WO2017115579A1 - マルチプレクサ - Google Patents

マルチプレクサ Download PDF

Info

Publication number
WO2017115579A1
WO2017115579A1 PCT/JP2016/084147 JP2016084147W WO2017115579A1 WO 2017115579 A1 WO2017115579 A1 WO 2017115579A1 JP 2016084147 W JP2016084147 W JP 2016084147W WO 2017115579 A1 WO2017115579 A1 WO 2017115579A1
Authority
WO
WIPO (PCT)
Prior art keywords
matching
wiring
multiplexer
antenna
terminal
Prior art date
Application number
PCT/JP2016/084147
Other languages
English (en)
French (fr)
Inventor
亮 永浜
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201680076597.5A priority Critical patent/CN108432131B/zh
Priority to JP2017558879A priority patent/JP6832871B2/ja
Priority to KR1020187018008A priority patent/KR102059285B1/ko
Publication of WO2017115579A1 publication Critical patent/WO2017115579A1/ja
Priority to US16/015,347 priority patent/US10574206B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2135Frequency-selective devices, e.g. filters combining or separating two or more different frequencies using strip line filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H7/461Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source particularly adapted for use in common antenna systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H7/463Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0542Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a lateral arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • H03H9/0557Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement the other elements being buried in the substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0566Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers
    • H03H9/0576Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers including surface acoustic wave [SAW] devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/1006Non-printed filter
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10083Electromechanical or electro-acoustic component, e.g. microphone

