WO2017094623A1 - Optical laminate and image display device - Google Patents

Optical laminate and image display device Download PDF

Info

Publication number
WO2017094623A1
WO2017094623A1 PCT/JP2016/085028 JP2016085028W WO2017094623A1 WO 2017094623 A1 WO2017094623 A1 WO 2017094623A1 JP 2016085028 W JP2016085028 W JP 2016085028W WO 2017094623 A1 WO2017094623 A1 WO 2017094623A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polarizer
retardation
slow axis
substrate
Prior art date
Application number
PCT/JP2016/085028
Other languages
French (fr)
Japanese (ja)
Inventor
浩 角村
武田 健太郎
敏行 飯田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to SG11201804244TA priority Critical patent/SG11201804244TA/en
Priority to CN201680070418.7A priority patent/CN108292002B/en
Priority to KR1020187015174A priority patent/KR102627997B1/en
Publication of WO2017094623A1 publication Critical patent/WO2017094623A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to an optical laminate and an image display device using the same.
  • the touch sensor in the input display device having the above configuration includes a sensor film including a base material and a conductive layer formed on the base material.
  • a sensor film including a base material and a conductive layer formed on the base material.
  • an isotropic base material is frequently used. If this isotropic substrate is optically completely isotropic, the antireflection function by the circularly polarizing plate is sufficiently exhibited.
  • a slight anisotropy is exhibited even in a base material intended for isotropic properties due to the influence of the conductive layer forming step, the treatment for increasing the toughness of the base material, and the like.
  • problems such as reflection of external light and reflection of the background are not solved.
  • the present invention has been made to solve the above-described conventional problems, and its main purpose is to provide an antireflection function while having an optically anisotropic base material (hereinafter also referred to as an anisotropic base material).
  • An object of the present invention is to provide an optical layered body that is excellent in performance.
  • the optical layered body of the present invention has a polarizing plate including a polarizer and a protective layer disposed on at least one side of the polarizer, a retardation layer, a conductive layer, and a base material in this order.
  • the in-plane retardation Re (550) of the material is larger than 0 nm, and the angle formed by the slow axis of the substrate and the slow axis of the retardation layer is ⁇ 40 ° to ⁇ 50 ° or 40 ° to 50 °. It is.
  • an angle formed by the absorption axis of the polarizer and the slow axis of the retardation layer is 38 ° to 52 °.
  • Re (450) / Re (550) of the retardation layer is 0.8 or more and less than 1. In one embodiment, Re (650) / Re (550) of the retardation layer is greater than 1 and 1.2 or less. In one embodiment, the retardation layer is made of a polycarbonate system. According to another aspect of the present invention, an image display device is provided.
  • the image display device includes the optical laminate.
  • the present invention by optimizing the slow axis angle of the anisotropic base material, it is possible to provide an optical layered body having an antireflection function while having an anisotropic base material.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction). “Nz” is the refractive index in the thickness direction.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction). “Nz” is the refractive index in the thickness direction.
  • In-plane retardation (Re) “Re ( ⁇ )” is an in-plane retardation measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Re (550) is an in-plane retardation measured with light having a wavelength of 550 nm at 23 ° C.
  • Thickness direction retardation (Rth) is a retardation in the thickness direction measured with light having a wavelength of ⁇ nm at 23 ° C.
  • Rth (550) is a retardation in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C.
  • FIG. 1 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention.
  • the optical laminated body 100 of this embodiment has the polarizing plate 11, the phase difference layer 12, the conductive layer 21, and the base material 22 in this order.
  • the polarizing plate 11 includes a polarizer 1, a first protective layer 2 disposed on one side of the polarizer 1, and a second protective layer 3 disposed on the other side of the polarizer 1. .
  • one of the first protective layer 2 and the second protective layer 3 may be omitted.
  • the retardation layer 12 can also function as a protective layer for the polarizer 1
  • the second protective layer 3 may be omitted.
  • Each of the conductive layer 21 and the base material 22 may be a component of the optical laminate 100 as a single layer, or may be introduced into the optical laminate 100 as a laminate of the base material 22 and the conductive layer 21.
  • the laminated body of the base material 22 and the conductive layer 21 can function as the sensor film 20 of the touch sensor, for example.
  • the ratio of the thickness of each layer in drawing differs from actual.
  • each layer which comprises an optical laminated body may be laminated
  • the base material 22 may be adhered and laminated on the conductive layer 21.
  • “adhesion lamination” means that two layers are directly and firmly laminated without an adhesive layer (for example, an adhesive layer or an adhesive layer).
  • the laminate 10 of the polarizing plate 11 and the retardation layer 12 can function as a circularly polarizing plate.
  • the substrate 22 can be optically anisotropic.
  • the angle formed between the slow axis of the base material 22 and the retardation layer 12 is within a specific range (as described later, ⁇ 40 ° to ⁇ 50 °). Or 40 ° to 50 °) can provide an optical laminate that sufficiently exhibits the antireflection function of the circularly polarizing plate and can effectively prevent external light reflection, background reflection, and the like.
  • the base material 22 has an in-plane retardation (for example, the in-plane retardation Re (550) is larger than 0 nm and not larger than 10 nm). Details will be described later.
  • the total thickness of the optical laminate is preferably 220 ⁇ m or less, more preferably 40 ⁇ m to 180 ⁇ m.
  • the optical layered body may have a long shape (for example, a roll shape) or a single wafer shape.
  • Polarizing plate B-1 Polarizer Any appropriate polarizer may be adopted as the polarizer 1.
  • the resin film forming the polarizer may be a single-layer resin film or a laminate of two or more layers.
  • polarizers composed of a single-layer resin film include hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and ethylene / vinyl acetate copolymer partially saponified films.
  • PVA polyvinyl alcohol
  • polyene-based oriented films such as those subjected to dyeing treatment and stretching treatment with dichroic substances such as iodine and dichroic dyes, PVA dehydrated products and polyvinyl chloride dehydrochlorinated products.
  • a polarizer obtained by dyeing a PVA film with iodine and uniaxially stretching is used because of excellent optical properties.
  • the dyeing with iodine is performed, for example, by immersing a PVA film in an aqueous iodine solution.
  • the stretching ratio of the uniaxial stretching is preferably 3 to 7 times.
  • the stretching may be performed after the dyeing treatment or may be performed while dyeing. Moreover, you may dye
  • the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment and the like. For example, by immersing the PVA film in water and washing it before dyeing, not only can the surface of the PVA film be cleaned of dirt and anti-blocking agents, but the PVA film can be swollen to cause uneven staining. Can be prevented.
  • a polarizer obtained by using a laminate a laminate of a resin substrate and a PVA resin layer (PVA resin film) laminated on the resin substrate, or a resin substrate and the resin
  • a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate examples thereof include a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate.
  • a polarizer obtained by using a laminate of a resin base material and a PVA resin layer applied and formed on the resin base material may be obtained by, for example, applying a PVA resin solution to a resin base material and drying it.
  • a PVA-based resin layer is formed thereon to obtain a laminate of a resin base material and a PVA-based resin layer; the laminate is stretched and dyed to make the PVA-based resin layer a polarizer; obtain.
  • stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching.
  • the stretching may further include, if necessary, stretching the laminate in the air at a high temperature (for example, 95 ° C. or higher) before stretching in the aqueous boric acid solution.
  • the obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer of the polarizer), and the resin base material is peeled from the resin base material / polarizer laminate.
  • Any appropriate protective layer according to the purpose may be laminated on the release surface. Details of a method for manufacturing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. This publication is incorporated herein by reference in its entirety.
  • the thickness of the polarizer is preferably 15 ⁇ m or less, more preferably 1 ⁇ m to 12 ⁇ m, still more preferably 3 ⁇ m to 12 ⁇ m, and particularly preferably 5 ⁇ m to 12 ⁇ m.
  • the boric acid content of the polarizer is preferably 18% by weight or more, more preferably 18% by weight to 25% by weight. If the content of boric acid in the polarizer is in such a range, the ease of curling adjustment at the time of bonding is well maintained and the curling at the time of heating is achieved by a synergistic effect with the iodine content described later. It is possible to improve the appearance durability during heating while satisfactorily suppressing.
  • the boric acid content can be calculated as the amount of boric acid contained in the polarizer per unit weight using, for example, the following formula from the neutralization method.
  • the iodine content of the polarizer is preferably 2.1% by weight or more, more preferably 2.1% by weight to 3.5% by weight. If the iodine content of the polarizer is in this range, the curl adjustment at the time of bonding is well maintained and the curl at the time of heating is maintained by a synergistic effect with the boric acid content. It is possible to improve the appearance durability during heating while satisfactorily suppressing.
  • iodine content means the amount of all iodine contained in a polarizer (PVA resin film).
  • iodine exists in the form of iodine ions (I ⁇ ), iodine molecules (I 2 ), polyiodine ions (I 3 ⁇ , I 5 ⁇ ), etc. in the polarizer.
  • Iodine content means the amount of iodine encompassing all these forms.
  • the iodine content can be calculated, for example, by a calibration curve method of fluorescent X-ray analysis.
  • the polyiodine ion exists in a state where a PVA-iodine complex is formed in the polarizer. By forming such a complex, absorption dichroism can be developed in the wavelength range of visible light.
  • the complex of PVA and triiodide ions (PVA ⁇ I 3 ⁇ ) has an absorption peak around 470 nm, and the complex of PVA and pentaiodide ions (PVA ⁇ I 5 ⁇ ) is around 600 nm. Have an absorption peak.
  • polyiodine ions can absorb light in a wide range of visible light depending on their form.
  • iodine ion (I ⁇ ) has an absorption peak near 230 nm and is not substantially involved in the absorption of visible light. Therefore, polyiodine ions present in a complex state with PVA can be mainly involved in the absorption performance of the polarizer.
  • the polarizer preferably exhibits absorption dichroism at any wavelength between 380 nm and 780 nm.
  • the single transmittance of the polarizer is 43.0% to 46.0%, preferably 44.5% to 46.0%.
  • the polarization degree of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
  • the first protective layer 2 is formed of any suitable film that can be used as a protective layer for a polarizer.
  • the material as the main component of the film include cellulose resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based materials.
  • transparent resins such as polystyrene, polynorbornene, polyolefin, (meth) acryl, and acetate.
  • thermosetting resins such as (meth) acrylic, urethane-based, (meth) acrylurethane-based, epoxy-based, and silicone-based or ultraviolet curable resins are also included.
  • a glassy polymer such as a siloxane polymer is also included.
  • a polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used.
  • a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in the side chain for example, a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer can be mentioned.
  • the polymer film can be, for example, an extruded product of the resin composition.
  • the optical layered body of the present invention is typically disposed on the viewing side of the image display device, and the first protective layer 2 is typically disposed on the viewing side.
  • the first protective layer 2 may be subjected to a surface treatment such as a hard coat treatment, an antireflection treatment, an antisticking treatment, and an antiglare treatment as necessary.
  • the first protective layer 2 may be provided with a treatment for improving visibility when viewed through polarized sunglasses (typically, an (elliptical) circular polarization function, (Giving an ultrahigh phase difference) may be applied.
  • polarized sunglasses typically, an (elliptical) circular polarization function, (Giving an ultrahigh phase difference
  • the optical laminate can be suitably applied to an image display device that can be used outdoors.
  • the thickness of the first protective layer is, for example, 10 ⁇ m to 50 ⁇ m, preferably 15 ⁇ m to 40 ⁇ m.
  • the thickness of the first protective layer is a thickness including the thickness of the surface treatment layer.
  • the second protective layer 3 is also formed of any suitable film that can be used as a protective layer for the polarizer.
  • the material constituting the main component of the film is as described in the section B-2 regarding the first protective layer.
  • the second protective layer 3 is preferably optically substantially isotropic.
  • “optically substantially isotropic” means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is ⁇ 10 nm to +10 nm.
  • the thickness of the second protective layer is, for example, 15 ⁇ m to 35 ⁇ m, preferably 20 ⁇ m to 30 ⁇ m.
  • the difference between the thickness of the first protective layer and the thickness of the second protective layer is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less. If the difference in thickness is within such a range, curling at the time of bonding can be satisfactorily suppressed.
  • the thickness of the first protective layer and the thickness of the second protective layer may be the same, the first protective layer may be thicker, and the second protective layer may be thicker. . Typically, the first protective layer is thicker than the second protective layer.
  • the retardation layer 12 may have any suitable optical and / or mechanical properties depending on the purpose.
  • the retardation layer 12 typically has a slow axis.
  • the angle ⁇ formed by the slow axis of the retardation layer 12 and the absorption axis of the polarizer 1 is preferably 38 ° to 52 °, more preferably 42 ° to 48 °. More preferably, it is about 45 °. If the angle ⁇ is within such a range, an optical element having a very excellent circular polarization characteristic (as a result, a very good antireflection characteristic) by using a retardation layer as a ⁇ / 4 plate as will be described later. A laminate can be obtained.
  • the phase difference layer preferably has a refractive index characteristic of nx> ny ⁇ nz.
  • the retardation layer is typically provided for imparting antireflection properties to the polarizing plate, and can function as a ⁇ / 4 plate in one embodiment.
  • the in-plane retardation Re (550) of the retardation layer is preferably 80 nm to 200 nm, more preferably 100 nm to 180 nm, and still more preferably 110 nm to 170 nm.
  • the Nz coefficient of the retardation layer is preferably 0.1 to 3, more preferably 0.2 to 1.5, and still more preferably 0.3 to 1.3. By satisfying such a relationship, a very excellent reflection hue can be achieved when the obtained optical laminate is used in an image display device.
  • the retardation layer may exhibit reverse dispersion wavelength characteristics in which the retardation value increases with the wavelength of the measurement light, or may exhibit positive wavelength dispersion characteristics in which the retardation value decreases with the wavelength of the measurement light.
  • the phase difference value may exhibit a flat chromatic dispersion characteristic that hardly changes depending on the wavelength of the measurement light.
  • the retardation layer exhibits reverse dispersion wavelength characteristics.
  • Re (450) / Re (550) of the retardation layer is preferably 0.8 or more and less than 1, and more preferably 0.8 or more and 0.95 or less.
  • Re (650) / Re (550) of the retardation layer is preferably larger than 1 and 1.2 or less, more preferably 1.05 or more and 1.2 or less.
  • the wavelength dispersion characteristics of the retardation layer can be controlled, for example, by using a polycarbonate resin film as a resin film and adjusting the content ratio of the structural units constituting the polycarbonate resin as described later. it can.
  • the absolute value of photoelastic coefficient of preferably 2 ⁇ 10 -11 m 2 / N or less, more preferably 2.0 ⁇ 10 -13 m 2 /N ⁇ 1.5 ⁇ 10 -11 m 2 / N, more preferably includes a resin of 1.0 ⁇ 10 -12 m 2 /N ⁇ 1.2 ⁇ 10 -11 m 2 / N.
  • the thickness of the retardation layer is preferably 60 ⁇ m or less, and preferably 30 ⁇ m to 55 ⁇ m. If the thickness of the retardation layer is in such a range, curling at the time of bonding can be adjusted well while curling at the time of heating is suppressed satisfactorily.
  • the retardation layer can be composed of any appropriate resin film that can satisfy the above-described characteristics.
  • Typical examples of such resins include cyclic olefin resins, polycarbonate resins, cellulose resins, polyester resins, polyvinyl alcohol resins, polyamide resins, polyimide resins, polyether resins, polystyrene resins, acrylic resins. Based resins.
  • a polycarbonate-based resin can be suitably used.
  • the polycarbonate resin any appropriate polycarbonate resin can be used as long as the effects of the present invention can be obtained.
  • the polycarbonate resin includes a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, an alicyclic diol, an alicyclic dimethanol, di, tri, or polyethylene glycol, and an alkylene.
  • the polycarbonate resin is derived from a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, a structural unit derived from an alicyclic dimethanol and / or a di-, tri- or polyethylene glycol. More preferably, a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, and a structural unit derived from di, tri, or polyethylene glycol.
