WO2017121080A1 - 一种水系电解质超级电容电池 - Google Patents

一种水系电解质超级电容电池 Download PDF

Info

Publication number
WO2017121080A1
WO2017121080A1 PCT/CN2016/089002 CN2016089002W WO2017121080A1 WO 2017121080 A1 WO2017121080 A1 WO 2017121080A1 CN 2016089002 W CN2016089002 W CN 2016089002W WO 2017121080 A1 WO2017121080 A1 WO 2017121080A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
battery
zinc
electrode
battery according
Prior art date
Application number
PCT/CN2016/089002
Other languages
English (en)
French (fr)
Inventor
黄潮
Original Assignee
黄潮
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黄潮 filed Critical 黄潮
Publication of WO2017121080A1 publication Critical patent/WO2017121080A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to the field of electrochemical energy storage, in particular to an aqueous electrolyte super capacitor battery.
  • the energy storage technology mainly includes four types: mechanical energy storage, electromagnetic energy storage, electrochemical energy storage and phase change energy storage.
  • the mature technology is widely used in pumped storage in mechanical energy storage. Its energy storage power station accounts for about 3% of the global installed capacity of power generation, and its energy density is low. It requires a large area of reservoirs and is subject to geographical constraints.
  • the electrochemical energy storage secondary battery realizes the conversion of electric energy and chemical energy, has high energy storage density, fast response, flexible and convenient, and is not subject to geographical and scale restrictions, and is very promising.
  • the secondary battery has a cycle life of several tens to several thousand times, an energy density of several tens to several hundreds of watt-hours/kg (Wh/kg), and a power density of 300 watts/kg (W/kg) or less.
  • Commonly used secondary batteries are lead-acid batteries, nickel-hydrogen batteries, and lithium-ion batteries; lead-acid batteries are inexpensive and widely used in startups, backup power supplies, etc., and their disadvantages are low energy density, poor deep discharge capability, and limited cycle life.
  • the nickel-hydrogen battery has a relatively high power density, is far less economical than a lead-acid battery, has a certain memory effect, and can only be applied in a small field; lithium-ion battery can have high density.
  • the flow battery is a special type of secondary battery.
  • the oxidant or reducing agent of the positive and negative reactants are dissolved.
  • the charge and discharge are performed on the inert electrode.
  • the pump is circulated, which has strong deep discharge capability and long cycle life.
  • the vanadium redox flow battery there are various flow forms of the vanadium redox flow battery, the zinc bromine flow battery, the sodium polysulfide-bromine flow battery, the iron chromium flow battery, and the like.
  • all-vanadium flow batteries and zinc-bromine flow batteries are currently being tried for large-scale commercial applications.
  • the investment of all vanadium redox flow battery requires expensive fluorine-containing ion exchange membrane.
  • the vanadium electrolyte is not only costly but also requires strict preparation process; and the vanadium pentoxide poison produced by the positive electrode electrolyte leaking after the positive electrode liquid is dried. The problem is difficult to solve.
  • the economic performance of zinc-bromine flow battery is good, but the positive bromine liquid is extremely corrosive, which limits its application to human and environmental hazards.
  • the sodium-sulfur secondary battery operates at about 350 degrees Celsius, has low production cost, high energy density, and high power density.
  • the long-term stability of the solid electrolyte with high operating temperature and high temperature resistance is an insurmountable technical obstacle in its energy storage application.
  • the power and cycle performance of the secondary battery are generally insufficient, and the performance of the supercapacitor based mainly on the "electric double-layer energy storage mechanism" is outstanding, and its power density is reached.
  • the battery is 10-100 times, the cycle life reaches 100,000 times, no memory effect, and deep charge and discharge resistance.
  • commercial supercapacitors are mostly in a symmetrical form. Two electrodes of the same material are used, which is equivalent to two capacitors connected in series. The mass ratio of the entire capacitor is only one quarter of the specific capacitance of the single electrode, and the energy density is small. Generally only 1Wh/kg to 5Wh/kg, the economic performance is poor, the same capacity price is about 5 times that of lithium-ion batteries, limiting its large-scale application.
  • a super-capacitor with a single electrode of a supercapacitor and a single electrode of a battery, or a supercapacitor battery is a special type of electrochemical energy storage battery that combines a high power of a supercapacitor electrode with a very long cycle life and a battery. High electrode energy density.
  • the activated carbon is used as the positive electrode and the graphite is the negative electrode.
  • the lithium-ion supercapacitor battery is formed in the organic electrolyte containing lithium ions.
  • the electric double layer capacitor of the positive electrode is charged and discharged, the lithium ion is intercalated and desorbed on the graphite.
  • the voltage is high and the energy density is much higher than that of the symmetrical form of the supercapacitor; however, the organic electrolyte has high cost and strict production conditions, and the activated carbon electrode should be used for a super capacitor special activated carbon which is several tens to hundreds times higher than the price of the commercial commercial activated carbon.
  • the commercialization of organic electrolyte supercapacitor batteries is difficult.
  • Water-based electrolytes are low in cost and safe and reliable.
  • there are still many problems in water-based electrolyte supercapacitor batteries For example, nickel-carbon capacitors with positive electrode and porous carbon as negative electrode have high cost; lead oxide electrode is used as positive electrode and activated carbon is used as negative electrode.
  • the lead-carbon capacitor battery positive electrode is easy to fall off, and there is lead and sulfuric acid contamination.
  • the Chinese patent "A hybrid supercapacitor and a method for manufacturing the same" Publication No.
  • CN101515507A discloses a carbon material for an electric double layer capacitor or A water-based supercapacitor battery having a quasi-capacitance characteristic material as a positive electrode and a hydrogen storage alloy as a negative electrode has a low voltage and requires a hydrogen storage alloy to work in a concentrated alkaline electrolyte.
  • the object of the invention is to solve the problems of high cost, poor cycle performance, low power density, small energy storage density and environmental pollution in the prior art electrochemical energy storage method.
  • the technical proposal provided by the invention is: a water-based electrolyte supercapacitor battery comprising a positive electrode, a negative electrode and an electrolyte, wherein the positive electrode adopts a carbon material having a supercapacitor property as an active material, the negative electrode uses zinc as an electrode active material, and the electrolyte adopts a pH.
  • the positive electrode of the supercapacitor battery of the invention is mainly based on the "electric double layer capacitance mechanism", and the redox reaction of the negative electrode occurs with the positive electrode: when charging, the positive electrode loses electrons through the external circuit, and the surface charge of the electrode attracts negative ions in the electrolyte.