Definitions

  • the present invention relates to a multiplexer having a plurality of filters.
  • Communication devices such as mobile phone terminals are required to support a plurality of frequency bands and a plurality of wireless systems, so-called multiband and multimode. Therefore, in order to cope with such a configuration, in a multiplexer incorporating a plurality of filters, a configuration is proposed in which a combination point where a plurality of filters are commonly connected (that is, a plurality of filters are bundled) is connected to a common antenna terminal. (For example, refer to Patent Document 1). In such a multiplexer, it is assumed that impedance matching (matching) with the antenna is achieved by providing a matching element such as a shunt type inductor between the antenna and the synthesis point.
  • a matching element such as a shunt type inductor
  • the synthesis point and the matching element are connected via a transmission line that connects the synthesis point and the antenna terminal of the multiplexer. For this reason, the reflection phase at the connection point of the matching element rotates (moves) in accordance with the electrical length of the transmission line as compared with the reflection phase at the synthesis point.
  • the impedance at the connection point may be lower than a predetermined impedance (for example, 50 ⁇ ) for impedance matching.
  • a predetermined impedance for example, 50 ⁇
  • an object of the present invention is to provide a multiplexer that can achieve impedance matching with a simple matching element.
  • a multiplexer is a multiplexer having a plurality of filters, and a combination wiring that constitutes a combination point in which inputs or outputs of the plurality of filters are commonly connected;
  • An antenna terminal for connecting the multiplexer to the antenna an antenna wiring having one end connected to the antenna terminal and the other end connected to the composite wiring, and a matching element for matching the antenna and the multiplexer
  • the matching element is connected to the synthesis point without going through the antenna wiring, the impedance at the antenna terminal is extremely less affected by the electrical length of the antenna wiring. Therefore, impedance matching can be achieved with a simple matching element.
  • the other end of the antenna wiring and the other end of the matching wiring may be connected to substantially the same position of the composite wiring.
  • connection nodes in the composite wiring can be reduced. Therefore, the space required for providing the connection node can be reduced, and the multiplexer can be reduced in size.
  • the antenna wiring and the matching wiring may be provided on a substrate and arranged on opposite sides of the combined wiring in a plan view of the substrate.
  • the space required for arranging the antenna wiring and the matching wiring can be reduced, and the multiplexer can be miniaturized.
  • the antenna wiring and the matching wiring may be arranged substantially orthogonal to the synthetic wiring in a plan view of the substrate.
  • a matching element connected to the matching terminal may be provided.
  • impedance matching can be achieved without providing an external matching element.
  • the matching element is an inductor connected between the matching terminal and a ground potential, and the inductor is connected to the antenna terminal by a combined inductance with the matching wiring having an inductance corresponding to an electrical length. It is also possible to have an inductance that makes the impedance of a predetermined impedance.
  • the multiplexer can achieve better impedance matching.
  • impedance matching can be achieved with a simple matching element.
  • FIG. 1 is a perspective view showing an example of the appearance of the multiplexer according to the embodiment.
  • FIG. 2 is a circuit diagram of the multiplexer according to the embodiment.
  • FIG. 3 is a schematic plan view schematically showing the mounting layout of the multiplexer according to the embodiment.
  • FIG. 4 is a plan view showing in detail the mounting layout shown in FIG.
  • FIG. 5 is a Smith chart showing the characteristics of the multiplexer according to the embodiment.
  • FIG. 6 is a circuit diagram of a multiplexer according to a comparative example.
  • FIG. 7 is a schematic plan view schematically showing the mounting layout of the multiplexer according to the comparative example.
  • FIG. 8 is a Smith chart showing characteristics of the multiplexer according to the comparative example.
  • FIG. 1 is a perspective view showing an example of the appearance of the multiplexer according to the embodiment.
  • FIG. 2 is a circuit diagram of the multiplexer according to the embodiment.
  • FIG. 3 is a schematic plan view schematically showing the mounting layout
  • FIG. 9A is a Smith chart showing another characteristic of the multiplexer according to the embodiment.
  • FIG. 9B is a Smith chart showing still another characteristic of the multiplexer according to the embodiment.
  • FIG. 10 is a plan view showing in detail a mounting layout of the multiplexer according to the first modification of the embodiment.
  • FIG. 11 is a plan view showing in detail the mounting layout of the multiplexer according to the second modification of the embodiment.
  • FIG. 12 is a perspective view illustrating an example of an appearance of a multiplexer according to the third modification of the embodiment.
  • FIG. 13 is a diagram conceptually illustrating a cross-sectional structure of a multiplexer according to another example of the third modification of the embodiment.
  • FIG. 14 is a circuit diagram of a multiplexer according to Modification 4 of the embodiment.
  • each figure is a schematic diagram and is not necessarily shown strictly. For this reason, the magnitude
  • FIG. 1 is a perspective view showing an example of the appearance of the multiplexer 1 according to the present embodiment.
  • FIG. 2 is a circuit diagram of the multiplexer 1 according to the present embodiment.
  • another configuration here, the antenna 2 and the matching inductor 3) connected to the multiplexer 1 is also illustrated. The same applies to the following circuit diagrams.
  • the multiplexer 1 shown in these drawings corresponds to, for example, LTE (Long Term Evolution) and propagates a high-frequency signal of Band compliant with a communication standard such as 3GPP (Third Generation Partnership Project).
  • the multiplexer 1 is provided in the front end of a multi-band mobile phone, and transmits signals in a plurality of frequency bands (Band) between the antenna 2 and an RFIC (Radio Frequency Integrated Circuit, not shown). (High-frequency transmission signal) or reception signal (high-frequency transmission signal) is propagated.
  • the multiplexer 1 is set to Band 12 (transmission pass band: 699-716 MHz, reception pass band: 729-746 MHz) and Band 5 (transmission pass band: 824-849 MHz, reception pass band: 869-894 MHz).
  • Band 12 transmission pass band: 699-716 MHz, reception pass band: 729-746 MHz
  • Band 5 transmission pass band: 824-849 MHz, reception pass band: 869-894 MHz.
  • the multiplexer 1 includes a first filter 10 and a second filter 20, an antenna wiring 30, a matching wiring 40, and a package substrate 50.
  • the multiplexer 1 includes an antenna terminal Pant, a matching terminal Pmtc, transmission terminals Ptx1 and Ptx2, and reception terminals Prx1 and Prx2 as external connection terminals.
  • the first filter 10 is a duplexer corresponding to the Band 12, has a Band 12 transmission filter and a reception filter, and is mounted on the package substrate by FCB (Flip Chip Bonding).
  • FCB Flip Chip Bonding
  • the first filter 10 has a common terminal Pa1 that is an antenna terminal that commonly connects (bundles) the transmission filter and the reception filter of Band12, and transmits a transmission signal input from the transmission terminal Ptx1 to Band12. And output from the common terminal Pa1.
  • the first filter 10 filters the reception signal input to the common terminal Pa1 with the reception pass band of Band12 and outputs the filtered signal to the reception terminal Prx1.
  • the second filter 20 is a duplexer corresponding to Band5 and has a common terminal Pa2. Note that the specific configuration of the second filter 20 is the same as that of the first filter 10 except for matters related to the difference in the corresponding Band, and will be described in a simplified manner below.
  • the second filter 20 filters the transmission signal input to the transmission terminal Ptx2 and outputs it from the common terminal Pa2.
  • the second filter 20 filters the reception signal input to the common terminal Pa2 and outputs it from the reception terminal Prx2.
  • the transmission line connecting the common terminal Pa1 and the antenna terminal Pant and the transmission line connecting the common terminal Pa2 and the antenna terminal Pant are combined. They are bundled at a point N and shared and connected to the antenna terminal Pant. That is, the synthesis point N is a point where the inputs or outputs of a plurality of filters (in the present embodiment, the first filter 10 and the second filter 20) are connected in common (bundled points).
  • each of the first filter 10 and the second filter 20 is a piezoelectric chip constituted by a surface acoustic wave filter using a surface acoustic wave (SAW).
  • SAW surface acoustic wave
  • the first filter 10 and the second filter 20 are not limited to an elastic wave filter using SAW, and may be an elastic wave filter using a bulk wave (BAW: Bulk Acoustic Wave).
  • the first filter 10 and the second filter 20 are not limited to acoustic wave filters, and may be filters configured by appropriately combining a chip inductor, a chip capacitor, and the like.
  • the antenna wiring 30 is a transmission line having one end connected to the antenna terminal Pant and the other end connected to the synthesis point N. That is, the antenna wiring 30 is a so-called “HOT” transmission line that propagates a transmission signal or a reception signal.
  • the matching wiring 40 is a transmission line having one end connected to the matching terminal Pmtc and the other end connected to the synthesis point N. That is, the matching wiring 40 is connected to the synthesis point N without passing through a “HOT” transmission line such as the antenna wiring 30.
  • the package substrate 50 is a substrate on which the first filter 10 and the second filter 20 are mounted and on which various conductors for forming the circuit configuration of the multiplexer 1 are provided, for example, a glass epoxy substrate.
  • the conductor includes a surface electrode that forms each terminal of the multiplexer 1, wiring that forms a transmission line of the multiplexer 1, a via conductor, and the like.
  • the said conductor is comprised from metals or alloys, such as Ti, Al, Cu, Pt, Au, Ag, Pd, for example.
  • the antenna terminal Pant is a terminal for connecting the multiplexer 1 to the antenna 2.
  • the matching terminal Pmtc is a terminal for connecting a matching element (here, a matching inductor 3) for matching the antenna 2 and the multiplexer 1 (impedance matching).
  • the transmission terminals Ptx1 and Ptx2 and the reception terminals Prx1 and Prx2 are terminals for connecting the multiplexer 1 to, for example, an RFIC. These terminals are provided as surface electrodes on the lower surface of the package substrate 50, for example.
  • the multiplexer 1 configured in this way is sealed with a sealing resin or the like to form one package, and is mounted on a mother board on which other circuit components such as the antenna 2 and the matching inductor 3 are provided. Note that the multiplexer 1 does not have to be made into one package, and the first filter 10 and the second filter 20 are mounted on a mother board provided with various conductors for forming the circuit configuration of the multiplexer 1. It may be configured by.
  • FIG. 3 is a schematic plan view schematically showing the mounting layout of the multiplexer 1 according to the present embodiment.
  • FIG. 4 is a plan view showing in detail the mounting layout shown in FIG. In these drawings, the antenna 2 and the matching inductor 3 connected to the multiplexer 1 are also shown.