  • the polycarbonate resin may contain structural units derived from other dihydroxy compounds as necessary. Details of the polycarbonate resin that can be suitably used in the present invention are described in, for example, Japanese Patent Application Laid-Open Nos. 2014-10291 and 2014-26266, and the description is incorporated herein by reference. The
  • the glass transition temperature of the polycarbonate resin is preferably 120 ° C. or higher and 190 ° C. or lower, more preferably 130 ° C. or higher and 180 ° C. or lower. If the glass transition temperature is excessively low, the heat resistance tends to deteriorate, there is a possibility of causing a dimensional change after film formation, and the image quality of the obtained image display device may be lowered. If the glass transition temperature is excessively high, the molding stability at the time of film molding may deteriorate, and the transparency of the film may be impaired.
  • the glass transition temperature is determined according to JIS K 7121 (1987).
  • the molecular weight of the polycarbonate resin can be represented by a reduced viscosity.
  • the reduced viscosity is measured using a Ubbelohde viscometer at a temperature of 20.0 ° C. ⁇ 0.1 ° C., using methylene chloride as a solvent, precisely adjusting the polycarbonate concentration to 0.6 g / dL.
  • the lower limit of the reduced viscosity is usually preferably 0.30 dL / g, more preferably 0.35 dL / g or more.
  • the upper limit of the reduced viscosity is usually preferably 1.20 dL / g, more preferably 1.00 dL / g, still more preferably 0.80 dL / g.
  • the reduced viscosity is less than the lower limit, there may be a problem that the mechanical strength of the molded product is reduced.
  • the reduced viscosity is larger than the upper limit, the fluidity at the time of molding is lowered, and there may be a problem that productivity and moldability are lowered.
  • a commercially available film may be used as the polycarbonate resin film.
  • Specific examples of commercially available products include “Pure Ace WR-S”, “Pure Ace WR-W”, “Pure Ace WR-M” manufactured by Teijin Limited, and “NRF” manufactured by Nitto Denko Corporation. It is done.
  • the retardation layer is obtained, for example, by stretching a film formed from the polycarbonate resin.
  • Any appropriate molding method can be adopted as a method of forming a film from a polycarbonate-based resin. Specific examples include compression molding methods, transfer molding methods, injection molding methods, extrusion molding methods, blow molding methods, powder molding methods, FRP molding methods, cast coating methods (for example, casting methods), calendar molding methods, and hot presses. Law. Extrusion molding or cast coating is preferred. This is because the smoothness of the resulting film can be improved and good optical uniformity can be obtained.
  • the molding conditions can be appropriately set according to the composition and type of the resin used, the properties desired for the retardation layer, and the like. In addition, as above-mentioned, since many film products are marketed for polycarbonate-type resin, you may use the said commercial film as it is for a extending
  • the thickness of the resin film can be set to any appropriate value depending on the desired thickness of the retardation layer, the desired optical properties, the stretching conditions described below, and the like.
  • the thickness is preferably 50 ⁇ m to 300 ⁇ m.
  • Any appropriate stretching method and stretching conditions may be employed for the stretching.
  • various stretching methods such as free end stretching, fixed end stretching, free end contraction, and fixed end contraction can be used singly or simultaneously or sequentially.
  • the stretching direction can also be performed in various directions and dimensions such as a length direction, a width direction, a thickness direction, and an oblique direction.
  • the stretching temperature is preferably Tg-30 ° C to Tg + 60 ° C, more preferably Tg-30 ° C to Tg + 50 ° C, and more preferably Tg-15 ° C to Tg + 30 with respect to the glass transition temperature (Tg) of the resin film. More preferably, the temperature is C.
  • a retardation film having the desired optical characteristics (for example, refractive index characteristics, in-plane retardation, Nz coefficient) can be obtained by appropriately selecting the stretching method and stretching conditions.
  • the retardation film is produced by uniaxially stretching a resin film or uniaxially stretching a fixed end.
  • the fixed end uniaxial stretching there is a method of stretching in the width direction (lateral direction) while running the resin film in the longitudinal direction.
  • the draw ratio is preferably 1.1 to 3.5 times.
  • the retardation film can be produced by continuously stretching a long resin film obliquely in the direction of the angle ⁇ described above with respect to the longitudinal direction.
  • a long stretched film having an orientation angle of ⁇ with respect to the longitudinal direction of the film (slow axis in the direction of angle ⁇ ) can be obtained.
  • the angle ⁇ may be an angle formed between the absorption axis of the polarizer and the slow axis of the retardation layer in the polarizing plate with the retardation layer.
  • the angle ⁇ is preferably 38 ° to 52 °, more preferably 42 ° to 48 °, and further preferably about 45 °.
  • Examples of the stretching machine used for the oblique stretching include a tenter type stretching machine capable of adding feed forces, pulling forces, or pulling forces at different speeds in the lateral and / or longitudinal directions.
  • the tenter type stretching machine includes a horizontal uniaxial stretching machine, a simultaneous biaxial stretching machine, and the like, but any suitable stretching machine can be used as long as a long resin film can be continuously stretched obliquely.
  • the retardation layer having the desired in-plane retardation and having the slow axis in the desired direction (substantially long) Shaped retardation film) can be obtained.
  • the stretching temperature of the film can vary depending on the in-plane retardation value and thickness desired for the retardation layer, the type of resin used, the thickness of the film used, the stretching ratio, and the like. Specifically, the stretching temperature is preferably Tg-30 ° C to Tg + 60 ° C, more preferably Tg-30 ° C to Tg + 50 ° C, and further preferably Tg-15 ° C to Tg + 30 ° C. By stretching at such a temperature, a retardation layer having appropriate characteristics in the present invention can be obtained. Tg is the glass transition temperature of the constituent material of the film.
  • the conductive layer can be formed on a metal oxide film on any suitable substrate by any suitable film formation method (eg, vacuum deposition, sputtering, CVD, ion plating, spraying, etc.). Can be formed. After film formation, heat treatment (for example, 100 ° C. to 200 ° C.) may be performed as necessary. By performing the heat treatment, the amorphous film can be crystallized.
  • suitable film formation method eg, vacuum deposition, sputtering, CVD, ion plating, spraying, etc.
  • heat treatment for example, 100 ° C. to 200 ° C.
  • the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimony composite oxide, zinc-aluminum composite oxide, and indium-zinc composite oxide.
  • the indium oxide may be doped with divalent metal ions or tetravalent metal ions.
  • Indium composite oxides are preferable, and indium-tin composite oxide (ITO) is more preferable.
  • Indium composite oxides are characterized by high transmittance (for example, 80% or more) in the visible light region (380 nm to 780 nm) and low surface resistance per unit area.
  • the thickness of the conductive layer is preferably 50 nm or less, more preferably 35 nm or less.
  • the lower limit of the thickness of the conductive layer is preferably 10 nm.
  • the surface resistance value of the conductive layer is preferably 300 ⁇ / ⁇ or less, more preferably 150 ⁇ / ⁇ or less, and further preferably 100 ⁇ / ⁇ or less.
  • the conductive layer can be patterned as needed. By conducting the patterning, a conductive portion and an insulating portion can be formed. Any appropriate method can be adopted as the patterning method. Specific examples of the patterning method include a wet etching method and a screen printing method.
  • the substrate has a slow axis.
  • a base material having a slow axis that is, an anisotropic base material
  • the antireflection function of the circularly polarizing plate is sufficiently exerted to effectively prevent reflection of external light and reflection of the background.
  • An optical layered body that can be provided can be provided. Therefore, according to the present invention, there is no need to select a material constituting the base material with emphasis on optical isotropy as in the prior art, and various materials can be selected according to desired characteristics. .
  • the base material is inevitably optically isotropic (in-plane retardation Re (550) is 0 nm) as a target, but is inevitably a base material having a slow axis.
  • a conductive layer is formed on a base material (ie, when the base material and the conductive layer are stacked by close-contact lamination), a slow axis that is unnecessary for the base material due to heating in the film forming process, etc. May occur.
  • the slow axis produced in this way hinders the antireflection function of the circularly polarizing plate, and is usually difficult to control the direction, which causes a decrease in production stability.
  • the antireflection function of the circularly polarizing plate is sufficiently exhibited even with the base material on which the slow axis is generated.
  • the above effect can be obtained by optimizing the angle between the slow axis of the substrate and the slow axis of the retardation layer.
  • the present invention is particularly useful in that the antireflection function of the circularly polarizing plate is sufficiently exhibited regardless of the direction of the slow axis of the substrate.
  • the angle formed between the slow axis of the substrate and the slow axis of the retardation layer is ⁇ 40 ° to ⁇ 50 ° or 40 ° to 50 °, preferably ⁇ 42 ° to ⁇ 48 ° or 42 ° to 48. °, more preferably -44 ° to -46 ° or 44 ° to 46 °, and particularly preferably -45 ° or 45 °. If it is such a range, the reflection preventing function of a circularly-polarizing plate will fully be exhibited, and the optical laminated body which can prevent external light reflection, a background reflection, etc. effectively can be provided.
  • the angle in the clockwise direction with respect to the slow axis of the substrate is defined as a positive angle
  • the angle in the counterclockwise direction is defined as a negative angle.
  • the base material preferably has a refractive index characteristic of nx> ny ⁇ nz.
  • the in-plane retardation Re (550) of the substrate is greater than 0 nm. According to the present invention, even when a substrate having an in-plane retardation Re is used, an optical laminate that sufficiently exhibits the antireflection function of the circularly polarizing plate can be obtained as described above.
  • the in-plane retardation Re (550) of the substrate is 3 nm or more. In another embodiment, the in-plane retardation Re (550) of the substrate is 5 nm or more.
  • the upper limit of the in-plane retardation Re (550) of the substrate is, for example, 10 nm. When the in-plane retardation Re (550) of the substrate is 10 nm or less (more preferably 8 nm or less, and even more preferably 6 nm or less), the antireflection function of the circularly polarizing plate is further enhanced.
  • any appropriate resin film can be used as the substrate.
  • the constituent material include a cyclic olefin resin, a polycarbonate resin, a cellulose resin, a polyester resin, and an acrylic resin.
  • the thickness of the substrate is preferably 10 ⁇ m to 200 ⁇ m, more preferably 20 ⁇ m to 60 ⁇ m.
  • a hard coat layer (not shown) may be provided between the conductive layer 21 and the base material 22.
  • a hard coat layer having any appropriate configuration can be used.
  • the thickness of the hard coat layer is, for example, 0.5 ⁇ m to 2 ⁇ m. If the haze is in an allowable range, fine particles for reducing Newton rings may be added to the hard coat layer.
  • the anchor coat layer for improving the adhesion of the conductive layer and / or the reflectance is adjusted between the conductive layer 21 and the base material 22 (a hard coat layer if present).
  • a refractive index adjustment layer may be provided. Arbitrary appropriate structures may be employ
  • the anchor coat layer and the refractive index adjusting layer can be thin layers of several nm to several tens of nm.
  • another hard coat layer may be provided on the side of the base material 22 opposite to the conductive layer 21 (outermost side of the optical laminate).
  • the hard coat layer typically includes a binder resin layer and spherical particles, and the spherical particles protrude from the binder resin layer to form convex portions. Details of such a hard coat layer are described in JP-A-2013-145547, and the description of the gazette is incorporated herein by reference.
  • optical layered body may further include other layers.
  • an adhesive layer (not shown) for bonding to the display cell is provided on the surface of the base material 22. It is preferable that a release film is bonded to the surface of the pressure-sensitive adhesive layer until the optical layered body is used.
  • the optical layered body described in the items A to F can be applied to an image display device. Therefore, the present invention includes an image display device using such an optical laminate. Typical examples of the image display device include a liquid crystal display device and an organic EL display device.
  • An image display device according to an embodiment of the present invention includes the optical layered body described in the items A to G on the viewing side.
  • the optical laminated body is laminated so that the conductive layer is on the display cell (for example, liquid crystal cell, organic EL cell) side (so that the polarizer is on the viewing side).
  • the image display device can be a so-called inner touch panel type input display device in which a touch sensor is incorporated between a display cell (for example, a liquid crystal cell or an organic EL cell) and a polarizing plate.
  • the touch sensor can be disposed between the conductive layer (or the conductive layer with the base material) and the display cell.
  • a configuration well known in the industry can be adopted, and a detailed description thereof will be omitted.
  • Example 1 About the optical laminated body of the structure shown in following Table 1, the reflection characteristic of this optical laminated body was evaluated from front hue a and b using the optical simulator (The product name "LCD Master V8" by Shintec).
  • a light source (D65 light source registered in “LCD Master V8”) is disposed on the side opposite to the retardation layer of the polarizing plate, and a reflector (“LCD” is disposed on the side opposite to the retardation layer of the substrate.
  • An ideal reflector (Idea-Reflector) registered in “Master V8” is arranged.
  • the front hues a and b were obtained in the same configuration as in Table 1 except that the base material was not included, and the result was used as a reference. In this evaluation, simulation is performed by changing the slow axis angle of the substrate as described later, and the reflection characteristics of the optical laminate are evaluated by comparison with a reference.
  • Example 1-1 The angle formed by the slow axis of the substrate and the absorption axis of the polarizer of the polarizing plate was 90 °. That is, the angle formed by the slow axis of the substrate and the slow axis of the retardation layer was 45 °.
  • Example 1-2 The angle formed by the slow axis of the substrate and the absorption axis of the polarizer of the polarizing plate was 0 °. That is, the angle formed by the slow axis of the substrate and the slow axis of the retardation layer was ⁇ 45 °.
  • Example 1-3 The angle formed by the slow axis of the substrate and the absorption axis of the polarizer of the polarizing plate was 85 °. That is, the angle formed by the slow axis of the substrate and the slow axis of the retardation layer was 40 °.
  • Example 1-4 The angle formed by the slow axis of the substrate and the absorption axis of the polarizer of the polarizing plate was 95 °. That is, the angle formed by the slow axis of the substrate and the slow axis of the retardation layer was 50 °.
  • Example 1-5 The angle formed between the slow axis of the substrate and the absorption axis of the polarizer of the polarizing plate was ⁇ 5 °. That is, the angle formed by the slow axis of the base material and the slow axis of the retardation layer was ⁇ 50 °.
  • Example 1-6 The angle formed between the slow axis of the substrate and the absorption axis of the polarizer of the polarizing plate was 5 °. That is, the angle formed by the slow axis of the substrate and the slow axis of the retardation layer was ⁇ 40 °.
  • FIG. 2 shows a plot of front hues a and b for the results of Example 1 and Comparative Example 1.
  • the optical laminate of the present invention has an excellent antireflection function.
  • Re (550) of the retardation layer is set to 139 nm
  • chromatic dispersion characteristics Re (550) / Re (450) of the retardation layer is set to 0.85
  • chromatic dispersion characteristics Re (650) / Re (550) is set to 1.06.
  • the reflective properties of the optical laminate were evaluated in the same manner as in Example 1 (Examples 1-1 to 1-6).
  • Re (550) of the retardation layer is set to 139 nm
  • chromatic dispersion characteristics Re (550) / Re (450) of the retardation layer is set to 0.85
  • chromatic dispersion characteristics Re (650) / Re (550) is set to 1.06. Except for the above, the reflective properties of the optical laminate were evaluated in the same manner as in Comparative Example 2.
  • FIG. 4 is a graph showing the axial angle dependence of ⁇ ab for the results of Example 2 and Comparative Example 2.
  • Example 3 Example 1 (Example) except that the wavelength dispersion characteristics Re (550) / Re (450) of the retardation layer is set to 0.82 and the wavelength dispersion characteristics Re (650) / Re (550) is set to 1.08.
  • the reflection characteristics of the optical laminate were evaluated in the same manner as in 1-1 to 1-6).
  • Comparative Example 3 The same as Comparative Example 2 except that the chromatic dispersion characteristic Re (550) / Re (450) of the retardation layer was set to 0.82, and the chromatic dispersion characteristic Re (650) / Re (550) was set to 1.08. Then, the reflection characteristics of the optical laminate were evaluated.
  • FIG. 5 is a graph showing the axial angle dependence of ⁇ ab for the results of Example 3 and Comparative Example 3.
  • the optical layered body of the present invention is suitably used for image display devices such as liquid crystal display devices and organic EL display devices, and can be particularly suitably used as an antireflection film for organic EL display devices. Furthermore, the optical layered body of the present invention can be suitably used for an inner touch panel type input display device.