  • the positive ions in the electrolyte repel to form an electric double layer capacitor; the negative electrode obtains electrons through an external circuit, and the divalent zinc ions in the electrolyte form metal zinc deposited on the electrode; when discharging, the positive electrode obtains electrons through an external circuit, and the surface charge of the electrode is attracted.
  • the positive ions in the electrolyte repel by the negative ions in the electrolyte to form an electric double layer capacitor; the negative electrode loses electrons through the external circuit, and the metal zinc on the electrode loses electrons to form divalent zinc dissolved in the electrolyte, thus circulating.
  • a carbon material having supercapacitor properties refers to a porous carbon material such as activated carbon, activated carbon fiber, multidimensional graphite material, carbon aerogel, carbon nanotube, treated glassy carbon material, graphene, etc., or may be the above carbon material. Combination; from the economical point of view, activated carbon materials are preferred.
  • the anode uses zinc as the electrode active material, which refers to the use of metallic zinc and its oxidation product divalent zinc, such as metal zinc powder, metal zinc deposited on the current collector, zinc oxide or divalent zinc in the solution as the electrode active material. , or a combination of the above.
  • the negative electrode can also be directly used as a zinc sheet, and a metal zinc sheet is used as an active material and a current collector.
  • the water-based electrolyte means that the electrolyte is water or all or the main solvent, and the solute may contain zinc ions as the electrode active material; the solute electrolyte may be various electrolytes such as acid, salt, alkali or the like, or a combination thereof, and some other solvent which adjusts the freezing point may be added.
  • the solute electrolyte may be various electrolytes such as acid, salt, alkali or the like, or a combination thereof, and some other solvent which adjusts the freezing point may be added.
  • alcohols such as ethylene glycol, glycerin, and the like.
  • the zinc electrodeposition is relatively uniform, and at the same time, the electrode and the component are stabilized; preferably, the electrolyte of the invention has a pH of 4 to 10.
  • the electrolyte may contain soluble components such as potassium ions, sodium ions, ammonium ions, lithium ions, chloride ions, sulfate ions, nitrate ions or the like; the chloride ions are easily soluble in water, have strong electrical conductivity, and have low cost.
  • the invention preferably has an electrolyte solution having a chloride ion concentration of 0.5 mol/L or more.
  • a zinc complexing agent or a zinc-containing complex component such as ammonia or ammonium, citric acid, gelatin, dextrin, flour, starch, etc. may be added to the electrolyte; when a complexing agent of zinc is present in the electrolyte
  • concentration of zinc ions is reduced, the uniformity of zinc electrodeposition is increased, zinc dendrite is avoided, the potential of the zinc electrode is lowered, and the battery voltage is increased.
  • the present invention preferably comprises a zinc-containing complexing agent or a complex solution of zinc.
  • the electrolyte of the present invention contains ammonium ions or ammonia in a complex state or a combination of the two, and the total concentration of ammonium ions and complexed ammonia is 0.5 mol/L or more.
  • the electrolyte of the present invention contains citrate, and the total concentration thereof is 0.1 mol/L or more.
  • an element which suppresses zinc hydrogen evolution such as indium, antimony, tin, lead or the like may be added to the electrolyte or the negative electrode.
  • the electrolyte is separated between the positive electrode and the negative electrode to form a battery; the positive electrode negative electrode can be separated by using an electrolyte diaphragm immersion electrolyte, such as a conventional polyethylene battery separator, a polypropylene battery separator, a pulp layer paper, etc.; The separator is separated by a separator or a partition having a gap therebetween.
  • an electrolyte diaphragm immersion electrolyte such as a conventional polyethylene battery separator, a polypropylene battery separator, a pulp layer paper, etc.
  • the separator is separated by a separator or a partition having a gap therebetween.
  • an electrolyte flow mode to promote continuous or intermittent flow of the electrolyte by mechanical force; in the form of a flowing electrolyte, electrode polarization is greatly reduced, zinc dendrite is avoided, and gas is prevented from being precipitated. Accumulation, can charge and discharge at a large current density, increase power.
  • Porous carbon materials such as activated carbon have higher specific surface values and very large double layer capacitance.
  • the prepared positive electrode has the characteristics of good reversibility, high power and extremely long life.
  • Zinc is an inexpensive high energy density electrode active material; in the standard state, the zinc electrode potential is 0.763 volts lower than that of hydrogen, and the hydrogen evolution overpotential is high.
  • Zinc electrodes are widely used in water-based electrolyte batteries, with high current density and good reversibility.
  • the invention combines a porous carbon positive electrode and a zinc negative electrode to form a water-based supercapacitor battery, and can use a general cheap activated carbon material instead of an expensive organic electrolyte supercapacitor special activated carbon, and has better economic performance than a lead-acid battery, and has a cycle life of more than 6000 times.
  • the power density is higher than that of the general battery, and the energy density is close to the level of the general battery; the carbon material with a larger specific capacitance value has the energy density reaching the level of the general battery; the material used is rich in resources and pollution-free; and can be widely used in wind energy solar energy and power grid storage. Can and start the field of backup power.
  • the power density is large.
  • the current density of the supercapacitor electrode is up to 100 times that of the general battery.
  • the current density of the zinc electrode is far higher than that of the general battery electrode. 100 mA/cm 2 (mA/cm 2 ).
  • the energy density is greatly improved. Because the mass ratio of the single electrode is 4 times that of the overall symmetric capacitor, and the single-electrode supercapacitor positive electrode is combined with the zinc negative electrode with high energy storage density and low electrode potential, the working voltage of the capacitor battery of the present invention is made. It is obviously more than the general water-based symmetric supercapacitor.
  • the zinc electrode accounts for a very small part of the battery quality.
  • the energy density is mainly determined by the carbon material, which is guaranteed to be about 10 times higher than the water-based symmetric supercapacitor, which can reach the energy density of the battery.
  • the electrode active material and the current collector are processed together to form an electrode by various methods in a general battery process, such as a method of applying paste, pressing, electrodeposition, or firing; the electrode active material can be bonded with a binder
  • the current collector is bonded, and a conductive agent may be added to increase the conductance, and may be mechanically combined with, for example, hot pressing, rolling, and the like.
  • the binder is one or more of polyvinylidene fluoride, styrene butadiene rubber, and polytetrafluoroethylene.
  • the conductive agent is one or more of acetylene black, conductive carbon black, graphite powder, carbon nanotubes, and graphene.
