以是(例如,上述MAC发送模块220)经过MAC层封装处理后获得的MAC层数据,并且,该MAC层封装处理的方法和过程可以与现有技术相似,这里,为了避免赘述,省略其详细说明。还需要说明的是,FlexE客户信号可以是Ethernet flow,在本发明中,FlexE客户信号可以是所有以FlexE为服务层的信号,例如,可以是以太网流,也可以是SDH信号、OTN信号、存储网中的Fiberchannel信号等等。因此,在本实施例中,MAC发送模块或MAC接收模块只是做为一个示例而非限定,它们也可以是其他客户信号的发送模块或接收模块。
需要说明的是,在本发明实施例中,通信设备120可以是FlexE客户信号#A的最终接收设备,此情况下,例如,通信设备110可以通过FlexE客户信号#A的目的MAC地址,确定该FlexE客户信号#A需要发送至通信设备120;或者,在本发明实施例中,通信设备120可以是FlexE客户信号#A的转发通信设备(或者说,该通信设备120是该FlexE客户信号FlexE客户信号#A的传输路径(不包括传送网络中的设备)中的下一跳),此情况下,例如,通信设备110可以基于路由表等,确定该FlexE客户信号#A需要发送至通信设备120。
类似地,通信设备110确定FlexE客户信号#B需要发送至通信设备130。
应理解,以上列举的通信设备110确定各路FlexE客户信号的接收端设备的方法仅为示例性说明,本发明并未限定于此,其他能够确定各路FlexE客户信号的接收端设备(或者说,基于所需要发送至的通信设备对各路FlexE客户信号进行区分)的方法均落入本发明的保护范围内。例如,作为示例而非限定,通信设备110可以根据MAC层数据的数量和带宽完成至少两个MAC发送模块的配置。具体地说,在本发明实施例中,该FlexE客户信号#A和FlexE客户信号#B可以由配置在通信设备110中不同的MAC层模块生成。
如图5所示,在获取FlexE客户信号#A和FlexE客户信号#B之 后,通信设备110可以对该FlexE客户信号#A和FlexE客户信号#B进行物理层封装处理。
作为示例而非限定,在本发明实施例中,物理层主要包括:协调子层(RS,Reconciliation Sublayer)、物理编码子层(PCS,Physical Coding Sublayer)、前向纠错(FEC,Forward Error Correction)层、物理媒介附加(PMA,Physical Medium Attachment)层、物理介质相关(PMD,Physical Medium Dependent)层。
其中,RS用于将MAC层的串行数据和PCS的并行接口之间的转换(The RS adapts the bit serial protocols of the MAC to the parallel format of the PCS service interface)。作为示例而非限定,RS可以将来自MAC层的数据(即,FlexE客户信号)转换成40G介质独立接口(XLGMII,40Gigabit Media Independent Interface)或100G介质独立接口(CGMII,100Gigabit Media Independent Interface)的接口数据以及实现其反过程。这里,该RS的处理方法和过程可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
PCS主要完成物理层编解码。例如,PCS接收到来自RS的数据后,以64比特(bit)为单位对该数据进行分割,再加上2bit的同步头(Sync Header),形成66bit的块。同步头为“01”表示是数据块,同步头是“10”表示是控制块;切割成块之后再进行扰码(同步头不需要扰码);再将扰码之后的66bit块轮流分发到各个物理编码子层通道(PCS lane,Physical Coding Sublayer lane)中,从而形成多通道(Multi-lane)的结构。
FEC层主要实现误码的纠正过程。这里,该FEC层处理的方法和过程可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
PMA层主要用来实现PCS连接多种物理媒介,主要功能包括:将PCS lane适配到PMD lane、PMD lane数量的变换、数据时钟变换等。
PMD层主要用来定义连接传输媒介的物理接口参数。例如,光接口的光信号波长、连接的光纤类型、传输距离等。
在本发明实施例中,可以在上述PCS将至少两路FlexE客户信 号的数据分配至至少两个PCS lane组,或在上述PMA层将至少两路FlexE客户信号的数据分配至PMD lane组,从而传送网设备能够根据所接收到的信号所对应PCS lane组或PMD lane组,对该至少两路FlexE客户信号进行区分。
即,一个PCS lane组可以仅承载一路FlexE客户信号的数据,且一个PMD lane组可以仅承载一路FlexE客户信号的数据(即,情况1),或者,一个PCS lane组可以仅承载一路FlexE客户信号的数据,且一个PMD lane组可以承载多路FlexE客户信号的数据(即,情况2),再或者,一个PCS lane组可以承载多路FlexE客户信号的数据,且一个PMD lane组可以仅承载一路FlexE客户信号的数据(即,情况3)。
下面,分别对以上三种情况下的动作进行详细说明。
情况1
可选地,该发送设备将该至少两路FlexE客户信号分配至多个PCS lane,并根据该多个PCS lane,生成PMD lane信号,包括:
该发送设备根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PCS lane组中的每个PCS lane组包括的PCS lane的数量,并将每路FlexE客户信号分配至所对应的PCS lane组中的PCS lane,;
该发送设备根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PMD lane组中的每个PMD lane组包括的PMD lane的数量,并将每路FlexE客户信号所对应的PCS lane组中的PCS lane适配至同一FlexE客户信号所对应的PMD lane组中的PMD lane,以生成PMD lane信号。
具体地说,在本发明实施例中,通信设备110(例如,通信设备110的控制模块)可以根据FlexE客户信号的数量和各FlexE客户信号的带宽要求(或者说,数据量的大小),为各FlexE客户信号分配PCS lane组,其中,一个PCS lane组包括至少一个PCS lane,并且,一个PCS lane组仅被分配给一路FlexE客户信号,即,不同的FlexE客户信号不会被分配至在同一PCS lane组,也不会被分配至同一PCS  lane。
不失一般性,通信设备110可以根据FlexE客户信号#A的带宽要求(或者说,数据量的大小)为FlexE客户信号#A分配由一个或多个PCS lane构成的PCS lane组(以下,为了便于理解和区分,记做:PCS lane组#A),并根据FlexE客户信号#B的带宽要求为FlexE客户信号#B分配由一个或多个PCS lane构成的PCS lane组(以下,为了便于理解和区分,记做:PCS lane组#B)。其中,PCS lane组#A仅分配给FlexE客户信号#A,并且,PCS lane组#B仅分配给FlexE客户信号#B。
在本发明实施例中,通信设备110可以与传送网设备协商确定PCS lane组#A和PCS lane组#B(即,方式1),或者,通信设备110也可以基于预设在该通信设备110与传送网设备中的第一映射关系确定PCS lane组#A和PCS lane组#B(即,方式2),下面,分别对该方式1和方式2的具体过程进行详细说明。
方式1
通信设备110可以在确保一个PCS lane组仅对应一个接收设备的条件下,例如,根据FlexE客户信号#A和FlexE客户信号#B的带宽,以及当前可用的PCS lane,确定PCS lane组#A和PCS lane组#B。
此情况下,该方法还包括:
该第一发送设备向该传送网设备发送第一控制信息,该第一控制信息用于指示每个PCS lane所对应的接收设备。
具体地说,通信设备110可以向传送网设备111发送用于指示PCS lane组#A被分配给FlexE客户信号#A(即,需要传输至通信设备120的信号)、PCS lane组#B被分配给FlexE客户信号#B(即,需要传输至通信设备130的信号)信息(即,第一控制信息的一例)。
从而,传送网设备111可以根据上述第一控制信息,确定PCS lane组#A所对应的信号(即,经过物理层处理后的FlexE客户信号#A)需要发送至通信设备120(或者说,传送网设备121),并确定PCS lane组#B所对应的信号(即,经过物理层处理后的FlexE客户信号#B)需要发送至通信设备130(或者说,传送网设备131)。
通过使通信设备110和传送网设备111之间协商每个PCS lane所对应的接收设备,能够弹性应对不同带宽要求的数据的传输,从而能够提高本发明的处理弹性以太网信号的方法的实用性和可靠性。
方式2
可选地,该发送设备将该至少两路FlexE客户信号分配至多个PCS lane,包括:
该发送设备根据第一映射关系信息和每路FlexE客户信号的接收设备,为每路FlexE客户信号分配PCS lane组,其中,该第一映射关系信息预设在该发送端设备和该传送网设备中,该第一映射关系信息用于指示每个PCS lane所对应的通信设备。
具体地说,在本发明实施例中,在通信设备110和传送网设备111中可以存储有记录各通信设备与各PCS lane之间的映射关系的信息(即,第一映射关系信息的一例),这里,各通信设备与各PCS lane之间的映射关系可以表示每个PCS lane所被唯一分配至通信设备,即,一个PCS lane仅承载一路FlexE客户信号的数据。
从而,通信设备110可以基于该第一映射关系,确定与该通信设备120对应的(一个或多个)PCS lane,并且,例如,可以根据FlexE客户信号#A的带宽要求,从与该通信设备120对应的PCS lane中,确定PCS lane组#A。类似地,通信设备110可以基于该第一映射关系,确定与该通信设备130对应的(一个或多个)PCS lane,并且,例如,可以根据FlexE客户信号#B的带宽要求,从与该通信设备130对应的PCS lane中,确定PCS lane组#B。
进而,传送网设备111可以根据上述第一映射关系,确定对应于PCS lane组#A的数据(即,经过物理层处理后的FlexE客户信号#A)需要发送至通信设备120(或者说,传送网设备121),并确定对应于PCS lane组#B的数据(即,经过物理层处理后的FlexE客户信号#B)需要发送至通信设备130(或者说,传送网设备131)。
