WO2018228420A1 - 一种传输网络***、数据交换和传输方法、装置及设备 - Google Patents

一种传输网络***、数据交换和传输方法、装置及设备 Download PDF

Info

Publication number
WO2018228420A1
WO2018228420A1 PCT/CN2018/091022 CN2018091022W WO2018228420A1 WO 2018228420 A1 WO2018228420 A1 WO 2018228420A1 CN 2018091022 W CN2018091022 W CN 2018091022W WO 2018228420 A1 WO2018228420 A1 WO 2018228420A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible ethernet
service data
transmission
bearer group
block
Prior art date
Application number
PCT/CN2018/091022
Other languages
English (en)
French (fr)
Inventor
李晗
程伟强
王磊
王敏学
Original Assignee
***通信有限公司研究院
***通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ***通信有限公司研究院, ***通信集团有限公司 filed Critical ***通信有限公司研究院
Priority to EP18817881.8A priority Critical patent/EP3641237A4/en
Priority to US16/622,998 priority patent/US11477549B2/en
Publication of WO2018228420A1 publication Critical patent/WO2018228420A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • H04J3/1658Optical Transport Network [OTN] carrying packets or ATM cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • H04J3/1664Optical Transport Network [OTN] carrying hybrid payloads, e.g. different types of packets or carrying frames and packets in the paylaod
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/413Bus networks with decentralised control with random access, e.g. carrier-sense multiple-access with collision detection [CSMA-CD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/66Layer 2 routing, e.g. in Ethernet based MAN's
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/34Flow control; Congestion control ensuring sequence integrity, e.g. using sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0003Switching fabrics, e.g. transport network, control network
    • H04J2203/0005Switching elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0003Switching fabrics, e.g. transport network, control network
    • H04J2203/0005Switching elements
    • H04J2203/0008Time switch details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0073Services, e.g. multimedia, GOS, QOS
    • H04J2203/0082Interaction of SDH with non-ATM protocols
    • H04J2203/0085Support of Ethernet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/35Switches specially adapted for specific applications
    • H04L49/351Switches specially adapted for specific applications for local area network [LAN], e.g. Ethernet switches