  • the current collector may use a metal such as titanium or the like; various carbon materials such as graphite may be used; a composite material of a carbon material and a polymer such as carbon black, acetylene black, graphite and plastic or rubber may be used; a conductive plastic may be used. Or a combination of the above.
  • the positive active material is commercially available chemical reagent grade activated carbon
  • the conductive agent is acetylene black
  • the binder is polyvinylidene fluoride (PVDF)
  • NMP N-methylpyrrolidone
  • the mixture was mixed at a ratio of 83:12:5 (mass ratio), and a small amount of NMP was added to stir the film to form a slurry; a titanium plate having a length of 6.0 cm and a width of 1.0 cm was used as a current collector, and the slurry was applied to the titanium plate current collector.
  • the bottom is 1.0 cm
  • the area is 1.0 cm 2 , and dried to form a positive electrode.
  • the negative electrode was a pure zinc sheet having a length of 6.0 cm and a width of 1.0 cm; the electrolytic solution was an aqueous solution containing 20.0% of ammonium chloride, 12.0% of zinc chloride, and 5.0% of potassium chloride (mass concentration).
  • the battery clamp of the filter-type battery structure is provided with an electrolyte flow passage; a 5 mm wide hollow flow passage and a 1 cm2 space of the electrode reaction zone are cut in the middle of a 5 mm thick rubber sheet, and the positive electrode negative electrode sheets are respectively placed on the flow path.
  • the positive and negative electrodes are separated by the rubber separator in the middle of the hollow flow channel and the electrode reaction zone, and the electrode separator is not used; two 7 mm thick plexiglass drilled with the runner hole and the screw hole are used as the end plate, and the screw is inserted. , tighten the nut, clamp the positive electrode piece, the rubber plate with the flow path, and the negative electrode piece.
  • the electrolyte solution After the electrolyte solution through the constant flow pump, the electrolyte does not flow; control battery charge and discharge tester, 5mA / cm 2 constant current charging to 1.70 V, 5mA / cm 2 to 0.40 V constant current discharge, repeated cycles.
  • the current efficiency is 100%, and the energy efficiency is 81.0%.
  • the specific capacitance reaches 47.2 Farads/gram (F/g)
  • the energy density reaches 13.7Wh/kg
  • the cycle capacity is unchanged at 6000 times.
  • the electrode holder is not used, and the battery holder of the filter-type battery structure is provided with an electrolyte flow passage; the negative electrode is a pure zinc sheet; and the electrolyte is an aqueous solution containing 18.0% ammonium chloride and 30.0% zinc chloride (mass concentration).
  • the electrolyte Pass the electrolyte, use a constant current pump to push the electrolyte to flow at a line flow rate of 100 cm/min (cm/min.); control the charge and discharge with a battery tester, and charge at a constant current of 100 mA/cm 2 to 2.0 volts, 100 mA/cm. 2 constant current discharge to 0.1 volts, repeated cycles.
  • the current efficiency is 99% to 100%, and the energy efficiency is about 51.5%.
  • the power density reaches 1058W/kg
  • the specific capacitance reaches 35.5F/g
  • the energy density reaches 8.1Wh/kg
  • the cycle capacity is unchanged. .
  • the positive active material uses high iodine activated carbon, the conductive agent is acetylene black, the binder is polytetrafluoroethylene (PTFE), and the 60% mass concentration PTFE emulsion is first diluted with ethanol 5 times; according to activated carbon: acetylene black: sticky
  • the mixture was mixed at 80:15:5 (mass ratio), wetted by adding ethanol, and the positive electrode film was prepared by roll pressing, dried, and pressed on a titanium plate current collector by a tablet press at a pressure of 10 MPa. positive electrode.
  • the electrolyte did not flow; the battery was charged and discharged by a battery tester, charged at a constant current of 10 mA/cm 2 to 1.57 volts, and discharged at a constant current of 10 mA/cm 2 to 0.33 volts, and repeatedly circulated.
  • the current efficiency is 100%, and the energy efficiency is 69.5%.
  • the specific capacitance reaches 196.3F/g, the energy density reaches 50.9Wh/kg, and the cycle capacity is unchanged.
  • the positive active material is medium and high iodine value wood activated carbon
  • the conductive agent is acetylene black
  • the binder is polytetrafluoroethylene (PTFE).
  • the film was dried and pressed on a titanium sheet current collector by a tablet press at a pressure of 10 MPa to prepare a positive electrode.
  • No battery separator is used, and a battery clamp of a filter-type battery structure is used, and an electrolyte flow passage is provided therein; the negative electrode is a pure zinc sheet; and the electrolyte is an aqueous solution containing 16.8% potassium hydroxide and 1.2% zinc oxide (mass concentration).
  • the electrolyte did not flow; the battery was charged and discharged by a battery tester, charged at a constant current of 10 mA/cm 2 to 1.65 volts, and discharged at a constant current of 10 mA/cm 2 to 0.40 volts, and repeatedly circulated.
  • the specific capacitance value reaches 77.6F/g
  • the energy density reaches 20.3Wh/kg
  • the current efficiency is about 98.5%
  • the energy efficiency is 77.8%
  • the capacity of the cycle is basically unchanged.
  • the positive active material adopts commercially available chemical reagent grade activated carbon
  • the conductive agent is acetylene black
  • the binder is polytetrafluoroethylene (PTFE)
  • the electrolyte did not flow; the battery was charged and discharged by a battery tester, and a constant current of 5 mA/cm 2 was charged to 1.70 volts, and a constant current of 5 mA/cm 2 was discharged to 0.40 volts, and the cycle was repeated.
  • the specific capacitance value reached 49.8F/g
  • the energy density reached 12.8Wh/kg
  • the current efficiency was 100%
  • the energy efficiency was 75.3%
  • the capacity of the cycle was basically unchanged.
  • the positive active material is medium and high iodine activated carbon
  • the conductive agent is acetylene black
  • the binder is polyvinylidene fluoride (PVDF)
  • NMP N-methylpyrrolidone
  • the negative electrode is an electroplated titanium sheet; the battery separator is used to separate the positive and negative electrodes, and the battery separator is a polyethylene joint of the outer polypropylene nonwoven fabric.
  • the electrolyte is 5.0% potassium chloride, 20.0% ammonium chloride, 12.0% zinc chloride, 0.005% indium sulfate (mass concentration) aqueous solution.
  • the battery was charged and discharged by a battery tester, charged at a constant current of 10 mA/cm 2 to 1.70 volts, and discharged at a constant current of 10 mA/cm 2 to 0.40 volts, and repeatedly circulated.
  • the specific capacitance value reaches 101.0F/g
  • the energy density reaches 17.3Wh/kg
  • the current efficiency is 100%
  • the energy efficiency is 60.7%
  • the capacity is 560 times.
  • the positive active material is medium and high iodine activated carbon
  • the conductive agent is acetylene black
  • the binder is polyvinylidene fluoride (PVDF)
  • NMP N-methylpyrrolidone
  • the negative electrode is a pure zinc plate; take 10.0 g of 5.0% potassium chloride, 20.0% ammonium chloride, 12.0% zinc chloride (mass concentration) aqueous solution, add 1.5 g of starch, stir well, heat and gelatinize in a water bath to form a The starch hydrogel of the electrolyte; the positive electrode negative electrode sheets are separately inserted, and the starch hydrogel is used as the electrolyte to separate the positive electrode negative electrode, and the battery separator is not used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种水系电解质超级电容电池,包括正极、负极、电解质,正极采用具有超级电容性质的碳材料为活性物质,负极采用锌为电极活性物质,电解质采用pH大于2.5的水溶液;属于电化学储能领域,具有成本低,循环寿命长,功率密度大,能密度比较高的特点,适用于风能、太阳能和电网的储能以及启动电源等高功率储能。