通过使通信设备110和传送网设备111基于第一映射关系信息确定每个PCS lane所对应的接收设备,能够无需进行通信设备110和传送网设备111之间协商每个PCS lane组所对应的接收设备的过程,从 而能够简化通信流程,节约***通信资源。
在如上所述,确定了各FlexE客户信号的数据所对应的PCS lane组之后,通信设备110(例如,通信设备110的FlexE及PCS lane分发模块)可以将经过上述RS的处理后的FlexE客户信号#A分发至PCS lane组#A中的各PCS lane,并且,通信设备110可以将经过上述RS的处理后的FlexE客户信号#B分发至PCS lane组#B中的各PCS lane,以。
其中,通信设备110可以在每个FlexE客户信号的数据lane中,每隔16383个66bit块***一个66bit的对齐标记(AM,Alignment Marker)。
AM的主要功能是用来标识PCS lane的序号,具体地说,因为Multi-lane结构的以太网在芯片之间或者设备之间传输时,通常也是采用多个物理通道(Physical lane)来传输的,不同的Physical lane传输延时不同会导致接收时恢复出的PCS lane乱序,加入AM之后,接收设备就可以按照AM标识对PCS lane进行重新排序,从而恢复出正确的数据。
例如,在多通道分发(MLD,Multi-lane Distribution)机制中的虚通道处理以及芯片间接口的多通道,还有在光纤连接的多通道中,都会不可避免地引入通道间的延时(skew),通道间的延时如果不做任何处理,将会在PCS接受端对多通道数据恢复时出现数据重组的错误。但是发生错乱的只是通道顺序,每个通道中传输的数据间排列次序并未出错。如果要在接收端正确恢复数据,应在发送端对PCS lane添加AM用以标识该通道数据应该归属哪一通道。根据AM做通道数据起始标志,利用缓存可实现对通道数据的对齐处理(用于消除时延)。数据对齐之后,通过AM对通道数据归属的标识,再把通道数据发送到原本的通道中去,实现通道重排。
由于AM是不用扰码的,因此AM需要特别的编码以便实现直流平衡(也就是“0”和“1”的个数相等)以及避免出现较多的连“0”或连“1”的分布(避免接收端时钟锁定电路失锁)。
图8示出了本发明一实施例的AM的结构的示意图,其中,10 同步头。M0~M2是AM的编码,用来表示PCS lane序号(PCS lane number)。BIP3用于进行BIP(Bit Interleaved Parity)校验(即,误码校验的一例)。M4~M6是M0~M2的反码,BIP7是BIP3的反码。
在本发明实施例中,根据不同数据的比特率的要求,可以对AM使用不同的编码方式(或者说,编码规则)。
例如,在比特率为40Gb/s的情况下,可以使用图9所示的AM编码方式。
再例如,在比特率为100Gb/s的情况下,可以使用图10所示的AM编码方式。
可选地,当该多个PCS lane被划分为至少两个PCS lane组时,在将该至少两路FlexE客户信号分配至多个PCS lane的过程中,该方法还包括:
该发送设备基于相同的编码方式,对每个PCS lane所对应的对齐标记AM进行编码处理。
具体地说,在本发明实施例中,可以采用相同的AM编码方式对FlexE客户信号#A和FlexE客户信号#B中的AM进行编码,能够简化处理过程,从而能够提高本发明的处理弹性以太网信号的方法的效率。
在本发明实施例中,通信设备110(例如,通信设备110的控制模块)可以根据FlexE客户信号的数量和各FlexE客户信号的带宽要求(或者说,数据量的大小),为各FlexE客户信号分配PMD lane组,其中,一个PMD lane组包括至少一个PMD lane,并且,一个PMD lane组仅被分配给一路FlexE客户信号,即,不同的FlexE客户信号不会被分配至在同一PMD lane组,也不会被分配至同一PMD lane。
不失一般性,通信设备110可以根据FlexE客户信号#A的带宽要求(或者说,数据量的大小)为FlexE客户信号#A分配由一个或多个PMD lane构成的PMD lane组(以下,为了便于理解和区分,记做:PMD lane组#A),并根据FlexE客户信号#B的带宽要求为FlexE客户信号#B分配由一个或多个PMD lane构成的PMD lane组(以下,为了便于理解和区分,记做:PMD lane组#B)。其中,PMD lane组 #A仅分配给FlexE客户信号#A,并且,PMD lane组#B仅分配给FlexE客户信号#B。
在本发明实施例中,通信设备110可以与传送网设备协商确定PMD lane组#A和PMD lane组#B(即,方式3),或者,通信设备110也可以基于预设在该通信设备110与传送网设备中的第二映射关系确定PMD lane组#A和PMD lane组#B(即,方式4),下面,分别对该方式3和方式4的具体过程进行详细说明。
方式3
通信设备110可以在确保一个PMD lane仅对应一个接收设备(具体地说,一个PMD lane仅用于进行针对需要传输至一个接收设备的FlexE客户信号的PMD处理)的条件下,例如,根据FlexE客户信号#A和FlexE客户信号#B的大小,以及当前可用的PMD lane,确定PMD lane组#A和PMD lane组#B。
此情况下,该方法还包括:
该第一发送设备向该传送网设备发送第二控制信息,该第二控制信息用于指示每个PMD lane所对应的发送设备。
具体地说,通信设备110可以向传送网设备111发送用于指示PMD lane组#A被分配给通信设备120(或者说,被分配给需要传输至通信设备120的信号)、PMD lane组#B被分配给通信设备130(或者说,被分配给需要传输至通信设备130的信号)的信息(即,第二控制信息的一例)。
从而,传送网设备111可以根据上述第二控制信息,确定对应于PMD lane组#A的信号(即,经过物理层处理后的FlexE客户信号#A)需要发送至通信设备120(或者说,传送网设备121),并确定对应于PMD lane组#B的信号(即,经过物理层处理后的FlexE客户信号#B)需要发送至通信设备130(或者说,传送网设备131)。
通过使通信设备110和传送网设备111之间协商每个PMD lane所对应的接收设备,能够弹性应对不同带宽要求的数据的传输,从而能够提高本发明的处理弹性以太网信号的方法的实用性和可靠性。
方式4
可选地,该根据该多个PCS lane,生成物理介质相关通道PMD lane信号,包括:
该发送设备根据第二映射关系信息和每路FlexE客户信号的接收设备,为每路FlexE客户信号分配至少一个PMD lane组,其中,该第二映射关系信息预设在该发送端设备和该传送网设备中,该第二映射关系信息用于指示每个PMD lane所对应的通信设备。
具体地说,在本发明实施例中,在通信设备110和传送网设备111中可以存储有记录各通信设备与各PMD lane之间的映射关系的信息(即,第二映射关系信息的一例),这里,各通信设备与各PMD lane之间的映射关系可以表示每个PMD lane所被唯一分配至通信设备,即,一个PMD lane仅承载一路FlexE客户信号的数据。
从而,通信设备110可以基于该第二映射关系,确定与该通信设备120对应的(一个或多个)PMD lane,并且,例如,可以根据FlexE客户信号#A的带宽要求,从与该通信设备120对应的PMD lane中,确定PMD lane组#A。类似地,通信设备110可以基于该第二映射关系,确定与该通信设备130对应的(一个或多个)PMD lane,并且,例如,可以根据FlexE客户信号#B的带宽要求,从与该通信设备130对应的PMD lane中,确定PMD lane组#B。
进而,传送网设备111可以根据上述第二映射关系,确定对应于PMD lane组#A的数据(即,经过物理层处理后的FlexE客户信号#A)需要发送至通信设备120(或者说,传送网设备121),并确定对应于PMD lane组#B的数据(即,经过物理层处理后的FlexE客户信号#B)需要发送至通信设备130(或者说,传送网设备131)。
通过使通信设备110和传送网设备111基于第二映射关系信息确定每个PMD lane所对应的接收设备,能够无需进行通信设备110和传送网设备111之间协商每个PMD lane组所对应的接收设备的过程,从而能够简化通信流程,节约***通信资源。
在如上所述,确定了各FlexE客户信号的数据所对应的PMD lane组之后,通信设备110(例如,通信设备110的PMA模块)可以将上述PCS lane组#A中的各PCS lane适配至PMD lane组#A中的各 PMD lane,以生成与该FlexE客户信号#A相对应的PMD信号(以下,为了便于理解和区分,记做PMD信号#A),并且,通信设备110可以将上述PCS lane组#B中的各PCS lane适配至PMD lane组#B中的各PMD lane,以生成与该FlexE客户信号#B相对应的PMD信号(以下,为了便于理解和区分,记做PMD信号#B)。
可选地,该方法还包括:
该发送设备对每路PMD lane信号进行交叉连接(或者说,交叉调度)处理。
需要说明的是,在本发明实施例中,通信设备110可以通过同一物理层处理实体进行针对上述FlexE客户信号#A和FlexE客户信号#B的物理层处理,或者,通信设备110也可以通过不同的物理层处理实体分别进行针对上述FlexE客户信号#A和FlexE客户信号#B的物理层处理,本发明并未特别限定。
在本发明实施例中,通信设备110可以对如上分配至的PMD lane中的数据进行例如,数模转换处理、电光转换处理等,以生成需要发送至传送网设备111的PMD lane信号。其后,通信设备110将所生成的PMD lane信号发送至传送网设备111。
传送网设备111可以对该信号进行解析,以确定信号中的各数据所需要传输至的接收设备(或者说,与接收设备通信连接的传送网设备)。
例如,在本发明实施例中,由于每个PMD组仅承载一路FlexE客户信号的数据,因此传送网设备111可以对所接收到的信号进行解析,以确定各PMD lane信号所对应的PMD lane组,进而(例如,根据上述第二映射关系信息或第二控制信息)确定各PMD lane信号所需要发送至的接收设备。
此情况下,传送网设备111可以根据PMD lane组对来自发送设备的PMD lane信号进行ODU封装处理,以使一个ODU仅用于承载需要传输至一个接收设备的信号,具体地说,传送网设备111可以将需要传输至通信设备120(或者说,传送网设备121)的信号(即,PMD lane组#A承载的信号)承载于由一个或多个ODU构成的ODU 组(以下,为了便于理解和区分,记做:ODU组#A),其中,该ODU组#A仅用于承载需要传输至通信设备120(或者说,传送网设备121)的数据,或者说,该ODU#组A仅包括该PMD lane组#A中的数据。并且,传送网设备111可以将需要传输至通信设备130(或者说,传送网设备131)的信号(即,PMD lane组#B承载的信号)承载于由一个或多个ODU构成的ODU组(以下,为了便于理解和区分,记做:ODU组#B),其中,该ODU组#B仅用于承载需要传输至通信设备130(或者说,传送网设备131)的数据,或者说,该ODU#组B仅包括该PMD lane组#B中的数据。