  • the first filter 10 and the second filter 20 are seen through for the sake of simplicity. The same applies to the following schematic plan views and plan views.
  • the first filter 10 and the second filter 20 are arranged side by side in the longitudinal direction on the upper surface of a substantially rectangular package substrate 50 in plan view.
  • the first filter 10 and the second filter 20 are arranged so that, for example, the terminal arrangement is axisymmetric with respect to an imaginary line passing through the center CP of the package substrate 50 in plan view.
  • the surface on which the first filter 10 and the second filter 20 are disposed with respect to the package substrate 50 will be described as an upper surface. However, depending on how the multiplexer 1 is used, the surface may not be the upper surface. For this reason, the upper surface of the package substrate 50 is not limited to the upper surface of the multiplexer 1.
  • the common terminal Pa1 and the common terminal Pa2 are arranged in the central portion of the package substrate 50 in plan view.
  • the antenna terminal Pant, the matching terminal Pmtc, the transmission terminals Ptx1 and Ptx2, and the reception terminals Prx1 and Prx2 are arranged on the peripheral portion of the package substrate 50.
  • the transmission terminals Ptx1 and Ptx2 and the reception terminals Prx1 and Prx2 are arranged at the corners of the peripheral part
  • the antenna terminal Pant and the matching terminal Pmtc are arranged at the central part of the long side of the peripheral part. That is, the antenna terminal Pant and the matching terminal Pmtc are arranged at positions that are point-symmetric with respect to the center CP of the package substrate 50.
  • the arrangement of the terminals is not particularly limited, for example, the transmission terminals Ptx1 and Ptx2 and the reception terminals Prx1 and Prx2 are preferably arranged at different corners of the package substrate 50 from the viewpoint of securing isolation. .
  • the common terminal Pa1, the common terminal Pa2, the antenna terminal Pant, and the matching terminal Pmtc are connected by a transmission line having a characteristic impedance of 50 ⁇ provided on the package substrate 50, for example.
  • This transmission line includes the antenna wiring 30 and the matching wiring 40 described above, and the composite wiring 60 constituting the composite point N.
  • the antenna wiring 30 has one end connected to the antenna terminal Pant and the other end connected to the composite wiring 60, and is formed by, for example, a pattern wiring provided on the upper surface of the package substrate 50.
  • the matching wiring 40 has one end connected to the matching terminal Pmtc and the other end connected to the composite wiring 60, and is formed by a pattern wiring provided on the upper surface of the package substrate 50, for example.
  • the antenna wiring 30 and the matching wiring 40 are arranged in a region between the first filter 10 and the second filter 20 in a plan view of the package substrate 50. Further, the other end of the antenna wiring 30 and the other end of the matching wiring 40 are connected to substantially the same position of the composite wiring 60, and in detail, are connected to substantially the center of the composite wiring 60. Further, the antenna wiring 30 and the matching wiring 40 are arranged on the opposite sides of the composite wiring 60 in the plan view of the package substrate 50. Further, the antenna wiring 30 and the matching wiring 40 are disposed substantially orthogonal to the composite wiring 60 in a plan view of the package substrate 50.
  • the composite wiring 60 forms a composite point N, and is formed by, for example, a pattern wiring provided on the upper surface of the package substrate 50.
  • the composite wiring 60 is a wiring that forms a backbone among transmission lines that connect a plurality of filters (here, the first filter 10 and the second filter 20). That is, the composite wiring 60 includes the antenna wiring 30 that branches to the antenna terminal Pant, the matching wiring 40 that branches to the matching terminal Pmtc, and the wiring that branches to each filter. Wiring removed. More specifically, the composite wiring 60 is a wiring that can be regarded as having substantially the same electrical characteristics.
  • the synthetic wiring 60 is a wiring having an electrical length of approximately 1 ⁇ 4 or less of the frequency band in which the multiplexer 1 is used. It is desirable to be.
  • each of these wiring is arrange
  • the shape of these wiring is not specifically limited.
  • at least one of these wirings may be arranged in a bent shape.
  • characteristics of the multiplexer 1 configured as described above will be described.
  • the characteristics of the multiplexer 1 will be described by focusing on the pass band (Band 5) of the second filter 20.
  • the multiplexer 1 exhibits the same characteristics even when focusing on the pass band (Band 12) of the first filter 10. Have.
  • FIG. 5 is a Smith chart showing the characteristics of the multiplexer 1 according to the present embodiment. Specifically, in the same figure, the impedance at the synthesis point N in the state where the matching inductor 3 is not connected (impedance seen from the synthesis point N on the first filter 10 and the second filter 20 side), and the matching inductor The impedance at the antenna terminal Pant in the state where 3 is connected (impedance when the inside of the multiplexer 1 is viewed from the antenna terminal Pant) is shown.
  • the locus of the impedance of the broadband (750 MHz-950 MHz) including the pass band of the second filter 20 is shown, and the locus in the pass band is shown by a bold line.
  • the impedance at the synthesis point N is a capacitive region (lower half region) on the Smith chart when the matching inductor 3 is not connected. Located in. This is because in the present embodiment, the first filter 10 and the second filter 20 constituting the multiplexer 1 are surface acoustic wave filters.
  • the impedance at the synthesis point N is located on an equiconductance circle passing through the center (50 ⁇ ) on the Smith chart. This is because the matching element (matching inductor 3 in the present embodiment) connected to the matching terminal Pmtc becomes a so-called shunt-type matching element connected between the matching terminal Pmtc and the ground potential.
  • the impedance of the inside of the multiplexer 1 viewed from the antenna terminal Pant moves along an isoconductance circle.
  • the impedance at the synthesis point N is on the Smith chart without the matching element being connected. It is necessary to lie on an equal conductance circle passing through the center (50 ⁇ ).
  • the impedance at the synthesis point N moves inductively on the isoconductance circle. That is, the impedance at the synthesis point N approaches the center of the Smith chart when the reactance component approaches zero.
  • L p1 is the inductance value of the matching inductor 3
  • L p2 is the inductance value according to the electrical length of the matching wiring 40
  • f is the center frequency of the passband. 1 / (2 ⁇ f (L p1 + L p2 )). Therefore, by setting the inductance value L p1 of the matching inductor 3 to an appropriate value corresponding to the length of the matching wiring 40, the impedance at the synthesis point N can be set to a predetermined impedance (50 ⁇ ).
  • the inductance value of the wiring should also be considered. Even with such a configuration, the impedance at the synthesis point N can be set to a predetermined impedance by adjusting the inductance value of the matching inductor 3 without providing a matching element in addition to the matching inductor 3.
  • the impedance at the antenna terminal Pant is also located at the center on the Smith chart as shown in “with matching L, phase at the antenna end” in FIG. Become. That is, the impedance at the antenna terminal Pant is a distance from the center on the Smith chart according to the electrical length of the antenna wiring 30 between the antenna terminal Pant and the synthesis point N as compared with the impedance at the synthesis point N. Keep rotating and rotate clockwise. However, since the impedance at the synthesis point N is located at the center of the Smith chart, the impedance at the antenna terminal Pant after the rotational movement is also located at the center of the Smith chart, similar to the impedance at the synthesis point N. Will be.
  • impedance matching can be achieved with a simple matching element (here, the matching inductor 3).
  • the reason why such an effect is achieved will be described in comparison with a comparative example of the present embodiment.
  • FIG. 6 is a circuit diagram of the multiplexer 901 according to the comparative example.
  • FIG. 7 is a schematic plan view schematically showing the mounting layout of the multiplexer 901 according to the comparative example.
  • the multiplexer 901 according to the comparative example shown in these drawings does not have a configuration for connecting a matching element (in the embodiment, the matching inductor 3) compared to the multiplexer 1 according to the embodiment.
  • the multiplexer 901 according to the comparative example does not include the matching wiring 40 and the matching terminal Pmtc as compared with the multiplexer 1 in FIGS. 2 and 3.
  • the matching inductor 903 is connected to the transmission line between the synthesis point N and the antenna 2.
  • the matching inductor 903 is a shunt-type inductor having one end connected to the transmission line between the synthesis point N and the antenna 2 and the other end connected to the ground potential.
  • the matching inductor 903 has one end connected to the antenna terminal Pant and the other end connected to the ground potential.
  • the antenna terminal Pant is connected to the synthesis point N via the antenna wiring 30. For this reason, even if one end of the matching inductor 903 is directly connected to the antenna terminal Pant, a “HOT” transmission line that propagates a transmission signal or a reception signal is located between the one end and the synthesis point N. Will be.
  • the multiplexer 901 according to the comparative example configured as described above has the following characteristics.
  • FIG. 8 is a Smith chart showing the characteristics of the multiplexer 901 according to the comparative example.
  • FIG. 5 also shows the characteristics of the multiplexer 1 shown in FIG.
  • the multiplexer 901 according to the comparative example includes the first filter 10 and the second filter 20 similar to those in the embodiment. Therefore, as shown in “no matching L, phase at the synthesis point” in FIG. 8, in the state where the matching inductor 903 is not connected, the impedance at the synthesis point N is the capacitive region on the Smith chart and the Smith chart. It lies on an isoconductance circle that passes through the center of.
  • the impedance at the antenna terminal Pant in a state where the matching inductor 903 is not connected depends on the electrical length of the antenna wiring 30 between the antenna terminal Pant and the synthesis point N from the center on the Smith chart. Rotate clockwise while keeping the distance. That is, the impedance at the antenna terminal Pant moves to the low impedance side as shown in “no matching L, phase at the antenna end” in FIG. 8 by rotating the phase by the antenna wiring 30.
  • the impedance at the antenna terminal Pant moves inductively on an isoconductance circle passing through a lower impedance side than the center on the Smith chart. Therefore, the impedance at the antenna terminal Pant is a Smith chart as shown in “with matching L, phase at antenna end” in FIG. 8 even when a matching inductor 903 that makes the reactance component 0 is connected. It becomes difficult to get close to the upper center.
  • the amount of change in impedance due to the electrical length of the antenna wiring 30 can also be estimated from the length of the antenna wiring 30 and the passband. For this reason, the structure which makes the impedance in the synthetic
  • the impedance when the multiplexer 901 side is viewed from the antenna 2 side is It is also affected by the electrical length of the wiring.