Description

一种水系电解质超级电容电池 技术领域
本发明涉及电化学储能领域,特别涉及一种水系电解质超级电容电池。
背景技术
随着经济发展和环境的恶化,需要以可再生能源逐渐替代化石能源,但风能太阳能等可再生能源多具有间歇性和随机性,大规模使用会冲击电网,没有好的储能技术就无法并入电网大规模使用;火力发电等构成的电网中用电量随时间的波动很大,如果有大规模储电的方法平衡峰谷,就能大幅度减少装机容量,取得明显的效益;大规模储能是智能电网和新能源产业的关键技术。
储能技术主要有机械储能、电磁储能、电化学储能和相变储能四大类型。技术成熟应用比较广的是机械储能中的抽水蓄能,其储能电站约占全球发电装机容量的3%,能量密度低,需要大面积的水库,受地理条件限制。电化学储能应用二次电池实现电能和化学能的转换,储能密度高,响应快,灵活方便,不受地理和规模限制,非常有前途。
一般二次电池循环寿命几十到几千次,能量密度为几十到几百瓦小时/千克(Wh/kg),功率密度300瓦/千克(W/kg)以下。常用的二次电池有铅酸电池、镍氢电池、锂离子电池;铅酸电池价格低廉,广泛应用于启动,备用电源等领域,其缺点是能密度不高,深放电能力差,循环寿命有限,造成的铅污染仍然是严重的环境问题;镍氢电池功率密度比较大,经济性远不如铅酸电池,有一定的记忆效应,只能在较小的领域应用;锂离子电池能密度高,无记忆效应,循环寿命长,在便携电子器件领域应用极广,但成本高,大规模应用时电池组一致性差,有机电解液和锂带来的安全问题也限制了其大规模应用。
液流电池是一种特殊形式的二次电池,将正负极反应物的氧化剂或还原剂以溶解形式存在,在惰性电极上充放电,一般用泵循环,具有深放电能力强,循环寿命长的特点;根据负极还原剂和正极氧化剂的不同,有全钒液流电池、锌溴液流电池、多硫化钠-溴液流电池、铁铬液流电池等多种液流电池形式。经过几十年的研发,目前全钒液流电池,锌溴液流电池正在尝试大规模商业化应用。全钒液流电池投资大,需要昂贵的含氟离子交换隔膜,钒电解液不仅成本高而且制备工艺要求严;还有正极电解液泄露的正极液风干后产生的五氧化二钒剧毒 的问题难以解决。锌溴液流电池的经济性能好,但正极溴液腐蚀力极强,对人和环境危害大的难题限制其应用。
钠硫二次电池工作于350摄氏度左右,生产成本较低,能密度高,功率密度大;运行温度高和耐高温的固体电解质的长期稳定性是其储能应用中难以克服的技术障碍。
在高功率储能领域,如汽车启动,混合动力等应用,一般二次电池的功率、循环性能都存在不足,而主要基于“双电层储能机理”的超级电容器性能突出,其功率密度达到电池的10-100倍,循环寿命达到十万次,无记忆效应,耐深充放电。目前商业化的超级电容器多采用对称形式,使用两个相同材料的电极,相当于两个电容串联,整个电容的质量比电容只相当于单电极的比电容的四分之一,能量密度小,一般仅仅1Wh/kg到5Wh/kg左右,经济性能差,同样容量价格是锂离子电池的5倍左右,限制其大规模应用。
用超级电容的单电极与电池的单电极构成混合式超级电容器,或称为超级电容电池,是一种特殊的电化学储能电池形式,结合了超级电容电极功率高,循环寿命极长和电池电极能密度高的特点。
用活性炭为正极,石墨为负极,在含锂离子的有机电解液中构成碳锂超级电容电池,在正极活性炭的双电层电容进行充放电时,负极发生锂离子在石墨上的嵌入脱出反应,电压高,能量密度远高于对称形式的超级电容器;但有机电解液成本高,生产条件严苛,活性炭电极要用比一般的商业活性炭价格高出几十倍到几百倍的超级电容专用活性炭,使得有机电解质超级电容电池商业化困难。
水系电解质成本低,安全可靠,但目前水系电解质超级电容电池仍然存在许多问题;比如以镍电极为正极,多孔碳为负极的镍碳电容电池成本高;以氧化铅电极为正极,活性炭为负极的铅-碳电容电池正极易脱落,存在铅和硫酸污染。以二次电池电极为负极的水系电解质超级电容电池研究的非常少,中国专利“一种混合超级电容器及其制造方法”(公开号CN101515507A),公开了一种以电双层电容器用碳材料或具有准电容特性材料为正极,储氢合金为负极的水系超级电容电池,其电压较低,需要使用储氢合金,工作在浓碱性电解液中。
在储能领域,迫切需要经济性能好,循环寿命长,深放电能力强,功率密度大,能量密度比较高,没有环境污染的的电化学储能方法,现有的电化学储能技术不能满足要求。
发明内容
本发明目的在解决现有电化学储能方法成本高,循环性能差,功率密度低,储能密度小,污染环境的问题。
本发明提出的技术方案是:一种水系电解质超级电容电池,包括正极,负极和电解质,其特征在于正极采用具有超级电容性质的碳材料为活性物质,负极采用锌为电极活性物质,电解质采用pH大于2.5的水溶液。
本发明的超级电容电池正极主要基于“双电层电容机理”,负极发生锌的氧化还原反应与正极配合:充电时,正极通过外电路失去电子,电极的表面电荷吸引电解液中的负离子而对电解液中的正离子排斥形成双电层电容;负极通过外电路得到电子,电解质中的二价锌离子生成金属锌沉积在电极上;放电时,正极通过外电路得到电子,电极的表面电荷吸引电解质中的正离子而对电解质中的负离子排斥形成双电层电容;负极通过外电路失去电子,在电极上的金属锌失去电子生成二价锌溶解在电解质中,如此循环。
具有超级电容性质的碳材料,是指多孔碳材料如活性炭、活性炭纤维、多维石墨材料、碳气凝胶、碳纳米管、处理过的玻璃碳材料、石墨烯等,也可以是以上碳材料的组合;从经济性考虑,优选活性炭材料。
负极使用锌为电极活性物质,指的是用金属锌及其氧化产物二价锌,如金属锌粉、电沉积在集流体上的金属锌、氧化锌或者溶液中的二价锌为电极活性材料,或者以上的组合。
负极还可以直接采用锌片,以金属锌片为活性物质和集流体。