或者,在本发明实施例中,传送网设备111在确定各PMD lane信号所对应的PMD lane组之后,可以以PMD lane(例如,optical lane)为粒度,对各PMD lane信号进行光层交叉连接,或者说,交叉调度,以将各PMD lane信号传输至所需要传输至的接收设备。
再例如,在本发明实施例中,由于每个PCS组仅承载一路FlexE客户信号的数据,因此传送网设备111可以对所接收到的信号进行解析,以确定各信号所对应的PCS lane组,进而(例如,根据上述第一映射关系信息或第一控制信息)确定各信号所需要发送至的接收设备。
此情况下,传送网设备111可以根据PCS lane组对来自发送设备的信号进行ODU封装处理,以使一个ODU仅用于承载需要传输至一个接收设备的信号,具体地说,传送网设备111可以将需要传输至通信设备120(或者说,传送网设备121)的各信号(即,PCS lane组#A承载的信号)承载于由一个或多个ODU构成的ODU组(以下,为了便于理解和区分,记做:ODU组#A’),其中,该ODU组#A’仅用于承载需要传输至通信设备120(或者说,传送网设备121)的数据,或者说,该ODU#组A’仅包括该PCS lane组#A中的数据。并且,传送网设备111可以将需要传输至通信设备130(或者说,传送网设备131)的各信号(即,PCS lane组#B承载的信号)承载于由一个或多个ODU构成的ODU组(以下,为了便于理解和区分,记做:ODU组#B’),其中,该ODU组#B’仅用于承载需要传输至 通信设备130(或者说,传送网设备131)的数据,或者说,该ODU#组B仅包括该PCS lane组#B中的数据。
在接收端侧,传送网设备121可以将所接收到的信号(例如,光信号)传输至通信设备120。通信设备120可以对所接收到的光信号进行光电转换处理、模数转换等处理,以获取PMD层数据(具体地说,是发送至通信设备120的一个或多个PMD lane的数据),并采用例如,bit间插的方式获取PCS层数据(具体地说,是发送至通信设备120的一个或多个PCS lane的数据),其后,通信设备120按照AM对应的PCS lane序号的大小对PCS lane进行重排,并进行比特块解码。因为送到通信设备120的PCS层的PCS lane有可能不是从序号为0的PCS lane开始的,因此,通信设备120只需要按照PCS lane序号大小排序即可。从而能够恢复出通信设备110需要发送给通信设备120的FlexE客户信号#A。
传送网设备131的处理过程与上述传送网设备121的处理过程相似,通信设备130的处理过程与上述通信设备120的处理过程相似,这里,为了避免赘述,省略其详细说明。
图6是根据本发明一实施例的发送设备的比特块分发过程的示意图。如图6所示,假设通信设备110(例如,通过MAC模块#A)获取的FlexE客户信号#A的带宽为150G,(例如,通过MAC模块#B)获取的FlexE客户信号#B的带宽为50G,在通信设备110中配置有40个PCS lane(记做:PCS lane#0~PCS lane#39),PMA层进行40:4的变换,即,通信设备110中配置有4个PMD lane(例如,optical lane,记做:optical lane#0~optical lane#3),每个optical lane的带宽为50G。并且,在通信设备110和传送网设备111可以约定:由PCS lane#0~PCS lane#29构成的PCS lane组被分配给通信设备120,由PCS lane#30~PCS lane#39构成的PCS lane组被分配给通信设备130;或者,由optical lane#0~optical lane#2构成的optical lane组(PMD lane组的一例)被分配给通信设备120,由optical lane#3构成的optical lane组被分配给通信设备130。
则,通信设备110可以将FlexE客户信号#A分配至序号为0~29 的PCS lane(即,PCS lane#0~PCS lane#29),将FlexE客户信号#B分配至序号为30~39的PCS lane(即,PCS lane#30~PCS lane#39)。
并且,通信设备110可以将PCS lane#0~PCS lane#29适配至序号为0~2的optical lane(即optical lane#0~optical lane#2),将PCS lane#30~PCS lane#39适配至至序号为3的optical lane(即,optical lane#3)。
传送网设备111可以将optical lane#0~optical lane#2中的数据或者PCS lane#0~PCS lane#29中的数据传输至通信设备120,将optical lane#3中的数据或者PCS lane#30~PCS lane#39中的数据传输至通信设备130。
不失一般性,一个PCS lane#i中的第j个比特块可以表示为i-j,例如,图6中的“0-1”表示PCS lane#0中比特序号为1的比特块。
图7是根据本发明一实施例的接收设备的比特块分发过程的示意图。如图7所示,假设通信设备130中设置有2个PMD lane(例如,optical lane,记做:optical lane#0’~optical lane#1’),每个optical lane的带宽为50G,PMA层进行2:20的变换,即,通信设备130中配置有20个PCS lane(记做:PCS lane#0’~PCS lane#19’)。
则,通信设备130可以按照现有方式将Optical lane中的比特块分发到PCS lane中,即,optical lane#0’~optical lane#1’仅有一个通道接收到数据,PCS lane#0’~PCS lane#19’中只有10个通道接收到数据。
作为示例而非限定,如图7所示,通信设备130通过optical lane#1’接收到通信设备110通过optical lane#3发送的信号,并且,通信设备130可以将optical lane#1’适配至PCS lane#0’~PCS lane#19’中的10个通道(例如,序号为单数的通道),因此,信号中的AM标识的序号和实际分配的PCS lane的序号不相符,例如,PCS lane#1’中实际上是PCS lane#30的比特块,此时,通信设备130只需要按照接收到的比特块按照其中的AM对应的序号大小重新排序即可,无需核对是否和应该接收的PCS lane的序号相符。
另外,在本实施例中,通信设备130中的一个Optical lane(即, 图7中所示PCS lane#0’)未被使用。现有做法按照PCS lane的顺序依次将解封装后的数据发给MAC层。由于空闲的比特块会在PCS层丢弃,因此按照现有做法,也相当于将通信设备110通过PCS lane#30~PCS lane#39发送的数据依次发给MAC层。从而能够兼用现有技术。
情况2
可选地,该发送设备将该至少两路FlexE客户信号分配至多个PCS lane,并根据该多个PCS lane,生成PMD lane信号,包括:
该发送设备根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PCS lane组中的每个PCS lane组包括的PCS lane的数量,并将每路FlexE客户信号分配至所对应的PCS lane组中的PCS lane,;
该发送设备根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定一个PMD lane组包括的PMD lane的数量,并将该至少两个PCS lane组中的各PCS lane适配至该一个PMD lane组中的PMD lane,以生成PMD lane信号。
在情况2中,通信设备110确定PCS lane组的过程可以与情况1相似,这里为了避免赘述,省略其详细说明。
与情况1不同的是,通信设备110在将该PCS lane组中的各PCS lane适配至PMD lane时,可以使每个PMD lane中承载有各PCS lane中的数据,例如,通信设备110可以按照现有技术的方式将各PCS lane适配至各PMD lane。
此情况下,传送网设备111可以对所接收到的信号进行PCS层解封装处理,以确定该信号中对应各PCS lane组的数据,并根据各PCS lane组对所接收到的信号进行ODU封装处理,以使一个ODU仅用于承载需要传输至一个接收设备的信号,或者说,一个ODU仅用于承载一个PCS lane组中的数据。
并且,此情况下,接收设备的处理过程和方法与情况1中的描述相似,这里,为了避免赘述,省略其详细说明。
情况3
该发送设备将该至少两路FlexE客户信号分配至多个PCS lane, 并根据该多个PCS lane,生成PMD lane信号,包括:
该发送设备根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定一个PCS lane组包括的PCS lane的数量将该至少两路FlexE客户信号分配至该一个PCS lane组中的PCS lane;
该发送设备根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PMD lane组中的每个PMD lane组包括的PMD lane的数量,并将每路FlexE客户信号所对应的该一个PCS lane组中的比特块适配至同一FlexE客户信号所对应的PMD lane组中的PMD lane,以生成PMD lane信号。
具体地说,在获取各FlexE客户信号之后,通信设备110可以将各FlexE客户信号分配至多个PCS lane中,与情况1和情况2不同的是,在情况3中不对PCS lane进行分组,即,每个PCS lane均承载有多个FlexE客户信号的数据(例如,比特块)。例如,通信设备110可以按照现有技术的方式进行PCS lane分配。
需要说明的是,在本发明实施例中,在进行PCS lane分配过程中,通信设备110需要记录各FlexE客户信号的比特块在每个PCS lane中的位置(或者说,序号)。
从而,通信设备110在将PCS lane适配至PMD lane的过程中,通信设备110可以按照情况1中描述的方式确定各PMD lane组,其中,每个PMD lane组仅承载一路FlexE客户信号的数据(即,比特块),并且,通信设备110可以根据如上所述记录的各FlexE客户信号的比特块在每个PCS lane中的位置,将各路FlexE客户信号的数据适配至所对应的PMD lane组。