  • the length of the wiring is an arbitrary length unrelated to the multiplexer 901. For this reason, it is difficult to set the impedance at the synthesis point N to an appropriate value in advance so as to compensate for the amount of change in impedance due to the electrical length of the wiring.
  • the multiplexer 901 according to the comparative example has a problem that it is difficult to achieve impedance matching with a simple matching element (matching inductor 903 in the comparative example).
  • the multiplexer 1 includes the matching wiring 40 having one end connected to the matching terminal Pmtc and the other end connected to the composite wiring 60 constituting the composite point N.
  • the matching element matching inductor 3 in the embodiment
  • the impedance at the antenna terminal Pant is greatly affected by the electrical length of the antenna wiring 30. It becomes difficult to receive. Therefore, impedance matching can be achieved with a simple matching element.
  • the impedance matching at the antenna terminal Pant is achieved, and the following effects are further achieved.
  • FIG. 9A and 9B are Smith charts showing the characteristics of the multiplexer 1 according to the present embodiment. Specifically, FIG. 9A shows the impedance at the transmission terminal Ptx2 in a state where the matching inductor 3 is connected (impedance when the multiplexer 1 is viewed from the transmission terminal Ptx2). FIG. 9B shows the impedance at the reception terminal Prx2 in a state where the matching inductor 3 is connected (impedance when the multiplexer 1 is viewed from the reception terminal Prx2).
  • the concentration of impedance windings in the passband is improved in the central portion on the Smith chart as compared with the comparative example. That is, in the present embodiment, impedance matching can be achieved as compared with the comparative example. Therefore, the VSWR (Voltage Standing Wave Ratio) of both the Band 5 transmission pass band and the reception pass band is obtained. Improvement is planned.
  • the antenna wiring 30 and the matching wiring 40 are connected to substantially the same position of the synthetic wiring 60, so that the number of connection nodes in the synthetic wiring 60 can be reduced. As a result, the space required for providing the connection node can be reduced, and the multiplexer 1 can be reduced in size.
  • the antenna wiring 30 and the matching wiring 40 are disposed on the opposite sides of the composite wiring 60 in a plan view of the substrate (the package substrate 50 in the present embodiment). As a result, the space required for arranging the antenna wiring 30 and the matching wiring 40 can be reduced, and the multiplexer 1 can be miniaturized.
  • the antenna wiring 30 and the matching wiring 40 are arranged substantially orthogonal to the composite wiring 60 in the plan view. Thereby, the space required for arranging the antenna wiring 30 and the matching wiring 40 can be further reduced, and the multiplexer 1 can be further reduced in size.
  • the antenna terminal Pant and the matching terminal Pmtc are arranged at positions that are point-symmetric with respect to the center CP of the substrate (the package substrate 50 in the present embodiment). Therefore, for example, the same multiplexer 1 can be used for a mother board in which the arrangement of the first filter 10 and the second filter 20 is reversed.
  • the antenna wiring 30 and the matching wiring 40 are connected to substantially the same position of the composite wiring 60.
  • the position where the antenna wiring 30 and the matching wiring 40 are connected is not limited to this, and may be connected to different positions of the composite wiring 60, for example.
  • a multiplexer configured in this manner will be described as a first modification of the embodiment.
  • FIG. 10 is a plan view showing in detail the mounting layout of the multiplexer 1A according to the first modification of the embodiment.
  • the antenna wiring 30 and the matching wiring 40 are connected to different positions of the composite wiring 60. That is, the other end of the antenna wiring 30 whose one end is connected to the antenna terminal Pant and the other end of the matching wiring 40 whose one end is connected to the matching terminal Pmtc are connected to different positions of the composite wiring 60. Is done.
  • a matching element such as the matching inductor 3 can be connected to the synthesis point N without using the antenna wiring 30 as in the above embodiment. Therefore, according to the multiplexer 1A according to the present modification, impedance matching can be achieved with a simple matching element as in the above embodiment.
  • the antenna wiring 30 and the matching wiring 40 are arranged on the opposite sides of the synthetic wiring 60 in a plan view of the package substrate 50 and are arranged substantially orthogonal to the synthetic wiring 60. It was supposed to be. Further, the antenna terminal Pant and the matching terminal Pmtc are arranged at positions that are point-symmetric with respect to the center CP of the package substrate 50.
  • the arrangement of the antenna wiring 30 and the matching wiring 40 and the arrangement of the antenna terminal Pant and the matching terminal Pmtc are not limited thereto.
  • a description will be given of a multiplexer in which the arrangement mode of the antenna wiring 30 and the matching wiring 40 and the arrangement mode of the antenna terminal Pant and the matching terminal Pmtc are different from those of the embodiment.
  • FIG. 11 is a plan view showing in detail the mounting layout of the multiplexer 1B according to the second modification of the embodiment.
  • the antenna terminal Pant and the matching terminal Pmtc are arranged at positions that are not point-symmetric with respect to the center of the package substrate 50.
  • the plan view of the package substrate 50 is shown. 2 are disposed on the same side of the composite wiring 60. That is, in the above embodiment, the antenna terminal Pant and the matching terminal Pmtc are arranged on two opposite sides of the package substrate 50 having a substantially rectangular shape in plan view. Has been placed.
  • the antenna wiring 30 and the matching wiring 40 are arranged on the same side with respect to the composite wiring 60 in the plan view of the package substrate 50. Further, each of the antenna wiring 30 and the matching wiring 40 is connected to the composite wiring 60 at an angle (for example, 45 °) different from orthogonal in the plan view.
  • a matching element such as the matching inductor 3 can be connected to the synthesis point N without using the antenna wiring 30 as in the above embodiment. Therefore, according to the multiplexer 1B according to this modification, impedance matching can be achieved with a simple matching element, as in the above embodiment.
  • the multiplexer 1 is described as being connected to an external matching element such as the matching inductor 3, but the multiplexer may include a matching element.
  • FIG. 12 is a perspective view illustrating an example of an appearance of the multiplexer 201 according to the third modification of the embodiment.
  • the multiplexer 201 further includes a matching inductor 3 connected to the matching terminal Pmtc as compared with the multiplexer 1 shown in FIG. Further, the matching terminal Pmtc is an external connection terminal of the multiplexer 1 in the above embodiment, but is a connection terminal in the multiplexer 201 in the present modification.
  • the matching inductor 3 is, for example, a chip inductor connected between the matching terminal Pmtc and the ground potential.
  • the matching inductor 3 has an inductance that makes the impedance at the antenna terminal Pant a predetermined impedance (50 ⁇ ) by a combined inductance with the matching wiring 40 having an inductance corresponding to the electrical length.
  • the matching inductor 3 is connected to the matching terminal Pmtc provided on the upper surface of the package substrate 50 and mounted on the upper surface of the package substrate 50.
  • the multiplexer 201 includes the matching element (matching inductor 3 in the present modification), so that impedance matching can be achieved without including an external matching element. .
  • the matching inductor 3 has an inductance that makes the impedance at the antenna terminal Pant a predetermined impedance (50 ⁇ ) by the combined inductance with the matching wiring 40.
  • the multiplexer 201 can achieve better impedance matching.
  • FIG. 13 is a diagram conceptually illustrating an example of a cross-sectional structure of the multiplexer 301 configured as described above. In the figure, the first filter 10 and the second filter 20 are shown in a side view.
  • the multiplexer 301 includes a multilayer substrate 350 on which the first filter 10 and the second filter 20 are mounted, instead of the package substrate 50 shown in FIG.
  • the multilayer substrate 350 includes various conductors for forming the matching inductor 3 (for example, loop-shaped in-plane conductors, and through each layer in the thickness direction). Interlayer conductors, etc.) are provided. Therefore, in this configuration, the matching terminal Pmtc may not be provided on the surface of the multilayer substrate 350 but may be provided on the inner layer.
  • the multiplexer 301 configured in this way, the same effect as the multiplexer 201 is exhibited. Further, according to the multiplexer 301, since the first filter 10 and the second filter 20 are mounted on the multilayer substrate 350 in which the matching inductor 3 is built, further downsizing can be achieved.
  • a multiplexer including a plurality of filters each of which is a duplexer (the first filter 10 and the second filter 20 in the above-described embodiment) has been described as an example.
  • each of the plurality of filters is not limited to a duplexer, and may be, for example, a reception filter that performs filtering in the reception passband.
  • the multiplexer 1 includes two filters (the first filter 10 and the second filter 20 in the above embodiment).
  • the multiplexer only needs to include a plurality of filters, and may include, for example, three filters.
  • a multiplexer configured in this manner will be described as a fourth modification of the embodiment.
  • FIG. 14 is a circuit diagram of the multiplexer 401 according to the fourth modification of the embodiment.
  • the multiplexer 401 shown in the figure includes three filters 410, 420, and 430 corresponding to three different reception passbands, and the reception signals Prx41 to Prx43 corresponding to each band of the reception signal input to the antenna terminal Pant. It is a triplexer that outputs from.
  • the inputs of the filters 410, 420, and 430 are commonly connected (that is, bundled) at the synthesis point N.
  • the reception multiplexer 401 configured as described above, since the matching element such as the matching inductor 3 can be connected to the synthesis point N without passing through the antenna wiring 30, the transmission / reception according to the above embodiment is performed. The same effect as that of the multiplexer 1 is obtained.
  • the same technique can be applied to a configuration including a plurality of transmission filters as a plurality of filters.
  • the same technique can also be applied to a duplexer including one transmission filter and one reception filter.
  • the matching inductor 3 is described as an example of the matching element, but the matching element is not limited to this.
  • a capacitor may be used as the matching element.
  • the predetermined impedance for impedance matching is described as 50 ⁇ , but the predetermined impedance is not limited to this.
  • the predetermined impedance may be 75 ⁇ .
  • the predetermined impedance may be the input impedance of the antenna 2.
  • each of the antenna wiring 30, the matching wiring 40, and the composite wiring 60 is not limited to the pattern wiring provided on the upper surface of the substrate, but at least a part of the pattern wiring and via conductor provided on the inner layer or the lower surface of the substrate. It may be configured by.
  • the present invention can be widely used in communication devices such as mobile phones as a multiplexer that can achieve impedance matching with a simple matching element.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transceivers (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