水系电解质指电解液以水为全部或主要溶剂,溶质可以含锌离子为电极活性物质;溶质电解质可以是酸、盐、碱等各种电解质或者其组合,还可以加入部分调节凝固点的其他溶剂,例如醇类如乙二醇、丙三醇等。
在弱酸、中性、弱碱较温和条件下,锌电沉积比较均匀,同时利于电极和组件稳定;作为优选,本发明的电解质pH值在4到10以内。
电解液中可以含有钾离子、钠离子、铵离子、锂离子、氯离子、硫酸根离子、硝酸根离子等易溶成份或其组合;氯离子易溶于水,导电能力强,成本低,本发明优选含氯离子浓度在0.5mol/L以上的电解液。
作为优选,电解液中可以加入锌的络合剂或含锌的络合成份,如氨或铵、柠檬酸、明胶、糊精、面粉、淀粉等;在电解液中有锌的络合剂时,锌离子浓度减小,增加锌电沉积的均匀性,避免产生锌枝晶;锌电极电位降低,增大电池电压;本发明优选含锌的络合剂或锌的络合成份的电解液。
作为优选,本发明的电解质中含有铵离子或者络合态的氨或二者组合,铵离子和络合态的氨总浓度在0.5mol/L以上。
作为优选,本发明的电解质中含有柠檬酸根,其总浓度在0.1mol/L以上。
作为优选,电解液中或者负极中可以加入抑制锌析氢的成份如铟、铋、锡、铅等元素。
正极与负极中间有电解质分隔开构成电池;可以采用电解液隔膜吸浸电解液将正极负极隔开,比如用传统的聚乙烯电池隔膜、聚丙烯电池隔膜、浆层纸等;也可以不使用隔膜,使用中间有空隙的隔板或隔框将正极负极分隔开。
可以不使用隔膜、隔板或隔框,仅用凝胶态电解液将正极负极分隔开,如使用淀粉凝胶。
除了采用电解液静止方式,还可以采用电解液流动方式,用机械力推动电解液连续流动或间歇流动;以流动电解液的形式,会大大减小电极极化,避免锌枝晶,避免析出气体积累,可以大电流密度充放电,增加功率。
本发明的有益效果
多孔碳材料如活性炭,比表面值高,双电层电容非常大,制成的正极具有超级电容电极可逆性好,功率大,寿命极长的特点。锌是一种廉价的高能密度电极活性材料;在标准状态下,锌电极电位比氢低0.763伏,而析氢过电位高。锌电极在水系电解液电池中应用广泛,电流密度高,可逆性比较好。本发明将多孔碳正极与锌负极配合,构成水系超级电容电池,可以使用一般的廉价活性炭材料而非昂贵的有机电解液超级电容器的专用活性炭,经济性能好于铅酸电池,循环寿命超过6000次,功率密度超过一般电池,能量密度接近一般电池的水平;使用更大比电容值的碳材料,能量密度达到一般电池的水平;所用材料资源丰富,无污染;可以广泛应用于风能太阳能和电网储能以及启动备用电源等领域。
本发明的水系电解质超级电容电池具有以下优点:
1成本低 采用单电极超级电容碳正极配合储能密度高而非常廉价的锌负极,电池成本主要是碳材料的成本,可以使用廉价的商业大量生产的一般活性炭材料,大大降低整体成本,而锌电极,水系电解液,隔膜,组件都可以用廉价材料。
2循环性能好 超级电容电极本身循环寿命是一般电池的百千倍,在二价锌基本以可溶状态存在的条件下,锌电极寿命极长;还可以配合络合剂,流动电解液等条件,整体电池寿命远远超过一般电极,而且深放电能力强,无记忆效应。
3功率密度大 超级电容电极电流密度达到一般电池的百十倍,在其氧化产物二价锌以可溶状态存在,电解液流动等条件时锌电极的电流密度远远超过一般电池电极,可以达到100毫安/平方厘米(mA/cm2)。
4能量密度大大提高 因为单电极的质量比电容是整体对称电容器比电容的4倍,而采用单电极超级电容正极配合储能密度高电极电位低的锌负极,使得本发明的电容电池的工作电压明显超过一般水系对称超级电容,锌电极占电池质量的非常小部分,能量密度主要决定于碳材料,保证其高出水系对称超级电容10倍左右,可以达到电池的能量密度。
5材料丰富无污染,炭材料,锌电极,水系电解质,隔膜,组件都可采用无污染无毒害的材料,而且资源丰富
具体实施方式
采用一般电池工艺中的各种方法将电极活性材料与集流体加工在一起制成电极,比如采用涂膏、压成、电沉积、或者烧成的方法;可以用粘结剂将电极活性材料与集流体粘合,可以加入导电剂增大电导,可以用机械加工方法配合如热压、辊压,等等。
所述粘结剂为聚偏氟乙烯、丁苯橡胶、聚四氟乙烯中的一种或几种。
所述导电剂为乙炔黑、导电炭黑、石墨粉、碳纳米管、石墨烯中的一种或几种。
集流体可以使用金属如钛等;可以使用各种碳材料如石墨等;可以使用碳材料与聚合物的复合材料如炭黑、乙炔黑、石墨与塑料或橡胶复合的材料;可以使用导电塑料,或者以上的组合。
实例1
正极活性物质采用市售化学试剂级活性炭,导电剂为乙炔黑,粘结剂为聚偏氟乙烯(PVDF),用N-甲基吡咯烷酮(NMP)为PVDF的溶剂;按活性炭∶乙炔黑∶粘结剂=83∶12∶5(质量比)混匀,加入少许NMP搅匀成制膜浆液;用长6.0cm,宽1.0cm的钛片为集流体,将混浆涂在钛片集流体接近底部1.0cm处,面积1.0cm2,干燥制作成正极。
负极为长6.0cm,宽1.0cm的纯锌片;电解液为含20.0%氯化铵、12.0%氯化锌、5.0%氯化钾(质量浓度)的水溶液。
使用压滤式电池结构的电池夹具,中设电解液流动通道;在5mm厚橡胶板中间割出5mm宽中空流道以及电极反应区的1cm2空间,将正极片负极片分别架在流道的两侧,用这个中间带中空流道和电极反应区的橡胶隔板分隔正负极,不使用电极隔膜;用钻有流道孔和螺杆孔的两片7mm厚有机玻璃为端板,插上螺杆,旋紧螺母,夹紧正极片、带流道的橡胶板、负极片。
用恒流泵通入电解液后,电解液不流动;用电池测定仪控制充放电,5mA/cm2恒流充电到1.70伏,5mA/cm2恒流放电到0.40伏,反复循环。电流效率100%,能量效率81.0%,按活性碳质量计算,比电容值达到47.2法拉/克(F/g),能量密度达到13.7Wh/kg,循环6000次容量不变。