Definitions

  • the present disclosure relates to the field of computer network technologies, and in particular to a transmission network system, a data exchange and transmission method, apparatus and device.
  • the 5G network proposes the requirements of network fragmentation. It is hoped that the same transmission network can be sliced into different logical network slices. The users of each slice can ensure real physical isolation of each fragment, and at the same time, the requirements for fragmentation. include:
  • a transport slice for a subsidiary should also be able to be sliced into multiple service-oriented slices.
  • the network for mobile backhaul can also be divided into urllc services (such as driverless, low latency and high reliability connection services), EMBB (such as 3D ultra high definition video and other high-traffic mobile broadband services), mMTC (such as large-scale IoT business) fragmentation of different business requirements.
  • urllc services such as driverless, low latency and high reliability connection services
  • EMBB such as 3D ultra high definition video and other high-traffic mobile broadband services
  • mMTC such as large-scale IoT business fragmentation of different business requirements.
  • OTN Optical Transport Network
  • L1 layer By superimposing the packet network on it, it can support related functions for 5G networking.
  • FIG. 1 shows the architecture of using OTN's low-order ODUj (optical network unit) and ODUflex cross-connect (XC) as the core of the future 5G transport network.
  • This OTN-based 5G mobile transport network architecture can support hard isolation, network slicing, and multi-service functions through the underlying ODUk isolation.
  • the unit processed by the OTN transmission node has a longer delay introduced by the ODUk unit.
  • the present disclosure provides a transmission network system, a data exchange and transmission method, apparatus and device.
  • the introduction of flexible Ethernet enables the slicing of the L1 layer to meet the needs of future network services.
  • a transmission network system comprising:
  • At least one flexible Ethernet client carried on the flexible Ethernet bearer group At least one flexible Ethernet client carried on the flexible Ethernet bearer group
  • the flexible Ethernet time slot control module is configured to map the service data from the upper layer to the flexible Ethernet bearer group according to the block flow, and restore the corresponding block stream received by the flexible Ethernet bearer group.
  • Business data ;
  • a flexible Ethernet switching module is configured to perform physical layer exchange and transmission of service data according to the block flow.
  • the block stream includes: a plurality of blocks of a preset size.
  • the block of the preset size is: a 66-bit block.
  • the service data of the upper layer includes: service data that is not packet switched.
  • the flexible Ethernet bearer group includes: a set of PHYs formed by at least one Ethernet physical sublayer optical port PHY.
  • the calendar module of the flexible Ethernet bearer group divides the flexible Ethernet bearer group into multiple time slots, and binds the flexible Ethernet client to at least one time slot for transmitting service data.
  • the aligning data of the PHY of the flexible Ethernet bearer group is implemented by inserting a flexible Ethernet overhead into the block stream carried in the flexible Ethernet bearer group.
  • Each PHY in the flexible Ethernet bearer group has a preset number of overhead blocks carrying flexible Ethernet overhead.
  • the flexible Ethernet switching module is specifically configured to: according to the group number and the client number of the flexible Ethernet bearer group that inputs the block, and the flexible Ethernet bearer that outputs the block.
  • the group number and client number of the group are used for physical layer exchange and transmission of business data.
  • the present disclosure also provides a data exchange and transmission method, including:
  • Physical layer exchange and transmission of service data is performed according to the block stream.
  • the data exchange and transmission methods also include:
  • the block stream received by the flexible Ethernet bearer group is restored to the corresponding service data.
  • the non-packetized service data from the upper layer is mapped to the flexible Ethernet bearer group located at the physical layer according to the block flow.
  • the non-packet-switched service includes: when the service data of the 66-bit block is used, the step of mapping the non-packet-switched service data from the upper layer to the flexible Ethernet bearer group at the physical layer according to the block flow includes:
  • the service data of the 66-bit block from the upper layer is mapped to the flexible Ethernet bearer group at the physical layer according to the 66-bit block flow.
  • the non-packet-switched service includes: when the service data of the non-66-bit block is used, the step of mapping the non-packet-switched service data from the upper layer to the flexible Ethernet bearer group at the physical layer according to the block flow includes:
  • the service data of the non-66-bit block from the upper layer is decomposed to obtain the payload portion of the service data, and the payload portion is encapsulated into a 66-bit block, and mapped to the flexible Ethernet bearer group at the physical layer according to the 66-bit block flow.
  • the step of performing physical layer exchange and transmission of service data according to the block flow includes:
  • the present disclosure also provides a data exchange and transmission device, including:
  • the flexible Ethernet time slot control module is configured to map the service data from the upper layer to the flexible Ethernet bearer group located at the physical layer according to the block flow;
  • a flexible Ethernet switching module is configured to perform physical layer exchange and transmission of service data according to the block flow.
  • the flexible Ethernet time slot control module is further configured to restore the corresponding service data by using the block stream received by the flexible Ethernet bearer group.
  • the data exchange and transmission device also includes:
  • the service identification module is configured to identify the service data from the upper layer, and map the identified non-packetized service data from the upper layer to the flexible Ethernet bearer group located at the physical layer according to the block flow.
  • the flexible Ethernet client is configured to: when the service identification module identifies that the non-packet switched service includes: 66 bit block service data, map the service data from the upper 66 bit block to the 66 bit block flow to Located on the flexible Ethernet bearer group at the physical layer; or
  • the service identification module identifies that the non-packet switched service includes: non-66 bit block service data
  • the service data of the non-66 bit block from the upper layer is decomposed to obtain the payload portion of the service data, and then the payload is Partially encapsulated into 66-bit blocks, mapped to a flexible Ethernet bearer group at the physical layer according to the 66-bit block flow.
  • the flexible Ethernet switching module is specifically configured to: block the block in the block stream according to a group number and a client number of the flexible Ethernet bearer group that inputs the block, and output a flexible Ethernet bearer of the block.
  • the group number and client number of the group are used for physical layer exchange and transmission of business data.
  • the present disclosure also provides a data exchange and transmission device, including:
  • At least one flexible Ethernet client carried on the flexible Ethernet bearer group At least one flexible Ethernet client carried on the flexible Ethernet bearer group
  • a flexible Ethernet time slot control module configured to map the service data from the upper layer to the flexible Ethernet bearer group according to the block flow; and recover the corresponding service from the block flow received by the flexible Ethernet bearer group data;
  • a flexible Ethernet switching module is configured to perform physical layer exchange and transmission of service data according to the block flow.
  • the flexible Ethernet switching module is located in a forwarding plane module of the data switching and transmission device, and the forwarding plane module has at least one flexible Ethernet interface.
  • the disclosure also provides a transmission network system, including:
  • Ethernet transmission subsystem and an optical network transmission subsystem wherein the Ethernet transmission subsystem and the optical network transmission subsystem are connected by a unified cross-switching matrix
  • the Ethernet transmission subsystem includes:
  • At least one flexible Ethernet client carried on the flexible Ethernet bearer group At least one flexible Ethernet client carried on the flexible Ethernet bearer group
  • a flexible Ethernet time slot control module configured to map the service data from the upper layer to the flexible Ethernet bearer group according to the block flow; and recover the corresponding service from the block flow received by the flexible Ethernet bearer group data;
  • a flexible Ethernet switching module configured to perform physical layer exchange and transmission of service data according to the block flow
  • the optical network transmission subsystem includes:
  • At least one optical network unit At least one optical network unit
  • At least one flexible Ethernet client carried on the flexible Ethernet bearer group At least one flexible Ethernet client carried on the flexible Ethernet bearer group
  • a flexible Ethernet time slot control module configured to map upper layer service data to the at least one optical network unit by using the flexible Ethernet bearer group; and recover the data received by the optical network unit to recover the corresponding service data;
  • An optical network switching module configured to exchange and transmit service data according to a block stream of a preset multiple of the block stream divided by the optical network unit;
  • the optical network switching module and the flexible Ethernet switching module are respectively connected to the unified cross-switching matrix.
  • the unified cross-switching matrix is a switching device, and the switching device has a slot for inserting an optical network switching module and a slot for inserting a flexible Ethernet switching module.
  • the optical network switching module is a programmable optical transmission network OTN card
  • the flexible Ethernet switching module is a programmable flexible Ethernet card.
  • the present disclosure also provides a data exchange and transmission device comprising a processor, a memory, and a computer program stored on the memory and operable on the processor, the computer program being implemented by the processor The steps in the data exchange and transmission method described.
  • the present disclosure also provides a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps in the data exchange and transmission methods described above.
  • the disclosure also provides a transmission network system, including:
  • At least one flexible Ethernet client carried on the flexible Ethernet bearer group At least one flexible Ethernet client carried on the flexible Ethernet bearer group
  • the processor is configured to read a program in the memory and perform the following process:
  • the present disclosure also provides a data exchange and transmission device, including:
  • At least one flexible Ethernet client carried on the flexible Ethernet bearer group At least one flexible Ethernet client carried on the flexible Ethernet bearer group
  • the processor is configured to read a program in the memory and perform the following process:
  • Physical layer exchange and transmission of service data is performed according to the block stream.
  • the disclosure also provides a transmission network system, including:
  • Ethernet transmission subsystem and an optical network transmission subsystem wherein the Ethernet transmission subsystem and the optical network transmission subsystem are connected by a unified cross-switching matrix
  • the Ethernet transmission subsystem includes:
  • At least one flexible Ethernet client carried on the flexible Ethernet bearer group At least one flexible Ethernet client carried on the flexible Ethernet bearer group
  • the processor is configured to read a program in the memory and perform the following process:
  • Physical layer exchange and transmission of service data is performed according to the block stream.
  • the optical network transmission subsystem includes:
  • At least one optical network unit At least one optical network unit
  • At least one flexible Ethernet client carried on the flexible Ethernet bearer group At least one flexible Ethernet client carried on the flexible Ethernet bearer group
  • the processor is configured to read a program in the memory and perform the following process:
  • the above solution of the present disclosure introduces the L1 layer (physical layer) network through FlexE (Flexible Ethernet Switching) as a switching core, and can provide these basic functions of the 5G transport network simply and effectively, and can also support the industrial chain system of Ethernet.
  • the flexible Layer 3 function makes it easy to associate the L1 layer network with its upper layer network.
  • 66-bit blocks can be directly exchanged, thereby reducing the delay caused by packet recovery and the jitter caused by L2 layer switching.
  • the above solution of the present disclosure introduces flexible Ethernet, which can implement slicing of the L1 layer to meet the needs of future network services.
  • FIG. 1 is a schematic diagram of a system architecture of an optical transmission network of the related art.
  • FIG. 2 is a schematic structural diagram of a transmission network system according to some embodiments of the present disclosure.
  • FIG. 3 is a schematic diagram of a process of identifying and exchanging transmission of service data according to some embodiments of the present disclosure
  • FIG. 4 is a block diagram of a data exchange and transmission device of some embodiments of the present disclosure.
  • FIG. 5 is a block diagram of a data exchange and transmission device module of some embodiments of the present disclosure.
  • FIG. 6 is a schematic diagram of a transmission network system architecture according to some embodiments of the present disclosure.
  • the first transmission network system proposed by some embodiments of the present disclosure introduces an L1 layer network based on FlexE (Flexible Ethernet Switching) as a switching core, and can simply and effectively provide these basic functions of the 5G transmission network.
  • the industrial chain system that can use Ethernet can support flexible Layer 3 functions, and can easily associate the L1 layer network with its upper layer network. It can directly exchange 66bitblocks, which reduces the delay caused by packet recovery and the jitter caused by L2 layer switching.
  • a transmission network system includes: a flexible Ethernet bearer group (FlexEGroup) located at a physical layer (L1 layer);
  • FlexEGroup flexible Ethernet bearer group located at a physical layer (L1 layer);
  • At least one flexible Ethernet client carried on the FlexEGroup;