Abstract

Provided is an optical laminate that has an excellent anti-reflective function despite being provided with a substrate having optical anisotropy (also referred to below as an anisotropic substrate). The optical laminate comprises the following in this order: a polarizing plate including a polarizer and a protective layer arranged on at least one side of the polarizer; a retardation layer; a conductive layer; and a substrate. The in-plane retardation Re(550) of the substrate is larger than 0 nm and the angle formed by the slow axis of the substrate and the slow axis of the retardation layer is either -40° to -50° or 40° to 50°.

Description

光学積層体および画像表示装置Optical laminate and image display device
 本発明は、光学積層体およびそれを用いた画像表示装置に関する。 The present invention relates to an optical laminate and an image display device using the same.
 近年、薄型ディスプレイの普及と共に、有機ELパネルを搭載したディスプレイ(有機EL表示装置)が提案されている。有機ELパネルは反射性の高い金属層を有するため、外光反射や背景の映り込み等の問題を生じやすい。そこで、円偏光板を視認側に設けることにより、これらの問題を防ぐことが知られている。一方、表示セル(例えば、有機ELセル)と偏光板との間にタッチセンサーが組み込まれた、いわゆるインナータッチパネル型入力表示装置の需要が高まっている。このような構成の入力表示装置は、画像表示セルとタッチセンサーとの距離が近いので、使用者に自然な入力操作感を与えることが可能となっている。また、上記構成の入力表示装置は、タッチセンサーに形成された導電パターンに起因する反射光の影響を低減することができる。 In recent years, with the spread of thin displays, displays (organic EL display devices) equipped with organic EL panels have been proposed. Since the organic EL panel has a highly reflective metal layer, problems such as external light reflection and background reflection tend to occur. Thus, it is known to prevent these problems by providing a circularly polarizing plate on the viewing side. On the other hand, there is an increasing demand for so-called inner touch panel type input display devices in which a touch sensor is incorporated between a display cell (for example, an organic EL cell) and a polarizing plate. Since the input display device having such a configuration has a short distance between the image display cell and the touch sensor, it is possible to give the user a natural feeling of input operation. Further, the input display device having the above configuration can reduce the influence of reflected light caused by the conductive pattern formed on the touch sensor.
 一般に、上記構成の入力表示装置におけるタッチセンサーは、基材と該基材上に形成された導電層とを備えるセンサーフィルムを備える。上記基材には、等方性基材が多用される。この等方性基材が、光学的に完全に等方性であれば、円偏光板による反射防止機能は十分に発揮される。しかしながら、実際には、導電層形成工程、基材の靭性を高める処理等の影響により、等方性を意図した基材においても、若干の異方性が発現する。その結果、円偏光板を配置しても、外光反射や背景の映り込み等の問題が解決しないという問題が生じる場合がある。 Generally, the touch sensor in the input display device having the above configuration includes a sensor film including a base material and a conductive layer formed on the base material. As the base material, an isotropic base material is frequently used. If this isotropic substrate is optically completely isotropic, the antireflection function by the circularly polarizing plate is sufficiently exhibited. However, in practice, a slight anisotropy is exhibited even in a base material intended for isotropic properties due to the influence of the conductive layer forming step, the treatment for increasing the toughness of the base material, and the like. As a result, even if a circularly polarizing plate is provided, there may be a problem that problems such as reflection of external light and reflection of the background are not solved.
特開2003-311239号公報JP 2003-311239 A 特開2002-372622号公報JP 2002-372622 A 特許第3325560号公報Japanese Patent No. 3325560 特開2003-036143号公報JP 2003-036143 A
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、光学的に異方性を有する基材(以下、異方性基材ともいう)を備えながらも、反射防止機能に優れる光学積層体を提供することにある。 The present invention has been made to solve the above-described conventional problems, and its main purpose is to provide an antireflection function while having an optically anisotropic base material (hereinafter also referred to as an anisotropic base material). An object of the present invention is to provide an optical layered body that is excellent in performance.
 本発明の光学積層体は、偏光子と該偏光子の少なくとも片側に配置された保護層とを含む偏光板と、位相差層と、導電層と、基材とをこの順に有し、該基材の面内位相差Re(550)が0nmより大きく、 該基材の遅相軸と該位相差層の遅相軸とのなす角度が、-40°~-50°または40°~50°である。
 1つの実施形態においては、上記偏光子の吸収軸と前記位相差層の遅相軸とのなす角度が38°~52°である。
 1つの実施形態においては、上記位相差層のRe(450)/Re(550)が、0.8以上1未満である。
 1つの実施形態においては、上記位相差層のRe(650)/Re(550)が、1より大きく1.2以下である。
 1つの実施形態においては、上記位相差層が、ポリカーボネート系で構成されている。
 本発明の別の局面によれば、画像表示装置が提供される。この画像表示装置は、上記光学積層体を備える。
The optical layered body of the present invention has a polarizing plate including a polarizer and a protective layer disposed on at least one side of the polarizer, a retardation layer, a conductive layer, and a base material in this order. The in-plane retardation Re (550) of the material is larger than 0 nm, and the angle formed by the slow axis of the substrate and the slow axis of the retardation layer is −40 ° to −50 ° or 40 ° to 50 °. It is.
In one embodiment, an angle formed by the absorption axis of the polarizer and the slow axis of the retardation layer is 38 ° to 52 °.
In one embodiment, Re (450) / Re (550) of the retardation layer is 0.8 or more and less than 1.
In one embodiment, Re (650) / Re (550) of the retardation layer is greater than 1 and 1.2 or less.
In one embodiment, the retardation layer is made of a polycarbonate system.
According to another aspect of the present invention, an image display device is provided. The image display device includes the optical laminate.
 本発明によれば、異方性基材の遅相軸角度を最適化することにより、異方性基材を備えながらも、反射防止機能に優れる光学積層体を提供することができる。 According to the present invention, by optimizing the slow axis angle of the anisotropic base material, it is possible to provide an optical layered body having an antireflection function while having an anisotropic base material.
本発明の1つの実施形態による光学積層体の概略断面図である。It is a schematic sectional drawing of the optical laminated body by one Embodiment of this invention. 実施例および比較例の結果を示すグラフ図である。It is a graph which shows the result of an Example and a comparative example. 実施例および比較例の結果を示すグラフ図である。It is a graph which shows the result of an Example and a comparative example. 実施例および比較例の結果を示すグラフ図である。It is a graph which shows the result of an Example and a comparative example. 実施例および比較例の結果を示すグラフ図である。It is a graph which shows the result of an Example and a comparative example.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(Definition of terms and symbols)
The definitions of terms and symbols in this specification are as follows.
(1) Refractive index (nx, ny, nz)
“Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction). “Nz” is the refractive index in the thickness direction.
(2) In-plane retardation (Re)
“Re (λ)” is an in-plane retardation measured with light having a wavelength of λ nm at 23 ° C. For example, “Re (550)” is an in-plane retardation measured with light having a wavelength of 550 nm at 23 ° C. Re (λ) is determined by the formula: Re (λ) = (nx−ny) × d, where d (nm) is the thickness of the layer (film).
(3) Thickness direction retardation (Rth)
“Rth (λ)” is a retardation in the thickness direction measured with light having a wavelength of λ nm at 23 ° C. For example, “Rth (550)” is a retardation in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C. Rth (λ) is determined by the formula: Rth (λ) = (nx−nz) × d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is obtained by Nz = Rth / Re.
A.光学積層体の全体構成
 図1は、本発明の1つの実施形態による光学積層体の概略断面図である。本実施形態の光学積層体100は、偏光板11と、位相差層12と、導電層21と、基材22と、をこの順に有する。偏光板11は、偏光子1と、偏光子1の一方の側に配置された第1の保護層2と、偏光子1のもう一方の側に配置された第2の保護層3とを含む。目的に応じて、第1の保護層2および第2の保護層3の一方は省略されてもよい。例えば、位相差層12が偏光子1の保護層としても機能し得る場合には、第2の保護層3は省略されてもよい。導電層21および基材22は、それぞれが単一層として光学積層体100の構成要素とされてもよく、基材22と導電層21との積層体として光学積層体100に導入されてもよい。基材22と導電層21との積層体は、例えば、タッチセンサーのセンサーフィルム20として機能し得る。なお、見やすくするために、図面における各層の厚みの比率は、実際とは異なっている。また、光学積層体を構成する各層は、任意の適切な接着層(接着剤層または粘着剤層:図示せず)を介して積層されていてもよい。一方、基材22は、導電層21に密着積層されていてもよい。本明細書において「密着積層」とは、2つの層が接着層(例えば、接着剤層、粘着剤層)を介在することなく直接かつ固着して積層されていることをいう。
A. FIG. 1 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention. The optical laminated body 100 of this embodiment has the polarizing plate 11, the phase difference layer 12, the conductive layer 21, and the base material 22 in this order. The polarizing plate 11 includes a polarizer 1, a first protective layer 2 disposed on one side of the polarizer 1, and a second protective layer 3 disposed on the other side of the polarizer 1. . Depending on the purpose, one of the first protective layer 2 and the second protective layer 3 may be omitted. For example, when the retardation layer 12 can also function as a protective layer for the polarizer 1, the second protective layer 3 may be omitted. Each of the conductive layer 21 and the base material 22 may be a component of the optical laminate 100 as a single layer, or may be introduced into the optical laminate 100 as a laminate of the base material 22 and the conductive layer 21. The laminated body of the base material 22 and the conductive layer 21 can function as the sensor film 20 of the touch sensor, for example. In addition, in order to make it easy to see, the ratio of the thickness of each layer in drawing differs from actual. Moreover, each layer which comprises an optical laminated body may be laminated | stacked via arbitrary appropriate contact bonding layers (adhesive layer or adhesive layer: not shown). On the other hand, the base material 22 may be adhered and laminated on the conductive layer 21. In the present specification, “adhesion lamination” means that two layers are directly and firmly laminated without an adhesive layer (for example, an adhesive layer or an adhesive layer).
 偏光板11と位相差層12との積層体10は、円偏光板として機能し得る。また、基材22は、光学的に異方性であり得る。本発明においては、異方性基材22を備えていても、該基材22の遅相軸と、位相差層12とのなす角度を特定の範囲(後述のように、-40°~-50°または40°~50°)とすることにより、円偏光板の反射防止機能が十分に発揮されて、外光反射や背景の映り込み等を有効に防止し得る光学積層体を提供することができる。基材22は面内位相差を有する(例えば、面内位相差Re(550)が0nmより大きく10nm以下)。詳細は後述する。 The laminate 10 of the polarizing plate 11 and the retardation layer 12 can function as a circularly polarizing plate. Also, the substrate 22 can be optically anisotropic. In the present invention, even if the anisotropic base material 22 is provided, the angle formed between the slow axis of the base material 22 and the retardation layer 12 is within a specific range (as described later, −40 ° to −50 °). Or 40 ° to 50 °) can provide an optical laminate that sufficiently exhibits the antireflection function of the circularly polarizing plate and can effectively prevent external light reflection, background reflection, and the like. . The base material 22 has an in-plane retardation (for example, the in-plane retardation Re (550) is larger than 0 nm and not larger than 10 nm). Details will be described later.
 光学積層体の総厚みは、好ましくは220μm以下であり、より好ましくは40μm~180μmである。 The total thickness of the optical laminate is preferably 220 μm or less, more preferably 40 μm to 180 μm.
 光学積層体は、長尺状(例えば、ロール状)であってもよく、枚葉状であってもよい。 The optical layered body may have a long shape (for example, a roll shape) or a single wafer shape.
 以下、光学積層体を構成する各層および光学フィルムについて、より詳細に説明する。 Hereinafter, each layer and optical film constituting the optical laminate will be described in more detail.
B.偏光板
B-1.偏光子
 偏光子1としては、任意の適切な偏光子が採用され得る。例えば、偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。
B. Polarizing plate B-1. Polarizer Any appropriate polarizer may be adopted as the polarizer 1. For example, the resin film forming the polarizer may be a single-layer resin film or a laminate of two or more layers.
 単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。 Specific examples of polarizers composed of a single-layer resin film include hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and ethylene / vinyl acetate copolymer partially saponified films. In addition, there may be mentioned polyene-based oriented films such as those subjected to dyeing treatment and stretching treatment with dichroic substances such as iodine and dichroic dyes, PVA dehydrated products and polyvinyl chloride dehydrochlorinated products. Preferably, a polarizer obtained by dyeing a PVA film with iodine and uniaxially stretching is used because of excellent optical properties.
 上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラなどを防止することができる。 The dyeing with iodine is performed, for example, by immersing a PVA film in an aqueous iodine solution. The stretching ratio of the uniaxial stretching is preferably 3 to 7 times. The stretching may be performed after the dyeing treatment or may be performed while dyeing. Moreover, you may dye | stain after extending | stretching. If necessary, the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment and the like. For example, by immersing the PVA film in water and washing it before dyeing, not only can the surface of the PVA film be cleaned of dirt and anti-blocking agents, but the PVA film can be swollen to cause uneven staining. Can be prevented.
 積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 As a specific example of a polarizer obtained by using a laminate, a laminate of a resin substrate and a PVA resin layer (PVA resin film) laminated on the resin substrate, or a resin substrate and the resin Examples thereof include a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate. For example, a polarizer obtained by using a laminate of a resin base material and a PVA resin layer applied and formed on the resin base material may be obtained by, for example, applying a PVA resin solution to a resin base material and drying it. A PVA-based resin layer is formed thereon to obtain a laminate of a resin base material and a PVA-based resin layer; the laminate is stretched and dyed to make the PVA-based resin layer a polarizer; obtain. In the present embodiment, stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching. Furthermore, the stretching may further include, if necessary, stretching the laminate in the air at a high temperature (for example, 95 ° C. or higher) before stretching in the aqueous boric acid solution. The obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer of the polarizer), and the resin base material is peeled from the resin base material / polarizer laminate. Any appropriate protective layer according to the purpose may be laminated on the release surface. Details of a method for manufacturing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. This publication is incorporated herein by reference in its entirety.
 偏光子の厚みは、好ましくは15μm以下であり、より好ましくは1μm~12μmであり、さらに好ましくは3μm~12μmであり、特に好ましくは5μm~12μmである。 The thickness of the polarizer is preferably 15 μm or less, more preferably 1 μm to 12 μm, still more preferably 3 μm to 12 μm, and particularly preferably 5 μm to 12 μm.
 偏光子のホウ酸含有量は、好ましくは18重量%以上であり、より好ましくは18重量%~25重量%である。偏光子のホウ酸含有量がこのような範囲であれば、後述のヨウ素含有量との相乗的な効果により、貼り合わせ時のカール調整の容易性を良好に維持し、かつ、加熱時のカールを良好に抑制しつつ、加熱時の外観耐久性を改善することができる。ホウ酸含有量は、例えば、中和法から下記式を用いて、単位重量当たりの偏光子に含まれるホウ酸量として算出することができる。
Figure JPOXMLDOC01-appb-M000001