实例2
正极活性物质采用市售化学试剂级活性炭,导电剂为乙炔黑,粘结剂为聚四氟乙烯(PTFE),将质量浓度60%的PTFE乳液先用乙醇稀释5倍加入;按活性炭∶乙炔黑∶粘结剂=80∶15∶5(质量比)混匀,加入乙醇润湿搅匀,用辊压法制正极膜,干燥,用压片机以10MPa压力压膜,贴在钛片集流体上,制作为正极。
不使用电极隔膜,使用压滤式电池结构的电池夹具,中设电解液流动通道;负极为纯锌片;电解液为含18.0%氯化铵、30.0%氯化锌(质量浓度)的水溶液。
通入电解液,用恒流泵推动电解液以100厘米/分钟(cm/min.)的线流速流动;用电池测定仪控制充放电,100mA/cm2恒流充电到2.0伏,100mA/cm2恒流放电到0.1伏,反复循环。电流效率99%到100%,能量效率51.5%左右,按活性碳质量计算,功率密度达到1058W/kg,比电容值达到35.5F/g,能量密度达到8.1Wh/kg,循环500次容量不变。
实例3
正极活性物质采用高碘值活性炭,导电剂为乙炔黑,粘结剂为聚四氟乙烯(PTFE),将60%质量浓度的PTFE乳液先用乙醇稀释5倍加入;按活性炭∶乙炔黑∶粘结剂=80∶15∶5(质量比)混匀,加入乙醇润湿搅匀,用辊压法制正极膜,干燥,用压片机以10MPa压力压膜贴在钛片集流体上,制作为正极。
不用电池隔膜,使用压滤式电池结构的电池夹具,中设电解液流动通道;负极为纯锌片;取29.0%氯化铵、9.0%氯化锌的水溶液,用浓氢氧化钠溶液调pH为8.00,调节最终浓度为14.5%氯化铵,4.5%氯化锌(质量浓度),以此溶液为电解液。
通入电解液后电解液不流动;用电池测定仪控制充放电,10mA/cm2恒流充电到1.57伏,10mA/cm2恒流放电到0.33伏,反复循环。电流效率100%,能量效率69.5%,按活性碳质量计算,比电容值达到196.3F/g,能量密度达到50.9Wh/kg,循环600次容量不变。
实例4
正极活性物质采用中高碘值木质活性炭,导电剂为乙炔黑,粘结剂为聚四氟乙烯(PTFE), 将60%质量浓度的PTFE乳液先用乙醇稀释5倍加入;按活性炭∶乙炔黑∶粘结剂=80∶15∶5(质量比)混匀,加入乙醇润湿搅匀,用辊压法制正极膜,干燥,用压片机以10MPa压力压膜贴在钛片集流体上,制作为正极。
不用电池隔膜,使用压滤式电池结构的电池夹具,中设电解液流动通道;负极为纯锌片;电解液为含16.8%氢氧化钾,1.2%氧化锌(质量浓度)的水溶液。
通入电解液后电解液不流动;用电池测定仪控制充放电,10mA/cm2恒流充电到1.65伏,10mA/cm2恒流放电到0.40伏,反复循环。按活性碳质量计算,比电容值达到77.6F/g,能量密度达到20.3Wh/kg,电流效率98.5%左右,能量效率77.8%,循环500次容量基本不变。
实例5
正极活性物质采用市售化学试剂级活性炭,导电剂为乙炔黑,粘结剂为聚四氟乙烯(PTFE),将60%质量浓度的PTFE乳液先用乙醇稀释5倍加入;按活性炭∶乙炔黑∶粘结剂=80∶15∶5(质量比)混匀,加入乙醇润湿搅匀,用辊压法制正极膜,干燥,用压片机以10MPa压力压在钛片集流体上,制作为正极。
不用电池隔膜,使用压滤式电池结构的电池夹具,中设电解液流动通道;负极为纯锌片;电解液为3%柠檬酸,25%氯化铵,3%氯化锌,0.005%硫酸铟(质量百分数)水溶液。
通入电解液后电解液不流动;用电池测定仪控制充放电,5mA/cm2恒流充电到1.70伏,5mA/cm2恒流放电到0.40伏,反复循环。按活性碳质量计算,比电容值达到49.8F/g,能量密度达到12.8Wh/kg,电流效率100%,能量效率75.3%,循环1500次容量基本不变。
实例6
正极活性物质采用中高碘值活性炭,导电剂为乙炔黑,粘结剂为聚偏氟乙烯(PVDF),用N-甲基吡咯烷酮(NMP)为PVDF的溶剂;按活性炭∶乙炔黑∶粘结剂=83∶12∶5(质量比)混匀,加入少许NMP搅匀成制膜浆液;将混浆涂在钛片集流体接近底部的1cm处,面积1.0cm2,干燥制作成正极。
负极为电镀锌的钛片;使用电池隔膜分隔正负极,电池隔膜为外包聚丙烯无纺布的聚乙烯接 枝膜,电解液为5.0%氯化钾,20.0%氯化铵,12.0%氯化锌,0.005%硫酸铟(质量浓度)水溶液。
用电池测定仪控制充放电,10mA/cm2恒流充电到1.70伏,10mA/cm2恒流放电到0.40伏,反复循环。按活性碳质量计算,比电容值达到101.0F/g,能量密度达到17.3Wh/kg,电流效率100%,能量效率60.7%,循环560次容量不变。
实例7
正极活性物质采用中高碘值活性炭,导电剂为乙炔黑,粘结剂为聚偏氟乙烯(PVDF),用N-甲基吡咯烷酮(NMP)为PVDF的溶剂;按活性炭∶乙炔黑∶粘结剂=83∶12∶5(质量比)混匀,加入少许NMP搅匀成制膜浆液;将混浆涂在钛片集流体接近底部1.0cm处,面积1.0cm2,干燥制作成正极。
负极为纯锌片;取5.0%氯化钾,20.0%氯化铵,12.0%氯化锌(质量浓度)的水溶液10.0克,加入1.5克的淀粉,搅匀,水浴加热保温糊化,形成含电解液的淀粉水凝胶;将正极负极片分别***,用此淀粉水凝胶为电解质分隔正极负极,不用电池隔膜。
用电池测定仪控制充放电,5mA/cm2恒流充电到1.70伏,5mA/cm2恒流放电到0.40伏,反复循环。按活性碳质量计算,比电容值达到149.4F/g,能量密度达到45.1Wh/kg,电流效率97.4%到100%,能量效率81.1%左右,循环500次容量基本不变。
以上所述的实施例只是本发明的较佳方案,没有对本发明作任何形式上的限制,在不超出权利要求所述的技术方案的前提下还可以用其它的形式实施。