  • Flexible Ethernet slot control module (FlexE Shim) (not shown in the figure, but the module is located between FlexEClient and FlexEGroup), used to map upper layer service data to the FlexEGroup according to a block stream (Block stream) And the block stream received by the FlexEGroup is restored to the corresponding service data;
  • a flexible Ethernet switching module is configured to perform physical layer exchange and transmission of service data according to the block flow.
  • the flexible Ethernet switching module is configured to: according to the group number and the client number of the flexible Ethernet bearer group that inputs the block, and the flexible Ethernet bearer that outputs the block.
  • the group number and client number of the group are used for physical layer exchange and transmission of business data.
  • the forwarding table used is as follows:
  • the block stream includes: a plurality of preset size blocks, and the preset size block includes a 66 bit block. That is, the flexible Ethernet switching module implements physical layer (L1 layer) exchange of /66 bit Block.
  • L1 layer physical layer
  • the 66-bit block 64-bit bits are used to represent data, and 2 bits are used to represent block information, which is usually represented by 64b/66b.
  • ETC is a traditional Ethernet
  • PTK is an abbreviation of Packet
  • PKT Switch is a data exchange of ETH/MPLS/IP layer.
  • the upper layer of service data includes: non-packet switched service data.
  • the non-packet switched service data may include, for example, service data of at least one flexible Ethernet client, the service data is transmitted in a block stream formed by a 66-bit block; and a flexible Ethernet time slot control module (FlexE Shim) is used for the upper layer service.
  • the data (the service data of the FlexEClient) is mapped to the FlexEGroup according to the block stream, and the block stream received by the FlexEGroup is restored to the corresponding FlexEClient service data.
  • the non-packet switched service data may include, for example, Ethernet service data from a legacy Ethernet ETC, and a flexible Ethernet time slot control module (FlexE Shim) for using upper layer service data (Ethernet service data) according to a block stream.
  • a (Block) stream is mapped to the FlexEGroup; and the block stream received by the FlexEGroup is restored to the corresponding Ethernet service data.
  • the non-packet-switched service data may include, for example, service data of a time division multiplexed TDM service or service data of a constant bit rate CBR service (the data is 10 bit block data, the payload part accounts for 8 bits, and the remaining part accounts for 2 bits, often Named as: 8b/10b), it is also possible to convert these business data into block flows formed by 66-bit blocks to accommodate this architecture.
  • the upper layer service can also have other non-packet exchanged service data.
  • the PKT Switch directly performs packet switching, and does not need to be mapped to the FlexEGroup for transmission.
  • the calendar module of the FlexEGroup divides the flexible Ethernet bearer group into multiple time slots, and binds the flexible Ethernet client to at least one time slot for transmission of service data.
  • FlexE runs the calendar mechanism (calendar module).
  • the FlexE group's Calendar has a 5G granularity, and the 100G PHY is divided into 20 time slots.
  • the flexible Ethernet client can be bound to at least one time slot. Transfer business data.
  • the FlexE shim (Flexible Ethernet Time Slot Control Module) on the FlexE interface performs the following functions:
  • FlexE Shim decomposes the FlexE Client in the FlexE group. This feature is also known as FlexE demultiplexing.
  • the alignment of the data of the PHY of the flexible Ethernet bearer group FlexE group is implemented by inserting a flexible Ethernet overhead into the block stream carried in the flexible Ethernet bearer group FlexE group. .
  • Flexible Ethernet overhead includes: flexible Ethernet calendar configuration, group number for flexible Ethernet bearer groups, flexible Ethernet client numbers, and/or management channel data.
  • Each PHY in the flexible Ethernet bearer group has a preset number of overhead blocks carrying flexible Ethernet overhead.
  • the blocks of the overhead block and the service data are distributed according to a preset period interval.
  • FlexE's capabilities include binding Ethernet PHYs, sub-interfaces and channelization of Ethernet PHYs (ie, allowing multiple client data streams to be carried over a single Ethernet PHY or a set of bonded PHYs).
  • the traditional FlexE is only an interface. If data exchange is to be performed, the message must be recovered to the L2 layer or above for exchange.
  • Some embodiments of the present disclosure also provide a data exchange and transmission method, including:
  • Step 11 Receive service data from an upper layer
  • Step 13 Perform physical layer exchange and transmission of service data according to the block stream.
  • the block stream is also mapped to the flexible Ethernet bearer group located at the physical layer, and the physical layer is exchanged and transmitted according to the block stream, thereby reducing the delay caused by packet recovery. And the jitter caused by L2 layer switching.
  • the above solution of the present disclosure introduces flexible Ethernet, which can implement slicing of the L1 layer to meet the needs of future network services.
  • the data exchange and transmission method may further include:
  • Step 14 The block stream received by the flexible Ethernet bearer group is restored to the corresponding service data.
  • step 12 may specifically include:
  • Step 121 The non-packetized service data from the upper layer is mapped to the flexible Ethernet bearer group located at the physical layer according to the block flow.
  • the non-packet-switched service includes: 66-bit block service data, and step 121 includes: mapping the service data of the 66-bit block from the upper layer to the flexible Ethernet bearer group at the physical layer according to the 66-bit block flow.
  • the non-packet-switched service includes: when the service data of the non-66-bit block is used, the step 121 includes: decomposing the service data of the non-66-bit block from the upper layer, obtaining the payload part of the service data, and then encapsulating the payload part.
  • the 66-bit block is mapped to the flexible Ethernet bearer group at the physical layer according to the 66-bit block flow.
  • step 13 may include: dividing the block in the block stream according to a group number and a client number of the flexible Ethernet bearer group input into the block, and a flexible Ethernet outputting the block.
  • the group number and client number of the bearer group are exchanged and transmitted at the physical layer of the service data.
  • the forwarding table used is as follows:
  • the PKT Switch packet switching module directly performs packet switching, and does not need to be mapped to the FlexEGroup for transmission;
  • the flexible Ethernet time slot control module (FlexE Shim) in the flexible Ethernet switch module is used to set the upper layer service data. (Ethernet service data), mapped to the FlexEGroup according to a block stream, and flexible Ethernet switching.
  • the upper layer service data is the service data of the time division multiplexing TDM service or the service data of the constant bit rate CBR service (that is, the service data of the 10 bit coded service, where 8 bits is data, often represented by 8b/10b), these services can be used.
  • the data is decoded and restored into an 8-bit block, and a plurality of 8-bit block codes are combined to form a 66-bit block, and a block stream composed of a plurality of 66-bit blocks is used as a block stream for unified switching, and time slot allocation and flexible Ethernet switching are performed.
  • some embodiments of the present disclosure further provide a data exchange and transmission apparatus, including:
  • a receiving module configured to receive service data from an upper layer
  • the flexible Ethernet time slot control module is configured to map the service data from the upper layer to the flexible Ethernet bearer group located at the physical layer according to the block flow;
  • a flexible Ethernet switching module is configured to perform physical layer exchange and transmission of service data according to the block flow.
  • the flexible Ethernet time slot control module is further configured to restore the corresponding service data by using the block stream received by the flexible Ethernet bearer group.
  • the data exchange and transmission device also includes:
  • the service identification module is configured to identify the service data from the upper layer, and map the identified non-packetized service data from the upper layer to the flexible Ethernet bearer group located at the physical layer according to the block flow.
  • the data exchange and transmission device further includes: a flexible Ethernet client carried on the flexible Ethernet bearer group;
  • the service identification module identifies that the non-packet switched service includes: non-66 bit block service data
  • the service data of the non-66 bit block from the upper layer is decomposed to obtain the payload portion of the service data, and then the payload is Partially encapsulated into 66-bit blocks, mapped to a flexible Ethernet bearer group at the physical layer according to the 66-bit block flow.
  • the flexible Ethernet switching module is specifically configured to: block the block in the block stream according to a group number and a client number of the flexible Ethernet bearer group that inputs the block, and output a flexible Ethernet bearer of the block.
  • the group number and client number of the group are used for physical layer exchange and transmission of business data.
  • the device is a device corresponding to the above method, and all implementations in the foregoing method embodiments are applicable to the embodiment of the device, and the same technical effects can be achieved.
  • Some embodiments of the present disclosure further provide a data exchange and transmission device, including the transmission network system shown in FIG. 2, specifically, the device includes:
  • At least one flexible Ethernet client carried on the flexible Ethernet bearer group At least one flexible Ethernet client carried on the flexible Ethernet bearer group
  • a flexible Ethernet time slot control module configured to map the service data from the upper layer to the flexible Ethernet bearer group according to the block flow; and recover the corresponding service from the block flow received by the flexible Ethernet bearer group data;
  • a flexible Ethernet switching module is configured to perform physical layer exchange and transmission of service data according to the block flow.
  • the flexible Ethernet switching module is located in a forwarding plane module of the data switching and transmission device, and the forwarding plane module has at least one flexible Ethernet interface.
  • FIG. 5 it is a functional block diagram of the foregoing device, where each functional module in the foregoing device is implemented in the flexible Ethernet switching part of the forwarding plane shown in FIG. 5, and the forwarding plane may further include: OAM. , protection, QOS, synchronization and other functions and corresponding modules.
  • Some embodiments of the present disclosure also provide a transmission network system, including:
  • Ethernet transmission subsystem and an optical network transmission subsystem wherein the Ethernet transmission subsystem and the optical network transmission subsystem are connected by a unified cross-switching matrix
  • Flexible Ethernet bearer group (FlexEGroup) at the physical layer
  • a flexible Ethernet time slot control module (FlexEshim), configured to map service data from the upper layer to the flexible Ethernet bearer group according to the block flow; and recover the block flow received by the flexible Ethernet bearer group Corresponding business data;
  • a flexible Ethernet switching module configured to perform physical layer exchange and transmission of service data according to the block flow
  • At least one optical network unit (ODU); flexible Ethernet bearer group (FlexEGroup);
  • a flexible Ethernet time slot control module (FlexEshim), configured to map upper layer service data to the at least one optical network unit through the flexible Ethernet bearer group; and recover the data received by the optical network unit Corresponding business data;
  • An optical network switching module configured to exchange and transmit service data according to a block stream of a preset multiple of the block stream divided by the optical network unit;
  • the optical network switching module and the flexible Ethernet switching module are respectively connected to the unified cross-switching matrix.
  • the optical network switching module implements switching with 66-bit blocks
  • the flexible Ethernet switching module implements switching with 66-bit blocks.
  • the system in which the optical network switching module is located is an optical network transmission subsystem
  • the system in which the flexible Ethernet switching module is located is an Ethernet transmission subsystem
  • the unified cross-switching matrix is a switching device, and the switching device has Insert the slot of the optical network switch module and the slot of the flexible Ethernet switch module.
  • the optical network switching module is a programmable optical transmission network OTN card
  • the flexible Ethernet switching module is a programmable FlexE card.
  • the ODUK unit and the flexible Ethernet switching unit can be flexibly encapsulated by adaptive encapsulation.
  • some embodiments of the present disclosure adopt a unified cross-switching matrix as a core, adopt a slot system, partially insert an OTN client card and an OTN line side card, and can logically function as an OTN subsystem, and the remaining slots can be used for Ethernet/ FlexE line side or client card as an Ethernet/FlexE subsystem.
  • the system is based on a slot-based unified switch fabric, and the OTN subsystem and Ethernet/FlexE subsystem can be flexibly configured according to the requirements of the existing network.
  • This OTN- and Ethernet-based architecture will be more flexible for use in different scenarios of a single integrated transport network for future 5G mobile orientation. If the card in this system is a programmable card, it can be programmed as an OTN card or an Ethernet/FlexE card, which will be more flexible.
  • the ODUk can convert the switching module into a identifiable structure of the unified cross matrix through the OTN optical network interface module.
  • the flexible Ethernet switching module 64/66 bit block cross connect unit converts the 66-bit block into an associated unified cross-switching matrix identifiable structure.
  • Some embodiments of the present disclosure can directly implement L1 layer switching on a 66-bit block, thereby reducing delay caused by packet recovery and jitter caused by L2 layer switching; and implementing ODUk and FlexE group, FlexE through adaptive mapping.
  • the client supports the two interfaces on the same platform. By unifying the cross matrix, the ODUk and the FlexE client can be mixed at any ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Small-Scale Networks (AREA)