The boric acid content of the polarizer is preferably 18% by weight or more, more preferably 18% by weight to 25% by weight. If the content of boric acid in the polarizer is in such a range, the ease of curling adjustment at the time of bonding is well maintained and the curling at the time of heating is achieved by a synergistic effect with the iodine content described later. It is possible to improve the appearance durability during heating while satisfactorily suppressing. The boric acid content can be calculated as the amount of boric acid contained in the polarizer per unit weight using, for example, the following formula from the neutralization method.
Figure JPOXMLDOC01-appb-M000001
 偏光子のヨウ素含有量は、好ましくは2.1重量%以上であり、より好ましくは2.1重量%~3.5重量%である。偏光子のヨウ素含有量がこのような範囲であれば、上記のホウ酸含有量との相乗的な効果により、貼り合わせ時のカール調整の容易性を良好に維持し、かつ、加熱時のカールを良好に抑制しつつ、加熱時の外観耐久性を改善することができる。本明細書において「ヨウ素含有量」とは、偏光子(PVA系樹脂フィルム)中に含まれるすべてのヨウ素の量を意味する。より具体的には、偏光子中においてヨウ素はヨウ素イオン(I)、ヨウ素分子(I)、ポリヨウ素イオン(I 、I )等の形態で存在するところ、本明細書におけるヨウ素含有量は、これらの形態をすべて包含したヨウ素の量を意味する。ヨウ素含有量は、例えば、蛍光X線分析の検量線法により算出することができる。なお、ポリヨウ素イオンは、偏光子中でPVA-ヨウ素錯体を形成した状態で存在している。このような錯体が形成されることにより、可視光の波長範囲において吸収二色性が発現し得る。具体的には、PVAと三ヨウ化物イオンとの錯体(PVA・I )は470nm付近に吸光ピークを有し、PVAと五ヨウ化物イオンとの錯体(PVA・I )は600nm付近に吸光ピークを有する。結果として、ポリヨウ素イオンは、その形態に応じて可視光の幅広い範囲で光を吸収し得る。一方、ヨウ素イオン(I)は230nm付近に吸光ピークを有し、可視光の吸収には実質的には関与しない。したがって、PVAとの錯体の状態で存在するポリヨウ素イオンが、主として偏光子の吸収性能に関与し得る。 The iodine content of the polarizer is preferably 2.1% by weight or more, more preferably 2.1% by weight to 3.5% by weight. If the iodine content of the polarizer is in this range, the curl adjustment at the time of bonding is well maintained and the curl at the time of heating is maintained by a synergistic effect with the boric acid content. It is possible to improve the appearance durability during heating while satisfactorily suppressing. In this specification, “iodine content” means the amount of all iodine contained in a polarizer (PVA resin film). More specifically, iodine exists in the form of iodine ions (I ), iodine molecules (I 2 ), polyiodine ions (I 3 , I 5 ), etc. in the polarizer. Iodine content means the amount of iodine encompassing all these forms. The iodine content can be calculated, for example, by a calibration curve method of fluorescent X-ray analysis. The polyiodine ion exists in a state where a PVA-iodine complex is formed in the polarizer. By forming such a complex, absorption dichroism can be developed in the wavelength range of visible light. Specifically, the complex of PVA and triiodide ions (PVA · I 3 ) has an absorption peak around 470 nm, and the complex of PVA and pentaiodide ions (PVA · I 5 ) is around 600 nm. Have an absorption peak. As a result, polyiodine ions can absorb light in a wide range of visible light depending on their form. On the other hand, iodine ion (I ) has an absorption peak near 230 nm and is not substantially involved in the absorption of visible light. Therefore, polyiodine ions present in a complex state with PVA can be mainly involved in the absorption performance of the polarizer.
 偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、上記のとおり43.0%~46.0%であり、好ましくは44.5%~46.0%である。偏光子の偏光度は、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。 The polarizer preferably exhibits absorption dichroism at any wavelength between 380 nm and 780 nm. As described above, the single transmittance of the polarizer is 43.0% to 46.0%, preferably 44.5% to 46.0%. The polarization degree of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
B-2.第1の保護層
 第1の保護層2は、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。
B-2. First protective layer The first protective layer 2 is formed of any suitable film that can be used as a protective layer for a polarizer. Specific examples of the material as the main component of the film include cellulose resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based materials. And transparent resins such as polystyrene, polynorbornene, polyolefin, (meth) acryl, and acetate. Further, thermosetting resins such as (meth) acrylic, urethane-based, (meth) acrylurethane-based, epoxy-based, and silicone-based or ultraviolet curable resins are also included. In addition to this, for example, a glassy polymer such as a siloxane polymer is also included. Further, a polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used. As a material for this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in the side chain For example, a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer can be mentioned. The polymer film can be, for example, an extruded product of the resin composition.
 本発明の光学積層体は、後述するように代表的には画像表示装置の視認側に配置され、第1の保護層2は、代表的にはその視認側に配置される。したがって、第1の保護層2には、必要に応じて、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。さらに/あるいは、第1の保護層2には、必要に応じて、偏光サングラスを介して視認する場合の視認性を改善する処理(代表的には、(楕)円偏光機能を付与すること、超高位相差を付与すること)が施されていてもよい。このような処理を施すことにより、偏光サングラス等の偏光レンズを介して表示画面を視認した場合でも、優れた視認性を実現することができる。したがって、光学積層体は、屋外で用いられ得る画像表示装置にも好適に適用され得る。 As will be described later, the optical layered body of the present invention is typically disposed on the viewing side of the image display device, and the first protective layer 2 is typically disposed on the viewing side. Accordingly, the first protective layer 2 may be subjected to a surface treatment such as a hard coat treatment, an antireflection treatment, an antisticking treatment, and an antiglare treatment as necessary. Further / or, if necessary, the first protective layer 2 may be provided with a treatment for improving visibility when viewed through polarized sunglasses (typically, an (elliptical) circular polarization function, (Giving an ultrahigh phase difference) may be applied. By performing such processing, excellent visibility can be achieved even when the display screen is viewed through a polarizing lens such as polarized sunglasses. Therefore, the optical laminate can be suitably applied to an image display device that can be used outdoors.
 第1の保護層の厚みは、任意の適切な厚みが採用され得る。第1の保護層の厚みは、例えば10μm~50μmであり、好ましくは15μm~40μmである。なお、表面処理が施されている場合、第1の保護層の厚みは、表面処理層の厚みを含めた厚みである。 Arbitrary appropriate thickness can be employ | adopted for the thickness of a 1st protective layer. The thickness of the first protective layer is, for example, 10 μm to 50 μm, preferably 15 μm to 40 μm. In addition, when the surface treatment is performed, the thickness of the first protective layer is a thickness including the thickness of the surface treatment layer.
B-3.第2の保護層
 第2の保護層3もまた、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料は、第1の保護層に関して上記B-2項で説明したとおりである。第2の保護層3は、光学的に略等方性であることが好ましい。本明細書において「光学的に略等方性である」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-10nm~+10nmであることをいう。
B-3. Second protective layer The second protective layer 3 is also formed of any suitable film that can be used as a protective layer for the polarizer. The material constituting the main component of the film is as described in the section B-2 regarding the first protective layer. The second protective layer 3 is preferably optically substantially isotropic. In this specification, “optically substantially isotropic” means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is −10 nm to +10 nm. Say.
 第2の保護層の厚みは、例えば15μm~35μmであり、好ましくは20μm~30μmである。第1の保護層の厚みと第2の保護層の厚みとの差は、好ましくは15μm以下であり、より好ましくは10μm以下である。厚みの差がこのような範囲であれば、貼り合わせ時のカールを良好に抑制することができる。第1の保護層の厚みと第2の保護層の厚みとは、同一であってもよく、第1の保護層の方が分厚くてもよく、第2の保護層の方が分厚くてもよい。代表的には、第2の保護層よりも第1の保護層の方が分厚い。 The thickness of the second protective layer is, for example, 15 μm to 35 μm, preferably 20 μm to 30 μm. The difference between the thickness of the first protective layer and the thickness of the second protective layer is preferably 15 μm or less, more preferably 10 μm or less. If the difference in thickness is within such a range, curling at the time of bonding can be satisfactorily suppressed. The thickness of the first protective layer and the thickness of the second protective layer may be the same, the first protective layer may be thicker, and the second protective layer may be thicker. . Typically, the first protective layer is thicker than the second protective layer.
C.位相差層
 位相差層12は、目的に応じて任意の適切な光学的特性および/または機械的特性を有し得る。位相差層12は、代表的には遅相軸を有する。1つの実施形態においては、位相差層12の遅相軸と偏光子1の吸収軸とのなす角度θは、好ましくは38°~52°であり、より好ましくは42°~48°であり、さらに好ましくは約45°である。角度θがこのような範囲であれば、後述するように位相差層をλ/4板とすることにより、非常に優れた円偏光特性(結果として、非常に優れた反射防止特性)を有する光学積層体が得られ得る。
C. Retardation layer The retardation layer 12 may have any suitable optical and / or mechanical properties depending on the purpose. The retardation layer 12 typically has a slow axis. In one embodiment, the angle θ formed by the slow axis of the retardation layer 12 and the absorption axis of the polarizer 1 is preferably 38 ° to 52 °, more preferably 42 ° to 48 °. More preferably, it is about 45 °. If the angle θ is within such a range, an optical element having a very excellent circular polarization characteristic (as a result, a very good antireflection characteristic) by using a retardation layer as a λ / 4 plate as will be described later. A laminate can be obtained.
 位相差層は、好ましくは屈折率特性がnx>ny≧nzの関係を示す。位相差層は、代表的には偏光板に反射防止特性を付与するために設けられ、1つの実施形態においてはλ/4板として機能し得る。この場合、位相差層の面内位相差Re(550)は、好ましくは80nm~200nm、より好ましくは100nm~180nm、さらに好ましくは110nm~170nmである。なお、ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny<nzとなる場合があり得る。 The phase difference layer preferably has a refractive index characteristic of nx> ny ≧ nz. The retardation layer is typically provided for imparting antireflection properties to the polarizing plate, and can function as a λ / 4 plate in one embodiment. In this case, the in-plane retardation Re (550) of the retardation layer is preferably 80 nm to 200 nm, more preferably 100 nm to 180 nm, and still more preferably 110 nm to 170 nm. Here, “ny = nz” includes not only the case where ny and nz are completely equal, but also the case where they are substantially equal. Therefore, ny <nz may be satisfied as long as the effects of the present invention are not impaired.
 位相差層のNz係数は、好ましくは0.1~3、より好ましくは0.2~1.5、さらに好ましくは0.3~1.3である。このような関係を満たすことにより、得られる光学積層体を画像表示装置に用いた場合に、非常に優れた反射色相を達成し得る。 The Nz coefficient of the retardation layer is preferably 0.1 to 3, more preferably 0.2 to 1.5, and still more preferably 0.3 to 1.3. By satisfying such a relationship, a very excellent reflection hue can be achieved when the obtained optical laminate is used in an image display device.
 位相差層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。1つの実施形態においては、位相差層は、逆分散波長特性を示す。この場合、位相差層のRe(450)/Re(550)は、好ましくは0.8以上1未満であり、より好ましくは0.8以上0.95以下である。また、位相差層のRe(650)/Re(550)は、好ましくは1より大きく1.2以下であり、より好ましくは1.05以上1.2以下である。このような構成であれば、非常に優れた反射防止特性を実現することができる。また、このように逆波長分散特性を有する位相差層と、遅相軸角度が適切に調整された基材(後述)とを組み合わせることにより、当該効果は顕著となる。なお、位相差層の波長分散特性の制御は、例えば、後述のように樹脂フィルムとして、ポリカーボネート系樹脂フィルムを用い、該ポリカーボネート系樹脂を構成する構造単位の含有割合を調整して、行うことができる。 The retardation layer may exhibit reverse dispersion wavelength characteristics in which the retardation value increases with the wavelength of the measurement light, or may exhibit positive wavelength dispersion characteristics in which the retardation value decreases with the wavelength of the measurement light. The phase difference value may exhibit a flat chromatic dispersion characteristic that hardly changes depending on the wavelength of the measurement light. In one embodiment, the retardation layer exhibits reverse dispersion wavelength characteristics. In this case, Re (450) / Re (550) of the retardation layer is preferably 0.8 or more and less than 1, and more preferably 0.8 or more and 0.95 or less. Further, Re (650) / Re (550) of the retardation layer is preferably larger than 1 and 1.2 or less, more preferably 1.05 or more and 1.2 or less. With such a configuration, very excellent antireflection characteristics can be realized. Moreover, the effect becomes remarkable by combining the retardation layer having the reverse wavelength dispersion characteristic and the base material (described later) in which the slow axis angle is appropriately adjusted. The wavelength dispersion characteristics of the retardation layer can be controlled, for example, by using a polycarbonate resin film as a resin film and adjusting the content ratio of the structural units constituting the polycarbonate resin as described later. it can.
 位相差層は、光弾性係数の絶対値が好ましくは2×10-11/N以下、より好ましくは2.0×10-13/N~1.5×10-11/N、さらに好ましくは1.0×10-12/N~1.2×10-11/Nの樹脂を含む。光弾性係数の絶対値がこのような範囲であれば、加熱時の収縮応力が発生した場合に位相差変化が生じにくい。その結果、得られる画像表示装置の熱ムラが良好に防止され得る。 Retardation layer, the absolute value of photoelastic coefficient of preferably 2 × 10 -11 m 2 / N or less, more preferably 2.0 × 10 -13 m 2 /N~1.5×10 -11 m 2 / N, more preferably includes a resin of 1.0 × 10 -12 m 2 /N~1.2×10 -11 m 2 / N. When the absolute value of the photoelastic coefficient is in such a range, a phase difference change is unlikely to occur when a shrinkage stress is generated during heating. As a result, heat unevenness of the obtained image display apparatus can be prevented satisfactorily.
 位相差層の厚みは、好ましくは60μm以下であり、好ましくは30μm~55μmである。位相差層の厚みがこのような範囲であれば、加熱時のカールを良好に抑制しつつ、貼り合わせ時のカールを良好に調整することができる。 The thickness of the retardation layer is preferably 60 μm or less, and preferably 30 μm to 55 μm. If the thickness of the retardation layer is in such a range, curling at the time of bonding can be adjusted well while curling at the time of heating is suppressed satisfactorily.
 位相差層は、上記の特性を満足し得る任意の適切な樹脂フィルムで構成され得る。そのような樹脂の代表例としては、環状オレフィン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリエステル系樹脂、ポリビニルアルコール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリスチレン系樹脂、アクリル系樹脂が挙げられる。位相差層が逆分散波長特性を示す樹脂フィルムで構成される場合、ポリカーボネート系樹脂が好適に用いられ得る。 The retardation layer can be composed of any appropriate resin film that can satisfy the above-described characteristics. Typical examples of such resins include cyclic olefin resins, polycarbonate resins, cellulose resins, polyester resins, polyvinyl alcohol resins, polyamide resins, polyimide resins, polyether resins, polystyrene resins, acrylic resins. Based resins. When the retardation layer is composed of a resin film exhibiting reverse dispersion wavelength characteristics, a polycarbonate-based resin can be suitably used.