Claims (10)

  1. 一种水系电解质超级电容电池,包括正极、负极、电解质,其特征在于:所述正极采用具有超级电容性质的碳材料为活性物质,所述负极采用锌为电极活性物质,所述电解质采用pH大于2.5的水溶液。
  2. 如权利要求1所述的水系电解质超级电容电池,其特征在于:所述正极采用活性碳为活性物质。
  3. 如权利要求1所述的水系电解质超级电容电池,其特征在于:所述电解质的pH值在4到10以内。
  4. 如权利要求1所述的水系电解质超级电容电池,其特征在于:所述电解质中含有氯离子,氯离子浓度≥0.5mol/L。
  5. 如权利要求1所述的水系电解质超级电容电池,其特征在于:所述电解质中含有锌的络合剂或含锌的络合成份。
  6. 如权利要求1所述的水系电解质超级电容电池,其特征在于:所述电解质中含铵离子或络合态氨或其组合,铵离子和络合态氨总浓度≥0.5mol/L。
  7. 如权利要求1所述的水系电解质超级电容电池,其特征在于:所述电解质中含有柠檬酸根,其总浓度≥0.1mol/L。
  8. 如权利要求1所述的水系电解质超级电容电池,其特征在于:所述电解质采用流动方式。
  9. 如权利要求1所述的水系超级电容电池,其特征在于:所述电解质采用凝胶态电解液。
  10. 如权利要求1所述的水系超级电容电池,其特征在于:所述电解质或负极中加入铟、铋、锡、铅等元素的一种或几种为锌的析氢抑制剂。
PCT/CN2016/089002 2016-01-15 2016-07-07 一种水系电解质超级电容电池 WO2017121080A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610026074.1A CN106981371A (zh) 2016-01-15 2016-01-15 一种水系电解质超级电容电池
CN201610026074.1 2016-01-15

Publications (1)

Publication Number Publication Date
WO2017121080A1 true WO2017121080A1 (zh) 2017-07-20

Family

ID=59310716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089002 WO2017121080A1 (zh) 2016-01-15 2016-07-07 一种水系电解质超级电容电池

