CN109586864B - 数据传输方法、装置及*** - Google Patents

数据传输方法、装置及*** Download PDF

Info

Publication number
CN109586864B
CN109586864B CN201710898393.6A CN201710898393A CN109586864B CN 109586864 B CN109586864 B CN 109586864B CN 201710898393 A CN201710898393 A CN 201710898393A CN 109586864 B CN109586864 B CN 109586864B
Authority
CN
China
Prior art keywords
node
flexe
flexe client
data
client
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710898393.6A
Other languages
English (en)
Other versions
CN109586864A (zh
Inventor
黄敬
张小俊
李日欣
***
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN201710898393.6A priority Critical patent/CN109586864B/zh
Priority to EP18861448.1A priority patent/EP3681081A4/en
Priority to PCT/CN2018/104193 priority patent/WO2019062500A1/zh
Publication of CN109586864A publication Critical patent/CN109586864A/zh
Priority to US16/832,795 priority patent/US11297000B2/en
Application granted granted Critical
Publication of CN109586864B publication Critical patent/CN109586864B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/74Admission control; Resource allocation measures in reaction to resource unavailability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1221Wireless traffic scheduling based on age of data to be sent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • H04J3/1658Optical Transport Network [OTN] carrying packets or ATM cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0668Management of faults, events, alarms or notifications using network fault recovery by dynamic selection of recovery network elements, e.g. replacement by the most appropriate element after failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0073Services, e.g. multimedia, GOS, QOS
    • H04J2203/0082Interaction of SDH with non-ATM protocols
    • H04J2203/0085Support of Ethernet

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了一种数据传输方法、装置及***,属于通信技术领域。该数据传输方法包括:第一节点获取m(m≥2)个第一FlexE客户,再将该m个第一FlexE客户映射至一个第二FlexE客户,之后将该第二FlexE客户的数据传输至第二节点,其中,每个第一FlexE客户的数据占用第二FlexE客户的时隙是固定的,第二节点与第一节点不同。本申请解决了相关技术中FlexE客户的粒度较细,对节点处理数据的性能要求较高的问题,通过将多个第一FlexE客户映射至一个第二FlexE客户,降低了对节点处理数据的性能要求,适用于FlexE环网的数据传输和组建的层次化网络的数据传输。