 上記ポリカーボネート樹脂としては、本発明の効果が得られる限りにおいて、任意の適切なポリカーボネート樹脂を用いることができる。好ましくは、ポリカーボネート樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジオール、脂環式ジメタノール、ジ、トリまたはポリエチレングリコール、ならびに、アルキレングリコールまたはスピログリコールからなる群から選択される少なくとも1つのジヒドロキシ化合物に由来する構造単位と、を含む。好ましくは、ポリカーボネート樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジメタノールに由来する構造単位ならびに/あるいはジ、トリまたはポリエチレングリコールに由来する構造単位と、を含み;さらに好ましくは、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、ジ、トリまたはポリエチレングリコールに由来する構造単位と、を含む。ポリカーボネート樹脂は、必要に応じてその他のジヒドロキシ化合物に由来する構造単位を含んでいてもよい。なお、本発明に好適に用いられ得るポリカーボネート樹脂の詳細は、例えば、特開2014-10291号公報、特開2014-26266号公報に記載されており、当該記載は本明細書に参考として援用される。 As the polycarbonate resin, any appropriate polycarbonate resin can be used as long as the effects of the present invention can be obtained. Preferably, the polycarbonate resin includes a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, an alicyclic diol, an alicyclic dimethanol, di, tri, or polyethylene glycol, and an alkylene. A structural unit derived from at least one dihydroxy compound selected from the group consisting of glycol or spiroglycol. Preferably, the polycarbonate resin is derived from a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, a structural unit derived from an alicyclic dimethanol and / or a di-, tri- or polyethylene glycol. More preferably, a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, and a structural unit derived from di, tri, or polyethylene glycol. The polycarbonate resin may contain structural units derived from other dihydroxy compounds as necessary. Details of the polycarbonate resin that can be suitably used in the present invention are described in, for example, Japanese Patent Application Laid-Open Nos. 2014-10291 and 2014-26266, and the description is incorporated herein by reference. The
 上記ポリカーボネート樹脂のガラス転移温度は、120℃以上190℃以下であることが好ましく、より好ましくは130℃以上180℃以下である。ガラス転移温度が過度に低いと耐熱性が悪くなる傾向にあり、フィルム成形後に寸法変化を起こす可能性があり、又、得られる画像表示装置の画像品質を下げる場合がある。ガラス転移温度が過度に高いと、フィルム成形時の成形安定性が悪くなる場合があり、又フィルムの透明性を損なう場合がある。なお、ガラス転移温度は、JIS K 7121(1987)に準じて求められる。 The glass transition temperature of the polycarbonate resin is preferably 120 ° C. or higher and 190 ° C. or lower, more preferably 130 ° C. or higher and 180 ° C. or lower. If the glass transition temperature is excessively low, the heat resistance tends to deteriorate, there is a possibility of causing a dimensional change after film formation, and the image quality of the obtained image display device may be lowered. If the glass transition temperature is excessively high, the molding stability at the time of film molding may deteriorate, and the transparency of the film may be impaired. The glass transition temperature is determined according to JIS K 7121 (1987).
 上記ポリカーボネート樹脂の分子量は、還元粘度で表すことができる。還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート濃度を0.6g/dLに精密に調製し、温度20.0℃±0.1℃でウベローデ粘度管を用いて測定される。還元粘度の下限は、通常0.30dL/gが好ましく、より好ましは0.35dL/g以上である。還元粘度の上限は、通常1.20dL/gが好ましく、より好ましくは1.00dL/g、更に好ましくは0.80dL/gである。還元粘度が前記下限値より小さいと成形品の機械的強度が小さくなるという問題が生じる場合がある。一方、還元粘度が前記上限値より大きいと、成形する際の流動性が低下し、生産性や成形性が低下するという問題が生じる場合がある。 The molecular weight of the polycarbonate resin can be represented by a reduced viscosity. The reduced viscosity is measured using a Ubbelohde viscometer at a temperature of 20.0 ° C. ± 0.1 ° C., using methylene chloride as a solvent, precisely adjusting the polycarbonate concentration to 0.6 g / dL. The lower limit of the reduced viscosity is usually preferably 0.30 dL / g, more preferably 0.35 dL / g or more. The upper limit of the reduced viscosity is usually preferably 1.20 dL / g, more preferably 1.00 dL / g, still more preferably 0.80 dL / g. If the reduced viscosity is less than the lower limit, there may be a problem that the mechanical strength of the molded product is reduced. On the other hand, if the reduced viscosity is larger than the upper limit, the fluidity at the time of molding is lowered, and there may be a problem that productivity and moldability are lowered.
 ポリカーボネート系樹脂フィルムとして市販のフィルムを用いてもよい。市販品の具体例としては、帝人社製の商品名「ピュアエースWR-S」、「ピュアエースWR-W」、「ピュアエースWR-M」、日東電工社製の商品名「NRF」が挙げられる。 A commercially available film may be used as the polycarbonate resin film. Specific examples of commercially available products include “Pure Ace WR-S”, “Pure Ace WR-W”, “Pure Ace WR-M” manufactured by Teijin Limited, and “NRF” manufactured by Nitto Denko Corporation. It is done.
 位相差層は、例えば、上記ポリカーボネート系樹脂から形成されたフィルムを延伸することにより得られる。ポリカーボネート系樹脂からフィルムを形成する方法としては、任意の適切な成形加工法が採用され得る。具体例としては、圧縮成形法、トランスファー成形法、射出成形法、押出成形法、ブロー成形法、粉末成形法、FRP成形法、キャスト塗工法(例えば、流延法)、カレンダー成形法、熱プレス法等が挙げられる。押出成形法またはキャスト塗工法が好ましい。得られるフィルムの平滑性を高め、良好な光学的均一性を得ることができるからである。成形条件は、使用される樹脂の組成や種類、位相差層に所望される特性等に応じて適宜設定され得る。なお、上記のとおり、ポリカーボネート系樹脂は、多くのフィルム製品が市販されているので、当該市販フィルムをそのまま延伸処理に供してもよい。 The retardation layer is obtained, for example, by stretching a film formed from the polycarbonate resin. Any appropriate molding method can be adopted as a method of forming a film from a polycarbonate-based resin. Specific examples include compression molding methods, transfer molding methods, injection molding methods, extrusion molding methods, blow molding methods, powder molding methods, FRP molding methods, cast coating methods (for example, casting methods), calendar molding methods, and hot presses. Law. Extrusion molding or cast coating is preferred. This is because the smoothness of the resulting film can be improved and good optical uniformity can be obtained. The molding conditions can be appropriately set according to the composition and type of the resin used, the properties desired for the retardation layer, and the like. In addition, as above-mentioned, since many film products are marketed for polycarbonate-type resin, you may use the said commercial film as it is for a extending | stretching process.
 樹脂フィルム(未延伸フィルム)の厚みは、位相差層の所望の厚み、所望の光学特性、後述の延伸条件などに応じて、任意の適切な値に設定され得る。好ましくは50μm~300μmである。 The thickness of the resin film (unstretched film) can be set to any appropriate value depending on the desired thickness of the retardation layer, the desired optical properties, the stretching conditions described below, and the like. The thickness is preferably 50 μm to 300 μm.
 上記延伸は、任意の適切な延伸方法、延伸条件(例えば、延伸温度、延伸倍率、延伸方向)が採用され得る。具体的には、自由端延伸、固定端延伸、自由端収縮、固定端収縮などの様々な延伸方法を、単独で用いることも、同時もしくは逐次で用いることもできる。延伸方向に関しても、長さ方向、幅方向、厚さ方向、斜め方向等、様々な方向や次元に行なうことができる。延伸の温度は、樹脂フィルムのガラス転移温度(Tg)に対し、Tg-30℃~Tg+60℃であることが好ましく、Tg-30℃~Tg+50℃であることがより好ましく、Tg-15℃~Tg+30℃であることがさらに好ましい。 Any appropriate stretching method and stretching conditions (for example, stretching temperature, stretching ratio, stretching direction) may be employed for the stretching. Specifically, various stretching methods such as free end stretching, fixed end stretching, free end contraction, and fixed end contraction can be used singly or simultaneously or sequentially. The stretching direction can also be performed in various directions and dimensions such as a length direction, a width direction, a thickness direction, and an oblique direction. The stretching temperature is preferably Tg-30 ° C to Tg + 60 ° C, more preferably Tg-30 ° C to Tg + 50 ° C, and more preferably Tg-15 ° C to Tg + 30 with respect to the glass transition temperature (Tg) of the resin film. More preferably, the temperature is C.
 上記延伸方法、延伸条件を適宜選択することにより、上記所望の光学特性(例えば、屈折率特性、面内位相差、Nz係数)を有する位相差フィルムを得ることができる。 A retardation film having the desired optical characteristics (for example, refractive index characteristics, in-plane retardation, Nz coefficient) can be obtained by appropriately selecting the stretching method and stretching conditions.
 1つの実施形態においては、位相差フィルムは、樹脂フィルムを一軸延伸もしくは固定端一軸延伸することにより作製される。固定端一軸延伸の具体例としては、樹脂フィルムを長手方向に走行させながら、幅方向(横方向)に延伸する方法が挙げられる。延伸倍率は、好ましくは1.1倍~3.5倍である。 In one embodiment, the retardation film is produced by uniaxially stretching a resin film or uniaxially stretching a fixed end. As a specific example of the fixed end uniaxial stretching, there is a method of stretching in the width direction (lateral direction) while running the resin film in the longitudinal direction. The draw ratio is preferably 1.1 to 3.5 times.
 別の実施形態においては、位相差フィルムは、長尺状の樹脂フィルムを長手方向に対して上記の角度θの方向に連続的に斜め延伸することにより作製され得る。斜め延伸を採用することにより、フィルムの長手方向に対して角度θの配向角(角度θの方向に遅相軸)を有する長尺状の延伸フィルムが得られ、例えば、偏光子との積層に際してロールトゥロールが可能となり、製造工程を簡略化することができる。なお、角度θは、位相差層付偏光板において偏光子の吸収軸と位相差層の遅相軸とがなす角度であり得る。角度θは、上記のとおり、好ましくは38°~52°であり、より好ましくは42°~48°であり、さらに好ましくは約45°である。 In another embodiment, the retardation film can be produced by continuously stretching a long resin film obliquely in the direction of the angle θ described above with respect to the longitudinal direction. By adopting oblique stretching, a long stretched film having an orientation angle of θ with respect to the longitudinal direction of the film (slow axis in the direction of angle θ) can be obtained. For example, when laminating with a polarizer Roll-to-roll is possible, and the manufacturing process can be simplified. Note that the angle θ may be an angle formed between the absorption axis of the polarizer and the slow axis of the retardation layer in the polarizing plate with the retardation layer. As described above, the angle θ is preferably 38 ° to 52 °, more preferably 42 ° to 48 °, and further preferably about 45 °.
 斜め延伸に用いる延伸機としては、例えば、横および/または縦方向に、左右異なる速度の送り力もしくは引張り力または引き取り力を付加し得るテンター式延伸機が挙げられる。テンター式延伸機には、横一軸延伸機、同時二軸延伸機等があるが、長尺状の樹脂フィルムを連続的に斜め延伸し得る限り、任意の適切な延伸機が用いられ得る。 Examples of the stretching machine used for the oblique stretching include a tenter type stretching machine capable of adding feed forces, pulling forces, or pulling forces at different speeds in the lateral and / or longitudinal directions. The tenter type stretching machine includes a horizontal uniaxial stretching machine, a simultaneous biaxial stretching machine, and the like, but any suitable stretching machine can be used as long as a long resin film can be continuously stretched obliquely.
 上記延伸機において左右の速度をそれぞれ適切に制御することにより、上記所望の面内位相差を有し、かつ、上記所望の方向に遅相軸を有する位相差層(実質的には、長尺状の位相差フィルム)が得られ得る。 By appropriately controlling the left and right velocities in the stretching machine, the retardation layer having the desired in-plane retardation and having the slow axis in the desired direction (substantially long) Shaped retardation film) can be obtained.
 上記フィルムの延伸温度は、位相差層に所望される面内位相差値および厚み、使用される樹脂の種類、使用されるフィルムの厚み、延伸倍率等に応じて変化し得る。具体的には、延伸温度は、Tg-30℃~Tg+60℃であることが好ましく、Tg-30℃~Tg+50℃であることがより好ましく、Tg-15℃~Tg+30℃であることがさらに好ましい。このような温度で延伸することにより、本発明において適切な特性を有する位相差層が得られ得る。なお、Tgは、フィルムの構成材料のガラス転移温度である。 The stretching temperature of the film can vary depending on the in-plane retardation value and thickness desired for the retardation layer, the type of resin used, the thickness of the film used, the stretching ratio, and the like. Specifically, the stretching temperature is preferably Tg-30 ° C to Tg + 60 ° C, more preferably Tg-30 ° C to Tg + 50 ° C, and further preferably Tg-15 ° C to Tg + 30 ° C. By stretching at such a temperature, a retardation layer having appropriate characteristics in the present invention can be obtained. Tg is the glass transition temperature of the constituent material of the film.
D.導電層
 導電層は、任意の適切な成膜方法(例えば、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法等)により、任意の適切な基材上に、金属酸化物膜を成膜して形成され得る。成膜後、必要に応じて加熱処理(例えば、100℃~200℃)を行ってもよい。加熱処理を行うことにより、非晶質膜が結晶化し得る。金属酸化物としては、例えば、酸化インジウム、酸化スズ、酸化亜鉛、インジウム-スズ複合酸化物、スズ-アンチモン複合酸化物、亜鉛-アルミニウム複合酸化物、インジウム-亜鉛複合酸化物が挙げられる。インジウム酸化物には2価金属イオンまたは4価金属イオンがドープされていてもよい。好ましくはインジウム系複合酸化物であり、より好ましくはインジウム-スズ複合酸化物(ITO)である。インジウム系複合酸化物は、可視光領域(380nm~780nm)で高い透過率(例えば、80%以上)を有し、かつ、単位面積当たりの表面抵抗値が低いという特徴を有している。
D. Conductive layer The conductive layer can be formed on a metal oxide film on any suitable substrate by any suitable film formation method (eg, vacuum deposition, sputtering, CVD, ion plating, spraying, etc.). Can be formed. After film formation, heat treatment (for example, 100 ° C. to 200 ° C.) may be performed as necessary. By performing the heat treatment, the amorphous film can be crystallized. Examples of the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimony composite oxide, zinc-aluminum composite oxide, and indium-zinc composite oxide. The indium oxide may be doped with divalent metal ions or tetravalent metal ions. Indium composite oxides are preferable, and indium-tin composite oxide (ITO) is more preferable. Indium composite oxides are characterized by high transmittance (for example, 80% or more) in the visible light region (380 nm to 780 nm) and low surface resistance per unit area.
 導電層が金属酸化物を含む場合、該導電層の厚みは、好ましくは50nm以下であり、より好ましくは35nm以下である。導電層の厚みの下限は、好ましくは10nmである。 When the conductive layer contains a metal oxide, the thickness of the conductive layer is preferably 50 nm or less, more preferably 35 nm or less. The lower limit of the thickness of the conductive layer is preferably 10 nm.
 導電層の表面抵抗値は、好ましくは300Ω/□以下であり、より好ましくは150Ω/□以下であり、さらに好ましくは100Ω/□以下である。 The surface resistance value of the conductive layer is preferably 300Ω / □ or less, more preferably 150Ω / □ or less, and further preferably 100Ω / □ or less.
 導電層は、必要に応じてパターン化され得る。パターン化によって、導通部と絶縁部とが形成され得る。パターニング方法としては、任意の適切な方法を採用し得る。パターニング方法の具体例としては、ウエットエッチング法、スクリーン印刷法が挙げられる。 The conductive layer can be patterned as needed. By conducting the patterning, a conductive portion and an insulating portion can be formed. Any appropriate method can be adopted as the patterning method. Specific examples of the patterning method include a wet etching method and a screen printing method.
E.基材 
 基材は、遅相軸を有する。本発明においては、遅相軸を有する基材、すなわち、異方性基材を用いても、円偏光板の反射防止機能が十分に発揮されて、外光反射や背景の映り込み等を有効に防止し得る光学積層体を提供することができる。したがって、本発明によれば、従来のように光学的な等方性を重視して基材を構成する材料を選択する必要がなく、所望の特性に応じて多様な材料を選択することができる。
E. Base material
The substrate has a slow axis. In the present invention, even when using a base material having a slow axis, that is, an anisotropic base material, the antireflection function of the circularly polarizing plate is sufficiently exerted to effectively prevent reflection of external light and reflection of the background. An optical layered body that can be provided can be provided. Therefore, according to the present invention, there is no need to select a material constituting the base material with emphasis on optical isotropy as in the prior art, and various materials can be selected according to desired characteristics. .
 また、上記基材は、光学的に等方性(面内位相差Re(550)が0nm)であることをターゲットにして作製されながらも、不可避に遅相軸を有する基材であってもよい。基材上に導電層を成膜して形成する場合(すなわち、密着積層により基材と導電層が積層している場合)、成膜工程での加熱等により、基材に不要な遅相軸が生じる場合がある。このようにして生じた遅相軸は、円偏光板による反射防止機能を阻害する上、通常、その方向が制御しがたく、生産安定性低下の原因ともなる。本発明においては、上記遅相軸が生じた基材であっても、円偏光板の反射防止機能が十分に発揮される。このような本発明においては、遅相軸の発生を許容して、導電層を形成することができ、導電層成膜条件の制約を少なくすることができる。 In addition, the base material is inevitably optically isotropic (in-plane retardation Re (550) is 0 nm) as a target, but is inevitably a base material having a slow axis. Good. When a conductive layer is formed on a base material (ie, when the base material and the conductive layer are stacked by close-contact lamination), a slow axis that is unnecessary for the base material due to heating in the film forming process, etc. May occur. The slow axis produced in this way hinders the antireflection function of the circularly polarizing plate, and is usually difficult to control the direction, which causes a decrease in production stability. In the present invention, the antireflection function of the circularly polarizing plate is sufficiently exhibited even with the base material on which the slow axis is generated. In the present invention, it is possible to form the conductive layer while allowing the slow axis to be generated, and to reduce restrictions on the conditions for forming the conductive layer.
 上記効果は、基材の遅相軸と位相差層の遅相軸との角度を最適化することにより得られる。本発明は、基材の遅相軸がいかなる方向に生じても、円偏光板の反射防止機能が十分に発揮される点で特に有用である。 The above effect can be obtained by optimizing the angle between the slow axis of the substrate and the slow axis of the retardation layer. The present invention is particularly useful in that the antireflection function of the circularly polarizing plate is sufficiently exhibited regardless of the direction of the slow axis of the substrate.
 基材の遅相軸と位相差層の遅相軸とのなす角度は、-40°~-50°または40°~50°であり、好ましくは-42°~-48°または42°~48°であり、より好ましくは-44°~-46°または44°~46°であり、特に好ましくは-45°または45°である。このような範囲であれば、円偏光板の反射防止機能が十分に発揮されて、外光反射や背景の映り込み等を有効に防止し得る光学積層体を提供することができる。なお、本明細書において、基材の遅相軸を基準にして時計回り方向の角度を正の角度とし、反時計回り方向の角度を負の角度とする。 The angle formed between the slow axis of the substrate and the slow axis of the retardation layer is −40 ° to −50 ° or 40 ° to 50 °, preferably −42 ° to −48 ° or 42 ° to 48. °, more preferably -44 ° to -46 ° or 44 ° to 46 °, and particularly preferably -45 ° or 45 °. If it is such a range, the reflection preventing function of a circularly-polarizing plate will fully be exhibited, and the optical laminated body which can prevent external light reflection, a background reflection, etc. effectively can be provided. In the present specification, the angle in the clockwise direction with respect to the slow axis of the substrate is defined as a positive angle, and the angle in the counterclockwise direction is defined as a negative angle.
 基材は、好ましくは屈折率特性がnx>ny≧nzの関係を示す。基材の面内位相差Re(550)は、0nmより大きい。本発明によれば、面内位相差Reを有する基材を用いても、上記のように、円偏光板の反射防止機能が十分に発揮される光学積層体を得ることができる。1つの実施形態においては、基材の面内位相差Re(550)は、3nm以上である。別の実施形態においては、基材の面内位相差Re(550)は、5nm以上である。基材の面内位相差Re(550)の上限は、例えば、10nmである。基材の面内位相差Re(550)が10nm以下(より好ましくは8nm以下、さらに好ましくは6nm以下)であれば、円偏光板の反射防止機能はより高くなる。 The base material preferably has a refractive index characteristic of nx> ny ≧ nz. The in-plane retardation Re (550) of the substrate is greater than 0 nm. According to the present invention, even when a substrate having an in-plane retardation Re is used, an optical laminate that sufficiently exhibits the antireflection function of the circularly polarizing plate can be obtained as described above. In one embodiment, the in-plane retardation Re (550) of the substrate is 3 nm or more. In another embodiment, the in-plane retardation Re (550) of the substrate is 5 nm or more. The upper limit of the in-plane retardation Re (550) of the substrate is, for example, 10 nm. When the in-plane retardation Re (550) of the substrate is 10 nm or less (more preferably 8 nm or less, and even more preferably 6 nm or less), the antireflection function of the circularly polarizing plate is further enhanced.
 基材としては、任意の適切な樹脂フィルムが用いられ得る。構成材料の具体例としては、環状オレフィン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリエステル系樹脂、アクリル系樹脂が挙げられる。 Any appropriate resin film can be used as the substrate. Specific examples of the constituent material include a cyclic olefin resin, a polycarbonate resin, a cellulose resin, a polyester resin, and an acrylic resin.
 基材の厚みは、好ましくは10μm~200μmであり、より好ましくは20μm~60μmである。 The thickness of the substrate is preferably 10 μm to 200 μm, more preferably 20 μm to 60 μm.
 必要に応じて、導電層21と基材22との間に、ハードコート層(図示せず)が設けられてもよい。ハードコート層としては、任意の適切な構成を有するハードコート層が用いられ得る。ハードコート層の厚みは、例えば0.5μm~2μmである。ヘイズが許容範囲であれば、ハードコート層にニュートンリング低減のための微粒子を添加してもよい。さらに、必要に応じて、導電層21と基材22(存在する場合にはハードコート層)との間に、導電層の密着性を高めるためのアンカーコート層、および/または、反射率を調整するための屈折率調整層が設けられてもよい。アンカーコート層および屈折率調整層としては、任意の適切な構成が採用され得る。アンカーコート層および屈折率調整層は数nm~数十nmの薄層であり得る。 If necessary, a hard coat layer (not shown) may be provided between the conductive layer 21 and the base material 22. As the hard coat layer, a hard coat layer having any appropriate configuration can be used. The thickness of the hard coat layer is, for example, 0.5 μm to 2 μm. If the haze is in an allowable range, fine particles for reducing Newton rings may be added to the hard coat layer. Further, if necessary, the anchor coat layer for improving the adhesion of the conductive layer and / or the reflectance is adjusted between the conductive layer 21 and the base material 22 (a hard coat layer if present). A refractive index adjustment layer may be provided. Arbitrary appropriate structures may be employ | adopted as an anchor coat layer and a refractive index adjustment layer. The anchor coat layer and the refractive index adjusting layer can be thin layers of several nm to several tens of nm.
 必要に応じて、基材22の導電層21と反対側(光学積層体の最外側)に、別のハードコート層が設けられてもよい。当該ハードコート層は、代表的には、バインダー樹脂層と球状粒子とを含み、球状粒子がバインダー樹脂層から突出して凸部を形成している。このようなハードコート層の詳細は、特開2013-145547号公報に記載されており、当該公報の記載は本明細書に参考として援用される。 If necessary, another hard coat layer may be provided on the side of the base material 22 opposite to the conductive layer 21 (outermost side of the optical laminate). The hard coat layer typically includes a binder resin layer and spherical particles, and the spherical particles protrude from the binder resin layer to form convex portions. Details of such a hard coat layer are described in JP-A-2013-145547, and the description of the gazette is incorporated herein by reference.
F.その他
 本発明の実施形態による光学積層体は、その他の層をさらに含んでいてもよい。実用的には、基材22の表面には、表示セルに貼り合わせるための粘着剤層(図示せず)が設けられている。当該粘着剤層の表面には、光学積層体が使用に供されるまで、剥離フィルムが貼り合わされていることが好ましい。
F. Others The optical layered body according to the embodiment of the present invention may further include other layers. Practically, an adhesive layer (not shown) for bonding to the display cell is provided on the surface of the base material 22. It is preferable that a release film is bonded to the surface of the pressure-sensitive adhesive layer until the optical layered body is used.
G.画像表示装置
 上記A項からF項に記載の光学積層体は、画像表示装置に適用され得る。したがって、本発明は、そのような光学積層体を用いた画像表示装置を包含する。画像表示装置の代表例としては、液晶表示装置、有機EL表示装置が挙げられる。本発明の実施形態による画像表示装置は、その視認側に上記A項からG項に記載の光学積層体を備える。光学積層体は、導電層が表示セル(例えば、液晶セル、有機ELセル)側となるように(偏光子が視認側となるように)積層されている。すなわち、本発明の実施形態による画像表示装置は、表示セル(例えば、液晶セル、有機ELセル)と偏光板との間にタッチセンサーが組み込まれた、いわゆるインナータッチパネル型入力表示装置であり得る。この場合、タッチセンサーは、導電層(または基材付導電層)と表示セルとの間に配置され得る。タッチセンサーの構成については業界で周知の構成が採用され得るので、詳細な説明は省略する。
G. Image Display Device The optical layered body described in the items A to F can be applied to an image display device. Therefore, the present invention includes an image display device using such an optical laminate. Typical examples of the image display device include a liquid crystal display device and an organic EL display device. An image display device according to an embodiment of the present invention includes the optical layered body described in the items A to G on the viewing side. The optical laminated body is laminated so that the conductive layer is on the display cell (for example, liquid crystal cell, organic EL cell) side (so that the polarizer is on the viewing side). That is, the image display device according to the embodiment of the present invention can be a so-called inner touch panel type input display device in which a touch sensor is incorporated between a display cell (for example, a liquid crystal cell or an organic EL cell) and a polarizing plate. In this case, the touch sensor can be disposed between the conductive layer (or the conductive layer with the base material) and the display cell. As the configuration of the touch sensor, a configuration well known in the industry can be adopted, and a detailed description thereof will be omitted.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
[実施例1]
 下記表1に示す構成の光学積層体について、光学シミュレーター(Shintec社製、商品名「LCD Master V8」)を用い、正面色相a、bから、該光学積層体の反射特性を評価した。
 なお、偏光板の位相差層とは反対側に、光源(「LCD Master V8」に登録されているD65光源)を配置し、基材の位相差層とは反対側に、反射板(「LCD Master V8」に登録されている理想反射板Idea-Reflector)を配置する構成とした。
 また、基材を含まないこと以外は表1と同様の構成にて、正面色相a、bを出し、その結果をリファレンスとした。
 本評価は、後述のように基材の遅相軸角度を変えてシミュレーションを行い、リファレンスとの比較により、光学積層体の反射特性を評価するものである。
[Example 1]
About the optical laminated body of the structure shown in following Table 1, the reflection characteristic of this optical laminated body was evaluated from front hue a and b using the optical simulator (The product name "LCD Master V8" by Shintec).
A light source (D65 light source registered in “LCD Master V8”) is disposed on the side opposite to the retardation layer of the polarizing plate, and a reflector (“LCD” is disposed on the side opposite to the retardation layer of the substrate. An ideal reflector (Idea-Reflector) registered in “Master V8” is arranged.
Further, the front hues a and b were obtained in the same configuration as in Table 1 except that the base material was not included, and the result was used as a reference.
In this evaluation, simulation is performed by changing the slow axis angle of the substrate as described later, and the reflection characteristics of the optical laminate are evaluated by comparison with a reference.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
[実施例1-1]
 基材の遅相軸と偏光板の偏光子の吸収軸とのなす角度を90°とした。すなわち、基材の遅相軸と位相差層の遅相軸とのなす角度を45°とした。
[Example 1-1]
The angle formed by the slow axis of the substrate and the absorption axis of the polarizer of the polarizing plate was 90 °. That is, the angle formed by the slow axis of the substrate and the slow axis of the retardation layer was 45 °.
[実施例1-2]
 基材の遅相軸と偏光板の偏光子の吸収軸とのなす角度を0°とした。すなわち、基材の遅相軸と位相差層の遅相軸とのなす角度を-45°とした。
[Example 1-2]
The angle formed by the slow axis of the substrate and the absorption axis of the polarizer of the polarizing plate was 0 °. That is, the angle formed by the slow axis of the substrate and the slow axis of the retardation layer was −45 °.
[実施例1-3]
 基材の遅相軸と偏光板の偏光子の吸収軸とのなす角度を85°とした。すなわち、基材の遅相軸と位相差層の遅相軸とのなす角度を40°とした。
[Example 1-3]
The angle formed by the slow axis of the substrate and the absorption axis of the polarizer of the polarizing plate was 85 °. That is, the angle formed by the slow axis of the substrate and the slow axis of the retardation layer was 40 °.
[実施例1-4]
 基材の遅相軸と偏光板の偏光子の吸収軸とのなす角度を95°とした。すなわち、基材の遅相軸と位相差層の遅相軸とのなす角度を50°とした。
[Example 1-4]
The angle formed by the slow axis of the substrate and the absorption axis of the polarizer of the polarizing plate was 95 °. That is, the angle formed by the slow axis of the substrate and the slow axis of the retardation layer was 50 °.
[実施例1-5]
 基材の遅相軸と偏光板の偏光子の吸収軸とのなす角度を-5°とした。すなわち、基材の遅相軸と位相差層の遅相軸とのなす角度を-50°とした。
[Example 1-5]
The angle formed between the slow axis of the substrate and the absorption axis of the polarizer of the polarizing plate was −5 °. That is, the angle formed by the slow axis of the base material and the slow axis of the retardation layer was −50 °.
[実施例1-6]
 基材の遅相軸と偏光板の偏光子の吸収軸とのなす角度を5°とした。すなわち、基材の遅相軸と位相差層の遅相軸とのなす角度を-40°とした。
[Example 1-6]
The angle formed between the slow axis of the substrate and the absorption axis of the polarizer of the polarizing plate was 5 °. That is, the angle formed by the slow axis of the substrate and the slow axis of the retardation layer was −40 °.
[比較例1]
 基材の遅相軸と偏光板の偏光子の吸収軸とのなす角度を、10°~80°および100°~170°の範囲内で変更し、各角度における、反射特性を評価した。
[Comparative Example 1]
The angle formed between the slow axis of the substrate and the absorption axis of the polarizer of the polarizing plate was changed within the range of 10 ° to 80 ° and 100 ° to 170 °, and the reflection characteristics at each angle were evaluated.
 実施例1および比較例1の結果について、正面色相a,bのプロットを図2示す。また、Δabの軸角度依存性を示すグラフ図を図3に示す。Δabは、Δab={(正面色相a-リファレンスの正面色相a)+(正面色相b-リファレンスの正面色相b)1/2により算出される。Δabが、低いほど、等方性基材の影響が少なく、反射防止特性に優れることを示す。 FIG. 2 shows a plot of front hues a and b for the results of Example 1 and Comparative Example 1. FIG. 3 is a graph showing the axial angle dependency of Δab. Δab is calculated by Δab = {(front hue a−reference front hue a) 2 + (front hue b−reference front hue b) 2 } 1/2 . The lower Δab, the less the influence of the isotropic substrate and the better the antireflection characteristics.
 図2および図3から明らかなように、本発明の光学積層体は、優れた反射防止機能を有する。 As apparent from FIGS. 2 and 3, the optical laminate of the present invention has an excellent antireflection function.
[実施例2]
 位相差層のRe(550)を139nmとし、位相差層の波長分散特性Re(550)/Re(450)を0.85とし、波長分散特性Re(650)/Re(550)を1.06としたこと以外は、実施例1(実施例1-1~1-6)と同様にして、光学積層体の反射特性を評価した。
[Example 2]
Re (550) of the retardation layer is set to 139 nm, chromatic dispersion characteristics Re (550) / Re (450) of the retardation layer is set to 0.85, and chromatic dispersion characteristics Re (650) / Re (550) is set to 1.06. Except for the above, the reflective properties of the optical laminate were evaluated in the same manner as in Example 1 (Examples 1-1 to 1-6).
[比較例2]
 位相差層のRe(550)を139nmとし、位相差層の波長分散特性Re(550)/Re(450)を0.85とし、波長分散特性Re(650)/Re(550)を1.06としたこと以外は、比較例2と同様にして、光学積層体の反射特性を評価した。
[Comparative Example 2]
Re (550) of the retardation layer is set to 139 nm, chromatic dispersion characteristics Re (550) / Re (450) of the retardation layer is set to 0.85, and chromatic dispersion characteristics Re (650) / Re (550) is set to 1.06. Except for the above, the reflective properties of the optical laminate were evaluated in the same manner as in Comparative Example 2.
 実施例2および比較例2の結果について、Δabの軸角度依存性を示すグラフ図を図4に示す。 FIG. 4 is a graph showing the axial angle dependence of Δab for the results of Example 2 and Comparative Example 2.
[実施例3]
 位相差層の波長分散特性Re(550)/Re(450)を0.82とし、波長分散特性Re(650)/Re(550)を1.08としたこと以外は、実施例1(実施例1-1~1-6)と同様にして、光学積層体の反射特性を評価した。
[Example 3]
Example 1 (Example) except that the wavelength dispersion characteristics Re (550) / Re (450) of the retardation layer is set to 0.82 and the wavelength dispersion characteristics Re (650) / Re (550) is set to 1.08. The reflection characteristics of the optical laminate were evaluated in the same manner as in 1-1 to 1-6).
[比較例3]
 位相差層の波長分散特性Re(550)/Re(450)を0.82とし、波長分散特性Re(650)/Re(550)を1.08としたこと以外は、比較例2と同様にして、光学積層体の反射特性を評価した。
[Comparative Example 3]
The same as Comparative Example 2 except that the chromatic dispersion characteristic Re (550) / Re (450) of the retardation layer was set to 0.82, and the chromatic dispersion characteristic Re (650) / Re (550) was set to 1.08. Then, the reflection characteristics of the optical laminate were evaluated.
 実施例3および比較例3の結果について、Δabの軸角度依存性を示すグラフ図を図5に示す。 FIG. 5 is a graph showing the axial angle dependence of Δab for the results of Example 3 and Comparative Example 3.
 本発明の光学積層体は、液晶表示装置および有機EL表示装置のような画像表示装置に好適に用いられ、特に有機EL表示装置の反射防止フィルムとして好適に用いられ得る。さらに、本発明の光学積層体は、インナータッチパネル型入力表示装置に好適に用いられ得る。 The optical layered body of the present invention is suitably used for image display devices such as liquid crystal display devices and organic EL display devices, and can be particularly suitably used as an antireflection film for organic EL display devices. Furthermore, the optical layered body of the present invention can be suitably used for an inner touch panel type input display device.
  1   偏光子
  2   第1の保護層
  3   第2の保護層
 11   偏光板
 12   位相差層
 21   導電層
 22   基材
100   光学積層体
DESCRIPTION OF SYMBOLS 1 Polarizer 2 1st protective layer 3 2nd protective layer 11 Polarizing plate 12 Phase difference layer 21 Conductive layer 22 Base material 100 Optical laminated body