Country Status (2)

Country Link
CN (1) CN106981371A (zh)
WO (1) WO2017121080A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111900497A (zh) * 2020-06-12 2020-11-06 北京大学深圳研究生院 一种水系锌离子电池电解液及其应用
CN111900496A (zh) * 2020-06-12 2020-11-06 北京大学深圳研究生院 一种用于水系锌离子电池的电解液及其应用
CN112002934A (zh) * 2020-08-31 2020-11-27 大连理工大学 一种可充电硫离子电池及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11031189B2 (en) * 2018-01-17 2021-06-08 Chao Huang Aqueous hybrid super capacitor
CN108538634B (zh) * 2018-05-25 2020-04-28 北京化工大学 一种水系复配电解液及其制备方法和应用
CN109524248A (zh) * 2018-12-06 2019-03-26 中国科学院兰州化学物理研究所 一种锌离子混合电容器的构筑方法
CN109786861B (zh) * 2019-01-17 2021-03-16 中国科学院上海硅酸盐研究所 一种混合电化学储能器件
JP7243617B2 (ja) * 2019-12-25 2023-03-22 トヨタ自動車株式会社 水系電池
CN111370783B (zh) * 2020-04-08 2021-04-20 大连理工大学 一种高性能水系氯离子电池及其制备方法
CN113936927A (zh) * 2020-07-13 2022-01-14 中国科学院大连化学物理研究所 一种高电压水系电解液及其应用
CN114141545A (zh) * 2021-10-29 2022-03-04 海南大学 一种无负极锌离子杂化电容器及其制备方法
CN114388274B (zh) * 2021-12-30 2024-02-02 浙江浙能中科储能科技有限公司 一种离子和电子复合导通的电极及其原位制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101515507A (zh) * 2009-03-27 2009-08-26 桂林工学院 一种混合超级电容器及其制造方法
CN101540417A (zh) * 2009-04-15 2009-09-23 清华大学深圳研究生院 可充电的锌离子电池
CN101783419A (zh) * 2009-01-16 2010-07-21 清华大学深圳研究生院 一种可充电的锌离子电池
CN103401030A (zh) * 2013-07-09 2013-11-20 哈尔滨工程大学 一种水系可充镁或锌离子电容电池
CN103545123A (zh) * 2013-10-30 2014-01-29 中国第一汽车股份有限公司 一种兼具锌离子电池和超级电容器的混合储能器件
CN103560019A (zh) * 2013-10-30 2014-02-05 中国第一汽车股份有限公司 一种锌离子混合超级电容器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783419A (zh) * 2009-01-16 2010-07-21 清华大学深圳研究生院 一种可充电的锌离子电池
CN101515507A (zh) * 2009-03-27 2009-08-26 桂林工学院 一种混合超级电容器及其制造方法
CN101540417A (zh) * 2009-04-15 2009-09-23 清华大学深圳研究生院 可充电的锌离子电池
CN103401030A (zh) * 2013-07-09 2013-11-20 哈尔滨工程大学 一种水系可充镁或锌离子电容电池
CN103545123A (zh) * 2013-10-30 2014-01-29 中国第一汽车股份有限公司 一种兼具锌离子电池和超级电容器的混合储能器件
CN103560019A (zh) * 2013-10-30 2014-02-05 中国第一汽车股份有限公司 一种锌离子混合超级电容器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111900497A (zh) * 2020-06-12 2020-11-06 北京大学深圳研究生院 一种水系锌离子电池电解液及其应用
CN111900496A (zh) * 2020-06-12 2020-11-06 北京大学深圳研究生院 一种用于水系锌离子电池的电解液及其应用
CN112002934A (zh) * 2020-08-31 2020-11-27 大连理工大学 一种可充电硫离子电池及其制备方法
CN112002934B (zh) * 2020-08-31 2024-02-06 大连理工大学 一种可充电硫离子电池及其制备方法

Also Published As

Publication number Publication date
CN106981371A (zh) 2017-07-25

Similar Documents

Publication Publication Date Title
WO2017121080A1 (zh) 一种水系电解质超级电容电池
CN107221716B (zh) 一种可充电水系锌离子电池
CN106450102B (zh) 用于锂硫电池的石墨改性隔膜及其制备方法与构成的锂硫电池
CN207587857U (zh) 一种锌镍单液流电池
CN110176591A (zh) 一种水系锌离子二次电池及其基于有机电极材料的正极的制备方法
WO2019080689A1 (zh) 一种混合型超级电容器
CN113678218B (zh) 水系混合超级电容
Brousse et al. Asymmetric and hybrid devices in aqueous electrolytes
CN106384674A (zh) 一种基于钛磷氧化物负极材料的水系可充钠离子电容电池
CN101399120A (zh) 一种新型的混合超级电容器
CN108390110B (zh) 一种铅-锰二次电池
JP4989157B2 (ja) 電気二重層キャパシタ
CN112952212A (zh) 水系二氧化锰-金属二次电池
CN103646788B (zh) 一种草酸镍基非对称型超级电容器及其制备方法
CN110391415A (zh) 一种正极活性材料以及包括该正极活性材料的锌离子电池
CN106548878B (zh) 一种使用离子液体电解液的超级电容器
KR102568421B1 (ko) 막전극접합체 및 이를 포함하는 아연-브롬 슈퍼커패터리
CN103077834A (zh) 基于水系中性电解液的不对称超级电容器及制备
CN102709066A (zh) 一种基于稻壳基多孔炭的水系对称型电化学电容器
CN106252098B (zh) 一种耐高电压水系超级电容器及其制作方法
CN110085448A (zh) 具有高能量密度的硫化铜/还原氧化石墨烯复合材料及制备方法
CN114121499B (zh) 高电压超级电容器用电解液及高电压超级电容器
CN110323080B (zh) 水系超级电容器的制备方法
KR102591528B1 (ko) 아연-브롬 전지용 전극 및 이를 포함하는 아연-브롬 전지
US9036332B2 (en) Energy storage device, an inorganic gelled electrolyte and methods thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884636

Country of ref document: EP

Kind code of ref document: A1