Description

数据传输方法、装置及***
技术领域
本申请涉及通信技术领域,特别涉及一种数据传输方法、装置及***。
背景技术
灵活以太网(FlexE,Flexible Ethernet)技术是一种新出现的用于传输数据的接口技术,该技术提供了一种通用机制来支持各种现有以太网(Ethernet)介质访问控制(MAC,Media Access Control)信号速率的数据传输,这些以太网MAC信号速率可以与现有的任何以太网物理层(PHY)速率不同。
目前,在灵活以太网技术中,一个节点的K(1≤K≤254)个时域资源为100G的物理接口被绑定为一个FlexE组(FlexE Group)。每个物理接口的时域资源被划分为20个5G的时隙,一个FlexE组对应20*K个时隙。20*K个时隙被分为多组,一个FlexE客户(FlexE Client)对应一组时隙,一个FlexE客户就是一个数据流。
然而节点在采用FlexE技术进行数据传输时,都是以一个FlexE客户为粒度对数据进行传输,而一个FlexE客户的粒度较细,如果节点都以一个FlexE客户为粒度来处理数据,则对节点处理数据的性能要求较高。
发明内容
本申请提供了一种数据传输方法、装置及***,可以解决相关技术中FlexE客户的粒度较细,对节点处理数据的性能要求较高的问题。所述技术方案如下:
第一方面,提供了一种数据传输方法,该方法应用于第一节点,该方法包括:第一节点获取m(m≥2)个第一FlexE客户,再将m个第一FlexE客户映射至一个第二FlexE客户,之后将第二FlexE客户的数据传输至第二节点,其中,每个第一FlexE客户的数据占用第二FlexE客户的时隙是固定的,第二节点与第一节点不同。
在本申请中,第一节点能够将获取的多个第一FlexE客户映射至一个第二FlexE客户,并将第二FlexE客户的数据传输至第二节点,而每个第一FlexE客户的数据占用第二FlexE客户的时隙是固定的。假设第二FlexE客户的时隙共有5个,这5个时隙的时隙标识分别是:ST1、ST2、ST3、ST4和ST5,第一节点获取了2个第一FlexE客户:第一FlexE客户YL1和第一FlexE客户YL2,第一节点将这2个第一FlexE客户映射至一个第二FlexE客户后,第一FlexE客户YL1的数据占用第二FlexE客户的时隙标识为ST1和ST2的时隙;第一FlexE客户YL2的数据占用第二FlexE客户的时隙标识为ST3、ST4和ST5的时隙,在后续传输过程中,第一FlexE客户YL1的数据占用的始终是时隙标识为ST1和ST2的时隙,第一FlexE客户YL2的数据占用的始终是时隙标识为ST3、ST4和ST5的时隙,第一FlexE客户YL1的数据和第一FlexE客户YL2的数据占用第二FlexE客户的时隙保持不变,便于数据恢复。该方法通过将多个第一FlexE客户映射至一个第二FlexE客户,使得节点无需都以一个FlexE客户为粒度来处理数据,降低了对节点处理数据的性能要求。
可选的,将m个第一FlexE客户映射至一个第二FlexE客户,可以包括:将m个第一FlexE客户中每个第一FlexE客户的数据中的数据码块映射至第二FlexE客户的指定的时隙中,得到第二FlexE客户的数据码块流;在第二FlexE客户的数据码块流中连续添加N个空闲码块,N为第二FlexE客户的时隙个数的整数倍。
第一节点在第二FlexE客户的数据码块流中连续添加N个空闲码块时,可以在第二FlexE客户的数据码块流中的任一位置连续添加该N个空闲码块。
在本申请中,由于第一节点在第二FlexE客户的数据码块流中连续添加N个空闲码块,N为第二FlexE客户的时隙个数的整数倍,所以第二FlexE客户的时隙中每个时隙都存在(N/l)个空闲码块,其中,l为第二FlexE客户的时隙个数。这样一来,能够保证每个第一FlexE客户的数据占用第二FlexE客户的时隙是固定的,即每个第一FlexE客户的数据在传输过程中所占用的第二FlexE客户的时隙保持不变,便于数据恢复。
可选的,将m个第一FlexE客户中每个第一FlexE客户的数据中的数据码块映射至第二FlexE客户的指定的时隙中,包括:按照预设排序方式对m个第一FlexE客户进行排序;按照排序顺序,将m个第一FlexE客户中每个第一FlexE客户的数据中的数据码块映射至第二FlexE客户的指定的时隙中。每个第一FlexE客户的数据中的数据码块按照排序顺序被映射至第二FlexE客户的指定的时隙中,提高了数据码块的映射效率。
可选的,按照预设排序方式对m个第一FlexE客户进行排序,包括:按照m个第一FlexE客户中每个第一FlexE客户对应的流标签的内容,对m个第一FlexE客户进行排序。
在本申请中,第一FlexE客户对应的流标签包括的信息可以有多种表示方式。
在第一种方式中,配置在第一节点的第一FlexE客户的流标签可以包括:用于传输该第一FlexE客户的数据的所有节点的节点标识,用于传输该第一FlexE客户的数据的任意相邻两个节点的关系信息。相邻两个节点的关系信息可以包括:该第一FlexE客户在用于发送该第一FlexE客户的数据的节点上所属的FlexE组的组标识,该第一FlexE客户的流标识,以及第一FlexE客户的数据占用的时隙的信息。其中,不同对相邻节点配置的该第一FlexE客户的流标识不同。
为了在节点数量较大的情况下减小该第一FlexE客户的流标签所需的存储空间,在第二种方式中,配置在第一节点的第一FlexE客户的流标签可以包括:该第一FlexE客户的流入节点,该第一FlexE客户的流出节点,用于传输该第一FlexE客户的数据的任意相邻两个节点的关系信息。
为了简化第一FlexE客户的流标签的信息,在第三种方式中,配置在第一节点的第一FlexE客户的流标签可以包括:该第一FlexE客户的流入节点,该第一FlexE客户的流出节点,该第一FlexE客户的流标识,以及该第一FlexE客户在任意相邻两个节点中用于发送该第一FlexE客户的数据的节点上所属的FlexE组的组标识。
为了进一步简化第一FlexE客户的流标签的信息,在第四种方式中,配置在第一节点的第一FlexE客户的流标签可以包括:该第一FlexE客户的流入节点,该第一FlexE客户的流出节点和该第一FlexE客户的流标识。其中,不同的节点配置的该第一FlexE客户的流标识相同。
可选的,在将m个第一FlexE客户中每个第一FlexE客户的数据中的数据码块映射至第二FlexE客户的指定的时隙中之前,该方法还可以包括:删除p个第一FlexE客户的数据中的q个空闲码块,1≤p≤m,q≥1。
在本申请中,为了满足节点间的数据传输速率的要求,第一节点在将m个第一FlexE客户映射至一个第二FlexE客户之前,可以对p(1≤p≤m)个第一FlexE客户的数据进行预处理,比如,可以删除p个第一FlexE客户的数据中的一些多余的空闲码块,以便于后续在第二FlexE客户的数据码块流中能够连续添加多个空闲码块,连续添加的该多个空闲码块用于保证第一FlexE客户的数据占用第二FlexE客户的时隙是固定的。
可选的,第一节点将第二FlexE客户的数据传输至第二节点,可以包括:第一节点将第二FlexE客户的数据发送至第三节点。然后,第三节点在检测到第二FlexE客户的数据码块流中连续存在N个空闲码块时,删除N个空闲码块,第三节点为传输第二FlexE客户的数据时,第一节点和第二节点之间的节点。之后,第三节点在将处理后的第二FlexE客户传输至第二节点时,在处理后的第二FlexE客户的数据码流中连续添加N个空闲码块。
第三节点执行的空闲码块添加操作与第一节点执行的空闲码块添加操作可以相同,也可以不同,例如,为了保证数据正常传输,完成速率匹配,第三节点可以按照实际需求来增加或删除少量的空闲码块。
可选的,第一节点和第二节点为FlexE环网中的节点,FlexE环网包括多个节点,多个节点形成工作路径和保护路径,工作路径和保护路径均为可双向传输的路径,第一FlexE客户为工作FlexE客户,第二FlexE客户为保护FlexE客户,相应的,获取m个第一FlexE客户可以包括:在检测到工作路径上距离第一节点最近的一个元素出现故障时,获取待向工作路径上的下一节点发送的m个工作FlexE客户,元素为节点或链路。
可选的,将第二FlexE客户的数据传输至第二节点,包括:沿保护路径将保护FlexE客户的数据传输至第二节点,第二节点为靠近出现故障的元素的节点。
在本申请中,当第一节点检测到FlexE环网中的工作路径上距离第一节点最近的一个元素出现故障时,第一节点能够将待向工作路径上的下一节点发送的m个工作FlexE客户映射至一个保护FlexE客户,每个工作FlexE客户的数据占用保护FlexE客户的时隙是固定的。之后,第一节点沿着FlexE环网中的保护路径将保护FlexE客户的数据传输至第二节点,第二节点为靠近出现故障的元素的节点,该过程降低了对节点处理数据的性能要求,还避免了当工作路径出现故障时业务发生中断,提高了数据传输的可靠性,为FlexE技术提供了一种可靠的环网保护方式。
可选的,第一节点和第二节点为基于FlexE的层次化网络中的节点。该数据传输方法通过将多个第一FlexE客户映射至一个第二FlexE客户,对FlexE客户进行多级映射,使得节点无需都以一个FlexE客户为粒度来处理数据,减少了节点需要处理的细粒度的FlexE客户的数量,降低了对节点处理数据的性能要求,达到了构建层次化的大规模网络的效果。
可选的,当m≥3时,第一节点可以执行多次映射操作,相应的,第一节点将m个第一FlexE客户映射至一个第二FlexE客户,可以包括:第一节点对m个第一FlexE客户执行多次映射操作,以将m个第一FlexE客户映射至一个第二FlexE客户。比如第一节点可以基于先分组再映射的方式对m个第一FlexE客户执行多次映射操作。
当第一节点和第二节点为基于FlexE的层次化网络中的节点时,可选的,第一FlexE客户对应的流标签也可以包括:第一FlexE客户的流标识和第一FlexE客户的数据的大小。不同的节点所配置的第一FlexE客户的流标识相同。
第二方面,提供了一种数据传输方法,该方法应用于第二节点,该方法包括:第二节点接收第一节点传输的第二FlexE客户的数据,第二FlexE客户是第一节点将获取的m个第一FlexE客户进行映射后得到的,每个第一FlexE客户的数据占用第二FlexE客户的时隙是固定的,第一节点与第二节点不同,m≥2。之后,第二节点再对第二FlexE客户的数据执行转发操作或恢复操作。
该方法通过将多个第一FlexE客户映射至一个第二FlexE客户,使得节点无需都以一个FlexE客户为粒度来处理数据,降低了对节点处理数据的性能要求。
可选的,第一节点和第二节点为FlexE环网中的节点,FlexE环网包括多个节点,多个节点形成工作路径和保护路径,工作路径和保护路径均为可双向传输的路径,第一FlexE客户为工作FlexE客户,第二FlexE客户为保护FlexE客户。
相应的,接收第一节点传输的第二FlexE客户的数据,可以包括:接收第一节点沿保护路径传输的保护FlexE客户的数据,该保护FlexE客户是第一节点在检测到工作路径上距离第一节点最近的一个元素出现故障时,将待向工作路径上的下一节点发送的m个工作FlexE客户进行映射后得到的,元素为节点或链路。
对第二FlexE客户的数据执行转发操作或恢复操作,包括:将保护FlexE客户恢复为m个工作FlexE客户。
在将保护FlexE客户恢复为m个工作FlexE客户之后,该方法还可以包括:对m个工作FlexE客户中每个工作FlexE客户的数据执行目标操作,目标操作为转发操作或丢弃操作。
可选的,将保护FlexE客户恢复为m个工作FlexE客户,可以包括:当检测到保护FlexE客户的数据码块流中连续存在N个空闲码块时,删除N个空闲码块,N为保护FlexE客户的时隙个数的整数倍;按照每个工作FlexE客户的数据中的数据码块的位置,恢复出m个工作FlexE客户。
在本申请中,当第一节点检测到FlexE环网中的工作路径上距离第一节点最近的一个元素出现故障时,第一节点将待向工作路径上的下一节点发送的m个工作FlexE客户映射至一个保护FlexE客户,每个工作FlexE客户的数据占用保护FlexE客户的时隙是固定的。之后,第一节点沿着FlexE环网中的保护路径将保护FlexE客户的数据传输至第二节点,第二节点为靠近出现故障的元素的节点。第二节点接收第一节点传输的保护FlexE客户的数据,再将保护FlexE客户恢复为m个工作FlexE客户,之后对m个工作FlexE客户中每个工作FlexE客户的数据执行转发操作或丢弃操作,该过程降低了对节点处理数据的性能要求,还避免了当工作路径出现故障时业务发生中断,因此,提高了数据传输的可靠性,为FlexE技术提供了一种可靠的环网保护方式。
可选的,对m个工作FlexE客户中每个工作FlexE客户的数据执行目标操作,包括:对于每个工作FlexE客户:当基于工作FlexE客户对应的流标签检测到工作FlexE客户的数据不经过第二节点时,对工作FlexE客户的数据执行丢弃操作;当基于工作FlexE客户对应的流标签检测到工作FlexE客户的数据经过第二节点时,对工作FlexE客户的数据执行转发操作。其中,工作FlexE客户对应的流标签用于指示工作FlexE客户的数据在工作路径上的转发路径。
为了简化第一FlexE客户的流标签的信息,工作FlexE客户对应的流标签可以包括:工作FlexE客户的流入节点,工作FlexE客户的流出节点和工作FlexE客户的流标识。其中,不同的节点配置的工作FlexE客户的流标识相同。
可选的,第一节点和第二节点为基于FlexE的层次化网络中的节点,相应的,对第二FlexE客户的数据执行转发操作或恢复操作,包括:对第二FlexE客户的数据执行转发操作。对第二FlexE客户的数据执行转发操作可以包括:将第二FlexE客户和接收到的另一节点传输的另一第二FlexE客户映射至第三FlexE客户,另一第二FlexE客户是该另一节点将获取的m个第一FlexE客户进行映射后得到的,其中,第二FlexE客户的数据和另一第二FlexE客户的数据占用第三FlexE客户的时隙是固定的;将第三FlexE客户的数据传输至下一节点。
进一步的,当下一节点接收到第二节点传输的第三FlexE客户的数据后,需要将第三FlexE客户恢复为多个第二FlexE客户时,该下一节点可以基于第二FlexE客户的数据的大小和第二FlexE客户被映射至第三FlexE客户的顺序,恢复出多个第二FlexE客户。其中,该下一节点可以基于配置在本节点的第一FlexE客户对应的流标签得到第二FlexE客户的数据的大小。比如第一FlexE客户对应的流标签包括:第一FlexE客户的流标识和第一FlexE客户的数据的大小。
该数据传输方法通过将多个第一FlexE客户映射至一个第二FlexE客户,对FlexE客户进行多级映射,使得节点无需都以一个FlexE客户为粒度来处理数据,减少了节点需要处理的细粒度的FlexE客户的数量,降低了对节点处理数据的性能要求,达到了构建层次化的大规模网络的效果。
第三方面,提供了一种数据传输装置,应用于第一节点,该数据传输装置包括至少一个模块,至少一个模块用于实现上述第一方面所述的数据传输方法。
第四方面,提供了一种数据传输装置,应用于第二节点,该数据传输装置包括至少一个模块,至少一个模块用于实现上述第二方面所述的数据传输方法。
第五方面,提供了一种数据传输装置,应用于第一节点,该数据传输装置包括:处理器、存储器、网络接口和总线。其中,总线用于连接处理器、存储器和网络接口。网络接口用于实现第一节点与其他节点之间的通信连接。处理器用于执行存储器中存储的程序来实现第一方面所述的数据传输方法。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该计算机可读存储介质在计算机上运行时,使得计算机执行第一方面所述的数据传输方法。