Abstract

本公开提供一种传输网络***、数据交换和传输方法、装置及设备,传输网络***包括:位于物理层的灵活以太网承载组;承载在所述灵活以太网承载组上的至少一个灵活以太网客户端;灵活以太网时隙控制模块,用于将来自上层的业务数据,按照块流,映射到所述灵活以太网承载组上;并将所述灵活以太网承载组接收到的块流,恢复出相应业务数据;灵活以太网交换模块,用于按照所述块流进行业务数据的物理层交换和传输。

Description

一种传输网络***、数据交换和传输方法、装置及设备
相关申请的交叉引用
本申请主张在2017年6月16日在中国提交的中国专利申请号No.201710458028.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及计算机网络技术领域,特别是指一种传输网络***、数据交换和传输方法、装置及设备。
背景技术
5G网络提出了网络分片的需求,希望同一张传输网能够被切片为不同的逻辑网络切片,每个切片的用户之间保证各分片能够实现真正的物理隔离,同时,对于分片的需求包括:
分片需要能够为运营商不同的子公司,虚拟运营商等切片,以方便快捷的运维和业务维护。子公司和虚拟运营商将专注于针对不同类型客户特定服务。
对于某个子公司的传输切片还应该能够切片成多个面向业务的分片。比如:面向移动回传的网络还可以分成承载urllc业务(如无人驾驶,低时延高可靠性连接业务)、EMBB(如3D超高清视频等大流量移动宽带业务)、mMTC(如大规模物联网业务)等不同业务要求的分片。
这些要求,在技术上来说需要L1层(物理层)的区分,以便使得各分片能够实现真正的物理隔离,同时,在不同的分片之上进一步分片时,需要能够支持L2层(数据链路层)甚至以上层次的资源隔离。所以,对于这个网络***来说,既需要L1层的隔离和交换,又需要L2层及以上层的隔离和交换。
OTN(光传送网)作为一种管道技术广泛的应用于运营商网络,能够支持L1层的交换,通过在其上叠加分组网络,能够面向5G组网支持相关功能。
图1显示了使用OTN的低阶ODUj(光网络单元)和ODUflex交叉连接(XC)作为未来5G传输网络基础核心的架构。这种基于OTN的5G移动传输网架构 通过底层的ODUk隔离能够支持硬隔离,网络切片功能,多业务等功能。
但是,这种方式需要多层映射效率低,而且很难将L1层的交叉与Packet(业务)层的交叉关联起来。
5G网络是一个端到端IP化的网络,并且需要能够支持多业务隔离,及网络分片。原有OTN网络中要实现这些功能,有如下几个问题:
1)OTN基于ODUk,ODUk的映射复杂,承载Packet时需要专门的封装,需要L1层与其上的Packet进行联动时,管理复杂,调度困难。
2)OTN传输节点处理的单元是以ODUk为单元的引入的时延较长。
3)OTN之上承载以太网业务,特别是FlexE时,封装效率低。
4)OTN的产业链相对小,芯片成本高。
发明内容
本公开提供了一种传输网络***、数据交换和传输方法、装置及设备。引入灵活以太网,可实现L1层的切片,满足未来网络业务的需求。
为解决上述技术问题,本公开提供如下方案:
一种传输网络***,包括:
位于物理层的灵活以太网承载组;
承载在所述灵活以太网承载组上的至少一个灵活以太网客户端;
灵活以太网时隙控制模块,用于将来自上层的业务数据,按照块流,映射到所述灵活以太网承载组上;并将所述灵活以太网承载组接收到的块流,恢复出相应业务数据;
灵活以太网交换模块,用于按照所述块流进行业务数据的物理层交换和传输。
其中,所述块流包括:多个预设大小的块。
其中,所述预设大小的块为:66bit的块。
其中,所述上层的业务数据包括:非分组交换的业务数据。
其中,所述灵活以太网承载组包括:至少一个以太网物理子层光口PHY形成的一组PHY。
其中,所述灵活以太网承载组的日历模块将灵活以太网承载组划分为多 个时隙,并将灵活以太网客户端绑定在其中至少一个时隙进行业务数据的传输。
其中,所述灵活以太网承载组的PHY的数据的对齐是通过将灵活以太网开销***到所述灵活以太网承载组中携带的所述块流中实现。
其中,所述灵活以太网开销包括:灵活以太网日历模块配置、灵活以太网承载组的组号、灵活以太网客户端号和/或管理通道数据。
其中,所述灵活以太网承载组中的每个PHY上具有承载灵活以太网开销的预设数量个开销块。
其中,所述开销块和业务数据的块按照预设周期间隔分布。
其中,所述灵活以太网交换模块,具体用于将所述块流中的块,按照输入所述块的灵活以太网承载组的组号和客户端号以及输出所述块的灵活以太网承载组的组号和客户端号,进行业务数据的物理层交换和传输。
本公开还提供一种数据交换和传输方法,包括:
接收来自上层的业务数据;
将来自上层的业务数据,按照块流映射到位于物理层的灵活以太网承载组上;
按照所述块流进行业务数据的物理层交换和传输。
其中,数据交换和传输方法,还包括:
将所述灵活以太网承载组接收到的块流,恢复出相应业务数据。
其中,将来自上层的业务数据,按照块流映射到位于物理层的灵活以太网承载组上的步骤包括:
将来自上层的非分组交换的业务数据,按照块流映射到位于物理层的灵活以太网承载组上。
其中,所述非分组交换的业务包括:66bit块的业务数据时,将来自上层的非分组交换的业务数据,按照块流映射到位于物理层的灵活以太网承载组上的步骤包括:
将来自上层的66bit块的业务数据,按照66bit块流映射到位于物理层的灵活以太网承载组上。
其中,所述非分组交换的业务包括:非66bit块的业务数据时,将来自 上层的非分组交换的业务数据,按照块流映射到位于物理层的灵活以太网承载组上的步骤包括:
将来自上层的非66bit块的业务数据进行分解,得到业务数据的净荷部分,再将净荷部分封装成66bit块,按照66bit块流映射到位于物理层的灵活以太网承载组上。
其中,所述按照所述块流进行业务数据的物理层交换和传输的步骤包括:
将所述块流中的块,按照输入所述块的灵活以太网承载组的组号和客户端号以及输出所述块的灵活以太网承载组的组号和客户端号,进行业务数据的物理层交换和传输。
本公开还提供一种数据交换和传输装置,包括:
接收模块,用于接收来自上层的业务数据;
灵活以太网时隙控制模块,用于将来自上层的业务数据,按照块流映射到位于物理层的灵活以太网承载组上;
灵活以太网交换模块,用于按照所述块流进行业务数据的物理层交换和传输。
其中,所述灵活以太网时隙控制模块,还用于将所述灵活以太网承载组接收到的块流,恢复出相应业务数据。
其中,数据交换和传输装置,还包括:
业务识别模块,用于对来自上层的业务数据进行识别,将识别出的来自上层的非分组交换的业务数据,按照块流映射到位于物理层的灵活以太网承载组上。
其中,数据交换和传输装置,还包括:承载在所述灵活以太网承载组上的灵活以太网客户端;
所述灵活以太网客户端用于,在所述业务识别模块识别出所述非分组交换的业务包括:66bit块的业务数据时,将来自上层的66bit块的业务数据,按照66bit块流映射到位于物理层的灵活以太网承载组上;或者
在所述业务识别模块识别出所述非分组交换的业务包括:非66bit块的业务数据时,将来自上层的非66bit块的业务数据进行分解,得到业务数据的净荷部分,再将净荷部分封装成66bit块,按照66bit块流映射到位于物 理层的灵活以太网承载组上。
其中,所述灵活以太网交换模块具体用于:将所述块流中的块,按照输入所述块的灵活以太网承载组的组号和客户端号以及输出所述块的灵活以太网承载组的组号和客户端号,进行业务数据的物理层交换和传输。
本公开还提供一种数据交换和传输设备,包括:
位于物理层的灵活以太网承载组;
承载在所述灵活以太网承载组上的至少一个灵活以太网客户端;
灵活以太网时隙控制模块,用于将来自上层的业务数据,按照块流映射到所述灵活以太网承载组上;并将所述灵活以太网承载组接收到的块流,恢复出相应业务数据;
灵活以太网交换模块,用于按照所述块流进行业务数据的物理层交换和传输。
其中,所述灵活以太网交换模块位于所述数据交换和传输设备的转发平面模块中,所述转发平面模块具有至少一个灵活以太网接口。
本公开还提供一种传输网络***,包括:
以太网传输子***和光网络传输子***,所述以太网传输子***和光网络传输子***通过统一交叉交换矩阵连接;
所述以太网传输子***包括:
位于物理层的灵活以太网承载组;
承载在所述灵活以太网承载组上的至少一个灵活以太网客户端;
灵活以太网时隙控制模块,用于将来自上层的业务数据,按照块流映射到所述灵活以太网承载组上;并将所述灵活以太网承载组接收到的块流,恢复出相应业务数据;
灵活以太网交换模块,用于按照所述块流进行业务数据的物理层交换和传输;
所述光网络传输子***包括:
至少一个光网络单元;
灵活以太网承载组;
承载在所述灵活以太网承载组上的至少一个灵活以太网客户端;
灵活以太网时隙控制模块,用于将上层的业务数据,通过所述灵活以太网承载组映射到至少一个光网络单元中;并将所述光网络单元接收到的数据,恢复出相应的业务数据;
光网络交换模块,用于按照所述光网络单元划分的所述块流的预设倍数大小的块流进行业务数据的交换和传输;
其中,所述光网络交换模块和所述灵活以太网交换模块分别与所述统一交叉交换矩阵连接。