第1フィルタ(10)及び第2フィルタ(20)を有するマルチプレクサ(1)であって、第1フィルタ(10)及び第2フィルタ(20)の入力または出力が共通接続された合成点(N)を構成する合成配線(60)と、マルチプレクサ(1)をアンテナ(2)に接続するためのアンテナ端子(Pant)と、一端がアンテナ端子(Pant)に接続され、他端が合成配線(60)に接続されるアンテナ用配線(30)と、アンテナ(2)とマルチプレクサ(1)との整合を図る整合インダクタ(3)を接続するための整合端子(Pmtc)と、一端が整合端子(Pmtc)に接続され、他端が合成配線(60)に接続される整合用配線(40)とを有する。

Description

マルチプレクサ
 本発明は、複数のフィルタを有するマルチプレクサに関する。
 携帯電話端末等の通信機器には、複数の周波数帯域および複数の無線方式、いわゆるマルチバンド化およびマルチモード化に対応することが要求されている。そこで、このような構成に対応するため、複数のフィルタを内蔵するマルチプレクサにおいて、複数のフィルタが共通接続された(すなわち複数のフィルタを束ねた)合成点を共通のアンテナ端子に接続する構成が提案されている(例えば、特許文献1参照)。このようなマルチプレクサでは、アンテナと合成点との間にシャント型のインダクタ等の整合素子を設けることにより、アンテナとのインピーダンス整合(マッチング)を図ることが想定されている。
特許第5310873号公報
 しかしながら、上記従来の構成では、合成点と整合素子とが、合成点とマルチプレクサのアンテナ端子とを接続する伝送線路を介して接続される。このため、整合素子の接続点での反射位相は、合成点での反射位相に比べて、当該伝送線路の電気長に応じて回転(移動)する。その結果、当該接続点でのインピーダンスが、インピーダンス整合を図るための所定のインピーダンス(例えば、50Ω)よりも低下する場合がある。この場合、整合素子としてシャント型のインダクタをアンテナ端子に接続しても、アンテナ端子でのインピーダンスを所定のインピーダンスに合わせることが難しく、インピーダンス整合を図ることができないという問題がある。
 なお、このような構成であっても、さらにコンデンサ等の整合素子を追加することにより、アンテナ端子でのインピーダンスを所定のインピーダンスに合わせることが可能である。しかしながら、この場合、追加した整合素子によって、低コスト化及び小型化が妨げられるといった別の問題が生じてしまう。
 そこで、本発明は、上記問題を解決するためになされたものであって、簡素な整合素子でインピーダンス整合を図ることができるマルチプレクサを提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係るマルチプレクサは、複数のフィルタを有するマルチプレクサであって、前記複数のフィルタの入力または出力が共通接続された合成点を構成する合成配線と、前記マルチプレクサをアンテナに接続するためのアンテナ端子と、一端が前記アンテナ端子に接続され、他端が前記合成配線に接続されるアンテナ用配線と、前記アンテナと前記マルチプレクサとの整合を図る整合素子を接続するための整合端子と、一端が前記整合端子に接続され、他端が前記合成配線に接続される整合用配線とを有する。
 これにより、整合素子がアンテナ用配線を介さずに合成点に接続されるため、アンテナ端子でのインピーダンスはアンテナ用配線の電気長による影響を極めて受けにくくなる。よって、簡素な整合素子でインピーダンス整合を図ることができる。
 また、前記アンテナ用配線の他端と前記整合用配線の他端とは、前記合成配線の略同一の位置に接続されることにしてもよい。
 これにより、合成配線における接続ノードの数を低減することができる。よって、接続ノードを設けるために必要なスペースの小面積化を図ることができ、マルチプレクサの小型化が図られる。
 また、前記アンテナ用配線と前記整合用配線とは、基板に設けられ、当該基板の平面視において前記合成配線に対して互いに反対側に配置されることにしてもよい。
 これにより、アンテナ用配線及び整合用配線を配置するために必要なスペースの小面積化を図ることができ、マルチプレクサの小型化が図られる。
 また、前記アンテナ用配線及び前記整合用配線は、前記基板の平面視において前記合成配線に略直交して配置されることにしてもよい。
 これにより、アンテナ用配線及び整合用配線を配置するために必要なスペースのさらなる小面積化を図ることができ、マルチプレクサのさらなる小型化が図られる。
 また、さらに、前記整合端子に接続された整合素子を有することにしてもよい。
 このように、マルチプレクサが整合素子を備えることにより、外付けの整合素子を備えることなくインピーダンス整合を図ることができる。
 また、前記整合素子は、前記整合端子とグランド電位との間に接続されたインダクタであり、前記インダクタは、電気長に応じたインダクタンスを有する前記整合用配線との合成インダクタンスによって、前記アンテナ端子でのインピーダンスを所定のインピーダンスにするようなインダクタンスを有することにしてもよい。
 これにより、マルチプレクサは、より良好なインピーダンス整合を図ることができる。
 本発明に係るマルチプレクサによれば、簡素な整合素子でインピーダンス整合を図ることができる。
図1は、実施の形態に係るマルチプレクサの外観の一例を示す斜視図である。 図2は、実施の形態に係るマルチプレクサの回路図である。 図3は、実施の形態に係るマルチプレクサの実装レイアウトを模式的に示す平面概略図である。 図4は、図3に示す実装レイアウトを詳細に示す平面図である。 図5は、実施の形態に係るマルチプレクサの特性を示すスミスチャートである。 図6は、比較例に係るマルチプレクサの回路図である。 図7は、比較例に係るマルチプレクサの実装レイアウトを模式的に示す平面概略図である。 図8は、比較例に係るマルチプレクサの特性を示すスミスチャートである。 図9Aは、実施の形態に係るマルチプレクサの他の特性を示すスミスチャートである。 図9Bは、実施の形態に係るマルチプレクサのさらに他の特性を示すスミスチャートである。 図10は、実施の形態の変形例1に係るマルチプレクサの実装レイアウトを詳細に示す平面図である。 図11は、実施の形態の変形例2に係るマルチプレクサの実装レイアウトを詳細に示す平面図である。 図12は、実施の形態の変形例3に係るマルチプレクサの外観の一例を示す斜視図である。 図13は、実施の形態の変形例3の他の一例に係るマルチプレクサの断面構造を概念的に示す図である。 図14は、実施の形態の変形例4に係るマルチプレクサの回路図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、以下の実施の形態において、「接続される」とは、直接接続される場合だけでなく、他の素子等を介して電気的に接続される場合も含まれる。
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。このため、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する場合がある。また、以下では、「略同一」等の表現を用いる場合があるが、「略同一」とは、完全に一致することを意味するだけでなく、実質的に一致することも意味する。すなわち、「略」とは、数%程度の誤差を含む。また、以下では、簡明のため、断面図に限らずレイアウト図にもハッチングを施す場合がある。また、以下では、インピーダンスチャートとイミタンスチャートとを特に区別せず、いずれもスミスチャートとして説明する。
 (実施の形態)
 図1は、本実施の形態に係るマルチプレクサ1の外観の一例を示す斜視図である。図2は、本実施の形態に係るマルチプレクサ1の回路図である。なお、図2では、マルチプレクサ1に接続される他の構成(ここでは、アンテナ2及び整合インダクタ3)についても、併せて図示する。これについては、以降の回路図においても同様である。
 これらの図に示すマルチプレクサ1は、例えば、LTE(Long Term Evolution)に対応し、3GPP(Third Generation Partnership Project)等の通信規格に準拠したBandの高周波信号を伝搬する。具体的には、マルチプレクサ1は、マルチバンド対応の携帯電話のフロントエンドに設けられ、アンテナ2とRFIC(Radio Frequency Integrated Circuit、図示せず)との間で複数の周波数帯域(Band)の送信信号(高周波送信信号)または受信信号(高周波送信信号)を伝搬する。本実施の形態では、マルチプレクサ1は、Band12(送信通過帯域:699-716MHz、受信通過帯域:729-746MHz)、及び、Band5(送信通過帯域:824-849MHz、受信通過帯域:869-894MHz)に適用されるクワッドプレクサである。
 具体的には、図1及び図2に示すように、マルチプレクサ1は、第1フィルタ10及び第2フィルタ20と、アンテナ用配線30と、整合用配線40と、パッケージ基板50とを有する。また、マルチプレクサ1は、外部接続用端子として、アンテナ端子Pant、整合端子Pmtc、送信端子Ptx1、Ptx2及び受信端子Prx1、Prx2を有する。
 以下、マルチプレクサ1の各構成について、具体的に説明する。
 第1フィルタ10は、Band12に対応するデュプレクサであり、Band12の送信用フィルタと受信用フィルタとを有し、パッケージ基板にFCB(Flip Chip Bonding)実装されている。
 具体的には、第1フィルタ10は、Band12の送信用フィルタと受信用フィルタとを共通接続する(束ねる)アンテナ端子である共通端子Pa1を有し、送信端子Ptx1から入力された送信信号をBand12の送信通過帯域でフィルタリングして共通端子Pa1から出力する。また、第1フィルタ10は、共通端子Pa1に入力された受信信号をBand12の受信通過帯域でフィルタリングして受信端子Prx1に出力する。
 第2フィルタ20は、Band5に対応するデュプレクサであり、共通端子Pa2を有する。なお、第2フィルタ20の具体的な構成は、対応するBandが異なることに関連する事項を除いて第1フィルタ10と同様であるため、以下では、簡略化して説明する。第2フィルタ20は、送信端子Ptx2に入力された送信信号をフィルタリングして共通端子Pa2から出力し、共通端子Pa2に入力された受信信号をフィルタリングして受信端子Prx2から出力する。
 図2に示すように、第1フィルタ10及び第2フィルタ20では、共通端子Pa1とアンテナ端子Pantとを接続する伝送線路と、共通端子Pa2とアンテナ端子Pantとを接続する伝送線路とが、合成点Nで束ねられて共通化されてアンテナ端子Pantに接続されている。つまり、合成点Nは、複数のフィルタ(本実施の形態では、第1フィルタ10及び第2フィルタ20)の入力または出力が共通接続される点(束ねられる点)である。
 本実施の形態では、第1フィルタ10及び第2フィルタ20は、それぞれ、表面弾性波(SAW:Surface Acoustic Wave)を利用した弾性表面波フィルタによって構成された圧電体チップである。
 なお、第1フィルタ10及び第2フィルタ20は、SAWを利用した弾性波フィルタに限定されず、バルク波(BAW: Bulk Acoustic Wave)を利用した弾性波フィルタであってもかまわない。また、第1フィルタ10及び第2フィルタ20は、弾性波フィルタに限定されず、チップインダクタ及びチップコンデンサ等を適宜組み合わせて構成されたフィルタであってもかまわない。
 アンテナ用配線30は、一端がアンテナ端子Pantに接続され、他端が合成点Nに接続される伝送線路である。つまり、アンテナ用配線30は、送信信号または受信信号を伝搬する、いわゆる「HOT」な伝送線路である。
 整合用配線40は、一端が整合端子Pmtcに接続され、他端が合成点Nに接続される伝送線路である。すなわち、整合用配線40は、アンテナ用配線30等の「HOT」な伝送線路を介さずに合成点Nに接続される。
 パッケージ基板50は、第1フィルタ10及び第2フィルタ20が実装され、マルチプレクサ1の回路構成を形成するための各種の導体が設けられる基板であり、例えばガラスエポキシ基板である。当該導体には、マルチプレクサ1の各端子を形成する表面電極、マルチプレクサ1の伝送線路を形成する配線およびビア導体等が含まれる。当該導体は、例えば、Ti、Al、Cu、Pt、Au、Ag、Pdなどの金属または合金から構成される。
 アンテナ端子Pantは、マルチプレクサ1をアンテナ2に接続するための端子である。整合端子Pmtcは、アンテナ2とマルチプレクサ1との整合(インピーダンス整合)を図る整合素子(ここでは、整合インダクタ3)を接続するための端子である。送信端子Ptx1、Ptx2及び受信端子Prx1、Prx2は、マルチプレクサ1を例えばRFICに接続するための端子である。これらの端子は、例えば、パッケージ基板50の下面の表面電極として設けられる。
 このように構成されたマルチプレクサ1は、例えば、封止樹脂等で封止されて1パッケージ化され、アンテナ2及び整合インダクタ3等の他の回路部品が設けられたマザー基板に実装される。なお、マルチプレクサ1は、1パッケージ化されていなくてもよく、マルチプレクサ1の回路構成を形成するための各種の導体が設けられたマザー基板に、第1フィルタ10及び第2フィルタ20が実装されることにより構成されていてもかまわない。
 次に、マルチプレクサ1の実装レイアウトについて説明する。
 図3は、本実施の形態に係るマルチプレクサ1の実装レイアウトを模式的に示す平面概略図である。図4は、図3に示す実装レイアウトを詳細に示す平面図である。なお、これらの図には、マルチプレクサ1に接続されるアンテナ2及び整合インダクタ3についても、併せて図示されている。また、図4では、簡明のため、第1フィルタ10及び第2フィルタ20を透視して図示している。これらの事項については、以降の平面概略図または平面図においても同様である。
 これらの図に示すように、第1フィルタ10と第2フィルタ20とは、平面視において略矩形状のパッケージ基板50の上面に、長手方向に並んで配置される。具体的には、第1フィルタ10と第2フィルタ20とは、例えば、平面視において端子配置がパッケージ基板50の中心CPを通る仮想線に対して線対称となるように配置されている。
 なお、ここでは、パッケージ基板50に対して第1フィルタ10と第2フィルタ20が配置される面を上面として説明するが、マルチプレクサ1の使用態様によっては当該面が上面にならない場合も考えられる。このため、パッケージ基板50の上面はマルチプレクサ1の上側の面には限定されない。
 本実施の形態では、共通端子Pa1及び共通端子Pa2は、平面視においてパッケージ基板50の中央部分に配置されている。また、本実施の形態では、アンテナ端子Pant、整合端子Pmtc、送信端子Ptx1、Ptx2及び受信端子Prx1、Prx2は、パッケージ基板50の周縁部に配置されている。具体的には、当該周縁部の角部に送信端子Ptx1、Ptx2及び受信端子Prx1、Prx2が配置され、当該周縁部の長辺中央部にアンテナ端子Pant及び整合端子Pmtcが配置されている。つまり、アンテナ端子Pantと整合端子Pmtcとは、パッケージ基板50の中心CPに対して点対称となる位置に配置されている。
 なお、これらも端子の配置は特に限定されないが、例えば、アイソレーション確保の観点から、送信端子Ptx1、Ptx2及び受信端子Prx1、Prx2は、パッケージ基板50の互いに異なる角部に配置されることが好ましい。
 共通端子Pa1及び共通端子Pa2とアンテナ端子Pant及び整合端子Pmtcとは、パッケージ基板50に設けられた例えば特性インピーダンスが50Ωの伝送線路によって接続される。この伝送線路には、上述したアンテナ用配線30及び整合用配線40と、合成点Nを構成する合成配線60とが含まれる。
 アンテナ用配線30は、一端がアンテナ端子Pantに接続され、他端が合成配線60に接続され、例えば、パッケージ基板50の上面に設けられたパターン配線によって形成される。
 整合用配線40は、一端が整合端子Pmtcに接続され、他端が合成配線60に接続され、例えば、パッケージ基板50の上面に設けられたパターン配線によって形成される。
 これらアンテナ用配線30及び整合用配線40は、本実施の形態では、パッケージ基板50の平面視において、第1フィルタ10と第2フィルタ20との間の領域に配置されている。また、アンテナ用配線30の他端と整合用配線40の他端とは、合成配線60の略同一の位置に接続され、詳細には合成配線60の略中心に接続される。また、アンテナ用配線30と整合用配線40とは、パッケージ基板50の平面視において合成配線60に対して互いに反対側に配置される。また、アンテナ用配線30及び整合用配線40は、パッケージ基板50の平面視において合成配線60に略直交して配置される。
 合成配線60は、合成点Nを構成し、例えば、パッケージ基板50の上面に設けられたパターン配線によって形成される。具体的には、合成配線60は、複数のフィルタ同士(ここでは、第1フィルタ10と第2フィルタ20)を接続する伝送線路のうち基幹をなす配線である。つまり、合成配線60は、当該伝送線路のうち、分岐してアンテナ端子Pantに至るアンテナ用配線30、分岐して整合端子Pmtcに至る整合用配線40、及び、分岐して各フィルタに至る配線を除いた配線である。より具体的には、合成配線60は、略同一の電気特性を有すると見なすことができる配線であり、例えば、マルチプレクサ1が使用される周波数帯域の略1/4以下の電気長を有する配線であることが望ましい。
 なお、これらの配線の各々は、本実施の形態では略直線状に配置されているが、これらの配線の形状は特に限定されない。例えば、これらの配線の少なくとも1つは、屈曲状に配置されていてもかまわない。
 以下、このように構成されたマルチプレクサ1の特性について説明する。なお、以下では、マルチプレクサ1の特性について第2フィルタ20の通過帯域(Band5)に着目して説明するが、マルチプレクサ1は第1フィルタ10の通過帯域(Band12)に着目しても同様の特性を有する。
 図5は、本実施の形態に係るマルチプレクサ1の特性を示すスミスチャートである。具体的には、同図には、整合インダクタ3を接続しない状態での合成点Nでのインピーダンス(合成点Nから第1フィルタ10及び第2フィルタ20側を見たインピーダンス)、及び、整合インダクタ3を接続した状態でのアンテナ端子Pantでのインピーダンス(アンテナ端子Pantからマルチプレクサ1内部を見たインピーダンス)が示されている。
 なお、同図には、第2フィルタ20の通過帯域を包含する広帯域(750MHz-950MHz)のインピーダンスの軌跡が示されており、当該通過帯域内の軌跡が太線で示されている。
 図5中の「整合L無し、合成点での位相」に示すように、整合インダクタ3を接続しない状態では、合成点Nでのインピーダンスは、スミスチャート上の容量性領域(下半分の領域)に位置する。これは、本実施の形態では、マルチプレクサ1を構成する第1フィルタ10及び第2フィルタ20が弾性表面波フィルタであることによる。
 また、整合インダクタ3を接続しない状態では、合成点Nでのインピーダンスは、スミスチャート上の中心(50Ω)を通る等コンダクタンス円上に位置する。これは、整合端子Pmtcに接続される整合素子(本実施の形態では整合インダクタ3)が、整合端子Pmtcとグランド電位との間に接続される、いわゆるシャント型の整合素子となることによる。
 つまり、マルチプレクサ1にシャント型の整合素子が接続されると、アンテナ端子Pantからマルチプレクサ1内部を見たインピーダンスは等コンダクタンス円に沿って移動することとなる。このため、シャント型の整合素子を接続してアンテナ端子Pantでのインピーダンスを所定のインピーダンス(50Ω)にするためには、整合素子を接続しない状態で、合成点Nでのインピーダンスがスミスチャート上の中心(50Ω)を通る等コンダクタンス円上に位置することが必要となる。
 このような特性を有するマルチプレクサ1に整合インダクタ3を接続すると、合成点Nでのインピーダンスは等コンダクタンス円上を誘導性へと移動する。つまり、合成点Nでのインピーダンスは、リアクタンス成分が0に近づくことにより、スミスチャート上の中心部に近付くこととなる。
 このときのリアクタンス成分の変化量ΔBは、整合インダクタ3のインダクタンス値をLp1、整合用配線40の電気長に応じたインダクタンス値をLp2とし、通過帯域の中心周波数をfとすると、ΔB=1/(2πf(Lp1+Lp2))で表される。このため、整合インダクタ3のインダクタンス値Lp1を整合用配線40の長さに応じた適切な値にすることにより、合成点Nでのインピーダンスを所定のインピーダンス(50Ω)にすることができる。
 なお、マルチプレクサ1がマザー基板等に実装され、整合インダクタ3とマルチプレクサ1とが当該マザー基板の配線を介して接続される場合には、当該配線によるインダクタンス値も考慮すべきことは言うまでもない。このような構成であっても、整合インダクタ3の他に整合素子を設けることなく、整合インダクタ3のインダクタンス値を調整することにより、合成点Nでのインピーダンスを所定のインピーダンスにすることができる。
 したがって、整合インダクタ3を接続した状態では、図5中の「整合L有り、アンテナ端での位相」に示すように、アンテナ端子Pantでのインピーダンスも、スミスチャート上の中心部に位置することとなる。つまり、アンテナ端子Pantでのインピーダンスは、合成点Nでのインピーダンスに比べて、アンテナ端子Pantと合成点Nとの間のアンテナ用配線30の電気長に応じて、スミスチャート上を中心からの距離を保ったまま時計回りに回転移動する。ただし、合成点Nでのインピーダンスがスミスチャート上の中心部に位置するため、回転移動後のアンテナ端子Pantでのインピーダンスも、合成点Nでのインピーダンスと同様に、スミスチャート上の中心部に位置することとなる。
 したがって、本実施の形態に係るマルチプレクサ1によれば、簡素な整合素子(ここでは、整合インダクタ3)でインピーダンス整合を図ることができる。以下、このような効果が奏される理由について、本実施の形態の比較例と対比して説明する。
 図6は、比較例に係るマルチプレクサ901の回路図である。図7は、比較例に係るマルチプレクサ901の実装レイアウトを模式的に示す平面概略図である。
 これらの図に示す比較例に係るマルチプレクサ901は、実施の形態に係るマルチプレクサ1に比べて、整合素子(実施の形態では、整合インダクタ3)が接続されるための構成を備えない。具体的には、図6及び図7に示すように比較例に係るマルチプレクサ901は、図2及び図3のマルチプレクサ1に比べて、整合用配線40及び整合端子Pmtcを備えない。このため、比較例に係るマルチプレクサ901では、合成点Nとアンテナ2との間の伝送線路に整合インダクタ903が接続される。
 整合インダクタ903は、一端が合成点Nとアンテナ2との間の伝送線路に接続され、他端がグランド電位に接続されたシャント型のインダクタである。例えば、整合インダクタ903は、一端がアンテナ端子Pantに接続され、他端がグランド電位に接続される。
 ここで、アンテナ端子Pantは、アンテナ用配線30を介して合成点Nに接続される。このため、整合インダクタ903の一端がアンテナ端子Pantに直接接続された場合であっても、当該一端と合成点Nとの間には送信信号または受信信号を伝搬する「HOT」な伝送線路が位置することとなる。
 このように構成された比較例に係るマルチプレクサ901は、次のような特性を有する。
 図8は、比較例に係るマルチプレクサ901の特性を示すスミスチャートである。なお、同図には、比較のため、図5に示したマルチプレクサ1の特性も示されている。
 比較例に係るマルチプレクサ901は、実施の形態と同様の第1フィルタ10及び第2フィルタ20を有する。このため、図8中の「整合L無し、合成点での位相」に示すように、整合インダクタ903を接続しない状態では、合成点Nでのインピーダンスはスミスチャート上の容量性領域かつスミスチャート上の中心を通る等コンダクタンス円上に位置する。
 このとき、整合インダクタ903を接続していない状態のアンテナ端子Pantでのインピーダンスは、アンテナ端子Pantと合成点Nとの間のアンテナ用配線30の電気長に応じて、スミスチャート上を中心からの距離を保ったまま時計回りに回転移動する。つまり、アンテナ端子Pantでのインピーダンスは、アンテナ用配線30によって位相が回転することにより、図8中の「整合L無し、アンテナ端での位相」に示すように、低インピーダンス側へと移動する。
 したがって、整合インダクタ903を接続すると、アンテナ端子Pantでのインピーダンスは、スミスチャート上の中心よりも低インピーダンス側を通る等コンダクタンス円上を誘導性へと移動することとなる。このため、アンテナ端子Pantでのインピーダンスは、リアクタンス成分を0にするような整合インダクタ903が接続されても、図8中の「整合L有り、アンテナ端での位相」に示すように、スミスチャート上の中心部に近付きにくくなる。
 なお、アンテナ用配線30の電気長によるインピーダンスの変化量は、アンテナ用配線30の長さ及び通過帯域等から推定することも可能である。このため、整合インダクタ903を接続しない状態での合成点Nでのインピーダンスを、比較例よりも高インピーダンスにして、アンテナ用配線30の電気長によるインピーダンスの変化量を補償する構成が考えられる。
 しかしながら、マルチプレクサ901をマザー基板等に実装し、整合インダクタ903とアンテナ端子Pantとが当該マザー基板の「HOT」な配線を介して接続される場合、アンテナ2側からマルチプレクサ901側を見たインピーダンスは、当該配線の電気長によっても影響される。ここで、当該配線の長さはマルチプレクサ901とは無関係の任意の長さである。このため、当該配線の電気長によるインピーダンスの変化量を補償するように、合成点Nでのインピーダンスを予め適切な値にすることは困難である。
 このように、比較例に係るマルチプレクサ901では、整合インダクタ903と合成点Nとが「HOT」な伝送線路であるアンテナ用配線30を介して接続される。このため、比較例に係るマルチプレクサ901では、簡素な整合素子(比較例では整合インダクタ903)でインピーダンス整合を図ることが難しいという問題がある。
 これに対して、本実施の形態に係るマルチプレクサ1では、一端が整合端子Pmtcに接続され、他端が合成点Nを構成する合成配線60に接続される整合用配線40を有する。これにより、整合素子(実施の形態では整合インダクタ3)がアンテナ用配線30を介さずに合成点Nに接続されるため、アンテナ端子Pantでのインピーダンスはアンテナ用配線30の電気長による影響を極めて受けにくくなる。よって、簡素な整合素子でインピーダンス整合を図ることができる。
 また、アンテナ端子Pantでのインピーダンス整合が図られることにより、さらに、次のような効果が奏される。
 図9A及び図9Bは、本実施の形態に係るマルチプレクサ1の特性を示すスミスチャートである。具体的には、図9Aは、整合インダクタ3を接続した状態における送信端子Ptx2でのインピーダンス(送信端子Ptx2からマルチプレクサ1内部を見たインピーダンス)が示されている。また、図9Bは、整合インダクタ3を接続した状態における受信端子Prx2でのインピーダンス(受信端子Prx2からマルチプレクサ1内部を見たインピーダンス)が示されている。
 なお、いずれの図にも、上記比較例に係るマルチプレクサ901に整合インダクタ903を接続した状態における、送信端子Ptx2でのインピーダンス及び受信端子Prx2でのインピーダンスについても、併せて示されている。
 これらの図に示すように、本実施の形態では、比較例に比べて、スミスチャート上の中心部において、通過帯域でのインピーダンスの巻きの集中度が改善していることが分かる。すなわち、本実施の形態では、比較例に比べて、インピーダンス整合を図ることができるため、Band5の送信通過帯域及び受信通過帯域のいずれについてもVSWR(電圧定在波比:Voltage Standing Wave Ratio)の改善が図られる。
 また、本実施の形態では、アンテナ用配線30と整合用配線40とが合成配線60の略同一の位置に接続されることにより、合成配線60における接続ノードの数を低減することができる。これにより、接続ノードを設けるために必要なスペースの小面積化を図ることができ、マルチプレクサ1の小型化が図られる。
 また、本実施の形態では、基板(本実施の形態ではパッケージ基板50)の平面視において、アンテナ用配線30と整合用配線40とが合成配線60に対して互いに反対側に配置される。これにより、アンテナ用配線30及び整合用配線40を配置するために必要なスペースの小面積化を図ることができ、マルチプレクサ1の小型化が図られる。
 また、本実施の形態では、当該平面視において、アンテナ用配線30と整合用配線40とが合成配線60に略直交して配置される。これにより、アンテナ用配線30及び整合用配線40を配置するために必要なスペースのさらなる小面積化を図ることができ、マルチプレクサ1のさらなる小型化が図られる。
 また、本実施の形態では、アンテナ端子Pantと整合端子Pmtcとは、基板(本実施の形態ではパッケージ基板50)の中心CPに対して点対称となる位置に配置される。したがって、例えば、第1フィルタ10と第2フィルタ20との配置が逆になっているマザー基板にも同一のマルチプレクサ1を使用することができる。
 なお、マルチプレクサの態様は、上記実施の形態と異なる態様であってもかまわない。そこで、以下、実施の形態における各種の変形例について説明する。また、以下では、実施の形態と同等の事項については適宜説明を省略し、主に実施の形態と異なる点について説明する。
 (変形例1)
 上記実施の形態では、アンテナ用配線30と整合用配線40とは、合成配線60の略同一の位置に接続されるとした。しかし、アンテナ用配線30と整合用配線40とが接続される位置はこれに限らず、例えば、合成配線60の互いに異なる位置に接続されてもかまわない。以下、実施の形態の変形例1として、このように構成されたマルチプレクサについて説明する。
 図10は、実施の形態の変形例1に係るマルチプレクサ1Aの実装レイアウトを詳細に示す平面図である。
 同図に示すように、本変形例では、アンテナ用配線30と整合用配線40とが、合成配線60の互いに異なる位置に接続されている。つまり、一端がアンテナ端子Pantに接続されるアンテナ用配線30の他端と、及び、一端が整合端子Pmtcに接続される整合用配線40の他端とは、合成配線60の互いに異なる位置に接続される。
 このように構成されたマルチプレクサ1Aであっても、上記実施の形態と同様に、アンテナ用配線30を介さずに、整合インダクタ3等の整合素子を合成点Nに接続することができる。したがって、本変形例に係るマルチプレクサ1Aによれば、上記実施の形態と同様に、簡素な整合素子でインピーダンス整合を図ることができる。
 (変形例2)
 上記実施の形態では、アンテナ用配線30と整合用配線40とは、パッケージ基板50の平面視において、合成配線60に対して互いに反対側に配置され、かつ、合成配線60と略直交して配置されるとした。また、アンテナ端子Pantと整合端子Pmtcとは、パッケージ基板50の中心CPに対して点対称となる位置に配置されるとした。
 しかし、アンテナ用配線30及び整合用配線40の配置態様、ならびに、アンテナ端子Pant及び整合端子Pmtcの配置態様はこれに限らない。以下、実施の形態の変形例2として、実施の形態に比べて、アンテナ用配線30及び整合用配線40の配置態様、ならびに、アンテナ端子Pant及び整合端子Pmtcの配置態様が異なるマルチプレクサについて説明する。
 図11は、実施の形態の変形例2に係るマルチプレクサ1Bの実装レイアウトを詳細に示す平面図である。
 同図に示すように、本変形例では、アンテナ端子Pantと整合端子Pmtcとは、パッケージ基板50の中心に対して点対称とならない位置に配置され、具体的には、パッケージ基板50の平面視において、合成配線60の同一側に配置されている。つまり、アンテナ端子Pantと整合端子Pmtcとは、上記実施の形態では、平面視形状が略矩形状のパッケージ基板50の対向する2つの辺に配置されていたが、本変形例では、同一辺に配置されている。
 これに伴い、本変形例では、アンテナ用配線30と整合用配線40とは、パッケージ基板50の平面視において、合成配線60に対して同一側に配置されている。また、アンテナ用配線30及び整合用配線40の各々は、当該平面視において、直交とは異なる角度(例えば、45°)で合成配線60に接続されている。
 このように構成されたマルチプレクサ1Bであっても、上記実施の形態と同様に、アンテナ用配線30を介さずに、整合インダクタ3等の整合素子を合成点Nに接続することができる。したがって、本変形例に係るマルチプレクサ1Bによれば、上記実施の形態と同様に、簡素な整合素子でインピーダンス整合を図ることができる。
 (変形例3)
 上記実施の形態では、マルチプレクサ1は整合インダクタ3等の外付けの整合素子に接続されるとして説明したが、マルチプレクサは整合素子を内蔵してもかまわない。
 図12は、実施の形態の変形例3に係るマルチプレクサ201の外観の一例を示す斜視図である。
 同図に示すように、マルチプレクサ201は、図1に示すマルチプレクサ1に比べて、さらに、整合端子Pmtcに接続された整合インダクタ3を備える。また、整合端子Pmtcは、上記実施の形態ではマルチプレクサ1の外部接続用端子であったが、本変形例では、マルチプレクサ201内の接続用端子である。
 整合インダクタ3は、整合端子Pmtcとグランド電位との間に接続される、例えばチップインダクタである。この整合インダクタ3は、電気長に応じたインダクタンスを有する整合用配線40との合成インダクタンスによって、アンテナ端子Pantでのインピーダンスを所定のインピーダンス(50Ω)にするようなインダクタンスを有する。例えば、整合インダクタ3は、パッケージ基板50の上面に設けられた整合端子Pmtcに接続されて、パッケージ基板50の上面に実装される。
 このように、本変形例に係るマルチプレクサ201によれば、マルチプレクサ201が整合素子(本変形例では整合インダクタ3)を備えることにより、外付けの整合素子を備えることなくインピーダンス整合を図ることができる。
 また、本変形例に係るマルチプレクサ201によれば、整合インダクタ3が、整合用配線40との合成インダクタンスによって、アンテナ端子Pantでのインピーダンスを所定のインピーダンス(50Ω)にするようなインダクタンスを有する。これにより、マルチプレクサ201は、より良好なインピーダンス整合を図ることができる。
 なお、整合インダクタ3はチップインダクタに限らず、多層基板に内蔵されていてもかまわない。図13は、このように構成されたマルチプレクサ301の断面構造の一例を概念的に示す図である。なお、同図では、第1フィルタ10及び第2フィルタ20について、側面視して示している。
 同図に示すように、マルチプレクサ301は、図12に示すパッケージ基板50に代わり、第1フィルタ10及び第2フィルタ20を実装する多層基板350を備える。多層基板350には、マルチプレクサ301の回路を形成するための各種の導体に加え、整合インダクタ3を形成するための各種の導体(例えば、ループ状の面内導体、及び、各層を厚み方向に貫通する層間導体等)が設けられる。このため、この構成では、整合端子Pmtcが多層基板350の表面に設けられず、内層に設けられてもかまわない。
 このように構成されたマルチプレクサ301であっても、マルチプレクサ201と同様の効果が奏される。また、マルチプレクサ301によれば、整合インダクタ3が内蔵された多層基板350に第1フィルタ10及び第2フィルタ20が実装されているため、さらなる小型化が図られる。
 (変形例4)
 また、上記実施の形態では、各々がデュプレクサである複数のフィルタ(上記実施の形態では第1フィルタ10及び第2フィルタ20)を備えるマルチプレクサを例に説明した。しかし、複数のフィルタの各々はデュプレクサに限らず、例えば、受信通過帯域でフィルタリングする受信用フィルタであってもかまわない。また、上記実施の形態では、マルチプレクサ1は2つのフィルタ(上記実施の形態では第1フィルタ10及び第2フィルタ20)を備えるとした。しかし、マルチプレクサは複数のフィルタを備えればよく、例えば3つのフィルタを備えてもかまわない。以下、実施の形態の変形例4として、このように構成されたマルチプレクサについて説明する。
 図14は、実施の形態の変形例4に係るマルチプレクサ401の回路図である。
 同図に示すマルチプレクサ401は、互いに異なる3つの受信通過帯域に対応する3つのフィルタ410、420、430を有し、アンテナ端子Pantに入力された受信信号を帯域ごとに対応する受信端子Prx41~Prx43から出力する、トリプレクサである。また、フィルタ410、420、430の入力は合成点Nで共通接続されている(すなわち束ねられている)。
 このように構成された受信用のマルチプレクサ401であっても、アンテナ用配線30を介さずに整合インダクタ3等の整合素子を合成点Nに接続することができるため、上記実施の形態に係る送受信用のマルチプレクサ1と同様の効果が奏される。
 なお、同様の技術は、複数のフィルタとして複数の送信用フィルタを備える構成に適用することもできる。また、同様の技術は、1つの送信用フィルタと1つの受信用フィルタとを備えるデュプレクサに適用することもできる。
 (その他の実施の形態)
 以上、本発明の実施の形態及びその変形例に係るマルチプレクサについて説明したが、本発明は、個々の実施の形態及びその変形例には限定されない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態及びその変形例に施したものや、異なる実施の形態及びその変形例における構成要素を組み合わせて構築される形態も、本発明の一つまたは複数の態様の範囲内に含まれてもよい。
 例えば、上記説明では、整合素子として整合インダクタ3を例に説明したが、整合素子はこれに限らない。例えば、整合素子を接続しない状態で、合成点Nでのインピーダンスがスミスチャート上の誘導性領域(上半分の領域)に位置するようなマルチプレクサでは、整合素子としてコンデンサを用いてもかまわない。
 また、例えば、上記説明では、インピーダンス整合を図るための所定のインピーダンスを50Ωとして説明したが、所定のインピーダンスはこれに限らない。例えば、マルチプレクサが75Ω系の通信機器等に用いられる場合、所定のインピーダンスは75Ωであってもかまわない。あるいは、アンテナ2とマルチプレクサとを接続する伝送線路の特性インピーダンスがアンテナ2の入力インピーダンスに合わせて設計されている場合、所定のインピーダンスはアンテナ2の入力インピーダンスであってもかまわない。
 また、アンテナ用配線30、整合用配線40及び合成配線60の各々は、基板の上面に設けられたパターン配線に限らず、少なくとも一部が基板の内層または下面に設けられたパターン配線及びビア導体によって構成されていてもかまわない。
 本発明は、簡素な整合素子でインピーダンス整合を図ることができるマルチプレクサとして、携帯電話などの通信機器に広く利用できる。
 1、1A、1B、201、301、401、901  マルチプレクサ
 2  アンテナ
 3、903  整合インダクタ
 10  第1フィルタ
 20  第2フィルタ
 30  アンテナ用配線
 40  整合用配線
 50  パッケージ基板
 60  合成配線
 350  多層基板
 410、420、430  フィルタ
 N  合成点
 Pant  アンテナ端子
 Pa1、Pa2  共通端子
 Pmtc  整合端子
 Ptx1、Ptx2  送信端子
 Prx1、Prx2、Prx41~Prx43  受信端子

Claims (6)

  1.  複数のフィルタを有するマルチプレクサであって、
     前記複数のフィルタの入力または出力が共通接続された合成点を構成する合成配線と、
     前記マルチプレクサをアンテナに接続するためのアンテナ端子と、
     一端が前記アンテナ端子に接続され、他端が前記合成配線に接続されるアンテナ用配線と、
     前記アンテナと前記マルチプレクサとの整合を図る整合素子を接続するための整合端子と、
     一端が前記整合端子に接続され、他端が前記合成配線に接続される整合用配線とを有する
     マルチプレクサ。
  2.  前記アンテナ用配線の他端と前記整合用配線の他端とは、前記合成配線の略同一の位置に接続される
     請求項1に記載のマルチプレクサ。
  3.  前記アンテナ用配線と前記整合用配線とは、基板に設けられ、当該基板の平面視において前記合成配線に対して互いに反対側に配置される
     請求項1または2に記載のマルチプレクサ。
  4.  前記アンテナ用配線及び前記整合用配線は、前記基板の平面視において前記合成配線に略直交して配置される
     請求項3に記載のマルチプレクサ。
  5.  さらに、前記整合端子に接続された整合素子を有する
     請求項1~4のいずれか1項に記載のマルチプレクサ。
  6.  前記整合素子は、前記整合端子とグランド電位との間に接続されたインダクタであり、
     前記インダクタは、電気長に応じたインダクタンスを有する前記整合用配線との合成インダクタンスによって、前記アンテナ端子でのインピーダンスを所定のインピーダンスにするようなインダクタンスを有する
     請求項5に記載のマルチプレクサ。
PCT/JP2016/084147 2015-12-28 2016-11-17 マルチプレクサ WO2017115579A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680076597.5A CN108432131B (zh) 2015-12-28 2016-11-17 多工器
JP2017558879A JP6832871B2 (ja) 2015-12-28 2016-11-17 マルチプレクサ
KR1020187018008A KR102059285B1 (ko) 2015-12-28 2016-11-17 멀티플렉서
US16/015,347 US10574206B2 (en) 2015-12-28 2018-06-22 Multiplexer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-257469 2015-12-28
JP2015257469 2015-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/015,347 Continuation US10574206B2 (en) 2015-12-28 2018-06-22 Multiplexer

Publications (1)

Publication Number Publication Date
WO2017115579A1 true WO2017115579A1 (ja) 2017-07-06

Family

ID=59224805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084147 WO2017115579A1 (ja) 2015-12-28 2016-11-17 マルチプレクサ

Country Status (5)

Country Link
US (1) US10574206B2 (ja)
JP (1) JP6832871B2 (ja)
KR (1) KR102059285B1 (ja)
CN (1) CN108432131B (ja)
WO (1) WO2017115579A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235490A1 (ja) * 2018-06-05 2019-12-12 株式会社村田製作所 マルチプレクサ
JP2022051613A (ja) * 2020-09-21 2022-04-01 三安ジャパンテクノロジー株式会社 弾性波デバイス

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106785257B (zh) * 2017-02-20 2020-01-31 联想(北京)有限公司 多工器焊盘、电路板及电子设备
CN111342813B (zh) * 2018-12-18 2023-05-12 天津大学 基于移相网络提高隔离度的射频压电多工器和电子设备
JP6919664B2 (ja) * 2019-01-31 2021-08-18 株式会社村田製作所 マルチプレクサおよび通信装置
US11245432B2 (en) * 2019-03-06 2022-02-08 Skyworks Solutions, Inc. Radio frequency device with integrated antenna tuner and multiplexer
WO2021021730A2 (en) * 2019-07-31 2021-02-04 QXONIX Inc. Doped bulk acoustic wave (baw) resonator structures, devices and systems
CN111628745B (zh) * 2020-05-29 2021-04-16 诺思(天津)微***有限责任公司 信号传输线和双工器、多工器、通信设备
CN112511126B (zh) * 2020-10-30 2022-03-15 诺思(天津)微***有限责任公司 多工器和改善多工器隔离度的方法以及通信设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1146101A (ja) * 1997-07-25 1999-02-16 Toshiba Corp 高周波スイッチ装置
JP2008067413A (ja) * 1998-06-09 2008-03-21 Oki Electric Ind Co Ltd 分波器
JP2009508417A (ja) * 2005-09-12 2009-02-26 エプコス アクチエンゲゼルシャフト 電気的なモジュール

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310873A (en) 1976-07-17 1978-01-31 Omron Tateisi Electronics Co Method of manufacturing contact piece block
US6222426B1 (en) 1998-06-09 2001-04-24 Oki Electric Industry, Co., Ltd. Branching filter with a composite circuit of an LC circuit and a serial arm saw resonator
US6690251B2 (en) * 2001-04-11 2004-02-10 Kyocera Wireless Corporation Tunable ferro-electric filter
AU2003903826A0 (en) * 2003-07-24 2003-08-07 University Of South Australia An ofdm receiver structure
WO2004004061A1 (en) * 2002-06-27 2004-01-08 Memgen Corporation Miniature rf and microwave components and methods for fabricating such components
JP2004173234A (ja) * 2002-11-08 2004-06-17 Murata Mfg Co Ltd 分波器および複合モジュール
TW200520201A (en) * 2003-10-08 2005-06-16 Kyocera Corp High-frequency module and communication apparatus
JP2005123910A (ja) * 2003-10-16 2005-05-12 Kyocera Corp 複合型分波回路、並びにそれを用いたチップ部品、高周波モジュール及び無線通信機器
CN101438459A (zh) * 2006-03-08 2009-05-20 维斯普瑞公司 可调谐阻抗匹配网络和可调谐双工器匹配***
JP2009535942A (ja) * 2006-04-27 2009-10-01 レイスパン コーポレーション メタマテリアル構造に基づくアンテナ、デバイス、及びシステム
JP5344736B2 (ja) * 2008-02-20 2013-11-20 太陽誘電株式会社 基材、通信モジュール、および通信装置
JP5187361B2 (ja) 2010-08-16 2013-04-24 株式会社村田製作所 高周波モジュール
WO2012063516A1 (ja) 2010-11-09 2012-05-18 株式会社村田製作所 弾性波フィルタ装置
JP2012156741A (ja) * 2011-01-26 2012-08-16 Panasonic Corp アンテナ共用器
KR101644383B1 (ko) * 2012-08-30 2016-08-01 가부시키가이샤 무라타 세이사쿠쇼 필터 장치
JP6112654B2 (ja) * 2013-01-29 2017-04-12 太陽誘電株式会社 モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1146101A (ja) * 1997-07-25 1999-02-16 Toshiba Corp 高周波スイッチ装置
JP2008067413A (ja) * 1998-06-09 2008-03-21 Oki Electric Ind Co Ltd 分波器
JP2009508417A (ja) * 2005-09-12 2009-02-26 エプコス アクチエンゲゼルシャフト 電気的なモジュール

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235490A1 (ja) * 2018-06-05 2019-12-12 株式会社村田製作所 マルチプレクサ
CN112204881A (zh) * 2018-06-05 2021-01-08 株式会社村田制作所 多工器
KR20210005197A (ko) * 2018-06-05 2021-01-13 가부시키가이샤 무라타 세이사쿠쇼 멀티플렉서
JPWO2019235490A1 (ja) * 2018-06-05 2021-02-12 株式会社村田製作所 マルチプレクサ
KR102521168B1 (ko) 2018-06-05 2023-04-13 가부시키가이샤 무라타 세이사쿠쇼 멀티플렉서
US11929726B2 (en) 2018-06-05 2024-03-12 Murata Manufacturing Co., Ltd. Multiplexer
CN112204881B (zh) * 2018-06-05 2024-05-17 株式会社村田制作所 多工器
JP2022051613A (ja) * 2020-09-21 2022-04-01 三安ジャパンテクノロジー株式会社 弾性波デバイス
JP7055450B2 (ja) 2020-09-21 2022-04-18 三安ジャパンテクノロジー株式会社 弾性波デバイス

Also Published As

Publication number Publication date
CN108432131A (zh) 2018-08-21
JP6832871B2 (ja) 2021-02-24
CN108432131B (zh) 2021-06-04
JPWO2017115579A1 (ja) 2018-09-13
KR20180087351A (ko) 2018-08-01
US10574206B2 (en) 2020-02-25
KR102059285B1 (ko) 2019-12-24
US20180302059A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
WO2017115579A1 (ja) マルチプレクサ
US10680579B2 (en) High frequency module
JP6468290B2 (ja) 高周波モジュール
US9923543B2 (en) Radio frequency module
JP5262413B2 (ja) マルチバンドデュプレクサモジュール
JP6358238B2 (ja) 高周波モジュール及び通信装置
JP4692631B2 (ja) フィルタモジュールおよび通信装置
JP6074167B2 (ja) フィルタモジュール及び分波器モジュール
JP2009189071A (ja) 弾性波フィルタ、及びそれを用いたアンテナ共用器
US10284179B2 (en) Multiplexer, transmission device, and reception device
WO2016024559A1 (ja) 高周波モジュール
JP2003347964A (ja) アンテナデュプレクサおよびそれを用いた通信用電話機
JP2019220877A (ja) マルチプレクサ
JP4346990B2 (ja) 弾性表面波フィルタ
US8872602B2 (en) Filter module
JP2003152590A (ja) アンテナスイッチモジュール
WO2020262028A1 (ja) 高周波モジュール及び通信装置
CN110247669B (zh) 复用器以及通信装置
CN110476355B (zh) 多工器、高频前端电路以及通信装置
CN114424459A (zh) 滤波装置及通信装置
KR20210005197A (ko) 멀티플렉서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558879

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187018008

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881559

Country of ref document: EP

Kind code of ref document: A1