第七方面,提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行第一方面所述的数据传输方法。
第八方面,提供了一种数据传输装置,应用于第二节点,该数据传输装置包括:处理器、存储器、网络接口和总线。其中,总线用于连接处理器、存储器和网络接口。网络接口用于实现第二节点与其他节点之间的通信连接。处理器用于执行存储器中存储的程序来实现第二方面所述的数据传输方法。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该计算机可读存储介质在计算机上运行时,使得计算机执行第二方面所述的数据传输方法。
第十方面,提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行第二方面所述的数据传输方法。
第十一方面,提供了一种数据传输***,包括第一节点和第二节点。
第一节点包括第三方面所述的数据传输装置,所述第二节点包括第四方面所述的数据传输装置;
或者,所述第一节点包括第五方面所述的数据传输装置,所述第二节点包括第八方面所述的数据传输装置。
上述第三方面、第五方面、第六方面及第七方面所获得的技术效果与第一方面中对应的技术手段所获得的技术效果近似,在这里不再赘述。
上述第四方面、第八方面、第九方面及十方面所获得的技术效果与第二方面中对应的技术手段所获得的技术效果近似,在这里不再赘述。
本申请提供的技术方案带来的有益效果是:
由于第一节点能够将获取的多个第一FlexE客户映射至一个第二FlexE客户,并将第二FlexE客户的数据传输至第二节点,第二节点与第一节点不同,每个第一FlexE客户的数据占用第二FlexE客户的时隙是固定的,使得节点无需都以一个FlexE客户为粒度来处理数据,减少了节点需要处理的细粒度的FlexE客户的数量,降低了对节点处理数据的性能要求。
附图说明
图1-1是本发明实施例所涉及的实施环境示意图;
图1-2是本发明实施例所涉及的FlexE环网的示意图;
图1-3是本发明实施例所涉及的基于FlexE的层次化网络的示意图;
图2-1是本发明实施例提供的一种数据传输方法的流程图;
图2-2是相关技术中节点传输第一FlexE客户的数据的示意图;
图2-3是本发明实施例提供的一种将m个第一FlexE客户映射至一个第二FlexE客户的流程图;
图2-4是本发明实施例提供的一种将每个第一FlexE客户的数据中的数据码块映射至第二FlexE客户的指定的时隙中的流程图;
图2-5是本发明实施例提供的一种第一节点配置的第一FlexE客户的流标签的示意图;
图2-6是本发明实施例提供的一种第二FlexE客户的数据码块流的示意图;
图2-7是本发明实施例提供的一种传输第二FlexE客户的数据的流程图;
图2-8是本发明实施例提供的一种第一节点发送第二FlexE客户的数据的示意图;
图2-9是本发明实施例提供的另一种第一节点发送第二FlexE客户的数据的示意图;
图2-10是本发明实施例提供的又一种第一节点发送第二FlexE客户的数据的示意图;
图2-11是本发明实施例提供的再一种第一节点发送第二FlexE客户的数据的示意图;
图3-1是本发明实施例提供的另一种数据传输方法的流程图;
图3-2是本发明实施例提供的恢复出m个第一FlexE客户的流程图;
图3-3是本发明实施例提供的存在故障节点的FlexE环网的结构示意图;
图4-1是本发明实施例提供的又一种数据传输方法的流程图;
图4-2是本发明实施例提供的一种对第二FlexE客户的数据执行转发操作的流程图;
图5-1是本发明实施例提供的一种数据传输装置的结构示意图;
图5-2是本发明实施例提供的一种映射模块的结构示意图;
图5-3是本发明实施例提供的一种映射子模块的结构示意图;
图6-1是本发明实施例提供的另一种数据传输装置的结构示意图;
图6-2是本发明实施例提供的一种第一处理模块的结构示意图;
图6-3是本发明实施例提供的又一种数据传输装置的结构示意图;
图6-4是本发明实施例提供的又一种第一处理模块的结构示意图;
图7是本发明实施例提供的再一种数据传输装置的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
为了使读者更加深刻地理解本申请,现对FlexE技术做一简单说明。在FlexE技术中,可以对一个节点的K(1≤K≤254)个时域资源为100G的物理接口进行绑定,得到一个FlexE组,一个节点可以配置至少一个FlexE组。K个物理接口中每个物理接口的时域资源被划分为20个5G的时隙,一个FlexE组对应20*K个时隙。20*K个时隙被分为多组,一组时隙用于传输一个FlexE客户的数据,一个FlexE客户就是一个数据流。示例的,每组时隙可以包括1个时隙,也可以包括2个时隙,还可以包括5个时隙等。
比如,对节点P的一个物理接口(即K等于1)进行绑定,得到一个FlexE组,该FlexE组的组标识为P1,该FlexE组对应20个时隙,这20个时隙被划分为2组,每组时隙包括10个时隙。其中,第一组时隙用于传输流标识为YL1的FlexE客户的数据,第二组时隙用于传输流标识为YL2的FlexE客户的数据。节点P上存储有节点标识、FlexE组的组标识、时隙标识和FlexE客户的流标识的对应关系,其中,对于节点P来说,节点标识用于唯一标识节点,FlexE组的组标识用于唯一标识FlexE组,FlexE客户的流标识用于唯一标识FlexE客户。示例的,时隙标识用于唯一指示一个时隙,时隙标识可以为时隙的编号。示例的,该对应关系可以如表1所示,参见表1,时隙标识为1~10的时隙用于传输流标识为YL1的FlexE客户的数据,时隙标识为11~20的时隙用于传输流标识为YL2的FlexE客户的数据。
表1
Figure BDA0001422658900000071
图1-1是本发明各个实施例所涉及的实施环境示意图,如图1-1所示,该实施环境可以包括第一节点001和第二节点002。第一节点001和第二节点002均为支持FlexE技术的设备。示例的,第一节点和第二节点可以为交换机或路由器等。本发明实施例对第一节点和第二节点的数量不做限定。
示例的,第一节点和第二节点可以为FlexE环网中的节点,如图1-2所示,FlexE环网可以包括多个节点,多个节点形成工作路径WP和保护路径PP,工作路径WP和保护路径PP均为可双向传输的路径。第一节点可以为节点A,第二节点可以为节点D。图1-2示例性示出了2条工作路径WP,1条保护路径PP,工作路径WP用实线表示,保护路径PP用虚线表示。
对于FlexE环网来说,保护倒换是一个非常重要的环节,保护倒换指的是在通信***中,为了保证数据传输的可靠性,当用于传输数据的工作路径出现故障时通过保护路径传输数据,以避免业务中断。相关技术中,常采用环网保护方式来实现保护倒换,目前的环网保护方式仅适用于层次化结构的网络技术,比如多协议标签交换–传送子集(Multiprotocol Label Switching-Transport Profile,MPLS-TP),光传送网(OpticalTransport Network,OTN)等。而由于FlexE技术中的FlexE客户与FlexE客户不存在嵌套关系,所以FlexE技术不是一种层次化结构的网络技术,是一种扁平化结构的网络技术,因此亟需一种适用于FlexE技术的环网保护方式。
而在本申请中,当FlexE环网中的某一节点检测到工作路径上距离本节点最近的一个元素(元素可以为节点或链路)出现故障时,能够将待向工作路径上的下一节点发送的多个工作FlexE客户映射至一个保护FlexE客户,然后沿着保护路径对该保护FlexE客户的数据进行传输。所以本申请提供了一种适用于FlexE技术的环网保护方式。
示例的,在图1-2中,节点A与节点D之间的链路出现了故障。当节点A检测到工作路径WP上节点A与节点D之间的链路出现故障时,节点A能够将待向工作路径WP上的节点D发送的2个工作FlexE客户映射至一个保护FlexE客户,然后沿着保护路径PP将该保护FlexE客户的数据传输至靠近故障链路的节点D。
示例的,第一节点和第二节点也可以为基于FlexE的层次化网络中的节点,如图1-3所示,基于FlexE的层次化网络可以包括多个节点,多个节点为层级结构。比如,第一节点可以为第一级的节点G、节点A、节点B和节点C,第二节点可以为第二级的节点D和节点E。比如节点B可以将多个第一FlexE客户映射至一个第二FlexE客户,然后将该第二FlexE客户的数据传输至节点E。节点C将多个第一FlexE客户映射至一个第二FlexE客户,然后将该第二FlexE客户的数据传输至节点E。之后,节点E再将2个第二FlexE客户映射至一个第三FlexE客户,再将该第三FlexE客户的数据传输至节点F。同样的,节点F也可以对多个第三FlexE进行映射,然后进行传输。这种多层次的FlexE客户的映射方式无需节点都以一个FlexE客户为粒度来处理数据。
本发明实施例对第一节点和第二节点的应用场景不做限定。
图2-1是本发明实施例提供的一种数据传输方法的流程图,该方法可以应用于图1-1所示的实施环境中,如图2-1所示,该方法可以包括:
步骤201、第一节点获取m个第一FlexE客户,m≥2。
示例的,第一节点可以为交换机、路由器等支持FlexE技术的设备。为了同时传输多个第一FlexE客户的数据,第一节点先获取多个第一FlexE客户。一个FlexE客户是一个数据流。
步骤202、第一节点将m个第一FlexE客户映射至一个第二FlexE客户,其中,每个第一FlexE客户的数据占用第二FlexE客户的时隙是固定的。
假设第二FlexE客户的时隙共有x(x≥2)个,x个时隙中每个时隙有一个时隙标识。每个第一FlexE客户的数据占用第二FlexE客户的时隙是固定的,也就是说,每个第一FlexE客户的数据占用的时隙的时隙标识是保持不变的。假设第二FlexE客户的时隙共有5个,这5个时隙的时隙标识分别是:ST1、ST2、ST3、ST4和ST5,第一节点获取了2个第一FlexE客户:第一FlexE客户YL1和第一FlexE客户YL2,第一节点将这2个第一FlexE客户映射至一个第二FlexE客户后,第一FlexE客户YL1的数据占用第二FlexE客户的时隙标识为ST1和ST2的时隙,也即是,第一FlexE客户YL1的数据占用第二FlexE客户的前两个时隙;第一FlexE客户YL2的数据占用第二FlexE客户的时隙标识为ST3、ST4和ST5的时隙,也即是,第一FlexE客户YL2的数据占用第二FlexE客户的后三个时隙。在后续传输过程中,第一FlexE客户YL1的数据占用的始终是时隙标识为ST1和ST2的时隙,第一FlexE客户YL2的数据占用的始终是时隙标识为ST3、ST4和ST5的时隙,第一FlexE客户YL1的数据和第一FlexE客户YL2的数据占用第二FlexE客户的时隙保持不变,便于数据恢复。
需要说明的是,相关技术中,节点之间的时钟总会存在偏差,通常,该偏差为一百万分之一百(100Parts Per Million,100ppm)。时钟与数据发送速率相对应。例如,节点L1、节点L2和节点L3依次连接,节点L2的数据发送速率是10Gbps(千兆比特每秒),那么节点L1的数据发送速率可能是(10Gbps+100ppm),节点L3的数据发送速率可能是(10Gbps-100ppm)。因此,当节点L1通过节点L2一直向节点L3发送第一FlexE客户的数据时,由于节点L1的数据发送速率均大于节点L2的数据发送速率和节点L3的数据发送速率,所以为了保证节点L2能及时将待发送数据发送至节点L3,避免节点L2上很快有较多数据发送不出去,节点L2需要执行速率调整操作。比如,节点L2在执行速率调整操作时,可以删除数据中的一些多余的空闲(IDLE)码块来提高数据传输的速率。同样的,当节点L1的数据发送速率是(10Gbps–100ppm),节点L3的数据发送速率是(10G bps+100ppm)时,为保证数据正常传输,节点L2也需要执行速率调整操作,比如,节点L2在当前待传输的第一FlexE客户的数据中可以添加一些空闲码块来降低数据传输的速率。然而这种为调整速率而进行的空闲码块添加或空闲码块删除的操作会增大第一FlexE客户的数据在传输过程中占用的时隙的不确定性,也即是,第一FlexE客户的数据中的数据码块在不同时间段会出现在不同的时隙上,这样一来,增大了数据恢复的难度。
图2-2示例性示出了节点L1、节点L2和节点L3传输第一FlexE客户YL1的数据的示意图。假设节点L1的数据发送速率小于节点L2的数据发送速率,节点L2的数据发送速率小于节点L3的数据发送速率,且第一FlexE客户YL1的数据包括6个数据码块:K1、K2、K3、K4、K5和K6。节点L1向节点L2发送第一FlexE客户YL1的数据时,由于节点L1的数据发送速率小于节点L2的数据发送速率,所以节点L1可以在6个数据码块中添加2个空闲码块,第一个空闲码块位于K2和K3之间,第二个空闲码块位于K6之后。节点L1上处理后的第一FlexE客户YL1的数据通过2个时隙被发送至节点L2,其中,K1、第一个空闲码块、K4和K6占用1个时隙,K2、K3、K5和第二个空闲码块占用1个时隙。节点L2接收到处理后的第一FlexE客户YL1的数据时,先删除该数据中的2个空闲码块,然后在向节点L3发送6个数据码块时,由于节点L2的数据发送速率小于节点L3的数据发送速率,节点L2可以在6个数据码块中添加2个空闲码块,第一个空闲码块位于K3和K4之间,第二个空闲码块位于K6之后,节点L2上处理后的第一FlexE客户YL1的数据通过2个时隙进行传输,其中,K1、K3、K4和K6占用1个时隙,K2、第一个空闲码块、K5和第二个空闲码块占用1个时隙。在该过程中,节点L1和节点L2都对第一FlexE客户YL1的数据执行了空闲码块添加操作,且添加的空闲码块的位置不同,第一FlexE客户YL1的数据中的数据码块在传输过程中占用的时隙发生了变化。
而在本发明实施例中,节点在传输多个第一FlexE客户的数据时,将多个第一FlexE客户映射至一个第二FlexE客户,且每个第一FlexE客户的数据占用第二FlexE客户的时隙是固定的,即每个第一FlexE客户的数据在传输过程中所占用的第二FlexE客户的时隙保持不变,这样一来,便于数据恢复。
可选的,如图2-3所示,步骤202可以包括:
步骤2021、第一节点删除p个第一FlexE客户的数据中的q个空闲码块,1≤p≤m,q≥1。
为了满足节点间的数据传输速率的要求,第一节点在将m个第一FlexE客户映射至一个第二FlexE客户之前,可以对p(1≤p≤m)个第一FlexE客户的数据进行预处理,比如,可以删除p个第一FlexE客户的数据中的一些多余的空闲码块,以便于后续在第二FlexE客户的数据码块流中能够连续添加多个空闲码块,连续添加的该多个空闲码块用于保证第一FlexE客户的数据占用第二FlexE客户的时隙是固定的。
第一节点删除p个第一FlexE客户的数据中的空闲码块时,是分别针对每个第一FlexE客户的数据中的q个空闲码块进行删除。假设m等于5,p等于2,q等于1,那么第一节点可以删除2个第一FlexE客户的数据中的空间码块,且对于每个第一FlexE客户的数据,删除1个空闲码块。
步骤2021为可选步骤。当m个第一FlexE客户的数据中原有的空闲码块较少时,第一节点则可以不执行步骤2021。
步骤2022、第一节点将m个第一FlexE客户中每个第一FlexE客户的数据中的数据码块映射至第二FlexE客户的指定的时隙中,得到第二FlexE客户的数据码块流。