其中,所述统一交叉交换矩阵为一交换设备,所述交换设备具有插接光网络交换模块的插槽和插接灵活以太网交换模块的插槽。
其中,所述光网络交换模块为可编程的光传输网络OTN卡,所述灵活以太网交换模块为可编程的灵活以太网卡。
本公开还提供一种数据交换和传输装置,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的数据交换和传输方法中的步骤。
本公开还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的数据交换和传输方法中的步骤。
本公开还提供一种传输网络***,包括:
位于物理层的灵活以太网承载组;
承载在所述灵活以太网承载组上的至少一个灵活以太网客户端;以及
处理器、存储器;
其中,所述处理器用于读取所述存储器中的程序,执行下列过程:
将来自上层的业务数据,按照块流映射到所述灵活以太网承载组上;并将所述灵活以太网承载组接收到的块流,恢复出相应业务数据;
按照所述块流进行业务数据的物理层交换和传输。
本公开还提供一种数据交换和传输设备,包括:
位于物理层的灵活以太网承载组;
承载在所述灵活以太网承载组上的至少一个灵活以太网客户端;以及
处理器、存储器;
其中,所述处理器用于读取所述存储器中的程序,执行下列过程:
将来自上层的业务数据,按照块流映射到所述灵活以太网承载组上;并将所述灵活以太网承载组接收到的块流,恢复出相应业务数据;
按照所述块流进行业务数据的物理层交换和传输。
本公开还提供一种传输网络***,包括:
以太网传输子***和光网络传输子***,所述以太网传输子***和光网络传输子***通过统一交叉交换矩阵连接;
所述以太网传输子***包括:
位于物理层的灵活以太网承载组;
承载在所述灵活以太网承载组上的至少一个灵活以太网客户端;以及
处理器、存储器;
其中,所述处理器用于读取所述存储器中的程序,执行下列过程:
将来自上层的业务数据,按照块流映射到所述灵活以太网承载组上;并将所述灵活以太网承载组接收到的块流,恢复出相应业务数据;
按照所述块流进行业务数据的物理层交换和传输。
所述光网络传输子***包括:
至少一个光网络单元;
灵活以太网承载组;
承载在所述灵活以太网承载组上的至少一个灵活以太网客户端;以及
处理器、存储器;
其中,所述处理器用于读取所述存储器中的程序,执行下列过程:
将上层的业务数据,通过所述灵活以太网承载组映射到至少一个光网络单元中;并将所述光网络单元接收到的数据,恢复出相应的业务数据;
按照所述光网络单元划分的所述块流的预设倍数大小的块流进行业务数据的交换和传输。
本公开的上述方案至少包括以下有益效果:
本公开的上述方案,通过FlexE(灵活以太网交换)作为交换核心引入L1层(物理层)网络,能够简单有效的提供5G传送网的这些基本功能,另外能够沿用以太网的产业链***,支持灵活的3层功能,能够很好的将L1层 网络与其上层网络关联起来。并进一步的,能够直接对66bit块进行交换,从而减少报文恢复带来的时延,以及L2层交换带来的抖动。本公开的上述方案引入灵活以太网,可实现L1层的切片,满足未来网络业务的需求。
附图说明
图1为相关技术的光传输网的***架构示意图。
图2为本公开的一些实施例的一种传输网络***架构示意图;
图3为本公开的一些实施例的业务数据的识别及交换传输流程示意图;
图4为本公开的一些实施例的数据交换和传输装置模块图;
图5为本公开的一些实施例的数据交换和传输设备模块框图;
图6为本公开的一些实施例的一种传输网络***架构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
如图2所示,本公开的一些实施例提出的第一种传输网络***,基于FlexE(灵活以太网交换)作为交换核心引入L1层网络,能够简单有效的提供5G传送网的这些基本功能,另外能够沿用以太网的产业链***,支持灵活的3层功能,能够很好的将L1层网络与其上层网络关联起来。并能够直接对66bitblock进行交换,从而减少报文恢复带来的时延,以及L2层交换带来的抖动。
本公开的一些实施例提供的传输网络***,包括:位于物理层(L1层)的灵活以太网承载组(FlexEGroup);
承载在所述FlexEGroup上的至少一个灵活以太网客户端(FlexEClient);
灵活以太网时隙控制模块(FlexE Shim)(图中未示出,但该模块位于FlexEClient和FlexEGroup之间),用于将上层业务数据,按照块流(Block流),映射到所述FlexEGroup上;并将所述FlexEGroup接收到的块流,恢复 出相应的业务数据;
灵活以太网交换模块,用于按照所述块流进行业务数据的物理层交换和传输。
具体的,所述灵活以太网交换模块,用于将所述块流中的块,按照输入所述块的灵活以太网承载组的组号和客户端号以及输出所述块的灵活以太网承载组的组号和客户端号,进行业务数据的物理层交换和传输。
比如,灵活以太网交换模块进行业务数据交换时,采用的转发表如下:
Figure PCTCN2018091022-appb-000001
其中,所述块流包括:多个预设大小的块,预设大小的块包括66bit的块。即该灵活以太网交换模块实现以/66bit Block的物理层(L1层)交换。该66bit块中,64位比特用于表示数据,2比特用于表示块信息,通常以64b/66b表示。
同时该图中,ETC为传统以太网,PTK是Packet的简称,PKT Switch是ETH/MPLS/IP层的数据交换。
本公开的一些实施例中,上层的业务数据包括:非分组交换的业务数据。
非分组交换的业务数据例如可以包括:至少一个灵活以太网客户端的业务数据,该业务数据以66bit块形成的块流进行传输;灵活以太网时隙控制模块(FlexE Shim),用于将上层业务数据(FlexEClient的业务数据),按照块流(Block)流,映射到所述FlexEGroup上;并将所述FlexEGroup接收到的块流,恢复出相应的FlexEClient的业务数据。
非分组交换的业务数据例如可以包括:来自传统以太网ETC的以太网业务数据,灵活以太网时隙控制模块(FlexE Shim),用于将上层业务数据(以太网的业务数据),按照块流(Block)流,映射到所述FlexEGroup上;并将所述FlexEGroup接收到的块流,恢复出相应的以太网的业务数据。
非分组交换的业务数据例如可以包括:时分复用TDM业务的业务数据或者不变比特速率CBR业务的业务数据(这些数据是10bit块的数据,净荷部 分占8bit,其余部分占2bit,常常被命名为:8b/10b),也可以将这些业务数据转换为66bit大小的块形成的块流适应这一架构。
当然上层业务还可以其它非分组交换的业务数据。
上层的业务数据如果是分组交换的业务数据,例如,如果是ETH/MPLS/IP层Packet数据,则PKT Switch直接进行分组交换,不需要映射到所述FlexEGroup上传输。
本公开的一些实施例中,FlexE(即灵活的以太网接口)在光纤互联论坛(OIF)的Flex以太网实现协议中定义。作为物理接口技术的FlexE允许以太网MAC速率进行传输(即以太网流或FlexE客户端的传输速率)。FlexE支持的以太网MAC速率为10Gb/s、40Gb/s和m×25Gb/s。比如,该FlexE Group是绑定了至少一个以太网物理子层光口PHY形成的一组PHY,其传输速率可以达到100Gb/s
所述FlexEGroup的日历模块将灵活以太网承载组划分为多个时隙,并将灵活以太网客户端绑定在其中至少一个时隙进行业务数据的传输。
具体的,FlexE运行calendar机制(日历模块),FlexE group的Calendar具有5G的粒度,将100G PHY划分为20个时隙的长度,可以将灵活以太网客户端绑定在其中至少一个时隙上,进行业务数据的传输。
具体的,FlexE接口上的FlexE shim(灵活以太网时隙控制模块)执行以下功能:
1)在发送时,FlexE Shim将FlexE Client的业务数据映射到FlexE group,按照66bit比特流进行编码,可以根据IEEE 802.3的规则进行发送,此功能也称为FlexE多路复用器。
2)在接收时,FlexE Shim将FlexE group中的FlexE Client分解。此功能也称为FlexE解复用。
本公开的一些实施例中,所述灵活以太网承载组FlexE group的PHY的数据的对齐是通过将灵活以太网开销***到所述灵活以太网承载组FlexE group中携带的所述块流中实现。
灵活以太网开销包括:灵活以太网日历配置、灵活以太网承载组的组号、灵活以太网客户端号和/或管理通道数据。
所述灵活以太网承载组中的每个PHY上具有承载灵活以太网开销的预设数量个开销块。
所述开销块和业务数据的块按照预设周期间隔分布。
比如,FlexE开销由一个66bit块组成,可独立于FlexE Client数据进行识别。
FlexE的功能包括绑定以太网PHY,以太网PHY的子接口化和信道化(即,允许多个客户端数据流通过单个以太网PHY或一组绑定PHY承载)。
传统的FlexE仅为一个接口,如果要进行数据交换必须将报文恢复出来到L2层或以上层进行交换。
本公开的一些实施例能直接对66bit block进行L1层的交换,从而减少报文恢复带来的时延,以及L2层交换带来的抖动。L1层相关的OAM(运营管理和维护)、保护可以通过扩展相应的开销来实现。
本公开的一些实施例还提供一种数据交换和传输方法,包括:
步骤11,接收来自上层的业务数据;
步骤12,将来自上层的业务数据,按照块流映射到位于物理层的灵活以太网承载组上;
步骤13,按照所述块流进行业务数据的物理层交换和传输。
本公开的一些实施例中,同样将块流映射到位于物理层的灵活以太网承载组上,并按照块流进行业务数据的物理层交换和传输,从而减少报文恢复带来的时延,以及L2层交换带来的抖动。本公开的上述方案引入灵活以太网,可实现L1层的切片,满足未来网络业务的需求。
本公开的一些实施例中,该数据交换和传输方法还可以包括:
步骤14,将所述灵活以太网承载组接收到的块流,恢复出相应业务数据。
其中,步骤12可以具体包括:
步骤121,将来自上层的非分组交换的业务数据,按照块流映射到位于物理层的灵活以太网承载组上。
其中,所述非分组交换的业务包括:66bit块的业务数据时,步骤121包括:将来自上层的66bit块的业务数据,按照66bit块流映射到位于物理层的灵活以太网承载组上。
其中,所述非分组交换的业务包括:非66bit块的业务数据时,步骤121包括:将来自上层的非66bit块的业务数据进行分解,得到业务数据的净荷部分,再将净荷部分封装成66bit块,按照66bit块流映射到位于物理层的灵活以太网承载组上。
本公开的一些实施例中,步骤13具体可以包括:将所述块流中的块,按照输入所述块的灵活以太网承载组的组号和客户端号以及输出所述块的灵活以太网承载组的组号和客户端号,进行业务数据的物理层交换和传输。
灵活以太网交换模块进行业务数据交换时,采用的转发表如下:
Figure PCTCN2018091022-appb-000002
如图3所示,下面结合具体流程说明上述业务的识别及交换方法:
接收上层的业务数据;
识别业务类型;
如果是ETH/MPLS/IP层Packet数据,则PKT Switch(分组交换模块)直接进行分组交换,不需要映射到所述FlexEGroup上传输;
如果上层的业务数据是来自传统以太网ETC的以太网业务数据或者灵活以太网FlexEClient的业务数据,灵活以太网交换模块中的灵活以太网时隙控制模块(FlexE Shim),用于将上层业务数据(以太网的业务数据),按照块流(Block)流,映射到所述FlexEGroup上,并进行灵活以太网交换。
如果上层业务数据是时分复用TDM业务的业务数据或者不变比特速率CBR业务的业务数据(即10bit编码业务的业务数据,其中,8bit为数据,常常用8b/10b表示),可以将这些业务数据解码,恢复成8bit块,多个8bit块编码组成66bit块,将多个66bit块组成的块流作为统一交换的块流,进行时隙分配和灵活以太网交换。
如图4所示,本公开的一些实施例还提供一种数据交换和传输装置,包括:
接收模块,用于接收来自上层的业务数据;
灵活以太网时隙控制模块,用于将来自上层的业务数据,按照块流映射到位于物理层的灵活以太网承载组上;
灵活以太网交换模块,用于按照所述块流进行业务数据的物理层交换和传输。
其中,所述灵活以太网时隙控制模块,还用于将所述灵活以太网承载组接收到的块流,恢复出相应业务数据。
其中,数据交换和传输装置,还包括:
业务识别模块,用于对来自上层的业务数据进行识别,将识别出的来自上层的非分组交换的业务数据,按照块流映射到位于物理层的灵活以太网承载组上。
其中,数据交换和传输装置,还包括:承载在所述灵活以太网承载组上的灵活以太网客户端;
所述灵活以太网客户端用于,在所述业务识别模块识别出所述非分组交换的业务包括:66bit块的业务数据时,将来自上层的66bit块的业务数据,按照66bit块流映射到位于物理层的灵活以太网承载组上;或者
在所述业务识别模块识别出所述非分组交换的业务包括:非66bit块的业务数据时,将来自上层的非66bit块的业务数据进行分解,得到业务数据的净荷部分,再将净荷部分封装成66bit块,按照66bit块流映射到位于物理层的灵活以太网承载组上。
其中,所述灵活以太网交换模块具体用于:将所述块流中的块,按照输入所述块的灵活以太网承载组的组号和客户端号以及输出所述块的灵活以太网承载组的组号和客户端号,进行业务数据的物理层交换和传输。
需要说明的是:该装置是与上述方法对应的装置,上述方法实施例中所有实现方式均适用于该装置的实施例中,也能达到相同的技术效果。
本公开的一些实施例还提供一种数据交换和传输设备,包括了如图2所示的传输网络***,具体的,该设备包括:
位于物理层的灵活以太网承载组;
承载在所述灵活以太网承载组上的至少一个灵活以太网客户端;
灵活以太网时隙控制模块,用于将来自上层的业务数据,按照块流映射 到所述灵活以太网承载组上;并将所述灵活以太网承载组接收到的块流,恢复出相应业务数据;
灵活以太网交换模块,用于按照所述块流进行业务数据的物理层交换和传输。
其中,所述灵活以太网交换模块位于所述数据交换和传输设备的转发平面模块中,所述转发平面模块具有至少一个灵活以太网接口。
需要说明的是,上述图2中所示的***的所有内容均适用于该设备的实施例中,也能达到相同的技术效果。
如图5所示,为一上述的设备的功能模块图,其中上述设备中各功能模块在该图5中所示的转发平面的灵活以太网交换部分实现,该转发平面还可以进一步包括:OAM、保护、QOS、同步等方面的功能以及相对应的模块。
该设备还可以进一步包括:控制平面,以及管理平面,其中,控制平面与以太网接口连接,且其中实现路由、信令、资源管理等功能。
本公开的一些实施例还提供一种传输网络***,包括:
以太网传输子***和光网络传输子***,所述以太网传输子***和光网络传输子***通过统一交叉交换矩阵连接;
所述以太网传输子***包括:
位于物理层的灵活以太网承载组(FlexEGroup);
承载在所述灵活以太网承载组上的至少一个灵活以太网客户端(FlexEclient);
灵活以太网时隙控制模块(FlexEshim),用于将来自上层的业务数据,按照块流映射到所述灵活以太网承载组上;并将所述灵活以太网承载组接收到的块流,恢复出相应业务数据;
灵活以太网交换模块,用于按照所述块流进行业务数据的物理层交换和传输;
所述光网络传输子***包括:
至少一个光网络单元(ODU);灵活以太网承载组(FlexEGroup);
承载在所述灵活以太网承载组上的至少一个灵活以太网客户端(FlexEclient);
灵活以太网时隙控制模块(FlexEshim),用于将上层的业务数据,通过所述灵活以太网承载组映射到至少一个光网络单元中;并将所述光网络单元接收到的数据,恢复出相应的业务数据;
光网络交换模块,用于按照所述光网络单元划分的所述块流的预设倍数大小的块流进行业务数据的交换和传输;
其中,所述光网络交换模块和所述灵活以太网交换模块分别与所述统一交叉交换矩阵连接。光网络交换模块实现以66bit块的交换,灵活以太网交换模块实现以66bit块的交换。
如图6所示,光网络交换模块所在***为光网络传输子***,灵活以太网交换模块所在的***为以太网传输子***;所述统一交叉交换矩阵为一交换设备,所述交换设备具有插接光网络交换模块的插槽和插接灵活以太网交换模块的插槽。其中,所述光网络交换模块为可编程的光传输网络OTN卡,所述灵活以太网交换模块为可编程的FlexE卡。
本公开的一些实施例中,基于统一交叉交换矩阵,通过自适应的封装,能够灵活的封装出ODUK的单元和灵活以太网的交换单元。
进一步的,本公开的一些实施例以统一交叉交换矩阵为核心,采用插槽***,部分插为OTN客户卡和OTN线路侧卡,可以逻辑地作为OTN子***,其余插槽可用于以太网/FlexE线路侧或客户端卡,作为以太网/FlexE子***。
另外需要说明的是:上述两个子***由统一的交换矩阵相互连接可以形成整个设备。
该***基于插槽的统一交换结构,OTN子***和以太网/FlexE子***可以根据现网需求进行灵活配置。这种基于OTN和以太网的架构将更灵活地用于未来5G移动定向的单一集成传输网络的不同场景中。如果这种***中的卡是可编程的卡,可以编程为OTN卡或以太网/FlexE卡,这将更加灵活。
在OTN子***中,ODUk通过OTN光网络交模块能够将交换模块转换成统一交叉矩阵可识别的结构。在以太网子***中灵活以太网交换模块(64/66bit block cross connect单元)将66bit的块转换成相关统一交叉交换矩阵可识别结构。
本公开的一些实施例,能直接对66bit block实现L1层交换,从而减少报文恢复带来的时延,以及L2层交换带来的抖动;同时通过自适应映射实现对ODUk和FlexE group、FlexE client同一种平台对两种接口的支持,通过统一交叉矩阵,实现ODUk与FlexE client以任意比例的混合交叉。
以上所述是本公开的一些实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (32)

  1. 一种传输网络***,包括:
    位于物理层的灵活以太网承载组;
    承载在所述灵活以太网承载组上的至少一个灵活以太网客户端;
    灵活以太网时隙控制模块,用于将来自上层的业务数据,按照块流映射到所述灵活以太网承载组上;并将所述灵活以太网承载组接收到的块流,恢复出相应业务数据;
    灵活以太网交换模块,用于按照所述块流进行业务数据的物理层交换和传输。
  2. 根据权利要求1所述的传输网络***,其中,所述块流包括:多个预设大小的块。
  3. 根据权利要求2所述的传输网络***,其中,所述预设大小的块为:66bit的块。
  4. 根据权利要求1所述的传输网络***,其中,所述上层的业务数据包括:非分组交换的业务数据。
  5. 根据权利要求1所述的传输网络***,其中,所述灵活以太网承载组包括:至少一个以太网物理子层光口PHY形成的一组PHY。
  6. 根据权利要求5所述的传输网络***,其中,所述灵活以太网承载组的日历模块将灵活以太网承载组划分为多个时隙,并将灵活以太网客户端绑定在其中至少一个时隙进行业务数据的传输。
  7. 根据权利要求6所述的传输网络***,其中,所述灵活以太网承载组的PHY的数据的对齐是通过将灵活以太网开销***到所述灵活以太网承载组中携带的所述块流中实现。
  8. 根据权利要求7所述的传输网络***,其中,所述灵活以太网开销包括:灵活以太网日历模块配置、灵活以太网承载组的组号、灵活以太网客户端号和/或管理通道数据。
  9. 根据权利要求7所述的传输网络***,其中,所述灵活以太网承载组中的每个PHY上具有承载灵活以太网开销的预设数量个开销块。
  10. 根据权利要求9所述的传输网络***,其中,所述开销块和业务数据的块按照预设周期间隔分布。
  11. 根据权利要求1所述传输网络***,其中,所述灵活以太网交换模块,具体用于将所述块流中的块,按照输入所述块的灵活以太网承载组的组号和客户端号以及输出所述块的灵活以太网承载组的组号和客户端号,进行业务数据的物理层交换和传输。
  12. 一种数据交换和传输方法,包括:
    接收来自上层的业务数据;
    将来自上层的业务数据,按照块流映射到位于物理层的灵活以太网承载组上;
    按照所述块流进行业务数据的物理层交换和传输。
  13. 根据权利要求12所述的数据交换和传输方法,还包括:
    将所述灵活以太网承载组接收到的块流,恢复出相应业务数据。
  14. 根据权利要求12所述的数据交换和传输方法,其中,将来自上层的业务数据,按照块流映射到位于物理层的灵活以太网承载组上的步骤包括:
    将来自上层的非分组交换的业务数据,按照块流映射到位于物理层的灵活以太网承载组上。
  15. 根据权利要求14所述的数据交换和传输方法,其中,所述非分组交换的业务包括66bit块的业务数据时,将来自上层的非分组交换的业务数据,按照块流映射到位于物理层的灵活以太网承载组上的步骤包括:
    将来自上层的66bit块的业务数据,按照66bit块流映射到位于物理层的灵活以太网承载组上。
  16. 根据权利要求14所述的数据交换和传输方法,其中,所述非分组交换的业务包括非66bit块的业务数据时,将来自上层的非分组交换的业务数据,按照块流映射到位于物理层的灵活以太网承载组上的步骤包括:
    将来自上层的非66bit块的业务数据进行分解,得到业务数据的净荷部分,再将净荷部分封装成66bit块,按照66bit块流映射到位于物理层的灵活以太网承载组上。
  17. 根据权利要求15或16所述的数据交换和传输方法,其中,所述按 照所述块流进行业务数据的物理层交换和传输的步骤包括:
    将所述块流中的块,按照输入所述块的灵活以太网承载组的组号和客户端号以及输出所述块的灵活以太网承载组的组号和客户端号,进行业务数据的物理层交换和传输。
  18. 一种数据交换和传输装置,包括:
    接收模块,用于接收来自上层的业务数据;
    灵活以太网时隙控制模块,用于将来自上层的业务数据,按照块流映射到位于物理层的灵活以太网承载组上;
    灵活以太网交换模块,用于按照所述块流进行业务数据的物理层交换和传输。
  19. 根据权利要求18所述的数据交换和传输装置,其中,所述灵活以太网时隙控制模块,还用于将所述灵活以太网承载组接收到的块流,恢复出相应业务数据。
  20. 根据权利要求18所述的数据交换和传输装置,还包括:
    业务识别模块,用于对来自上层的业务数据进行识别,将识别出的来自上层的非分组交换的业务数据,按照块流映射到位于物理层的灵活以太网承载组上。
  21. 根据权利要求20所述的数据交换和传输装置,还包括:承载在所述灵活以太网承载组上的灵活以太网客户端;
    所述灵活以太网客户端用于,在所述业务识别模块识别出所述非分组交换的业务包括66bit块的业务数据时,将来自上层的66bit块的业务数据,按照66bit块流映射到位于物理层的灵活以太网承载组上;或者
    在所述业务识别模块识别出所述非分组交换的业务包括非66bit块的业务数据时,将来自上层的非66bit块的业务数据进行分解,得到业务数据的净荷部分,再将净荷部分封装成66bit块,按照66bit块流映射到位于物理层的灵活以太网承载组上。
  22. 根据权利要求21所述的数据交换和传输装置,其中,所述灵活以太网交换模块具体用于:将所述块流中的块,按照输入所述块的灵活以太网承载组的组号和客户端号以及输出所述块的灵活以太网承载组的组号和客户端 号,进行业务数据的物理层交换和传输。
  23. 一种数据交换和传输设备,包括:
    位于物理层的灵活以太网承载组;
    承载在所述灵活以太网承载组上的至少一个灵活以太网客户端;
    灵活以太网时隙控制模块,用于将来自上层的业务数据,按照块流映射到所述灵活以太网承载组上;并将所述灵活以太网承载组接收到的块流,恢复出相应业务数据;
    灵活以太网交换模块,用于按照所述块流进行业务数据的物理层交换和传输。
  24. 根据权利要求23所述的数据交换和传输设备,其中,所述灵活以太网交换模块位于所述数据交换和传输设备的转发平面模块中,所述转发平面模块具有至少一个灵活以太网接口。
  25. 一种传输网络***,包括:
    以太网传输子***和光网络传输子***,所述以太网传输子***和光网络传输子***通过统一交叉交换矩阵连接;
    所述以太网传输子***包括:
    位于物理层的灵活以太网承载组;
    承载在所述灵活以太网承载组上的至少一个灵活以太网客户端;
    灵活以太网时隙控制模块,用于将来自上层的业务数据,按照块流映射到所述灵活以太网承载组上;并将所述灵活以太网承载组接收到的块流,恢复出相应业务数据;
    灵活以太网交换模块,用于按照所述块流进行业务数据的物理层交换和传输;
    所述光网络传输子***包括:
    至少一个光网络单元;
    灵活以太网承载组;
    承载在所述灵活以太网承载组上的至少一个灵活以太网客户端;
    灵活以太网时隙控制模块,用于将上层的业务数据,通过所述灵活以太网承载组映射到至少一个光网络单元中;并将所述光网络单元接收到的数据, 恢复出相应的业务数据;
    光网络交换模块,用于按照所述光网络单元划分的所述块流的预设倍数大小的块流进行业务数据的交换和传输;
    其中,所述光网络交换模块和所述灵活以太网交换模块分别与所述统一交叉交换矩阵连接。
  26. 根据权利要求25所述的传输网络***,其中,所述统一交叉交换矩阵为一交换设备,所述交换设备具有插接光网络交换模块的插槽和插接灵活以太网交换模块的插槽。
  27. 根据权利要求25所述的传输网络***,其中,所述光网络交换模块为可编程的光传输网络OTN卡,所述灵活以太网交换模块为可编程的灵活以太网卡。
  28. 一种数据交换和传输装置,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求12至17中任一项所述的数据交换和传输方法中的步骤。
  29. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求12至17中任一项所述的数据交换和传输方法中的步骤。
  30. 一种传输网络***,包括:
    位于物理层的灵活以太网承载组;
    承载在所述灵活以太网承载组上的至少一个灵活以太网客户端;以及
    处理器、存储器;
    其中,所述处理器用于读取所述存储器中的程序,执行下列过程:
    将来自上层的业务数据,按照块流映射到所述灵活以太网承载组上;并将所述灵活以太网承载组接收到的块流,恢复出相应业务数据;
    按照所述块流进行业务数据的物理层交换和传输。
  31. 一种数据交换和传输设备,包括:
    位于物理层的灵活以太网承载组;
    承载在所述灵活以太网承载组上的至少一个灵活以太网客户端;以及
    处理器、存储器;
    其中,所述处理器用于读取所述存储器中的程序,执行下列过程:
    将来自上层的业务数据,按照块流映射到所述灵活以太网承载组上;并将所述灵活以太网承载组接收到的块流,恢复出相应业务数据;
    按照所述块流进行业务数据的物理层交换和传输。
  32. 一种传输网络***,包括:
    以太网传输子***和光网络传输子***,所述以太网传输子***和光网络传输子***通过统一交叉交换矩阵连接;
    所述以太网传输子***包括:
    位于物理层的灵活以太网承载组;
    承载在所述灵活以太网承载组上的至少一个灵活以太网客户端;以及
    处理器、存储器;
    其中,所述处理器用于读取所述存储器中的程序,执行下列过程:
    将来自上层的业务数据,按照块流映射到所述灵活以太网承载组上;并将所述灵活以太网承载组接收到的块流,恢复出相应业务数据;
    按照所述块流进行业务数据的物理层交换和传输。
    所述光网络传输子***包括:
    至少一个光网络单元;
    灵活以太网承载组;
    承载在所述灵活以太网承载组上的至少一个灵活以太网客户端;以及
    处理器、存储器;
    其中,所述处理器用于读取所述存储器中的程序,执行下列过程:
    将上层的业务数据,通过所述灵活以太网承载组映射到至少一个光网络单元中;并将所述光网络单元接收到的数据,恢复出相应的业务数据;
    按照所述光网络单元划分的所述块流的预设倍数大小的块流进行业务数据的交换和传输。
PCT/CN2018/091022 2017-06-16 2018-06-13 一种传输网络***、数据交换和传输方法、装置及设备 WO2018228420A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18817881.8A EP3641237A4 (en) 2017-06-16 2018-06-13 NETWORK TRANSMISSION SYSTEM, AND METHOD, DEVICE AND APPARATUS FOR EXCHANGE AND TRANSMISSION OF DATA
US16/622,998 US11477549B2 (en) 2017-06-16 2018-06-13 Transmission network system, data switching and transmission method, apparatus and equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710458028.3A CN109150361B (zh) 2017-06-16 2017-06-16 一种传输网络***、数据交换和传输方法、装置及设备
CN201710458028.3 2017-06-16