此情况下,传送网设备111可以对所接收到的信号进行PMD层解封装处理,以确定该信号中对应各PMD lane组的数据,并根据各PMD lane组对所接收到的信号进行ODU封装处理,以使一个ODU仅用于承载需要传输至一个接收设备的信号,或者说,一个ODU仅用于承载一个PMD lane组中的数据。
或者,在本发明实施例中,传送网设备111在确定各PMD lane信号所对应的PMD lane组之后,可以以PMD lane(例如,optical lane) 为粒度,对各PMD lane信号进行光层交叉连接,或者说,交叉调度,以将各PMD lane信号传输至所需要传输至的接收设备。
并且,此情况下,接收设备的处理过程和方法与情况1中的描述相似,这里,为了避免赘述,省略其详细说明。
根据上述处理弹性以太网信号的方法,通过使发送设备将至少两路FlexE客户信号分配至至少两个PCS lane组或PMD lane组,传送网设备能够根据所接收到的信号所对应PCS lane组或PMD lane组,对该至少两路FlexE客户信号进行区分,因此,传送网设备能够在无需对所接收到的信号进行MAC层探测的情况下,将该至少两路FlexE客户信号准确地发送至接收端设备,能够减轻传送网设备的处理负担,减少传送网设备的处理时间,改善传送网设备的转发效率和***吞吐量。
图11是根据本发明一实施例的处理弹性以太网客户信号的方法600的交互过程的示意图。以下,为了便于理解和说明,以通信设备130(即,接收设备的一例)经由传送网设备131接收通信设备110和通信设备120双方传输的信号的过程为例,对本发明实施例的处理弹性以太网客户信号的方法的具体过程进行详细说明。
如图11所示,该方法600包括:
接收设备获取物理介质相关通道PMD lane信号,该PMD lane信号对应至少两个PMD lane组,该至少两个PMD lane组和至少两路弹性以太网FlexE客户信号和一一对应,该至少两路FlexE客户信号中的每路FlexE客户信号承载于所对应的PMD lane组,至少两个PMD lane组中的每个PMD lane组包括至少一个PMD lane,一个PMD lane仅属于一个PMD lane组;
该接收设备根据该至少两个PMD lane组,确定至少两个物理编码子层通道PCS lane组,该至少两个PMD lane组和该至少两个PCS lane组一一对应,至少两个PCS lane组中的每个PCS lane组包括至少一个PCS lane,一个PCS lane仅属于一个PMD lane组;
该接收设备将每个PMD lane组中的各PMD lane适配至所对应的PCS lane组中的各PCS lane;
该接收设备根据该至少两个PCS lane组,恢复出该至少两路FlexE客户信号。
具体地说,如图11所示,通信设备110可以获取需要发送给通信设备130的FlexE客户信号(以下,为了便于理解和说明,记做:FlexE客户信号#C),通信设备120可以获取需要发送给通信设备130的FlexE客户信号(以下,为了便于理解和说明,记做:FlexE客户信号#D)。
作为示例而非限定,在本发明实施例中,该FlexE客户信号#C和FlexE客户信号#D可以是经过MAC层封装处理后获得的MAC层数据,并且,该MAC层封装处理的方法和过程可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
如图11所示,在获取FlexE客户信号#C之后,通信设备110可以对该FlexE客户信号#C进行物理层封装处理。
需要说明的是,在通信设备110除了向通信设备130发送FlexE客户信号外还需要向其他通信设备发送FlexE客户信号(记做,FlexE客户信号#E)的情况下,通信设备110可以根据FlexE客户信号#C和FlexE客户信号#E的接收端设备,而将FlexE客户信号#C和FlexE客户信号#E分配至不同的PCS lane组或PMD lane组,以生成PMD lane信号,例如,Optical lane信号,并且,该过程可以与上述图5所示通信设备110执行的针对FlexE客户信号#A和FlexE客户信号#B的处理相似,这里,为了避免赘述,省略其详细说明。
在通信设备110仅向通信设备130发送FlexE客户信号的情况下,通信设备110可以按照与现有技术相似的方式将FlexE客户信号#C分配至多个PCS lane,并将PCS lane适配至一个或多个PMD lane,以生成PMD lane信号,例如,Optical lane信号。
其后,通信设备110将如上所述生成的PMD lane信号发送至传送网设备111。
传送网设备111可以对所接收到的信号进行解析,以将该信号中的与FlexE客户信号#C相对应的数据发送至通信设备130(或者说,与通信设备130通信连接的传送网设备131)。该过程可以与现有技 术相似,也可以与图5所示的传送网设备111的处理过程相似,这里,为了避免赘述,省略其详细说明。
类似地,通信设备120可以经由传送网设备121将FlexE客户信号#D所对应的数据发送至通信设备130。
从而,通信设备130(例如,通信设备130的接收模块)可能在同一时段,通过由一个或多个PMD lane构成的PMD lane组(以下,为了便于理解和区分,记做PMD lane组#C)接收到FlexE客户信号#C所对应的数据,并且,通过由一个或多个PMD lane构成的PMD lane组(以下,为了便于理解和区分,记做PMD lane组#D)接收到FlexE客户信号#D所对应的数据。
需要说明的是,在本发明实施例中,在通信设备130中可以预存有用于指示各PMD lane所属于的PMD lane组的指示信息,并且,一个PMD lane组仅承载一路FlexE客户信号(或者说,来自一个发送设备的信号)。
其中,通信设备130(例如,通信设备130的控制模块)可以确定多个PCS lane组,该多个PCS lane组与多个PMD lane组一一对应,每个PCS lane组仅承载来自所对应的PMD lane组的数据。
其后,通信设备130(例如,通信设备130的PMA模块)可以采用例如,bit间插的方式,将PMD lane组#C适配至由一个或多个PCS lane构成的PCS lane组(以下,为了便于理解和区分,记做PCS lane组#C),并将PMD lane组#D适配至由一个或多个PCS lane构成的PCS lane组(以下,为了便于理解和区分,记做PCS lane组#D)。
其后,通信设备130(例如,通信设备130的FlexE及PCS lane重排模块)可以在PCS lane组#C中,基于来自PMD lane组#C的数据,恢复出FlexE客户信号#C;并在PCS lane组#D中,基于来自PMD lane组#D的数据,恢复出FlexE客户信号#D。
从而,通信设备130(例如,通信设备130的MAC接收模块)可以对FlexE客户信号#C进行例如以太网解封装处理,从而获得通信设备110发送的数据;并且,可以对FlexE客户信号#D进行例如以太网解封装处理,从而获得通信设备120发送的数据。
可选地,该接收设备根据该至少两个PCS lane组,恢复出该至少两路FlexE客户信号,包括:
该接收端设备获取第一FlexE客户信号的发送端设备对该第一FlexE客户信号所对应的对齐标记AM进行编码处理时使用的编码方式,其中,该第一FlexE客户信号与第一PMD lane组相对应;
该接收端设备根据该编码方式和第一PCS lane组,恢复出该第一FlexE客户信号,其中,该第一PCS lane组与该第一PMD lane组相对应。
具体地说,由于AM所指示的PCS lane序号有可能与该PCS lane组所包括的PCS lane的序号不一致,或者,发送设备对AM的编码方式,与该通信设备130的AM的解码方式不匹配,因此,通信设备130只需要按照接收到的比特块按照其中的AM对应的序号大小重新排序即可,无需核对是否和应该接收的PCS lane的序号相符,并且,通信设备130根据AM的编码方式选择相应的解码方式进行解码即可。
图12是根据本发明一实施例的发送设备的比特块分发过程的示意图。如图12所示,假设通信设备110获取的FlexE客户信号#C的带宽为150G,通信设备120获取的FlexE客户信号#D的带宽为50G,在通信设备110中配置有30个PCS lane(记做:PCS lane#0-C~PCS lane#29-C,序号为0~29),PMA层进行30:3的变换,即,通信设备110中配置有3个PMD lane(例如,optical lane,optical lane,记做:optical lane#0-C~optical lane#2-C,序号为0~2),每个optical lane的带宽为50G。在通信设备120中配置有10个PCS lane(记做:PCS lane#0-D~PCS lane#9-D,序号为0~9),PMA层进行10:1的变换,即,通信设备110中配置有1个PMD lane(例如,optical lane,optical lane,记做:optical lane#0-D,序号为0),且optical lane的带宽为50G。
则,通信设备110可以将FlexE客户信号#C分配至序号为0~29的PCS lane(即,PCS lane#0-C~PCS lane#29-C),通信设备120可以将FlexE客户信号#D分配至序号为0~9的PCS lane(即,PCS  lane#0-D~PCS lane#9-D)。
并且,通信设备110可以将PCS lane#0-C~PCS lane#29-C适配至序号为0~2的optical lane(即,optical lane#0-C~optical lane#2-C),通信设备120可以将PCS lane#0-D~PCS lane#9-D适配至序号为0的optical lane(即,optical lane#0-D)。
图13是根据本发明一实施例的接收设备的比特块分发过程的示意图。如图13所示,假设通信设备130中设置有4个PMD lane(例如,optical lane,记做:optical lane#0”~optical lane#3”,序号为0~3),每个optical lane的带宽为50G,PMA层进行4:40的变换,即,通信设备130中配置有40个PCS lane(记做:PCS lane#0”~PCS lane#39”,序号为0~39)。
此情况下,通信设备130可以根据通信设备110和通信设备120所发送的数据的大小,对该optical lane#0”~optical lane#3”进行分组,作为示例而非限定,可以由optical lane#0”~optical lane#2”构成PMD lane组#C,可以由optical lane#3”构成PMD lane组#D。即,该PMD lane组#C用于接收来自optical lane#0-C~optical lane#2-C的信号,该PMD lane组#D用于接收来自optical lane#0-D的信号。
并且,通信设备130可以根据各PMD lane组所包括的PMD lane的数量(或者说,各PMD lane组所接收到的数据的带宽),确定多个PCS lane组,其中,多个PCS lane组与多个PMD lane组一一对应,每个PCS lane组仅用于承载所对应的PMD lane组中的数据,作为示例而非限定可以由PCS lane#0”~PCS lane#29”构成PCS lane组#C,可以由PCS lane#30”~PCS lane#39”构成PCS lane组#D。
其后,通信设备130可以将PMD lane组#C中的各PMD lane适配至PCS lane组#C中的各PCS lane,将PMD lane组#D中的各PMD lane适配至PCS lane组#D中的各PCS lane。
从而,通信设备130可以在PCS lane组#C中进行PCS lane重新排序,以恢复出FlexE客户信号#C。
并且,通信设备130可以在PCS lane组#D中进行PCS lane重新排序,以恢复出FlexE客户信号#D。这里PCS lane组#D中的各数据 所携带的PCS lane序号为PCS lane#0-D~PCS lane#9-D的序号,即,0~9,而PCS lane组#D中的各PCS lane(即,PCS lane#30”~PCS lane#39”)的序号为30~39。即,发送设备和接收设备使用的PCS lane的序号不相符,或者说,PCS lane组#D中的数据的AM所指示的序号与PCS lane组#D所包括的PCS lane的序号不相符,此情况下,通信设备130可以无需校对AM对应的PCS lane序号是否和通信设备130实际使用CS lane序号是否相符,仅需要根据该PCS lane组中的各数据的AM对应的PCS lane序号的大小进行重新排序即可。
另外,发送设备对AM的编码方式有可能与该通信设备130的AM的解码方式不匹配,因此,通信设备130需要获取发送设备对AM的编码方式,并根据AM的编码方式选择相应的解码方式进行解码。
根据上述处理弹性以太网信号的方法,通过使接收设备将至少两个PMD lane组适配至至少两个PCS lane组,在各PCS lane组分别恢复各PMD lane组中承载的FlexE客户信号,能够实现接收设备在同一时段接收来自不同发送设备的FlexE客户信号,能够提高***吞吐量。
应理解,以上列举的接收设备的处理仅为示例性说明,本发明并未特别限定,例如,接收设备也可以通过同一PMD lane组接收来自多个发送设备的信号,即,每个PMD lane承载有多个发送设备的信号,此情况下,各发送设备可以约定AM编码方式,以使不同的发送设备使用不同的AM编码方式,从而,接收设备可以根据AM编码方式区分信号所来自的发送设备,从而能够恢复出来自不同发送设备的信号。
图14示出了本发明一实施例的处理弹性以太网信号的装置700的示意性结构图,如图14所示,该装置700包括:
获取单元710,获取至少两路弹性以太网FlexE客户信号;
生成单元720,用于将该至少两路FlexE客户信号分配至多个物理编码子层通道PCS lane,并根据该多个PCS lane,生成物理介质相关通道PMD lane信号,其中
该多个PCS lane被划分为至少两个PCS lane组,该至少两路FlexE客户信号和至少两个PCS lane组一一对应,该至少两路FlexE客户信号中的每路FlexE客户信号被分配至所对应的PCS lane组,至少两个PCS lane组中的每个PCS lane组包括至少一个PCS lane,一个PCS lane仅属于一个PCS lane组;或
该PMD lane信号对应至少两个PMD lane组,该至少两路FlexE客户信号和至少两个PMD lane组一一对应,该至少两路FlexE客户信号中的每路FlexE客户信号被分配至所对应的PMD lane组,该至少两个PMD lane组中的每个PMD lane组包括至少一个PMD lane,一个PMD lane仅属于一个PMD lane组。
可选地,该生成单元具体用于根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PCS lane组中的每个PCS lane组包括的PCS lane的数量,并将每路FlexE客户信号分配至所对应的PCS lane组中的PCS lane;
用于根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定一个PMD lane组包括的PMD lane的数量,并将该至少两个PCS lane组中的各PCS lane适配至该一个PMD lane组中的PMD lane,以生成PMD lane信号。
可选地,该生成单元具体用于根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PCS lane组中的每个PCS lane组包括的PCS lane的数量,并将每路FlexE客户信号分配至所对应的PCS lane组中的PCS lane;
用于根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PMD lane组中的每个PMD lane组包括的PMD lane的数量,并将每路FlexE客户信号所对应的PCS lane组中的PCS lane适配至同一FlexE客户信号所对应的PMD lane组中的PMD lane,以生成PMD lane信号。
可选地,该生成单元具体用于根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定一个PCS lane组包括的PCS lane的数量将该至少两路FlexE客户信号分配至该一个PCS lane组中的 PCS lane;
用于根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PMD lane组中的每个PMD lane组包括的PMD lane的数量,并将每路FlexE客户信号所对应的该一个PCS lane组中的比特块适配至同一FlexE客户信号所对应的PMD lane组中的PMD lane,以生成PMD lane信号。
可选地,该生成单元具体用于基于相同的编码方式,对每个PCS lane所对应的对齐标记AM进行编码处理。
该装置700中的各单元或模块分别用于执行上述方法500中发送设备(例如,通信设备110)所执行的动作和功能,这里为了避免赘述,省略其详细说明。
根据上述处理弹性以太网信号的装置,通过使发送设备将至少两路FlexE客户信号分配至至少两个PCS lane组或PMD lane组,传送网设备能够根据所接收到的信号所对应PCS lane组或PMD lane组,对该至少两路FlexE客户信号进行区分,因此,传送网设备能够在无需对所接收到的信号进行MAC层探测的情况下,将该至少两路FlexE客户信号准确地发送至接收端设备,能够减轻传送网设备的处理负担,减少传送网设备的处理时间,改善传送网设备的转发效率和***吞吐量。
图15示出了本发明一实施例的处理弹性以太网信号的装置800的示意性结构图,如图15所示,该装置800包括:
接收单元810,用于接收发送设备发送的物理介质相关通道PMD lane信号,该PMD lane信号是该发送设备在将至少两路FlexE客户信号分配至多个物理编码子层通道PCS lane后,根据该多个PCS lane生成的;
生成单元820,用于当所述PMD lane信号对应至少两个PCS lane组时,所述传送网设备根据所述至少两个PCS lane组,对所述信号进行封装处理,以生成至少两个光通道数据单元ODU组,其中,所述至少两个PCS lane组与所述至少两个ODU组一一对应,所述至少两个ODU组中的每个ODU组包括至少一个ODU,一个ODU仅属 于一个ODU组;
用于当所述信号对应至少两个PMD lane组,所述传送网设备根据所述至少两个PMD lane组,对所述信号进行封装处理,以生成至少两个光通道数据单元ODU组,其中,所述至少两个PMD lane组与所述至少两个ODU组一一对应,所述至少两个ODU组中的每个ODU组包括至少一个ODU,一个ODU仅属于一个ODU组。
该装置800中的各单元或模块分别用于执行上述方法500中发送端传送网设备(例如,传送网设备111)所执行的动作和功能,这里为了避免赘述,省略其详细说明。
图16示出了本发明一实施例的处理弹性以太网信号的装置900的示意性结构图,如图16所示,该装置900包括:
获取单元910,用于获取物理介质相关通道PMD lane信号,该PMD lane信号对应至少两个PMD lane组,该至少两个PMD lane组和至少两路弹性以太网FlexE客户信号和一一对应,该至少两路FlexE客户信号中的每路FlexE客户信号承载于所对应的PMD lane组,至少两个PMD lane组中的每个PMD lane组包括至少一个PMD lane,一个PMD lane仅属于一个PMD lane组;
确定单元920,用于根据该至少两个PMD lane组,确定至少两个物理编码子层通道PCS lane组,该至少两个PMD lane组和该至少两个PCS lane组一一对应,至少两个PCS lane组中的每个PCS lane组包括至少一个PCS lane,一个PCS lane仅属于一个PMD lane组;
适配单元930,用于将每个PMD lane组中的各PMD lane适配至所对应的PCS lane组中的各PCS lane;
恢复单元940,用于根据该至少两个PCS lane组,恢复出该至少两路FlexE客户信号。
可选地,该获取单元还用于获取第一FlexE客户信号的发送端设备对该第一FlexE客户信号所对应的对齐标记AM进行编码处理时使用的编码方式,其中,该第一FlexE客户信号与第一PMD lane组相对应;
该恢复单元具体用于根据该编码方式和第一PCS lane组,恢复 出该第一FlexE客户信号,其中,该第一PCS lane组与该第一PMD lane组相对应。
该装置900中的各单元或模块分别用于执行上述方法600中接收设备(例如,通信设备130)所执行的动作和功能,这里为了避免赘述,省略其详细说明。
根据上述处理弹性以太网信号的装置,通过使接收设备将至少两个PMD lane组适配至至少两个PCS lane组,在各PCS lane组分别恢复各PMD lane组中承载的FlexE客户信号,能够实现接收设备在同一时段接收来自不同发送设备的FlexE客户信号,能够提高***吞吐量。