可选的,如图2-4所示,步骤2022中,第一节点将m个第一FlexE客户中每个第一FlexE客户的数据中的数据码块映射至第二FlexE客户的指定的时隙中,可以包括:
步骤2022a、第一节点按照预设排序方式对m个第一FlexE客户进行排序。
在将每个第一FlexE客户的数据中的数据码块映射至第二FlexE客户的指定的时隙中时,可以对m个第一FlexE客户进行排序,然后基于排序顺序,依次将每个第一FlexE客户的数据中的数据码块映射至第二FlexE客户的指定的时隙中。
可选的,步骤2022a可以包括:按照m个第一FlexE客户中每个第一FlexE客户对应的流标签的内容,对m个第一FlexE客户进行排序。
通过第一FlexE客户对应的流标签可以标识第一FlexE客户。第一节点配置有第一FlexE客户对应的流标签。第一FlexE客户对应的流标签可以用于指示第一FlexE客户的数据的转发路径。
第一FlexE客户对应的流标签包括的信息可以有多种表示方式,现以以下几种方式为例进行说明。
在第一种方式中,配置在第一节点的第一FlexE客户的流标签可以包括:用于传输该第一FlexE客户的数据的所有节点的节点标识,用于传输该第一FlexE客户的数据的任意相邻两个节点的关系信息。
为了能够完全标识任意相邻两个节点之间的第一FlexE客户,对于某一对相邻两个节点来说,该相邻两个节点的关系信息可以包括:该第一FlexE客户在用于发送该第一FlexE客户的数据的节点上所属的FlexE组的组标识,该第一FlexE客户的流标识,以及第一FlexE客户的数据占用的时隙的信息。其中,不同对相邻节点配置的该第一FlexE客户的流标识不同。比如,配置在第一节点上的某一第一FlexE客户的流标识为YL111,配置在第三节点上的第一FlexE客户的流标识为YL222。示例的,节点标识可以为节点的媒体访问控制(Media Access Control,MAC)地址或互联网协议(Internet Protocol,IP)地址。
可选的,还可以给每个节点赋予一个节点编号,节点标识也可以为对应节点的节点编号。时隙的信息可以为该第一FlexE客户的数据占用的时隙的时隙标识,示例的,时隙标识可以为时隙的编号,或者可以为用于指示时隙的位置的信息等,时隙的位置可以采用位图文件(bitmap)的形式来表示。
示例的,如图2-5所示,某一第一FlexE客户从第一节点001通过第三节点003传输至第二节点002,配置在第一节点001上的该第一FlexE客户的流标识为YL111,配置在第三节点上的该第一FlexE客户的流标识为YL222,配置在第二节点上的该第一FlexE客户的流标识为YL333。第一节点001配置有2个FlexE组,该第一FlexE客户所属的FlexE组的组标识为GP1,该第一FlexE客户在第一节点001和第三节点003之间占用的时隙的时隙标识为1,2和3。第三节点003配置有2个FlexE组,该第一FlexE客户所属的FlexE组的组标识为GP3,该第一FlexE客户在第三节点003和第二节点002之间占用的时隙的时隙标识为7,8,和9。那么配置在第一节点001的该第一FlexE客户的流标签可以包括:第一节点001的节点标识001、第三节点003的节点标识003和第二节点002的节点标识002,第一节点001和第三节点003的关系信息:该第一FlexE客户所属的FlexE组的组标识GP1,该第一FlexE客户的流标识YL111,以及该第一FlexE客户的数据占用的时隙的时隙标识1,2和3,第三节点003和第二节点002的关系信息:该第一FlexE客户所属的FlexE组的组标识GP3,该第一FlexE客户的流标识YL222,以及该第一FlexE客户的数据占用的时隙的时隙标识7,8,和9。
由于基于第一FlexE客户的流入节点,流出节点以及任意相邻两个节点的关系信息可以得到该第一FlexE客户流入节点和流出节点之间的节点,所以为了在节点数量较大的情况下减小该第一FlexE客户的流标签所需的存储空间,在第二种方式中,配置在第一节点的第一FlexE客户的流标签可以包括:该第一FlexE客户的流入节点,该第一FlexE客户的流出节点,用于传输该第一FlexE客户的数据的任意相邻两个节点的关系信息。
可选的,不同的节点配置的第一FlexE客户的流标识可以相同,比如,配置在第一节点上的某一第一FlexE客户的流标识为YL111,配置在第三节点上的第一FlexE客户的流标识仍为YL111。为了进一步简化第一FlexE客户的流标签的信息,在第三种方式中,配置在第一节点的第一FlexE客户的流标签可以包括:该第一FlexE客户的流入节点,该第一FlexE客户的流出节点,该第一FlexE客户的流标识,以及该第一FlexE客户在任意相邻两个节点中用于发送该第一FlexE客户的数据的节点上所属的FlexE组的组标识。
参见表1,由于FlexE组的组标识、时隙标识和FlexE客户的流标识存在对应关系,所以,在第一FlexE客户的流标签包括该第一FlexE客户所属的FlexE组的组标识和该第一FlexE客户的流标识的情况下,可以基于该第一FlexE客户所属的FlexE组的组标识和该第一FlexE客户的流标识得到该第一FlexE客户的数据占用的时隙的信息,因此,在第三种方式中,第一FlexE客户的流标签可以不包括该第一FlexE客户的数据占用的时隙的信息。
由于第一FlexE客户所属的FlexE组的组标识在对节点进行初始配置时已经配置好了,所以为进一步简化第一FlexE客户的流标签的信息,在第四种方式中,配置在第一节点的第一FlexE客户的流标签可以包括:该第一FlexE客户的流入节点,该第一FlexE客户的流出节点和该第一FlexE客户的流标识。其中,不同的节点配置的该第一FlexE客户的流标识相同。
在本发明实施例中,按照m个第一FlexE客户中每个第一FlexE客户对应的流标签的内容,对该m个第一FlexE客户进行排序的方式有多种,比如,可以基于第一FlexE客户对应的流标签的内容的表示形式,对该m个第一FlexE客户进行排序。
示例的,当第一FlexE客户对应的流标签的内容的表示形式为字符串时,第一节点可以按照m个第一FlexE客户中每个第一FlexE客户对应的流标签所包含的字符串的大小,对m个第一FlexE客户进行排序,通常可以基于字符串相应位字符的ASCII码值来比较字符串的大小。假设m等于2,第一FlexE客户YL1对应的流标签为bdcedfs,第一FlexE客户YL2对应的流标签为abckjhnd,从左至右对两个字符串的每一位字符进行比较,由于bdcedfs的第一位为b,abckjhnd的第一位为a,b的ASCII码值大于a的ASCII码值,所以bdcedfs大于abckjhnd,因此,第一节点对第一FlexE客户YL1和第一FlexE客户YL2进行排序后的排序结果是第一FlexE客户YL1为第一名,第一FlexE客户YL2为第二名。
示例的,当第一FlexE客户对应的流标签内容的表示形式为二进制数时,第一节点可以按照m个第一FlexE客户中每个第一FlexE客户对应的流标签所包含的二进制数的大小,对m个第一FlexE客户进行排序。假设m等于2,第一FlexE客户YL1对应的流标签为010111,第一FlexE客户YL2对应的流标签为101010,由于010111的位数和101010的位数相同,且从左至右比较,010111的第一位为0,101010的第一位为1,所以0101110小于101010,因此,第一节点对第一FlexE客户YL1和第一FlexE客户YL2进行排序后的排序结果是第一FlexE客户YL2为第一名,第一FlexE客户YL1为第二名。
步骤2022b、第一节点按照排序顺序,将m个第一FlexE客户中每个第一FlexE客户的数据中的数据码块映射至第二FlexE客户的指定的时隙中。
每个第一FlexE客户的数据中的数据码块按照排序顺序被映射至第二FlexE客户的指定的时隙中,提高了数据码块的映射效率。
假设在步骤2022a中,m等于2,第一节点按照2个第一FlexE客户(包括第一FlexE客户YL1和第一FlexE客户YL2)中每个第一FlexE客户对应的流标签所包含的字符串的大小,对这2个第一FlexE客户进行排序,排序后的排序结果是第一FlexE客户YL1为第一名,第一FlexE客户YL2为第二名。假设第二FlexE客户的时隙共有5个,这5个时隙的时隙标识分别是:ST1、ST2、ST3、ST4和ST5,那么在步骤2022b中,第一节点将第一FlexE客户YL1的数据中的数据块映射至第二FlexE客户的时隙标识为ST1和ST2的时隙,将第一FlexE客户YL2的数据中的数据块映射至第二FlexE客户的时隙标识为ST3、ST4和ST5的时隙,也即是,第一FlexE客户YL1的数据占用第二FlexE客户的前两个时隙,第一FlexE客户YL2的数据占用第二FlexE客户的后三个时隙。
步骤2023、第一节点在第二FlexE客户的数据码块流中连续添加N个空闲码块,N为第二FlexE客户的时隙个数的整数倍。
第一节点在第二FlexE客户的数据码块流中连续添加N个空闲码块时,可以在第二FlexE客户的数据码块流中的任一位置连续添加该N个空闲码块。本发明实施例对N个空闲码块的添加位置不作限定。
假设m等于2,第二FlexE客户的时隙共有5个,第一FlexE客户YL1的数据中的数据码块为K1、K2、K3和K4,第一节点将第一FlexE客户YL1的数据中的数据码块映射至第二FlexE客户的前两个时隙,其中,K1和K3被映射至第二FlexE客户的第一个时隙,K2和K4被映射至第二FlexE客户的第二个时隙;第一FlexE客户YL2的数据中的数据码块为K5、K6、K7、K8、K9和K10,第一节点将第一FlexE客户YL2的数据中的数据码块映射至第二FlexE客户的后三个时隙,其中,K5和K8被映射至第二FlexE客户的第三个时隙,K6和K9被映射至第二FlexE客户的第四个时隙,K7和K10被映射至第二FlexE客户的第五个时隙,得到的第二FlexE客户的数据码块流如图2-6所示。之后,第一节点可以在图2-6所示的第二FlexE客户的数据码块流中的任一位置连续添加N(N为5的整数倍)个空闲码块,示例的,第一节点可以在K1和K2之间连续添加5个、10个或15个空闲码块,本发明实施例对此不做限定。
步骤203、第一节点将第二FlexE客户的数据传输至第二节点。
第二节点与第一节点不同。
示例的,第一节点和第二节点可以为FlexE环网中的节点,第一节点和第二节点也可以为基于FlexE的层次化网络中的节点。
可选的,如图2-7所示,步骤203可以包括:
步骤2031、第一节点将第二FlexE客户的数据发送至第三节点。
第三节点为传输第二FlexE客户的数据时,第一节点和第二节点之间的节点。
示例的,比如在图2-6中,第一节点在K1和K2之间连续添加了5个空闲码块,则第一节点向第三节点发送第二FlexE客户的数据的示意图如图2-8所示,第一节点按照每个第一FlexE客户的数据中的数据码块被映射的时隙,将第二FlexE客户的数据发送至第三节点。第一节点通过第二FlexE客户的第一个时隙传输第一FlexE客户YL1的数据中的K1和K3,通过第二FlexE客户的第二个时隙传输第一FlexE客户YL1的数据中的K2和K4,通过第二FlexE客户的第三个时隙传输第一FlexE客户YL2的数据中的K5和K8等。
又比如在图2-6中,第一节点在K2和K3之间连续添加了5个空闲码块,则第二FlexE客户的数据的传输示意图如图2-9所示,第一节点通过第二FlexE客户的第一个时隙传输第一FlexE客户YL1的数据中的K1和K3,通过第二FlexE客户的第二个时隙传输第一FlexE客户YL1的数据中的K2和K4,通过第二FlexE客户的第三个时隙传输第一FlexE客户YL2的数据中的K5和K8等。
又比如在图2-6中,第一节点在K5和K6之间连续添加了10个空闲码块,则第二FlexE客户的数据的传输示意图如图2-10所示,第一节点通过第二FlexE客户的第一个时隙传输第一FlexE客户YL1的数据中的K1和K3,通过第二FlexE客户的第二个时隙传输第一FlexE客户YL1的数据中的K2和K4,通过第二FlexE客户的第三个时隙传输第一FlexE客户YL2的数据中的K5和K8等。
再比如在图2-6中,第一节点在K7和K8之间连续添加了5个空闲码块,则第二FlexE客户的数据的传输示意图如图2-11所示,第一节点通过第二FlexE客户的第一个时隙传输第一FlexE客户YL1的数据中的K1和K3,通过第二FlexE客户的第二个时隙传输第一FlexE客户YL1的数据中的K2和K4,通过第二FlexE客户的第三个时隙传输第一FlexE客户YL2的数据中的K5和K8等。
参见图2-8至图2-11,无论第一节点在第二FlexE客户的数据码块流中的哪个位置连续添加该N个空闲码块,都可以使每个第一FlexE客户的数据占用第二FlexE客户的时隙是固定的。
在本发明实施例中,由于第一节点在第二FlexE客户的数据码块流中连续添加N个空闲码块,N为第二FlexE客户的时隙个数的整数倍,所以第一节点在向第三节点发送第二FlexE客户的数据时,能够使第二FlexE客户的时隙中每个时隙都存在(N/l)个空闲码块,其中,l为第二FlexE客户的时隙个数。这样一来,能够保证每个第一FlexE客户的数据占用第二FlexE客户的时隙是固定的,即每个第一FlexE客户的数据在传输过程中所占用的第二FlexE客户的时隙保持不变,便于数据恢复。比如在图2-8中,第一FlexE客户YL1的数据占用的始终是第二FlexE客户的前两个时隙,第一FlexE客户YL2的数据占用的始终是第二FlexE客户的后三个时隙。
步骤2032、第三节点在检测到第二FlexE客户的数据码块流中连续存在N个空闲码块时,删除N个空闲码块。
示例的,如图2-8所示,第三节点在检测到第二FlexE客户的数据码块流中连续存在5个空闲码块时,删除5个空闲码块,以便于第三节点在向下一节点发送第二FlexE客户的数据时,执行速率调整操作。
步骤2033、第三节点在将处理后的第二FlexE客户的数据传输至第二节点时,在处理后的第二FlexE客户的数据码流中连续添加N个空闲码块。
示例的,如图2-8所示,第三节点在出口处对删除了N个空闲码块之后的第二FlexE客户的数据执行空闲码块添加操作:在处理后的第二FlexE客户的数据码流中连续添加N个空闲码块,N为第二FlexE客户的时隙个数的整数倍。第三节点执行的空闲码块添加操作与第一节点执行的空闲码块添加操作相同,该过程可以参考步骤2023,在此不再赘述。第三节点执行了空闲码块添加操作后,将添加有空闲码块的第二FlexE客户的数据发送至第二节点。
需要补充说明的是,第一节点和第二节点之间的第三节点可以有多个,每个第三节点执行的操作均可以参考步骤2031至步骤2033,图2-8示例性示出了第一节点和第二节点之间有一个第三节点,本发明实施例对第三节点的数量不做限定。
另外,为了保证数据正常传输,完成速率匹配,第三节点也可以按照实际需求来增加或删除少量的空闲码块。
步骤204、第二节点对第二FlexE客户的数据执行转发操作或恢复操作。
当第一节点和第二节点为FlexE环网中的节点时,第二节点对第二FlexE客户的数据执行恢复操作;当第一节点和第二节点为基于FlexE的层次化网络中的节点时,第二节点对第二FlexE客户的数据执行转发操作。
综上所述,本发明实施例提供的数据传输方法,由于第一节点能够将获取的多个第一FlexE客户映射至一个第二FlexE客户,并将第二FlexE客户的数据传输至第二节点,第二节点与第一节点不同,每个第一FlexE客户的数据占用第二FlexE客户的时隙是固定的,使得节点无需都以一个FlexE客户为粒度来处理数据,减少了节点需要处理的细粒度的FlexE客户的数量,降低了对节点处理数据的性能要求。