Claims (6)

  1.  偏光子と該偏光子の少なくとも片側に配置された保護層とを含む偏光板と、位相差層と、導電層と、基材とをこの順に有し、
     該基材の面内位相差Re(550)が0nmより大きく、
     該基材の遅相軸と該位相差層の遅相軸とのなす角度が、-40°~-50°または40°~50°である、
     光学積層体。
    A polarizing plate including a polarizer and a protective layer disposed on at least one side of the polarizer, a retardation layer, a conductive layer, and a base material in this order,
    The in-plane retardation Re (550) of the substrate is greater than 0 nm,
    The angle formed by the slow axis of the substrate and the slow axis of the retardation layer is −40 ° to −50 ° or 40 ° to 50 °.
    Optical laminate.
  2.  前記偏光子の吸収軸と前記位相差層の遅相軸とのなす角度が38°~52°である、請求項1に記載の光学積層体。 2. The optical laminate according to claim 1, wherein an angle formed between the absorption axis of the polarizer and the slow axis of the retardation layer is 38 ° to 52 °.
  3.  前記位相差層のRe(450)/Re(550)が、0.8以上1未満である、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein Re (450) / Re (550) of the retardation layer is 0.8 or more and less than 1.
  4.  前記位相差層のRe(650)/Re(550)が、1より大きく1.2以下である、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein Re (650) / Re (550) of the retardation layer is greater than 1 and 1.2 or less.
  5.  前記位相差層が、ポリカーボネート系で構成されている、請求項1に記載の光学積層体。 The optical layered body according to claim 1, wherein the retardation layer is made of polycarbonate.
  6.  請求項1に記載の光学積層体を備える、画像表示装置。
     
     
    An image display device comprising the optical laminate according to claim 1.

PCT/JP2016/085028 2015-12-02 2016-11-25 Optical laminate and image display device WO2017094623A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201804244TA SG11201804244TA (en) 2015-12-02 2016-11-25 Optical laminate and image display device
CN201680070418.7A CN108292002B (en) 2015-12-02 2016-11-25 Optical laminate and image display device
KR1020187015174A KR102627997B1 (en) 2015-12-02 2016-11-25 Optical laminates and image display devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-235578 2015-12-02
JP2015235578A JP6695685B2 (en) 2015-12-02 2015-12-02 Optical laminate and image display device

Publications (1)

Publication Number Publication Date
WO2017094623A1 true WO2017094623A1 (en) 2017-06-08

Family

ID=58796729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085028 WO2017094623A1 (en) 2015-12-02 2016-11-25 Optical laminate and image display device

Country Status (6)

Country Link
JP (1) JP6695685B2 (en)
KR (1) KR102627997B1 (en)
CN (1) CN108292002B (en)
SG (1) SG11201804244TA (en)
TW (1) TWI729040B (en)
WO (1) WO2017094623A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102715A1 (en) * 2017-11-22 2019-05-31 日東電工株式会社 Image display device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7044468B2 (en) * 2016-02-05 2022-03-30 三菱ケミカル株式会社 An optical laminate and an image display device using the optical laminate
US11411206B2 (en) 2017-07-10 2022-08-09 Lg Chem, Ltd. Circularly polarizing plate
KR102466770B1 (en) * 2019-07-23 2022-11-14 주식회사 엘지화학 Optical Laminate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201632A (en) * 2000-01-17 2001-07-27 Kanegafuchi Chem Ind Co Ltd Liquid crystal display device with touch panel and touch panel
JP2009109996A (en) * 2007-10-09 2009-05-21 Toray Ind Inc Retardation film
JP2015069158A (en) * 2013-09-30 2015-04-13 大日本印刷株式会社 Optical film, image display device, and method for manufacturing the optical film
WO2016167221A1 (en) * 2015-04-13 2016-10-20 富士フイルム株式会社 Transparent base material film laminate, touch panel sensor film, touch panel, image display device, and method for improving visibility of image display device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002372622A (en) 2001-06-14 2002-12-26 Nitto Denko Corp Composite optical retardation plate, circularly polarizing plate and liquid crystal display, organic el display device
JP2003036143A (en) 2001-07-25 2003-02-07 Sumitomo Chem Co Ltd Inner touch panel
JP2003311239A (en) 2002-04-23 2003-11-05 Matsushita Electric Works Ltd Apparatus for treating garbage
CN100472287C (en) * 2005-03-30 2009-03-25 卡西欧计算机株式会社 Vertical orientation type liquid crystal display device
SG183550A1 (en) * 2010-03-03 2012-10-30 3M Innovative Properties Co Composite with nano-structured layer and method of making the same
CN103052489B (en) * 2010-08-02 2015-03-11 株式会社日本触媒 Method of manufacturing phase difference film and phase difference film roll
JP5528606B2 (en) * 2012-06-21 2014-06-25 日東電工株式会社 Polarizing plate and organic EL panel
JP2014112510A (en) * 2012-11-02 2014-06-19 Nitto Denko Corp Transparent conductive film
KR101542618B1 (en) * 2012-12-14 2015-08-06 제일모직주식회사 Polarizing plate and optical display apparatus comprising the same
TWI636285B (en) * 2013-08-09 2018-09-21 住友化學股份有限公司 Optical film
TWI634470B (en) * 2013-08-23 2018-09-01 奇畿科技股份有限公司 Polarized capacitive touch panel and display of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201632A (en) * 2000-01-17 2001-07-27 Kanegafuchi Chem Ind Co Ltd Liquid crystal display device with touch panel and touch panel
JP2009109996A (en) * 2007-10-09 2009-05-21 Toray Ind Inc Retardation film
JP2015069158A (en) * 2013-09-30 2015-04-13 大日本印刷株式会社 Optical film, image display device, and method for manufacturing the optical film
WO2016167221A1 (en) * 2015-04-13 2016-10-20 富士フイルム株式会社 Transparent base material film laminate, touch panel sensor film, touch panel, image display device, and method for improving visibility of image display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102715A1 (en) * 2017-11-22 2019-05-31 日東電工株式会社 Image display device

Also Published As

Publication number Publication date
CN108292002A (en) 2018-07-17
KR102627997B1 (en) 2024-01-23
JP6695685B2 (en) 2020-05-20
TW201730601A (en) 2017-09-01
SG11201804244TA (en) 2018-06-28
JP2017102287A (en) 2017-06-08
TWI729040B (en) 2021-06-01
CN108292002B (en) 2021-02-26
KR20180088817A (en) 2018-08-07

Similar Documents

Publication Publication Date Title
JP6453746B2 (en) Elongated optical laminate and image display device
WO2017038417A1 (en) Optical compensation layer-equipped polarizing plate and organic el panel using same
WO2017094624A1 (en) Optical laminate and image display device
JP7044468B2 (en) An optical laminate and an image display device using the optical laminate
TWI737807B (en) Optical laminate and image display device
WO2017038416A1 (en) Longitudinally oriented optical compensation layer-equipped polarizing plate and organic el panel using same
KR20210071967A (en) Polarizing plate with retardation layer and image display device using same
WO2017094623A1 (en) Optical laminate and image display device
KR20210071998A (en) Polarizing plate with retardation layer and image display device using same
TW202018339A (en) Polarizing plate with phase difference layers and image display device using the same capable of thinning the protective layer of the polarizer
JP2023053981A (en) Method for manufacturing polarizing plate
WO2017038415A1 (en) Polarizing plate having optical compensation layer, and organic el panel using same
KR20210071993A (en) Polarizing plate with retardation layer and image display device using same
KR20210071966A (en) Polarizing plate with retardation layer and image display device using same
JP6797499B2 (en) Polarizing plate with retardation layer and image display device using it
JP6712335B2 (en) Polarizing plate with optical compensation layer and organic EL panel using the same
JP6804168B2 (en) Polarizing plate with retardation layer and image display device using it
KR20210071999A (en) Polarizing plate with retardation layer and image display device using same
KR20210071970A (en) Polarizing plate with retardation layer and image display device using same
KR20210075079A (en) Polarizing plate with retardation layer and image display device using same
KR20220123152A (en) Polarizing plate with phase difference layer, and image display device using this
KR20210071985A (en) Polarizing plate with retardation layer and image display device using same
KR20210071965A (en) Polarizing plate with retardation layer and image display device using same
KR20210071984A (en) Polarizing plate with retardation layer and image display device using same
JP2018109778A (en) Polarizing plate with optical compensation layers, and organic el panel having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870560

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201804244T

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 20187015174

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870560

Country of ref document: EP

Kind code of ref document: A1