本发明实施例提供的传输数据的方法和装置,可以应用于计算机上,该计算机包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。该硬件层包括CPU、存储器管理单元(MMU,Memory Management Unit)和内存(也称为存储器)等硬件。该操作***可以是任意一种或多种通过进程实现业务处理的计算机操作***,例如,Linux***、Unix***、Android***、iOS***或windows***等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
下面,结合图17对本发明提供的计算机设备的结构和功能进行说明。
图17示出了本发明一实施例的处理弹性以太网信号的设备1000的示意性结构图,如图14所示,该设备1000包括:处理器1010和收发器1020,处理器1010和收发器1020相连,可选地,该设备1000还包括存储器1030,存储器1030与处理器1010相连,进一步可选地,该设备1000包括总线***1040。其中,处理器1010、存储器1030和收发器1020可以通过总线***1040相连,该存储器1030可以用于存储指令,该处理器1010用于执行该存储器1030存储的指令,以控制收发器1020接收信息或信号。
在本发明实施例中,该处理弹性以太网信号的设备1000可以是信号的发送设备,例如,用于执行上述方法500中发送设备(例如, 通信设备110)所执行的动作和功能,此情况下:
该处理器1010用于获取至少两路弹性以太网FlexE客户信号;
该处理器1010用于将该至少两路FlexE客户信号分配至多个物理编码子层通道PCS lane,并根据该多个PCS lane,生成物理介质相关通道PMD lane信号,其中
该多个PCS lane被划分为至少两个PCS lane组,该至少两路FlexE客户信号和至少两个PCS lane组一一对应,该至少两路FlexE客户信号中的每路FlexE客户信号被分配至所对应的PCS lane组,至少两个PCS lane组中的每个PCS lane组包括至少一个PCS lane,一个PCS lane仅属于一个PCS lane组;或
该PMD lane信号对应至少两个PMD lane组,该至少两路FlexE客户信号和至少两个PMD lane组一一对应,该至少两路FlexE客户信号中的每路FlexE客户信号被分配至所对应的PMD lane组,该至少两个PMD lane组中的每个PMD lane组包括至少一个PMD lane,一个PMD lane仅属于一个PMD lane组。
可选地,该处理器1010用于根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PCS lane组中的每个PCS lane组包括的PCS lane的数量,并将每路FlexE客户信号分配至所对应的PCS lane组中的PCS lane,用于根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定一个PMD lane组包括的PMD lane的数量,并将该至少两个PCS lane组中的各PCS lane适配至该一个PMD lane组中的PMD lane,以生成PMD lane信号。
可选地,该处理器1010用于根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PCS lane组中的每个PCS lane组包括的PCS lane的数量,并将每路FlexE客户信号分配至所对应的PCS lane组中的PCS lane;用于根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PMD lane组中的每个PMD lane组包括的PMD lane的数量,并将每路FlexE客户信号所对应的PCS lane组中的PCS lane适配至同一FlexE客户信号所对应的PMD lane组中的PMD lane,以生成PMD lane信号。
可选地,该处理器1010用于根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定一个PCS lane组包括的PCS lane的数量将该至少两路FlexE客户信号分配至该一个PCS lane组中的PCS lane;并根据该至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PMD lane组中的每个PMD lane组包括的PMD lane的数量,并将每路FlexE客户信号所对应的该一个PCS lane组中的比特块适配至同一FlexE客户信号所对应的PMD lane组中的PMD lane,以生成PMD lane信号。
可选地,该处理器1010用于基于相同的编码方式,对每个PCS lane所对应的对齐标记AM进行编码处理。
根据上述处理弹性以太网信号的设备,通过使发送设备将至少两路FlexE客户信号分配至至少两个PCS lane组或PMD lane组,传送网设备能够根据所接收到的信号所对应PCS lane组或PMD lane组,对该至少两路FlexE客户信号进行区分,因此,传送网设备能够在无需对所接收到的信号进行MAC层探测的情况下,将该至少两路FlexE客户信号准确地发送至接收端设备,能够减轻传送网设备的处理负担,减少传送网设备的处理时间,改善传送网设备的转发效率和***吞吐量。
在本发明实施例中,该处理弹性以太网信号的设备1000可以是传送网设备,例如,用于执行上述方法500中发送端传送网设备(例如,传送网设备111)所执行的动作和功能,此情况下:
该处理器1010用于控制该控制收发器1020接收发送设备发送的物理介质相关通道PMD lane信号,该PMD lane信号是该发送设备在将至少两路FlexE客户信号分配至多个物理编码子层通道PCS lane后,根据该多个PCS lane生成的;
该处理器1010用于当所述PMD lane信号对应至少两个PCS lane组时,所述传送网设备根据所述至少两个PCS lane组,对所述信号进行封装处理,以生成至少两个光通道数据单元ODU组,其中,所述至少两个PCS lane组与所述至少两个ODU组一一对应,所述至少两个ODU组中的每个ODU组包括至少一个ODU,一个ODU仅属 于一个ODU组;
该处理器1010用于当所述信号对应至少两个PMD lane组,所述传送网设备根据所述至少两个PMD lane组,对所述信号进行封装处理,以生成至少两个光通道数据单元ODU组,其中,所述至少两个PMD lane组与所述至少两个ODU组一一对应,所述至少两个ODU组中的每个ODU组包括至少一个ODU,一个ODU仅属于一个ODU组。
在本发明实施例中,该处理弹性以太网信号的设备1000可以是信号的接收设备,例如,用于执行上述方法600中接收设备(例如,通信设备130)所执行的动作和功能,此情况下:
该处理器1010用于控制收发器1020获取物理介质相关通道PMD lane信号,该PMD lane信号对应至少两个PMD lane组,该至少两个PMD lane组和至少两路弹性以太网FlexE客户信号和一一对应,该至少两路FlexE客户信号中的每路FlexE客户信号承载于所对应的PMD lane组,至少两个PMD lane组中的每个PMD lane组包括至少一个PMD lane,一个PMD lane仅属于一个PMD lane组;
该处理器1010用于根据该至少两个PMD lane组,确定至少两个物理编码子层通道PCS lane组,该至少两个PMD lane组和该至少两个PCS lane组一一对应,至少两个PCS lane组中的每个PCS lane组包括至少一个PCS lane,一个PCS lane仅属于一个PMD lane组;
该处理器1010用于将每个PMD lane组中的各PMD lane适配至所对应的PCS lane组中的各PCS lane;
该处理器1010用于根据该至少两个PCS lane组,恢复出该至少两路FlexE客户信号。
可选地,该处理器1010用于获取第一FlexE客户信号的发送端设备对该第一FlexE客户信号所对应的对齐标记AM进行编码处理时使用的编码方式,其中,该第一FlexE客户信号与第一PMD lane组相对应;
该处理器1010用于根据该编码方式和第一PCS lane组,恢复出该第一FlexE客户信号,其中,该第一PCS lane组与该第一PMD lane 组相对应。
根据上述处理弹性以太网信号的设备,通过使接收设备将至少两个PMD lane组适配至至少两个PCS lane组,在各PCS lane组分别恢复各PMD lane组中承载的FlexE客户信号,能够实现接收设备在同一时段接收来自不同发送设备的FlexE客户信号,能够提高***吞吐量。
应理解,在本发明实施例中,该处理器1010可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器1010还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器1030可以包括只读存储器和随机存取存储器,并向处理器1010提供指令和数据。存储器1030的一部分还可以包括非易失性随机存取存储器。例如,存储器1030还可以存储设备类型的信息。
该总线***1040除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线***1040。
在实现过程中,上述方法的各步骤可以通过处理器1010中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1030,处理器1010读取存储器1030中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或 者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种处理弹性以太网客户信号的方法,其特征在于,所述方法包括:
    发送设备获取至少两路弹性以太网FlexE客户信号;
    所述发送设备将所述至少两路FlexE客户信号分配至多个物理编码子层通道PCS lane,并根据所述多个PCS lane,生成物理介质相关通道PMD lane信号,其中
    所述多个PCS lane被划分为至少两个PCS lane组,所述至少两路FlexE客户信号和至少两个PCS lane组一一对应,所述至少两路FlexE客户信号中的每路FlexE客户信号被分配至所对应的PCS lane组,至少两个PCS lane组中的每个PCS lane组包括至少一个PCS lane,一个PCS lane仅属于一个PCS lane组;或
    所述PMD lane信号对应至少两个PMD lane组,所述至少两路FlexE客户信号和至少两个PMD lane组一一对应,所述至少两路FlexE客户信号中的每路FlexE客户信号被分配至所对应的PMD lane组,所述至少两个PMD lane组中的每个PMD lane组包括至少一个PMD lane,一个PMD lane仅属于一个PMD lane组。
  2. 根据权利要求1所述的方法,其特征在于,所述发送设备将所述至少两路FlexE客户信号分配至多个PCS lane,并根据所述多个PCS lane,生成PMD lane信号,包括:
    所述发送设备根据所述至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PCS lane组中的每个PCS lane组包括的PCS lane的数量,并将每路FlexE客户信号分配至所对应的PCS lane组中的PCS lane;
    所述发送设备根据所述至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定一个PMD lane组包括的PMD lane的数量,并将所述至少两个PCS lane组中的各PCS lane适配至所述一个PMD lane组中的PMD lane,以生成PMD lane信号。
  3. 根据权利要求1所述的方法,其特征在于,所述发送设备将 所述至少两路FlexE客户信号分配至多个PCS lane,并根据所述多个PCS lane,生成PMD lane信号,包括:
    所述发送设备根据所述至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PCS lane组中的每个PCS lane组包括的PCS lane的数量,并将每路FlexE客户信号分配至所对应的PCS lane组中的PCS lane;
    所述发送设备根据所述至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PMD lane组中的每个PMD lane组包括的PMD lane的数量,并将每路FlexE客户信号所对应的PCS lane组中的PCS lane适配至同一FlexE客户信号所对应的PMD lane组中的PMD lane,以生成PMD lane信号。
  4. 根据权利要求1所述的方法,其特征在于,所述发送设备将所述至少两路FlexE客户信号分配至多个PCS lane,并根据所述多个PCS lane,生成PMD lane信号,包括:
    所述发送设备根据所述至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定一个PCS lane组包括的PCS lane的数量将所述至少两路FlexE客户信号分配至所述一个PCS lane组中的PCS lane;
    所述发送设备根据所述至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PMD lane组中的每个PMD lane组包括的PMD lane的数量,并将每路FlexE客户信号所对应的所述一个PCS lane组中的比特块适配至同一FlexE客户信号所对应的PMD lane组中的PMD lane,以生成PMD lane信号。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,当所述多个PCS lane被划分为至少两个PCS lane组时,在将所述至少两路FlexE客户信号分配至多个PCS lane的过程中,所述方法还包括:
    所述发送设备基于相同的编码方式,对每个PCS lane所对应的对齐标记AM进行编码处理。
  6. 一种处理弹性以太网客户信号的方法,其特征在于,所述方法包括:
    接收设备获取物理介质相关通道PMD lane信号,所述PMD lane信号对应至少两个PMD lane组,所述至少两个PMD lane组和至少两路弹性以太网FlexE客户信号和一一对应,所述至少两路FlexE客户信号中的每路FlexE客户信号承载于所对应的PMD lane组,至少两个PMD lane组中的每个PMD lane组包括至少一个PMD lane,一个PMD lane仅属于一个PMD lane组;
    所述接收设备根据所述至少两个PMD lane组,确定至少两个物理编码子层通道PCS lane组,所述至少两个PMD lane组和所述至少两个PCS lane组一一对应,至少两个PCS lane组中的每个PCS lane组包括至少一个PCS lane,一个PCS lane仅属于一个PMD lane组;
    所述接收设备将每个PMD lane组中的各PMD lane适配至所对应的PCS lane组中的各PCS lane;
    所述接收设备根据所述至少两个PCS lane组,恢复出所述至少两路FlexE客户信号。
  7. 根据权利要求6所述的方法,其特征在于,所述接收设备根据所述至少两个PCS lane组,恢复出所述至少两路FlexE客户信号,包括:
    所述接收端设备获取第一FlexE客户信号的发送端设备对所述第一FlexE客户信号所对应的对齐标记AM进行编码处理时使用的编码方式,其中,所述第一FlexE客户信号与第一PMD lane组相对应;
    所述接收端设备根据所述编码方式和第一PCS lane组,恢复出所述第一FlexE客户信号,其中,所述第一PCS lane组与所述第一PMD lane组相对应。
  8. 一种处理弹性以太网客户信号的装置,其特征在于,所述装置包括:
    获取单元,获取至少两路弹性以太网FlexE客户信号;
    生成单元,用于将所述至少两路FlexE客户信号分配至多个物理编码子层通道PCS lane,并根据所述多个PCS lane,生成物理介质相关通道PMD lane信号,其中
    所述多个PCS lane被划分为至少两个PCS lane组,所述至少两 路FlexE客户信号和至少两个PCS lane组一一对应,所述至少两路FlexE客户信号中的每路FlexE客户信号被分配至所对应的PCS lane组,至少两个PCS lane组中的每个PCS lane组包括至少一个PCS lane,一个PCS lane仅属于一个PCS lane组;或
    所述PMD lane信号对应至少两个PMD lane组,所述至少两路FlexE客户信号和至少两个PMD lane组一一对应,所述至少两路FlexE客户信号中的每路FlexE客户信号被分配至所对应的PMD lane组,所述至少两个PMD lane组中的每个PMD lane组包括至少一个PMD lane,一个PMD lane仅属于一个PMD lane组。
  9. 根据权利要求8所述的装置,其特征在于,所述生成单元具体用于根据所述至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PCS lane组中的每个PCS lane组包括的PCS lane的数量,并将每路FlexE客户信号分配至所对应的PCS lane组中的PCS lane;
    用于根据所述至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定一个PMD lane组包括的PMD lane的数量,并将所述至少两个PCS lane组中的各PCS lane适配至所述一个PMD lane组中的PMD lane,以生成PMD lane信号。
  10. 根据权利要求8所述的装置,其特征在于,所述生成单元具体用于根据所述至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PCS lane组中的每个PCS lane组包括的PCS lane的数量,并将每路FlexE客户信号分配至所对应的PCS lane组中的PCS lane;
    用于根据所述至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PMD lane组中的每个PMD lane组包括的PMD lane的数量,并将每路FlexE客户信号所对应的PCS lane组中的PCS lane适配至同一FlexE客户信号所对应的PMD lane组中的PMD lane,以生成PMD lane信号。
  11. 根据权利要求8所述的装置,其特征在于,所述生成单元具体用于根据所述至少两路FlexE客户信号中的每路FlexE客户信号的 带宽,确定一个PCS lane组包括的PCS lane的数量将所述至少两路FlexE客户信号分配至所述一个PCS lane组中的PCS lane;
    用于根据所述至少两路FlexE客户信号中的每路FlexE客户信号的带宽,确定至少两个PMD lane组中的每个PMD lane组包括的PMD lane的数量,并将每路FlexE客户信号所对应的所述一个PCS lane组中的比特块适配至同一FlexE客户信号所对应的PMD lane组中的PMD lane,以生成PMD lane信号。
  12. 根据权利要求8至11中任一项所述的装置,其特征在于,所述生成单元具体用于基于相同的编码方式,对每个PCS lane所对应的对齐标记AM进行编码处理。
  13. 一种处理弹性以太网客户信号的装置,其特征在于,所述装置包括:
    获取单元,用于获取物理介质相关通道PMD lane信号,所述PMD lane信号对应至少两个PMD lane组,所述至少两个PMD lane组和至少两路弹性以太网FlexE客户信号和一一对应,所述至少两路FlexE客户信号中的每路FlexE客户信号承载于所对应的PMD lane组,至少两个PMD lane组中的每个PMD lane组包括至少一个PMD lane,一个PMD lane仅属于一个PMD lane组;
    确定单元,用于根据所述至少两个PMD lane组,确定至少两个物理编码子层通道PCS lane组,所述至少两个PMD lane组和所述至少两个PCS lane组一一对应,至少两个PCS lane组中的每个PCS lane组包括至少一个PCS lane,一个PCS lane仅属于一个PMD lane组;
    适配单元,用于将每个PMD lane组中的各PMD lane适配至所对应的PCS lane组中的各PCS lane;
    恢复单元,用于根据所述至少两个PCS lane组,恢复出所述至少两路FlexE客户信号。
  14. 根据权利要求13所述的装置,其特征在于,所述获取单元还用于获取第一FlexE客户信号的发送端设备对所述第一FlexE客户信号所对应的对齐标记AM进行编码处理时使用的编码方式,其中,所述第一FlexE客户信号与第一PMD lane组相对应;
    所述恢复单元具体用于根据所述编码方式和第一PCS lane组,恢复出所述第一FlexE客户信号,其中,所述第一PCS lane组与所述第一PMD lane组相对应。