图3-1是本发明实施例提供的一种数据传输方法的流程图,该方法可以应用于图1-2所示的实施环境,该方法可以包括:
步骤301、第一节点在检测到工作路径上距离第一节点最近的一个元素出现故障时,获取待向工作路径上的下一节点发送的m个工作FlexE客户,m≥2。
该元素为节点或链路。
可选的,第一节点可以基于预先配置的故障检测协议来检测工作路径上距离第一节点最近的一个元素是否出现故障。示例的,故障检测协议可以为OTN,以太网或MPLS等网络技术中所使用的故障检测协议。进一步的,第一节点在检测到工作路径上距离第一节点最近的一个元素出现故障时,可以基于预先配置的保护倒换协议执行保护协调操作,使相关节点相互协调,从而共同完成保护倒换过程。示例的,保护倒换协议可以为自动保护切换(Automatic Protection Switching,APS)协议。关于故障检测和保护协调的过程可以参考相关技术。
示例的,参见图1-2,第一节点为节点A,第二节点为节点D,现以节点A与节点D之间的链路出现故障为例进行说明。
图1-2中的每个节点可以配置有FlexE环网的环网信息,该环网信息可以包括节点的数量、每个节点的节点标识、节点之间的连接关系、工作FlexE客户的传输方向、每一工作FlexE客户的流入节点与流出节点、故障检测协议和保护倒换协议等。
其中,节点标识可以为节点的MAC地址或IP地址。可选的,还可以给每个节点赋予一个节点编号,节点标识也可以为节点的节点编号,本发明实施例对节点的节点标识的形式不做限定。
进一步的,在需要对所有工作FlexE客户中的部分工作FlexE客户的数据进行保护的情况下,环网信息还可以包括需要保护的工作FlexE客户的流标识。示例的,工作FlexE客户的流标识可以采用16bit数据来表示,比如,工作FlexE客户的流标识可以为0111000011110001。示例的,还可以采用16bit数据中的最高位来表示该FlexE客户是否为工作FlexE客户,比如,当最高位为0时,表示该FlexE客户为工作FlexE客户。
示例的,图1-2中的工作路径WP用于传输2个工作FlexE客户的数据:工作FlexE客户YL1和工作FlexE客户YL2。工作FlexE客户YL1的流入节点为节点A,流出节点为节点D。工作FlexE客户YL2的流入节点为节点A,流出节点为节点C。
当节点A检测到节点A和节点D之间的链路出现故障时,节点A将故障信息发送至节点B、节点C和节点D,完成保护协调过程,同时节点A获取待向工作路径上的节点D发送的工作FlexE客户YL1和工作FlexE客户YL2。
步骤302、第一节点将m个工作FlexE客户映射至一个保护FlexE客户,其中,每个工作FlexE客户的数据占用保护FlexE客户的时隙是固定的。
示例的,如图1-2所示,假设保护FlexE客户的时隙共有5个,这5个时隙的时隙标识分别是:ST1、ST2、ST3、ST4和ST5。节点A获取工作FlexE客户YL1和工作FlexE客户YL2,节点A将这2个工作FlexE客户映射至一个保护FlexE客户后,工作FlexE客户YL1的数据占用保护FlexE客户的前两个时隙;工作FlexE客户YL2的数据占用保护FlexE客户的后三个时隙。在后续传输过程中,工作FlexE客户YL1的数据占用的始终是时隙标识为ST1和ST2的时隙,工作FlexE客户YL2的数据占用的始终是时隙标识为ST3、ST4和ST5的时隙,工作FlexE客户YL1的数据和工作FlexE客户YL2的数据占用的保护FlexE客户的时隙保持不变。
相关技术中,节点之间的时钟总会存在偏差,为保证数据正常传输,节点需要执行速率调整操作,比如通过添加一些空闲码块来降低数据传输的速率,通过删除一些空闲码块来增大数据传输的速率,然而空闲码块添加或空闲码块删除的操作会增大保护FlexE客户的数据在传输过程中占用的时隙的不确定性,进而增大数据恢复的难度。而在本发明实施例中,每个工作FlexE客户的数据占用保护FlexE客户的时隙是固定的,即每个工作FlexE客户的数据在传输过程中所占用的保护FlexE客户的时隙保持不变,这样一来,便于数据恢复。
可选的,步骤302可以包括:
1)第一节点删除p个工作FlexE客户的数据中的q个空闲码块,1≤p≤m,q≥1。
示例的,如图1-2所示,为了满足节点间的数据传输速率的要求,节点A在对2个工作FlexE客户进行映射之前,可以删除p(1≤p≤2)个工作FlexE客户的数据中的一些多余的空闲码块,以便于后续在保护FlexE客户的数据码块流中能够连续添加多个空闲码块,连续添加的该多个空闲码块用于保证工作FlexE客户的数据占用保护FlexE客户的时隙是固定的。
当m个工作FlexE客户的数据中原有的空闲码块较少时,第一节点则可以不执行本步骤。
2)第一节点将m个工作FlexE客户中每个工作FlexE客户的数据中的数据码块映射至保护FlexE客户的指定的时隙中,得到保护FlexE客户的数据码块流。
示例的,如图1-2所示,节点A可以按照预设排序方式,比如按照每个工作FlexE客户对应的流标签的内容,对工作FlexE客户YL1和工作FlexE客户YL2进行排序。其中,工作FlexE客户对应的流标签用于指示工作FlexE客户的数据的转发路径。节点A基于排序顺序,依次将2个工作FlexE客户的数据中的数据码块映射至保护FlexE客户的指定的时隙中。假设保护FlexE客户的时隙共有5个,节点A基于排序顺序将工作FlexE客户YL1映射至保护FlexE客户的前两个时隙中,将工作FlexE客户YL2映射至保护FlexE客户的后三个时隙中。
在FlexE环网中的工作路径上,用于传输工作FlexE客户的数据的节点均配置有该工作FlexE客户对应的流标签。示例的,参见图1-2,节点A和节点D配置有工作FlexE客户YL1对应的流标签,节点A、节点D和节点C配置有工作FlexE客户YL2对应的流标签。工作FlexE客户YL1对应的流标签可以包括:工作FlexE客户YL1的流入节点即节点A,工作FlexE客户YL1的流出节点即节点D,以及工作FlexE客户YL1的流标识即YL1。节点A和节点D配置的工作FlexE客户YL1的流标识相同,都是YL1。
工作FlexE客户YL2对应的流标签可以包括:工作FlexE客户YL2的流入节点即节点A,工作FlexE客户YL2的流出节点即节点C,以及工作FlexE客户YL2的流标识即YL2。节点A、节点D和节点C配置的工作FlexE客户YL2的流标识相同,都是YL2。
本步骤的过程可以参考步骤2022。
3)第一节点在保护FlexE客户的数据码块流中连续添加N个空闲码块,N为保护FlexE客户的时隙个数的整数倍。
示例的,如图1-2所示,假设保护FlexE客户的时隙共有5个,节点A将工作FlexE客户YL1的数据中的数据码块映射至保护FlexE客户的前两个时隙,节点A将工作FlexE客户YL2的数据中的数据码块映射至第二FlexE客户的后三个时隙。节点A在保护FlexE客户的数据码块流中连续添加N个空闲码块时,可以在保护FlexE客户的数据码块流中连续添加5个、10个或15个空闲码块。
本步骤的过程可以参考步骤2023。
步骤303、第一节点沿保护路径将保护FlexE客户的数据传输至第二节点。
第二节点为靠近出现故障的元素的节点。
在本发明实施例中,当第一节点检测到FlexE环网中的工作路径上距离第一节点最近的一个元素出现故障时,第一节点能够将待向工作路径上的下一节点发送的m个工作FlexE客户映射至一个保护FlexE客户,每个工作FlexE客户的数据占用保护FlexE客户的时隙是固定的。之后,第一节点沿着FlexE环网中的保护路径将保护FlexE客户的数据传输至第二节点,第二节点为靠近出现故障的元素的节点,该过程降低了对节点处理数据的性能要求,还避免了当工作路径出现故障时业务发生中断,因此,提高了数据传输的可靠性,为FlexE技术提供了一种可靠的环网保护方式。
步骤303可以包括:第一节点沿保护路径将第二FlexE客户的数据发送至第三节点。第三节点在检测到第二FlexE客户的数据码块流中连续存在N个空闲码块时,删除N个空闲码块。之后,第三节点在将处理后的第二FlexE客户的数据传输至第二节点时,在处理后的第二FlexE客户的数据码流中连续添加N个空闲码块。
示例的,在图1-2中,当节点A检测到节点A和节点D之间的链路出现故障时,节点A会基于预先配置的保护倒换协议执行保护协调操作:节点A将故障信息发送至节点B、节点C和节点D。之后,在传输保护FlexE客户的数据时,节点A先按照工作FlexE客户YL1和工作FlexE客户YL2的数据中的数据码块被映射的时隙,将保护FlexE客户的数据发送至节点B,节点B在检测到保护FlexE客户的数据码块流中连续存在N个空闲码块时,删除N个空闲码块,以便于节点B在向节点C发送保护FlexE客户的数据时,执行速率调整操作。然后,节点B在出口处对删除了N个空闲码块之后的保护FlexE客户的数据执行空闲码块添加操作:在处理后的保护FlexE客户的数据码流中连续添加N个空闲码块,N为保护FlexE客户的时隙个数的整数倍。节点B执行的空闲码块添加操作与节点A执行的空闲码块添加操作相同。节点B执行了空闲码块添加操作后,将添加有空闲码块的保护FlexE客户的数据发送至节点C,节点C再按照节点B的处理方式将添加有空闲码块的保护FlexE客户的数据发送至节点D。
另外,为了保证数据正常传输,完成速率匹配,节点B和节点C可以按照实际需求来增加或删除少量的空闲码块。
本步骤的过程可以参考步骤2031至步骤2033。
步骤304、第二节点将保护FlexE客户恢复为m个工作FlexE客户。
可选的,如图3-2所示,步骤304可以包括:
步骤3041、当检测到第二FlexE客户的数据码块流中连续存在N个空闲码块时,第二节点删除N个空闲码块。
示例的,如图2-8所示,为了执行速率调整操作,完成速率匹配,第三节点在入口处检测到第二FlexE客户的数据码块流中连续存在5个空闲码块时,删除这5个空闲码块,之后,在处理后的第二FlexE客户的数据码流中连续添加5个空闲码块,第二节点在检测到第二FlexE客户的数据码流中连续存在5个空闲码块时,再删除这5个空闲码块。
步骤3042、第二节点按照每个第一FlexE客户的数据中的数据码块的位置,恢复出m个第一FlexE客户。
示例的,如图2-8所示,第二节点按照第一FlexE客户YL1的数据中的数据码块的位置,第一FlexE客户YL2的数据中的数据码块的位置,恢复出第一FlexE客户YL1和第一FlexE客户YL2,其中,第一FlexE客户YL1的数据中的数据码块为K1、K2、K3和K4,第一FlexE客户YL2的数据中的数据码块为K5、K6、K7、K8、K9和K10。
示例的,在图1-2中,节点D在检测到节点C发送的保护FlexE客户的数据码块流中连续存在N个空闲码块时,删除N个空闲码块。之后,节点D按照工作FlexE客户YL1和工作FlexE客户YL2的数据中的数据码块的位置,恢复出这2个工作FlexE客户。
步骤305、第二节点对m个工作FlexE客户中每个工作FlexE客户的数据执行目标操作。
目标操作为转发操作或丢弃操作。
可选的,步骤305可以包括:
对于每个工作FlexE客户:
当基于工作FlexE客户对应的流标签检测到工作FlexE客户的数据不经过第二节点时,对工作FlexE客户的数据执行丢弃操作;
当基于工作FlexE客户对应的流标签检测到工作FlexE客户的数据经过第二节点时,对工作FlexE客户的数据执行转发操作。
工作FlexE客户对应的流标签用于指示工作FlexE客户的数据的转发路径。
示例的,如图1-2所示,对于工作FlexE客户YL1:节点D检测到本节点配置有工作FlexE客户YL1对应的流标签,那么节点D基于工作FlexE客户YL1对应的流标签可以确定工作FlexE客户YL1的数据经过节点D,因此,节点D对工作FlexE客户YL1的数据执行转发操作。
对于工作FlexE客户YL2:节点D检测到本节点配置有工作FlexE客户YL2对应的流标签,那么节点D基于工作FlexE客户YL2对应的流标签可以确定工作FlexE客户YL2的数据经过节点D,且在工作路径上节点D的下一节点为节点C,因此,节点D对工作FlexE客户YL2的数据执行转发操作。
另外,当FlexE环网中的某个节点出现故障时,如图3-3所示,假设节点D出现故障,而在节点D出现故障之前,工作路径WP用于传输3个工作FlexE客户的数据:工作FlexE客户YL1、工作FlexE客户YL2和工作FlexE客户YL3。工作FlexE客户YL1的流入节点为节点A,流出节点为节点D。工作FlexE客户YL2的流入节点为节点A,流出节点为节点C。工作FlexE客户YL3的流入节点为节点D,流出节点为节点C。节点A和节点D配置有工作FlexE客户YL1对应的流标签,节点A、节点D和节点C配置有工作FlexE客户YL2对应的流标签,节点D和节点C配置有工作FlexE客户YL3对应的流标签。
示例的,工作FlexE客户YL1对应的流标签可以包括:工作FlexE客户YL1的流入节点即节点A,工作FlexE客户YL1的流出节点即节点D,以及工作FlexE客户YL1的流标识即YL1。节点A和节点D配置的工作FlexE客户YL1的流标识相同,都是YL1。
工作FlexE客户YL2对应的流标签可以包括:工作FlexE客户YL2的流入节点即节点A,工作FlexE客户YL2的流出节点即节点C,以及工作FlexE客户YL2的流标识即YL2。节点A、节点D和节点C配置的工作FlexE客户YL2的流标识相同,都是YL2。
工作FlexE客户YL3对应的流标签可以包括:工作FlexE客户YL3的流入节点即节点D,工作FlexE客户YL3的流出节点即节点C,以及工作FlexE客户YL3的流标识即YL3。节点D和节点C配置的工作FlexE客户YL3的流标识相同,都是YL3。
当节点A检测到节点D出现故障时,节点A将故障信息发送至节点B和节点C以完成保护协调过程,同时由于工作FlexE客户YL3的流入节点是节点D,所以节点A仅获取待向工作路径上的节点D发送的工作FlexE客户YL1和工作FlexE客户YL2。节点A将工作FlexE客户YL1和工作FlexE客户YL2映射至一个保护FlexE客户,工作FlexE客户YL1的数据和工作FlexE客户YL2的数据占用保护FlexE客户的时隙是固定的。然后,节点A沿着保护路径PP将保护FlexE客户的数据传输至节点C。之后,节点C将保护FlexE客户恢复为2个工作FlexE客户:工作FlexE客户YL1和工作FlexE客户YL2。
对于工作FlexE客户YL1:节点C检测到本节点未配置有工作FlexE客户YL1对应的流标签,那么节点C可以确定工作FlexE客户YL1的数据不经过节点C,因此,节点C对工作FlexE客户YL1的数据执行丢弃操作。
对于工作FlexE客户YL2:节点C检测到本节点配置有工作FlexE客户YL2对应的流标签,那么节点C基于工作FlexE客户YL2对应的流标签可以确定工作FlexE客户YL2的数据经过节点C,因此,节点C对工作FlexE客户YL2的数据执行丢弃操作。
而对于工作FlexE客户YL3:由于出现故障的节点D为工作FlexE客户YL3的流入节点,所以节点D可以直接将包含有错误码块或者空闲码块的数据发送出去。