Publications (1)

Publication Number Publication Date
WO2018228420A1 true WO2018228420A1 (zh) 2018-12-20

Family

ID=64659764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091022 WO2018228420A1 (zh) 2017-06-16 2018-06-13 一种传输网络***、数据交换和传输方法、装置及设备

Country Status (4)

Country Link
US (1) US11477549B2 (zh)
EP (1) EP3641237A4 (zh)
CN (1) CN109150361B (zh)
WO (1) WO2018228420A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115733780A (zh) * 2022-11-28 2023-03-03 中国电力科学研究院有限公司 基于柔性以太网的动态自适应方法、***、设备及介质

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111884753A (zh) * 2017-12-29 2020-11-03 华为技术有限公司 一种数据传输方法、通信设备及存储介质
CN110557217B (zh) * 2018-06-01 2021-08-03 华为技术有限公司 一种业务数据的处理方法及装置
CN111586752B (zh) * 2019-02-18 2023-07-14 中兴通讯股份有限公司 时隙容器的配置方法及装置
CN111585779B (zh) * 2019-02-19 2021-10-15 华为技术有限公司 一种灵活以太网通信方法及网络设备
CN110166382B (zh) * 2019-05-31 2021-04-27 新华三技术有限公司 一种报文转发方法及装置
CN112291123B (zh) * 2019-07-24 2023-04-21 中兴通讯股份有限公司 基于邻居协商实现网络对通的方法及装置
CN112532522B (zh) * 2019-09-19 2023-09-05 中兴通讯股份有限公司 一种业务路径的建立方法、装置、电子设备
CN111083580B (zh) * 2019-12-09 2021-12-14 北京格林威尔科技发展有限公司 一种在光传输网络中对以太网链路的保护方法及装置
CN113923778A (zh) * 2020-07-07 2022-01-11 ***通信有限公司研究院 一种切片通道的信息传输方法、装置及设备
CN117938738A (zh) * 2022-10-26 2024-04-26 华为技术有限公司 一种通信方法及装置
CN117201434A (zh) * 2023-11-07 2023-12-08 杭州初灵信息技术股份有限公司 一种以太网数据交互方法和***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160028586A1 (en) * 2011-07-07 2016-01-28 Ciena Corporation Data connectivity systems and methods through packet-optical switches
CN105429840A (zh) * 2014-09-15 2016-03-23 中兴通讯股份有限公司 数据传输方法和装置
CN106612203A (zh) * 2015-10-27 2017-05-03 中兴通讯股份有限公司 一种处理灵活以太网客户端数据流的方法及装置
CN106803814A (zh) * 2015-11-26 2017-06-06 中兴通讯股份有限公司 一种灵活以太网路径的建立方法、装置及***
CN106850465A (zh) * 2016-12-27 2017-06-13 深圳市海思半导体有限公司 一种Flex E数据交换方法及交换设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101656743B (zh) * 2009-08-25 2012-09-26 南京普天网络有限公司 Stm-1中63路网桥业务与千兆以太网口间转换设备
US10218823B2 (en) * 2015-06-30 2019-02-26 Ciena Corporation Flexible ethernet client multi-service and timing transparency systems and methods
US9800361B2 (en) 2015-06-30 2017-10-24 Ciena Corporation Flexible ethernet switching systems and methods
CN106411454B (zh) * 2015-07-30 2019-10-25 华为技术有限公司 用于数据传输的方法、发送机和接收机
CN106612220A (zh) * 2015-10-27 2017-05-03 中兴通讯股份有限公司 灵活以太网的通道管理方法和装置
US20170349311A1 (en) * 2016-06-06 2017-12-07 Fords Packaging Systems Limited Sealing Head
CN108075903B (zh) * 2016-11-15 2020-04-21 华为技术有限公司 用于建立灵活以太网群组的方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160028586A1 (en) * 2011-07-07 2016-01-28 Ciena Corporation Data connectivity systems and methods through packet-optical switches
CN105429840A (zh) * 2014-09-15 2016-03-23 中兴通讯股份有限公司 数据传输方法和装置
CN106612203A (zh) * 2015-10-27 2017-05-03 中兴通讯股份有限公司 一种处理灵活以太网客户端数据流的方法及装置
CN106803814A (zh) * 2015-11-26 2017-06-06 中兴通讯股份有限公司 一种灵活以太网路径的建立方法、装置及***
CN106850465A (zh) * 2016-12-27 2017-06-13 深圳市海思半导体有限公司 一种Flex E数据交换方法及交换设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3641237A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115733780A (zh) * 2022-11-28 2023-03-03 中国电力科学研究院有限公司 基于柔性以太网的动态自适应方法、***、设备及介质
CN115733780B (zh) * 2022-11-28 2023-05-12 中国电力科学研究院有限公司 基于柔性以太网的动态自适应方法、***、设备及介质

Also Published As

Publication number Publication date
US11477549B2 (en) 2022-10-18
CN109150361A (zh) 2019-01-04
EP3641237A4 (en) 2021-03-10
EP3641237A1 (en) 2020-04-22
US20210152898A1 (en) 2021-05-20
CN109150361B (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
WO2018228420A1 (zh) 一种传输网络***、数据交换和传输方法、装置及设备
CN107438028B (zh) 一种客户业务处理的方法和设备
CN111788794B (zh) 用于配置灵活以太网节点的方法和设备
JP6736701B2 (ja) サービス送信方法及び装置、サービス受信方法及び装置、並びにネットワーク・システム
US11271668B2 (en) Data transmission methods, apparatuses, devices, and system
CN103795605B (zh) 将otn信号转换为以太网净荷的方法及***
EP3909209B1 (en) Ethernet signal format using 256b/257b block encoding
CN107682217A (zh) 以太网信号调度方法、装置和***
WO2019105010A1 (zh) 接口传输方法、装置及设备
CN113557696B (zh) 在网络中路由FlexE数据
KR20200103070A (ko) 데이터 송신 방법, 통신 디바이스, 및 저장 매체
WO2020103530A1 (zh) 通信方法和装置
CN111585779B (zh) 一种灵活以太网通信方法及网络设备
WO2019100982A1 (zh) 数据传输方法和设备
US20230337212A1 (en) Methods for inserting and extracting operations, administration, and maintenance of transmitting end, device, and medium
CN102388594B (zh) 数据传输的方法、设备及***
EP1339183B1 (en) Method and device for transporting ethernet frames over a transport SDH/SONET network
WO2021013025A1 (zh) 数据接收方法及装置、数据发送方法及装置
US8107429B2 (en) System and method for protecting payload information in radio transmission
EP3886363B1 (en) Communication method and apparatus
CN113472826A (zh) 一种业务承载、提取方法、数据交换方法及设备
CN106713149A (zh) 路由器的子卡和线卡板
KR102337650B1 (ko) 비트 블록 스트림 처리, 레이트 매칭 및 교환을 위한 방법 및 디바이스
WO2020107298A1 (zh) 传输通用服务传输转变编码的设备和方法
CN110769125A (zh) 一种适用于处理芯片的通信协议选择方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018817881

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018817881

Country of ref document: EP

Effective date: 20200116