PCT/CN2016/102748 2016-01-15 2016-10-20 处理弹性以太网信号的方法和装置 WO2017121158A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610029240.3A CN106982105B (zh) 2016-01-15 2016-01-15 处理弹性以太网信号的方法和装置
CN201610029240.3 2016-01-15

Publications (1)

Publication Number Publication Date
WO2017121158A1 true WO2017121158A1 (zh) 2017-07-20

Family

ID=59310736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102748 WO2017121158A1 (zh) 2016-01-15 2016-10-20 处理弹性以太网信号的方法和装置

Country Status (2)

Country Link
CN (1) CN106982105B (zh)
WO (1) WO2017121158A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019042121A1 (zh) * 2017-08-28 2019-03-07 华为技术有限公司 一种交换方法和装置
CN109586864A (zh) * 2017-09-28 2019-04-05 华为技术有限公司 数据传输方法、装置及***
CN109729588A (zh) * 2017-10-31 2019-05-07 华为技术有限公司 业务数据传输方法及装置
CN110971388A (zh) * 2018-09-29 2020-04-07 华为技术有限公司 用于在网络设备和远端设备通信的方法、装置及设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102337650B1 (ko) * 2017-07-29 2021-12-10 후아웨이 테크놀러지 컴퍼니 리미티드 비트 블록 스트림 처리, 레이트 매칭 및 교환을 위한 방법 및 디바이스
CN109391494B (zh) 2017-08-09 2021-02-09 华为技术有限公司 一种通信方法、设备及可读存储介质
CN111357248B (zh) * 2017-12-20 2023-01-13 瑞典爱立信有限公司 用于flexe网络中的phy管理的方法和装置
CN114389747A (zh) * 2020-10-22 2022-04-22 华为技术有限公司 数据传输方法及其相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101389146A (zh) * 2007-09-13 2009-03-18 华为技术有限公司 光传送网同步交叉调度的方法和装置
CN101640568A (zh) * 2008-07-30 2010-02-03 华为技术有限公司 一种客户信号的发送、接收方法、装置和***
CN103875205A (zh) * 2013-09-13 2014-06-18 华为技术有限公司 传输数据的方法和装置
EP2975858A1 (en) * 2013-01-04 2016-01-20 Huawei Technologies Co., Ltd. Method for processing data in the ethernet, physical layer chip and ethernet device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103354983B (zh) * 2012-11-12 2017-06-20 华为技术有限公司 以太数据处理的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101389146A (zh) * 2007-09-13 2009-03-18 华为技术有限公司 光传送网同步交叉调度的方法和装置
CN101640568A (zh) * 2008-07-30 2010-02-03 华为技术有限公司 一种客户信号的发送、接收方法、装置和***
EP2975858A1 (en) * 2013-01-04 2016-01-20 Huawei Technologies Co., Ltd. Method for processing data in the ethernet, physical layer chip and ethernet device
CN103875205A (zh) * 2013-09-13 2014-06-18 华为技术有限公司 传输数据的方法和装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019042121A1 (zh) * 2017-08-28 2019-03-07 华为技术有限公司 一种交换方法和装置
US11290578B2 (en) 2017-08-28 2022-03-29 Huawei Technologies Co., Ltd. Encapsulating and exchanging bytes in a telecommunication system
CN109586864A (zh) * 2017-09-28 2019-04-05 华为技术有限公司 数据传输方法、装置及***
CN109586864B (zh) * 2017-09-28 2021-01-15 华为技术有限公司 数据传输方法、装置及***
US11297000B2 (en) 2017-09-28 2022-04-05 Huawei Technologies Co., Ltd. Data transmission method, apparatus, and system
CN109729588A (zh) * 2017-10-31 2019-05-07 华为技术有限公司 业务数据传输方法及装置
CN109729588B (zh) * 2017-10-31 2020-12-15 华为技术有限公司 业务数据传输方法及装置
US11101908B2 (en) 2017-10-31 2021-08-24 Huawei Technologies Co., Ltd. Service data transmission method and apparatus
CN110971388A (zh) * 2018-09-29 2020-04-07 华为技术有限公司 用于在网络设备和远端设备通信的方法、装置及设备
CN110971388B (zh) * 2018-09-29 2022-02-18 华为技术有限公司 用于在网络设备和远端设备通信的方法、装置及设备

Also Published As

Publication number Publication date
CN106982105A (zh) 2017-07-25
CN106982105B (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
WO2017121158A1 (zh) 处理弹性以太网信号的方法和装置
CN113316037B (zh) 一种业务承载的方法、设备和***
US10462028B2 (en) Efficient ethernet signal transport and scheduling
US10484098B2 (en) Channel bonding in passive optical networks
JP5903154B2 (ja) 光トランスポートシステム
US20220416895A1 (en) Data transmission method and apparatus, terminal device and storage medium
WO2018228420A1 (zh) 一种传输网络***、数据交换和传输方法、装置及设备
US8412040B2 (en) Method and apparatus for mapping traffic using virtual concatenation
ES2673571T3 (es) Método para procesar datos en Ethernet, circuito integrado de capa física y dispositivo de Ethernet
US8122325B2 (en) Forward error correction for 64b66b coded systems
CN111788794A (zh) 用于配置灵活以太网节点的方法和设备
US10382136B2 (en) Envelope header design in passive optical networks
JP6235987B2 (ja) 光伝送システム及び光伝送方法
WO2020108329A1 (zh) 业务数据处理方法及设备
US20230133314A1 (en) Interface, electronic device, and communication system
US10771178B2 (en) Method for sending and receiving optical transport network (OTN) signal, OTN device, and system
CN113078980A (zh) 一种数据传输的方法以及装置
JP6033468B2 (ja) 光伝送装置、光伝送システム及び通信方法
US11509392B2 (en) Signal quality information notification method and relay communication apparatus
WO2019100725A1 (zh) 传送、接收子速率信号方法及装置、设备
RU2809182C1 (ru) Способ передачи служебных данных, соответствующее устройство и микросхема цифровой обработки
WO2012155781A1 (zh) 基于光传送网的数据处理方法及***
CN103957170A (zh) Ip传输复接器及ip传输复接、解复接的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884712

Country of ref document: EP

Kind code of ref document: A1