综上所述,本发明实施例提供的数据传输方法,当第一节点检测到FlexE环网中的工作路径上距离第一节点最近的一个元素出现故障时,能够将待向工作路径上的下一节点发送的m(m≥2)个工作FlexE客户映射至一个保护FlexE客户,每个工作FlexE客户的数据占用保护FlexE客户的时隙是固定的,之后,第一节点沿着FlexE环网中的保护路径将保护FlexE客户的数据传输至第二节点,第二节点为靠近出现故障的元素的节点,该方法通过将多个第一FlexE客户映射至一个第二FlexE客户,使得节点无需都以一个FlexE客户为粒度来处理数据,降低了对节点处理数据的性能要求,还避免了当工作路径出现故障时业务发生中断,因此,提高了数据传输的可靠性,为FlexE技术提供了一种可靠的环网保护方式。
图4-1是本发明实施例提供的一种数据传输方法的流程图,该方法可以应用于图1-3所示的实施环境,该方法可以包括:
步骤401、第一节点获取m个第一FlexE客户,m≥2。
示例的,如图1-3所示,第一节点可以为基于FlexE的层次化网络中的第一级的节点B,第二节点为第二级的节点E。
步骤402、第一节点将m个第一FlexE客户映射至一个第二FlexE客户,其中,每个第一FlexE客户的数据占用第二FlexE客户的时隙是固定的。
可选的,第一节点可以按照m个第一FlexE客户中每个第一FlexE客户对应的流标签的内容,对m个第一FlexE客户进行排序,之后按照排序顺序,将m个第一FlexE客户中每个第一FlexE客户的数据中的数据码块映射至第二FlexE客户的指定的时隙中。
需要说明的是,在图1-3所示的实施环境中,无需考虑某一节点或链路出现故障,也即是,每个节点都有可能对数据执行恢复操作。在该实施环境中,执行映射操作的节点和执行恢复操作的节点是已知的,当执行映射操作的节点和执行恢复操作的节点配置有第一FlexE客户对应的流标签时便可完成数据传输过程,所以,第一FlexE客户对应的流标签包括的信息的表示方式可以更加简化,比如,第一FlexE客户对应的流标签可以包括:第一FlexE客户的流标识和第一FlexE客户的数据的大小。不同的节点所配置的第一FlexE客户的流标识相同。
示例的,如图1-3所示,假设节点B获取3个第一FlexE客户,节点B将3个第一FlexE客户映射至一个第二FlexE客户ZL1。
步骤402的过程可以参考步骤202。
可选的,当m≥3时,第一节点可以执行多次映射操作,也即是,步骤402可以包括:第一节点对m个第一FlexE客户执行多次映射操作,以将m个第一FlexE客户映射至一个第二FlexE客户。比如第一节点可以基于先分组再映射的方式对m个第一FlexE客户执行多次映射操作。现以第一节点执行两次映射操作为例对该过程进行说明,首先,第一节点将m个第一FlexE客户划分为L(L≥2)组,该L组中至少有一组包括至少2个第一FlexE客户。然后,第一节点将L组中每组包括的第一FlexE客户映射至一个目标FlexE客户(每组中的第一FlexE客户的数据占用对应的目标FlexE客户的时隙是固定的),得到L个目标FlexE客户。至此完成第一次映射操作。之后,第一节点将L个目标FlexE客户映射至一个第二FelxE客户(每个目标FlexE客户的数据占用第二FelxE客户的时隙是固定的),至此完成第二次映射操作。由于L组内每组中的第一FlexE客户的数据占用对应的目标FlexE客户的时隙是固定的,每个目标FlexE客户的数据占用第二FelxE客户的时隙是固定的,因此,每个第一FlexE客户的数据占用第二FelxE客户的时隙是固定的。
步骤403、第一节点将第二FlexE客户的数据传输至第二节点。
第二节点与第一节点不同。
示例的,如图1-3所示,节点B将3个第一FlexE客户映射至一个第二FlexE客户ZL1,之后,节点B将第二FlexE客户ZL1的数据传输至节点E。
步骤403的过程可以参考步骤203。
步骤404、第二节点对第二FlexE客户的数据执行转发操作。
可选的,如图4-2所示,步骤404可以包括:
步骤4041、第二节点将第二FlexE客户和接收到的另一节点传输的另一第二FlexE客户映射至第三FlexE客户。
另一第二FlexE客户是另一节点将获取的m个第一FlexE客户进行映射后得到的,其中,第二FlexE客户的数据和另一第二FlexE客户的数据占用第三FlexE客户的时隙是固定的,以便数据恢复。
示例的,如图1-3所示,节点B将第二FlexE客户ZL1的数据传输至节点E,节点E将第二FlexE客户ZL1和接收到的节点C传输的第二FlexE客户ZL2映射至第三FlexE客户。第二FlexE客户ZL2是节点C将获取的2个第一FlexE客户进行映射后得到的。第二FlexE客户ZL1和第二FlexE客户ZL2的数据占用第三FlexE客户的时隙是固定的。
步骤4041的过程可以参考步骤202。
步骤4042、第二节点将第三FlexE客户的数据传输至下一节点。
示例的,如图1-3所示,节点E将步骤4041得到的第三FlexE客户的数据传输至节点F。之后,节点F也可以按照相同的映射方式对多个第三FlexE进行映射,然后进行传输。
进一步的,当下一节点接收到第二节点传输的第三FlexE客户的数据后,需要将第三FlexE客户恢复为多个第二FlexE客户时,该下一节点可以基于第二FlexE客户的数据的大小和第二FlexE客户被映射至第三FlexE客户的顺序,恢复出多个第二FlexE客户。其中,该下一节点可以基于配置在本节点的第一FlexE客户对应的流标签得到第二FlexE客户的数据的大小。比如第一FlexE客户对应的流标签包括:第一FlexE客户的流标识和第一FlexE客户的数据的大小。
示例的,参见图1-3,节点B将第二FlexE客户ZL1的数据传输至节点E,节点E将第二FlexE客户ZL1和接收到的节点C传输的第二FlexE客户ZL2映射至第三FlexE客户,再将第三FlexE客户的数据传输至节点F。节点F可以基于第二FlexE客户ZL1的数据的大小、第二FlexE客户ZL1被映射至第三FlexE客户的顺序、第二FlexE客户ZL2的数据的大小和第二FlexE客户ZL2被映射至第三FlexE客户的顺序,恢复出第二FlexE客户ZL1和第二FlexE客户ZL2。其中,节点F可以基于配置在本节点的3个第一FlexE客户(被节点B映射至第二FlexE客户ZL1的3个第一FlexE客户)对应的流标签得到第二FlexE客户ZL1的数据的大小,同时可以基于配置在本节点的2个第一FlexE客户(被节点C映射至第二FlexE客户ZL2的2个第一FlexE客户)对应的流标签得到第二FlexE客户ZL2的数据的大小。
该数据传输方法中的FlexE客户的多级映射方式,使得多个细粒度的FlexE客户被映射至一个更大粒度的FlexE客户,进而使节点无需都以一个FlexE客户为粒度来处理数据,不同级的节点能够针对不同粒度的FlexE客户的数据进行处理,FlexE客户的嵌套减少了节点需要处理的细粒度的FlexE客户的数量,降低了对节点处理数据的性能要求,达到构建层次化的大规模网络的效果。
综上所述,本发明实施例提供的数据传输方法,由于第一节点能够将获取的多个第一FlexE客户映射至一个第二FlexE客户,并将第二FlexE客户的数据传输至第二节点,其中,每个第一FlexE客户的数据占用第二FlexE客户的时隙是固定的,进而使得第二节点可以再对多个第二FlexE客户进行映射,这种FlexE客户的多级映射方式,使得多个细粒度的FlexE客户被映射至一个更大粒度的FlexE客户,进而使节点无需都以一个FlexE客户为粒度来处理数据,不同级的节点能够针对不同粒度的FlexE客户的数据进行处理,FlexE客户的嵌套减少了节点需要处理的细粒度的FlexE客户的数量,降低了对节点处理数据的性能要求,达到了构建层次化的大规模网络的效果。
需要说明的是,本发明实施例提供的数据传输方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
图5-1是本发明实施例提供的一种数据传输装置500的结构示意图,该数据传输装置可以应用于图1-1所示的实施环境中的第一节点,如图5-1所示,该数据传输装置500,包括:
获取模块510,用于执行上述实施例中的步骤201、步骤301或步骤401。
映射模块520,用于执行上述实施例中的步骤202、步骤302或步骤402。
传输模块530,用于执行上述实施例中的步骤203、步骤303或步骤403。
可选的,如图5-2所示,映射模块520,可以包括:
映射子模块521,用于执行上述实施例中的步骤2022。
添加子模块522,用于执行上述实施例中的步骤2023。
可选的,如图5-3所示,映射子模块521,可以包括:
排序单元5211,用于执行上述实施例中的步骤2022a。
映射单元5212,用于执行上述实施例中的步骤2022b。
可选的,排序单元5211,用于:
按照m个第一FlexE客户中每个第一FlexE客户对应的流标签的内容,对m个第一FlexE客户进行排序。
可选的,每个第一FlexE客户对应的流标签可以包括:第一FlexE客户的流入节点,第一FlexE客户的流出节点和第一FlexE客户的流标识。其中,不同的节点所配置的第一FlexE客户的流标识相同。
进一步的,如图5-2所示,映射模块520,还包括:
删除子模块523,用于执行上述实施例中的步骤2021。
可选的,第一节点和第二节点为FlexE环网中的节点,FlexE环网包括多个节点,多个节点形成工作路径和保护路径,工作路径和保护路径均为可双向传输的路径,第一FlexE客户为工作FlexE客户,第二FlexE客户为保护FlexE客户,相应的,获取模块510可以用于执行上述实施例中的步骤301。
进一步的,传输模块530可以用于执行上述实施例中的步骤303。
可选的,第一节点和第二节点也可以为基于FlexE的层次化网络中的节点。
综上所述,本发明实施例提供的数据传输装置,由于映射模块能够将获取模块获取的多个第一FlexE客户映射至一个第二FlexE客户,传输模块再将第二FlexE客户的数据传输至第二节点,第二节点与第一节点不同,每个第一FlexE客户的数据占用第二FlexE客户的时隙是固定的,通过将多个第一FlexE客户映射至一个第二FlexE客户,使得节点无需都以一个FlexE客户为粒度来处理数据,降低了对节点处理数据的性能要求,还避免了当工作路径出现故障时业务发生中断,提高了数据传输的可靠性,为FlexE技术提供了一种可靠的环网保护方式。
图6-1是本发明实施例提供的一种数据传输装置600的结构示意图,该数据传输装置可以应用于图1-1所示的实施环境中的第二节点,如图6-1所示,该数据传输装置600,包括:
接收模块610,用于接收第一节点传输的第二FlexE客户的数据,第二FlexE客户是第一节点将获取的m个第一FlexE客户进行映射后得到的,每个第一FlexE客户的数据占用第二FlexE客户的时隙是固定的,第一节点与第二节点不同,m≥2。
第一处理模块620,用于执行上述实施例中的步骤204。
可选的,第一节点和第二节点为FlexE环网中的节点,FlexE环网包括多个节点,多个节点形成工作路径和保护路径,工作路径和保护路径均为可双向传输的路径,第一FlexE客户为工作FlexE客户,第二FlexE客户为保护FlexE客户,相应的,接收模块610,可以用于:
接收第一节点沿保护路径传输的保护FlexE客户的数据,保护FlexE客户是第一节点在检测到工作路径上距离第一节点最近的一个元素出现故障时,将待向工作路径上的下一节点发送的m个工作FlexE客户进行映射后得到的,元素为节点或链路。
如图6-2所示,第一处理模块620可以包括:
第一处理子模块621,用于执行上述实施例中的步骤304。
进一步的,如图6-3所示,该数据传输装置600还可以包括:
第二处理模块630,用于执行上述实施例中的步骤305。
可选的,第一处理子模块621,用于执行上述实施例中的步骤3041和步骤3042。
第二处理模块630,用于:
对于每个工作FlexE客户:
当基于工作FlexE客户对应的流标签检测到工作FlexE客户的数据不经过第二节点时,对工作FlexE客户的数据执行丢弃操作;
当基于工作FlexE客户对应的流标签检测到工作FlexE客户的数据经过第二节点时,对工作FlexE客户的数据执行转发操作;
其中,工作FlexE客户对应的流标签用于指示工作FlexE客户的数据在工作路径上的转发路径。
可选的,工作FlexE客户对应的流标签可以包括:工作FlexE客户的流入节点,工作FlexE客户的流出节点和工作FlexE客户的流标识。其中,不同的节点配置的工作FlexE客户的流标识相同。
可选的,第一节点和第二节点为基于FlexE的层次化网络中的节点,如图6-4所示,第一处理模块620,可以包括:
第二处理子模块622,用于对第二FlexE客户的数据执行转发操作。
第二处理子模块622,用于执行上述实施例中的步骤4041和步骤4042。
综上所述,本发明实施例提供的数据传输装置,由于接收模块能够接收第一节点传输的第二FlexE客户的数据,第一处理模块能够对第二FlexE客户的数据执行转发操作或恢复操作,第二FlexE客户是第一节点将获取的多个第一FlexE客户进行映射后得到的,每个第一FlexE客户的数据占用第二FlexE客户的时隙是固定的,第一节点与第二节点不同,通过将多个第一FlexE客户映射至一个第二FlexE客户,使得节点无需都以一个FlexE客户为粒度来处理数据,降低了对节点处理数据的性能要求,还避免了当工作路径出现故障时业务发生中断,因此,提高了数据传输的可靠性,为FlexE技术提供了一种可靠的环网保护方式。
图7是本发明实施例提供的一种数据传输装置700的结构示意图,该数据传输装置可以用于图1-1所示的实施环境中的第一节点。如图7所示,该数据传输装置700包括处理器701(如CPU)、存储器702、网络接口703和总线704。其中,总线704用于连接处理器701、存储器702和网络接口703。存储器702可能包含随机存取存储器(Random Access Memory,RAM),也可能包含非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过网络接口703(可以是有线或者无线)实现第一节点与其他节点之间的通信连接。存储器702中存储有程序7021,该程序7021用于实现各种应用功能,处理器701用于执行存储器702中存储的程序7021来配合实现图2-1、图3-1或图4-1所示的数据传输方法。
本发明实施例还提供了一种数据传输装置,该数据传输装置可以用于图1-1所示的实施环境中的第二节点。参考图7,该数据传输装置包括处理器(如CPU)、存储器、网络接口和总线。其中,总线用于连接处理器、存储器和网络接口。存储器可能包含随机存取存储器,也可能包含非不稳定的存储器,例如至少一个磁盘存储器。通过网络接口(可以是有线或者无线)实现第一节点与第二节点之间的通信连接。存储器中存储有程序,该程序用于实现各种应用功能,处理器用于执行存储器中存储的程序来配合实现图2-1、图3-1或图4-1所示的数据传输方法。
本发明实施例还提供了一种数据传输***,包括第一节点和第二节点。
其中,第一节点可以包括图5-1所示的数据传输装置,第二节点可以包括图6-1或图6-3所示的数据传输装置。
或者,第一节点包括图7所示的数据传输装置,第二节点包括图7所示的数据传输装置。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现,所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机的可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质,或者半导体介质(例如固态硬盘)等。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (31)

1.一种数据传输方法,其特征在于,应用于第一节点,所述方法包括:
获取m个第一FlexE客户,m≥2;
将所述m个第一FlexE客户映射至一个第二FlexE客户,其中,每个所述第一FlexE客户的数据占用所述第二FlexE客户的时隙是固定的;
将所述第二FlexE客户的数据传输至第二节点,所述第二节点与所述第一节点不同;
其中,所述将所述m个第一FlexE客户映射至一个第二FlexE客户,包括:
将所述m个第一FlexE客户中每个所述第一FlexE客户的数据中的数据码块映射至所述第二FlexE客户的指定的时隙中,得到所述第二FlexE客户的数据码块流;
在所述第二FlexE客户的数据码块流中连续添加N个空闲码块,所述N为所述第二FlexE客户的时隙个数的整数倍。
2.根据权利要求1所述的方法,其特征在于,所述将所述m个第一FlexE客户中每个所述第一FlexE客户的数据中的数据码块映射至所述第二FlexE客户的指定的时隙中,包括:
按照预设排序方式对所述m个第一FlexE客户进行排序;
按照排序顺序,将所述m个第一FlexE客户中每个所述第一FlexE客户的数据中的数据码块映射至所述第二FlexE客户的指定的时隙中。
3.根据权利要求2所述的方法,其特征在于,所述按照预设排序方式对所述m个第一FlexE客户进行排序,包括:
按照所述m个第一FlexE客户中每个所述第一FlexE客户对应的流标签的内容,对所述m个第一FlexE客户进行排序。
4.根据权利要求3所述的方法,其特征在于,每个所述第一FlexE客户对应的流标签包括:所述第一FlexE客户的流入节点,所述第一FlexE客户的流出节点和所述第一FlexE客户的流标识;
其中,不同的节点所配置的所述第一FlexE客户的流标识相同。
5.根据权利要求1所述的方法,其特征在于,在所述将所述m个第一FlexE客户中每个所述第一FlexE客户的数据中的数据码块映射至所述第二FlexE客户的指定的时隙中之前,所述方法还包括:
删除p个第一FlexE客户的数据中的q个空闲码块,1≤p≤m,q≥1。
6.根据权利要求1所述的方法,其特征在于,所述将所述第二FlexE客户的数据传输至第二节点,包括:
将所述第二FlexE客户的数据发送至第三节点;
所述第三节点在检测到所述第二FlexE客户的数据码块流中连续存在N个空闲码块时,删除所述N个空闲码块,所述第三节点为传输所述第二FlexE客户的数据时,所述第一节点和所述第二节点之间的节点;
所述第三节点在将处理后的第二FlexE客户传输至所述第二节点时,在所述处理后的第二FlexE客户的数据码流中连续添加所述N个空闲码块。
7.根据权利要求1所述的方法,其特征在于,所述第一节点和所述第二节点为灵活以太网FlexE环网中的节点,所述FlexE环网包括多个节点,所述多个节点形成工作路径和保护路径,所述工作路径和所述保护路径均为可双向传输的路径,所述第一FlexE客户为工作FlexE客户,所述第二FlexE客户为保护FlexE客户,
所述获取m个第一FlexE客户,包括:
在检测到所述工作路径上距离所述第一节点最近的一个元素出现故障时,获取待向所述工作路径上的下一节点发送的所述m个工作FlexE客户,所述元素为节点或链路。
8.根据权利要求7所述的方法,其特征在于,所述将所述第二FlexE客户的数据传输至第二节点,包括:
沿所述保护路径将所述保护FlexE客户的数据传输至所述第二节点,所述第二节点为靠近出现故障的所述元素的节点。
9.根据权利要求1所述的方法,其特征在于,所述第一节点和所述第二节点为基于FlexE的层次化网络中的节点。
10.一种数据传输方法,其特征在于,应用于第二节点,所述方法包括:
接收第一节点传输的第二FlexE客户的数据,所述第二FlexE客户是所述第一节点将获取的m个第一FlexE客户中每个所述第一FlexE客户的数据中的数据码块映射至所述第二FlexE客户的指定的时隙中,得到所述第二FlexE客户的数据码块流,并在所述第二FlexE客户的数据码块流中连续添加N个空闲码块后得到的,每个所述第一FlexE客户的数据占用所述第二FlexE客户的时隙是固定的,所述第一节点与所述第二节点不同,m≥2;
对所述第二FlexE客户的数据执行转发操作或恢复操作。
11.根据权利要求10所述的方法,其特征在于,所述第一节点和所述第二节点为灵活以太网FlexE环网中的节点,所述FlexE环网包括多个节点,所述多个节点形成工作路径和保护路径,所述工作路径和所述保护路径均为可双向传输的路径,所述第一FlexE客户为工作FlexE客户,所述第二FlexE客户为保护FlexE客户,
所述接收第一节点传输的第二FlexE客户的数据,包括:
接收所述第一节点沿所述保护路径传输的所述保护FlexE客户的数据,所述保护FlexE客户是所述第一节点在检测到所述工作路径上距离所述第一节点最近的一个元素出现故障时,将待向所述工作路径上的下一节点发送的m个工作FlexE客户进行映射后得到的,所述元素为节点或链路;
所述对所述第二FlexE客户的数据执行转发操作或恢复操作,包括:
将所述保护FlexE客户恢复为所述m个工作FlexE客户;
在所述将所述保护FlexE客户恢复为所述m个工作FlexE客户之后,所述方法还包括:
对所述m个工作FlexE客户中每个所述工作FlexE客户的数据执行目标操作,所述目标操作为转发操作或丢弃操作。
12.根据权利要求11所述的方法,其特征在于,所述将所述保护FlexE客户恢复为所述m个工作FlexE客户,包括:
当检测到所述保护FlexE客户的数据码块流中连续存在N个空闲码块时,删除所述N个空闲码块,所述N为所述保护FlexE客户的时隙个数的整数倍;
按照每个所述工作FlexE客户的数据中的数据码块的位置,恢复出所述m个工作FlexE客户。
13.根据权利要求11所述的方法,其特征在于,所述对所述m个工作FlexE客户中每个所述工作FlexE客户的数据执行目标操作,包括:
对于每个所述工作FlexE客户:
当基于所述工作FlexE客户对应的流标签检测到所述工作FlexE客户的数据不经过所述第二节点时,对所述工作FlexE客户的数据执行丢弃操作;
当基于所述工作FlexE客户对应的流标签检测到所述工作FlexE客户的数据经过所述第二节点时,对所述工作FlexE客户的数据执行转发操作;
其中,所述工作FlexE客户对应的流标签用于指示所述工作FlexE客户的数据在所述工作路径上的转发路径。
14.根据权利要求13所述的方法,其特征在于,所述工作FlexE客户对应的流标签包括:
所述工作FlexE客户的流入节点,所述工作FlexE客户的流出节点和所述工作FlexE客户的流标识;
其中,不同的节点配置的所述工作FlexE客户的流标识相同。
15.根据权利要求10所述的方法,其特征在于,所述第一节点和所述第二节点为基于FlexE的层次化网络中的节点,
所述对所述第二FlexE客户的数据执行转发操作或恢复操作,包括:
对所述第二FlexE客户的数据执行转发操作;
所述对所述第二FlexE客户的数据执行转发操作,包括:
将所述第二FlexE客户和接收到的另一节点传输的另一第二FlexE客户映射至第三FlexE客户,所述另一第二FlexE客户是所述另一节点将获取的m个第一FlexE客户进行映射后得到的,其中,所述第二FlexE客户的数据和所述另一第二FlexE客户的数据占用所述第三FlexE客户的时隙是固定的;
将所述第三FlexE客户的数据传输至下一节点。
16.一种数据传输装置,其特征在于,应用于第一节点,所述装置包括:
获取模块,用于获取m个第一FlexE客户,m≥2;
映射模块,用于将所述m个第一FlexE客户映射至一个第二FlexE客户,其中,每个所述第一FlexE客户的数据占用所述第二FlexE客户的时隙是固定的;
传输模块,用于将所述第二FlexE客户的数据传输至第二节点,所述第二节点与所述第一节点不同;
其中,所述映射模块,包括:
映射子模块,用于将所述m个第一FlexE客户中每个所述第一FlexE客户的数据中的数据码块映射至所述第二FlexE客户的指定的时隙中,得到所述第二FlexE客户的数据码块流;
添加子模块,用于在所述第二FlexE客户的数据码块流中连续添加N个空闲码块,所述N为所述第二FlexE客户的时隙个数的整数倍。
17.根据权利要求16所述的装置,其特征在于,所述映射子模块,包括:
排序单元,用于按照预设排序方式对所述m个第一FlexE客户进行排序;
映射单元,用于按照排序顺序,将所述m个第一FlexE客户中每个所述第一FlexE客户的数据中的数据码块映射至所述第二FlexE客户的指定的时隙中。
18.根据权利要求17所述的装置,其特征在于,所述排序单元,用于:
按照所述m个第一FlexE客户中每个所述第一FlexE客户对应的流标签的内容,对所述m个第一FlexE客户进行排序。
19.根据权利要求18所述的装置,其特征在于,每个所述第一FlexE客户对应的流标签包括:所述第一FlexE客户的流入节点,所述第一FlexE客户的流出节点和所述第一FlexE客户的流标识;
其中,不同的节点所配置的所述第一FlexE客户的流标识相同。
20.根据权利要求16所述的装置,其特征在于,所述映射模块,还包括:
删除子模块,用于删除p个第一FlexE客户的数据中的q个空闲码块,1≤p≤m,q≥1。
21.根据权利要求16所述的装置,其特征在于,所述第一节点和所述第二节点为灵活以太网FlexE环网中的节点,所述FlexE环网包括多个节点,所述多个节点形成工作路径和保护路径,所述工作路径和所述保护路径均为可双向传输的路径,所述第一FlexE客户为工作FlexE客户,所述第二FlexE客户为保护FlexE客户,
所述获取模块,用于:
在检测到所述工作路径上距离所述第一节点最近的一个元素出现故障时,获取待向所述工作路径上的下一节点发送的所述m个工作FlexE客户,所述元素为节点或链路。
22.根据权利要求21所述的装置,其特征在于,所述传输模块,用于:
沿所述保护路径将所述保护FlexE客户的数据传输至所述第二节点,所述第二节点为靠近出现故障的所述元素的节点。
23.根据权利要求16所述的装置,其特征在于,所述第一节点和所述第二节点为基于FlexE的层次化网络中的节点。
24.一种数据传输装置,其特征在于,应用于第二节点,所述装置包括:
接收模块,用于接收第一节点传输的第二FlexE客户的数据,所述第二FlexE客户是所述第一节点将获取的m个第一FlexE客户中每个所述第一FlexE客户的数据中的数据码块映射至所述第二FlexE客户的指定的时隙中,得到所述第二FlexE客户的数据码块流,并在所述第二FlexE客户的数据码块流中连续添加N个空闲码块后得到的,每个所述第一FlexE客户的数据占用所述第二FlexE客户的时隙是固定的,所述第一节点与所述第二节点不同,m≥2;
第一处理模块,用于对所述第二FlexE客户的数据执行转发操作或恢复操作。
25.根据权利要求24所述的装置,其特征在于,所述第一节点和所述第二节点为灵活以太网FlexE环网中的节点,所述FlexE环网包括多个节点,所述多个节点形成工作路径和保护路径,所述工作路径和所述保护路径均为可双向传输的路径,所述第一FlexE客户为工作FlexE客户,所述第二FlexE客户为保护FlexE客户,
所述接收模块,用于:
接收所述第一节点沿所述保护路径传输的所述保护FlexE客户的数据,所述保护FlexE客户是所述第一节点在检测到所述工作路径上距离所述第一节点最近的一个元素出现故障时,将待向所述工作路径上的下一节点发送的m个工作FlexE客户进行映射后得到的,所述元素为节点或链路;
所述第一处理模块,包括:
第一处理子模块,用于将所述保护FlexE客户恢复为所述m个工作FlexE客户;
所述装置还包括:
第二处理模块,用于对所述m个工作FlexE客户中每个所述工作FlexE客户的数据执行目标操作,所述目标操作为转发操作或丢弃操作。
26.根据权利要求25所述的装置,其特征在于,所述第一处理子模块,用于:
当检测到所述第二FlexE客户的数据码块流中连续存在N个空闲码块时,删除所述N个空闲码块,所述N为所述第二FlexE客户的时隙个数的整数倍;
按照每个所述第一FlexE客户的数据中的数据码块的位置,恢复出所述m个第一FlexE客户。
27.根据权利要求25所述的装置,其特征在于,所述第二处理模块,用于:
对于每个所述工作FlexE客户:
当基于所述工作FlexE客户对应的流标签检测到所述工作FlexE客户的数据不经过所述第二节点时,对所述工作FlexE客户的数据执行丢弃操作;
当基于所述工作FlexE客户对应的流标签检测到所述工作FlexE客户的数据经过所述第二节点时,对所述工作FlexE客户的数据执行转发操作;
其中,所述工作FlexE客户对应的流标签用于指示所述工作FlexE客户的数据在所述工作路径上的转发路径。
28.根据权利要求27所述的装置,其特征在于,所述工作FlexE客户对应的流标签包括:
所述工作FlexE客户的流入节点,所述工作FlexE客户的流出节点和所述工作FlexE客户的流标识;
其中,不同的节点配置的所述工作FlexE客户的流标识相同。
29.根据权利要求24所述的装置,其特征在于,所述第一节点和所述第二节点为基于FlexE的层次化网络中的节点,
所述第一处理模块,包括:
第二处理子模块,用于对所述第二FlexE客户的数据执行转发操作;
所述第二处理子模块,用于:
将所述第二FlexE客户和接收到的另一节点传输的另一第二FlexE客户映射至第三FlexE客户,所述另一第二FlexE客户是所述另一节点将获取的m个第一FlexE客户进行映射后得到的,其中,所述第二FlexE客户的数据和所述另一第二FlexE客户的数据占用所述第三FlexE客户的时隙是固定的;
将所述第三FlexE客户的数据传输至下一节点。
30.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至9任一所述的数据传输方法,或者如权利要求10至15任一所述的数据传输方法。
31.一种数据传输***,其特征在于,包括第一节点和第二节点,
所述第一节点包括权利要求16至23任一所述的数据传输装置,所述第二节点包括权利要求24至29任一所述的数据传输装置。
CN201710898393.6A 2017-09-28 2017-09-28 数据传输方法、装置及*** Active CN109586864B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201710898393.6A CN109586864B (zh) 2017-09-28 2017-09-28 数据传输方法、装置及***
EP18861448.1A EP3681081A4 (en) 2017-09-28 2018-09-05 DATA TRANSMISSION SYSTEM, DEVICE AND METHOD
PCT/CN2018/104193 WO2019062500A1 (zh) 2017-09-28 2018-09-05 数据传输方法、装置及***
US16/832,795 US11297000B2 (en) 2017-09-28 2020-03-27 Data transmission method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710898393.6A CN109586864B (zh) 2017-09-28 2017-09-28 数据传输方法、装置及***

Publications (2)

Publication Number Publication Date
CN109586864A CN109586864A (zh) 2019-04-05
CN109586864B true CN109586864B (zh) 2021-01-15

Family

ID=65900552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710898393.6A Active CN109586864B (zh) 2017-09-28 2017-09-28 数据传输方法、装置及***

Country Status (4)

Country Link
US (1) US11297000B2 (zh)
EP (1) EP3681081A4 (zh)
CN (1) CN109586864B (zh)
WO (1) WO2019062500A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018076143A1 (zh) * 2016-10-24 2018-05-03 华为技术有限公司 灵活以太网中传输数据的方法和设备
WO2019119388A1 (en) * 2017-12-22 2019-06-27 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for configuring a flex ethernet node
CN109962807B (zh) * 2017-12-26 2022-04-26 华为技术有限公司 一种灵活以太网中故障指示方法以及装置
CN111211957B (zh) * 2018-11-21 2021-10-01 华为技术有限公司 通信方法和装置
CN111817869B (zh) * 2019-04-12 2023-05-19 华为技术有限公司 一种网络配置恢复方法及其相关设备
CN110417631B (zh) * 2019-07-22 2022-04-19 华信塞姆(成都)科技有限公司 一种基于FlexE的SPN中的L1环保护方法
CN110601910A (zh) * 2019-10-24 2019-12-20 北京通畅电信规划设计院有限公司 一种基于flexE业务的信息传输***及其传输方法
CN110856052B (zh) * 2019-11-13 2022-07-19 Ut斯达康通讯有限公司 支持多种粒度的FlexE实现方法、装置及电子设备
JP7477780B2 (ja) * 2020-02-13 2024-05-02 日本電信電話株式会社 通信装置及びエラー検出方法
CN112822125B (zh) * 2020-04-08 2023-08-01 中兴通讯股份有限公司 一种业务流的传输方法、装置、设备及存储介质
CN113973380A (zh) * 2020-07-25 2022-01-25 华为技术有限公司 一种FlexE的资源管理方法及装置
CN114915371A (zh) * 2021-02-10 2022-08-16 华为技术有限公司 一种通信方法、设备和芯片***
CN114615136B (zh) * 2022-03-04 2023-10-27 浙江国盾量子电力科技有限公司 一种5G智能电网切片的FlexE接口管理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833089A (zh) * 2011-06-17 2012-12-19 中兴通讯股份有限公司 一种链路保护方法及装置
CN106612220A (zh) * 2015-10-27 2017-05-03 中兴通讯股份有限公司 灵活以太网的通道管理方法和装置
WO2017121158A1 (zh) * 2016-01-15 2017-07-20 华为技术有限公司 处理弹性以太网信号的方法和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8670302B2 (en) * 2010-06-10 2014-03-11 Infinera Corporation Activation signaling in transport networks
US9838290B2 (en) * 2015-06-30 2017-12-05 Ciena Corporation Flexible ethernet operations, administration, and maintenance systems and methods
CN106411454B (zh) * 2015-07-30 2019-10-25 华为技术有限公司 用于数据传输的方法、发送机和接收机
CN106612203A (zh) * 2015-10-27 2017-05-03 中兴通讯股份有限公司 一种处理灵活以太网客户端数据流的方法及装置
CN106788855B (zh) * 2015-11-23 2018-12-07 华为技术有限公司 一种灵活以太网业务的光传送网承载方法及装置
CN106803814B (zh) * 2015-11-26 2021-01-22 中兴通讯股份有限公司 一种灵活以太网路径的建立方法、装置及***
US10567352B2 (en) * 2015-12-11 2020-02-18 Ciena Corporation Flexible ethernet encryption systems and methods
CN107204941A (zh) * 2016-03-18 2017-09-26 中兴通讯股份有限公司 一种灵活以太网路径建立的方法和装置
CN107438029B (zh) * 2016-05-27 2021-02-09 华为技术有限公司 转发数据的方法和设备
CN108242969B (zh) * 2016-12-23 2021-04-20 华为技术有限公司 一种传输速率的调整方法及网络设备
CN113595934A (zh) * 2016-12-26 2021-11-02 北京华为数字技术有限公司 基于灵活以太网的业务流传输方法、装置和通信***
CN106850465B (zh) * 2016-12-27 2019-10-25 深圳市海思半导体有限公司 一种Flex E数据交换方法及交换设备
CN108347317B (zh) * 2017-01-22 2020-11-10 华为技术有限公司 一种业务的传输方法、网络设备及网络***

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833089A (zh) * 2011-06-17 2012-12-19 中兴通讯股份有限公司 一种链路保护方法及装置
CN106612220A (zh) * 2015-10-27 2017-05-03 中兴通讯股份有限公司 灵活以太网的通道管理方法和装置
WO2017121158A1 (zh) * 2016-01-15 2017-07-20 华为技术有限公司 处理弹性以太网信号的方法和装置

Also Published As

Publication number Publication date
WO2019062500A1 (zh) 2019-04-04
EP3681081A4 (en) 2020-10-14
US11297000B2 (en) 2022-04-05
EP3681081A1 (en) 2020-07-15
US20200228458A1 (en) 2020-07-16
CN109586864A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
CN109586864B (zh) 数据传输方法、装置及***
US10693765B2 (en) Failure protection for traffic-engineered bit indexed explicit replication
US7944913B2 (en) Node, communication method, and program for node
US7920576B2 (en) Packet ring network system, packet forwarding method and node
CN105827419B (zh) 一种转发设备故障处理的方法、设备和控制器
CN110224935B (zh) 一种处理组播数据报文的方法及装置
CN108768866B (zh) 组播报文跨卡转发方法、装置、网络设备及可读存储介质
US9515919B2 (en) Method and apparatus for protection switching in packet transport system
EP3605881B1 (en) Method and device for transmitting and receiving network management information, transmitting apparatus and receiving apparatus
CN109698732B (zh) 传输数据的方法和装置
CN102088415B (zh) Mac地址撤销的方法及设备
CN105591974A (zh) 报文处理方法、装置及***
US20120307628A1 (en) Communication apparatus and packet distribution method
CN110011941B (zh) 一种报文转发方法及设备
CN103502985B (zh) 一种数据处理的方法、装置及***
CN112152924A (zh) 一种在数据中心网络中转发报文的方法及相关装置
CN113364559B (zh) 一种面向多路径的数据安全传输方法、设备和***
CN109379764B (zh) 报文发送方法及装置
US9172641B2 (en) Server interconnection system, server, and data forwarding method
US11206216B2 (en) Flexible ethernet frame forwarding method and apparatus
CN111162869B (zh) 一种数据流处理方法及装置
Engelmann et al. On coding for reliable VNF chaining in DCNs
CN112866208B (zh) 表项配置方法、报文处理方法、装置、设备及存储介质
CN103607301A (zh) 一种ecmp方式下链路故障的保护切换方法和设备
CN108418709B (zh) 端口聚合方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant