WO2017088137A1 - 导航***中切换路侧导航单元的方法和设备 - Google Patents

导航***中切换路侧导航单元的方法和设备 Download PDF

Info

Publication number
WO2017088137A1
WO2017088137A1 PCT/CN2015/095594 CN2015095594W WO2017088137A1 WO 2017088137 A1 WO2017088137 A1 WO 2017088137A1 CN 2015095594 W CN2015095594 W CN 2015095594W WO 2017088137 A1 WO2017088137 A1 WO 2017088137A1
Authority
WO
WIPO (PCT)
Prior art keywords
rsu
obu
handover
message
local path
Prior art date
Application number
PCT/CN2015/095594
Other languages
English (en)
French (fr)
Inventor
宋永刚
李辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/095594 priority Critical patent/WO2017088137A1/zh
Priority to CN201580084801.3A priority patent/CN108291811B/zh
Priority to EP15909049.7A priority patent/EP3370036B1/en
Priority to JP2018527762A priority patent/JP6679091B2/ja
Publication of WO2017088137A1 publication Critical patent/WO2017088137A1/zh
Priority to US15/989,958 priority patent/US10827399B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0116Measuring and analyzing of parameters relative to traffic conditions based on the source of data from roadside infrastructure, e.g. beacons
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096725Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information generates an automatic action on the vehicle control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096733Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place
    • G08G1/096741Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place where the source of the transmitted information selects which information to transmit to each vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096783Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a roadside individual element
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096805Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route
    • G08G1/096811Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed offboard
    • G08G1/096822Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed offboard where the segments of the route are transmitted to the vehicle at different locations and times
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/322Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by location data

Definitions

  • the present invention relates to the field of communications and the field of communications, and more particularly to a method of switching a roadside navigation unit in a navigation system, a car navigation unit and a roadside navigation unit.
  • the entire network is divided into different areas, and each area collects routing request information of the local area and the auto-driving vehicle position report, and only performs routing decisions with the traffic flow in the RSU interaction area of other areas.
  • the method of information collection and routing decision can reduce the computational complexity of the navigation algorithm and improve the real-time performance of the navigation system.
  • the solution is based on human-oriented applications and cannot solve the RSU navigation and switching in the case of auto-driving for vehicles.
  • the solution can not solve the seamless switching and taking over when the self-driving vehicle crosses different RSUs, and thus cannot guarantee the safety of the self-driving vehicle.
  • the embodiment of the invention provides a method and a device for switching a roadside navigation unit in a navigation system, which can realize seamless switching of the RSU, and is suitable for a large-scale automatic driving scenario.
  • a method of switching a roadside navigation unit in a navigation system receives a handover notification message sent by the first RSU, where the handover notification message is used to indicate that the OBU is ready to switch the home RSU of the OBU from the first RSU to the second RSU; and then the OBU sends a registration request to the second RSU.
  • the OBU may further send the location information of the OBU to the first RSU, where An RSU may determine whether to initiate an RSU handover to the OBU according to the location information of the OBU to determine whether to send the handover notification message.
  • the first handover pre-processing message includes a global path of the OBU and location information of the OBU .
  • a third possible implementation of the first aspect in combination with the first aspect or the first possible implementation of the first aspect and the second possible implementation of the first aspect
  • the method further includes: before the OBU receives the handover notification message sent by the first RSU, the method further includes:
  • the OBU Receiving, by the OBU, a second handover pre-processing message sent by the first RSU, where the second handover pre-processing message includes at least one of an identifier ID of the second RSU, an address of the second RSU, and a name of the second RSU .
  • the fourth possible implementation of the first aspect sends a registration request to the second RSU to request to obtain the local path information of the OBU in the coverage of the second RSU, including:
  • the OBU receives the registration success message sent by the second RSU;
  • the OBU sends a local path request to the second RSU according to the registration success message
  • the OBU receives the local path information sent by the second RSU in response to the local path request.
  • the fifth possible implementation of the first aspect receives the local path information sent by the second RSU, including:
  • the OBU receives the local path information that is sent by the second RSU when determining that the OBU is successfully registered.
  • the sixth possible implementation of the first aspect further includes:
  • the OBU sends a handover report message to the central service unit CSU, the handover report message is used to notify the CSU that the home RSU of the OBU has switched to the second RSU.
  • the seventh possible implementation of the first aspect further includes:
  • the OBU sends a logout message to the first RSU, so that the first RSU cancels according to the logout
  • the information corresponding to the OBU is released.
  • a method for switching a roadside navigation unit RSU in a navigation system comprising:
  • the first RSU sends a first handover pre-processing message to the second RSU, so that the second RSU determines, according to the first handover pre-processing message, local path information of the in-vehicle navigation unit OBU within the coverage of the second RSU;
  • the first RSU sends a handover notification message to the OBU, where the handover notification message is used to indicate that the OBU is ready to switch the home RSU of the OBU from the first RSU to the second RSU, so that the OBU is notified according to the handover notification message.
  • the second RSU acquires the local path information and switches the home RSU of the OBU from the first RSU to the second RSU.
  • the method further includes:
  • the first RSU determines, according to the location information of the OBU, whether to initiate an RSU handover to the OBU to determine whether to send the handover notification message or determine whether to send the first handover pre-processing message.
  • the first handover pre-processing message includes a global path of the OBU and location information of the OBU .
  • the method further includes:
  • the first RSU sends a second handover pre-processing message to the OBU, where the second handover pre-processing message includes at least one of an identifier ID of the second RSU, an address of the second RSU, and a name of the second RSU.
  • the fourth possible implementation of the second aspect further includes:
  • the first RSU releases the resource corresponding to the OBU according to the logout message.
  • a method for switching a roadside navigation unit RSU in a navigation system comprising:
  • the second RSU sends the local path information to the OBU, so that the OBU switches the home RSU of the OBU from the first RSU to the second RSU according to the local path information.
  • the method further includes:
  • the second RSU sends a registration success message to the OBU;
  • the second RSU sends the local path information to the OBU, including:
  • the second RSU sends the local path information in response to the local path request to the OBU.
  • the second RSU sends the local path information to the OBU, including:
  • the local RSU sends the local path information to the OBU.
  • the first handover pre-processing message includes a global path of the OBU and location information of the OBU.
  • the second RSU determines the local path information of the OBU in the coverage of the second RSU according to the first handover pre-processing message, including:
  • the second RSU determines the local path information of the OBU within the coverage of the second RSU according to the global path of the OBU and the location information of the OBU.
  • the fourth possible implementation of the third aspect further includes:
  • the second RSU sends a handover report message to the central service unit CSU, the handover report message is used to notify the CSU that the home RSU of the OBU has switched to the second RSU.
  • the fifth possible implementation manner of the third aspect further includes:
  • the second RSU sends a logout message to the first RSU, so that the first RSU is based on the note
  • the pin message releases the resource corresponding to the OBU.
  • a car navigation unit OBU including:
  • a receiving module configured to receive a handover notification message sent by the first roadside navigation unit RSU, where the handover notification message is used to indicate that the OBU is ready to switch the home RSU of the OBU from the first RSU to the second RSU;
  • a sending module configured to send a registration request to the second RSU to request to obtain local path information of the OBU within the coverage of the second RSU;
  • the receiving module is further configured to receive the local path information sent by the second RSU;
  • a switching module configured to switch the home RSU of the OBU from the first RSU to the second RSU according to the local path information received by the receiving module.
  • the sending module is further configured to: before the OBU receives the handover notification message sent by the first RSU, send the OBU to the first RSU Location information, the location information is used by the first RSU to determine whether to initiate an RSU handover to the OBU to determine whether to send the handover notification message.
  • the first handover pre-processing message includes a global path of the OBU and location information of the OBU .
  • the receiving module is further configured to: before the OBU receives the handover notification message sent by the first RSU, receive a second handover pre-processing message sent by the first RSU, where the second handover pre-processing message includes the second RSU At least one of an identification ID, an address of the second RSU, and a name of the second RSU.
  • the sending module is also used to:
  • the receiving module is specifically configured to:
  • the sending module is further configured to send a handover report message to the central service unit CSU, where the handover report message is used to notify the CSU that the home RSU of the OBU has switched to the second RSU.
  • the sending module is further configured to send a logout message to the first RSU, so that the first RSU releases the resource corresponding to the OBU according to the logout message.
  • a navigation unit RSU including:
  • a sending module configured to send a first handover pre-processing message to the second RSU, where the first handover pre-processing message is used by the second RSU to determine local path information of the car navigation unit OBU within the coverage of the second RSU;
  • the sending module is further configured to send a handover notification message to the OBU, so that the OBU obtains the local path information from the second RSU according to the handover notification message, and switches the home RSU of the OBU from the RSU to the second The RSU, the handover notification message is used to indicate that the OBU is ready to switch the home RSU of the OBU from the RSU to the second RSU.
  • the RSU further includes:
  • a receiving module configured to receive location information of the OBU sent by the OBU before the RSU sends the first handover pre-processing message to the second RSU;
  • a determining module configured to determine, according to the location information of the OBU, whether to initiate an RSU handover to the OBU to determine whether to send the handover notification message or determine whether to send the first handover pre-processing message.
  • the first handover pre-processing message includes a global path of the OBU and location information of the OBU .
  • the sending module is further configured to send, by the RSU, a handover notification message to the OBU. And sending a second handover pre-processing message to the OBU, where the second handover pre-processing message includes at least one of an identifier ID of the second RSU, an address of the second RSU, and a name of the second RSU.
  • the receiving module is further configured to receive a logout message sent by the OBU or the second RSU;
  • the logout module is configured to release the resource corresponding to the OBU according to the logout message.
  • a roadside navigation unit RSU including:
  • a receiving module configured to receive a first handover pre-processing message sent by the first RSU
  • a determining module configured to determine, according to the first handover pre-processing message, local path information of the car navigation unit OBU within the coverage of the RSU;
  • the receiving module is further configured to receive a request for sending, by the OBU, a registration request for obtaining the local path information;
  • a sending module configured to send the local path information to the OBU, so that the OBU switches the home RSU of the OBU from the first RSU to the RSU according to the local path information.
  • the sending module is configured to send a registration success message to the OBU;
  • the receiving module is configured to receive a local path request sent by the OBU according to the registration success message
  • the sending module is specifically configured to:
  • the local path information that responds to the local path request is sent to the OBU.
  • the sending module is specifically configured to:
  • the local path information is sent to the OBU.
  • the first handover pre-processing message includes a global path of the OBU and location information of the OBU.
  • the determining module is specifically configured to:
  • the second RSU determines the local path information of the OBU within the coverage of the second RSU according to the global path of the OBU and the location information of the OBU.
  • the sending module is further configured to send a handover report message to the central service unit CSU, where the handover report message is used to notify the CSU that the home RSU of the OBU has switched to the RSU.
  • the sending module is further configured to send a logout message to the first RSU, so that the first RSU releases the resource corresponding to the OBU according to the logout message.
  • a system comprising: the OBU of the fourth aspect, the RSU of the fifth aspect, and the RSU of the sixth aspect.
  • an OBU in a navigation system including: a processor and a memory;
  • the memory stores a program
  • the processor executes the program for performing the method of switching the roadside navigation unit RSU in the navigation system according to the first aspect or any of the possible implementations of the first aspect.
  • a ninth aspect provides an RSU in a navigation system, including: a processor and a memory;
  • the memory stores a program
  • the processor executes the program for performing a method of switching a roadside navigation unit RSU in a navigation system according to any of the possible implementations of the second aspect or the second aspect.
  • a tenth aspect provides an RSU in a navigation system, including: a processor and a memory;
  • the memory stores a program
  • the processor executes the program for performing a method of switching a roadside navigation unit RSU in a navigation system according to any of the above third aspect or the third aspect.
  • the second RSU determines the local path information of the OBU in the coverage of the second RSU according to the first handover pre-processing message sent by the first RSU, and the OBU sends the information according to the second RSU.
  • the local path information is used to switch the home RSU of the OBU from the first RSU to the second RSU, so that the OBU can implement seamless handover of the RSU through negotiation of the first RSU and the second RSU, thereby ensuring driving safety of the self-driving vehicle.
  • 1 is an example of the architecture of a navigation system according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for switching a roadside navigation unit in a navigation system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an interaction flow of a method for switching a roadside navigation unit in a navigation system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an interaction flow of a method for switching a roadside navigation unit in a navigation system according to another embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of an OBU in accordance with one embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of an RSU according to another embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of an RSU in accordance with yet another embodiment of the present invention.
  • Figure 8 is a schematic block diagram of a system in accordance with an embodiment of the present invention.
  • FIG. 9 is a schematic structural view of an OBU according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural view of an RSU according to another embodiment of the present invention.
  • FIG. 11 is a schematic structural view of an RSU according to still another embodiment of the present invention.
  • FIG. 1 is an example of an architecture of a navigation system according to an embodiment of the present invention.
  • the intelligent traffic based on network control shown in Figure 1 mainly involves three layers: Central Service Unit (CSU), RSU, and On Board Unit (OBU).
  • CSU Central Service Unit
  • RSU RSU
  • OBU On Board Unit
  • the functions are mainly divided into:
  • the CSU responsible for global path planning.
  • the so-called global path is a one-way driving route from the starting point to the ending point.
  • the starting point is generally the current position of the car, and the ending point is specified by the occupant according to the demand.
  • the goal of global path planning is to find a shortest path.
  • the "shortest path” mentioned here refers not only to the shortest distance, but also to the fastest time, the least cost, etc., depending on different needs, and globally.
  • the accuracy of the path is required to reach the road level.
  • CSU needs to consider the dynamic road condition information of the entire road network for intelligent analysis and comprehensive scheduling. In a transportation system, Only one CSU requires very high processing performance and reliability, and business continuity is guaranteed in most failure and disaster scenarios, and navigation services are not interrupted.
  • RSU responsible for local path planning.
  • the so-called partial path refers to the detailed driving route on the relatively short route from the position where the car is traveling along the global path, and the range is within the area covered by the RSU.
  • the goal of local path planning is to select an appropriate lane, and the accuracy of the local path is required to reach the lane level.
  • RSU needs to consider the lane attributes in the area, the load condition of each lane, the destination direction of the self-driving vehicle, and the local area auto-driving vehicle scheduling and control to achieve lane load balancing and improve automatic Driving vehicle traffic efficiency and quality (control speed, less parking).
  • the RSU needs to be deployed along the road side, so in a transportation system, there will be multiple RSUs, and the RSU also needs to have sufficient processing performance and high reliability according to business processing requirements.
  • the so-called autonomous path refers to the path planning of the self-driving vehicle without relying on the CSU and the RSU, but the temporary path planned by the self-driving vehicle itself.
  • the autonomous path planning is the emergency of the self-driving vehicle itself to the surrounding emergency or simple decision-making scene. Path adjustment, such as emergency obstacle avoidance, and the accuracy of the autonomous path is required to reach the lane level.
  • OBU is doing autonomous path planning, it needs to synthesize the surrounding information perceived by the self-driving vehicle, make quick decision and judgment, and select an emergency path in the case of ensuring safety.
  • the OBU in the navigation system architecture can be integrated in an autonomous vehicle.
  • CSU grasps the global information.
  • the entire traffic map can be seen as being divided into multiple zones, each zone has an RSU management, and one RSU jurisdiction is connected to one or more other RSU jurisdictions, each RSU can know itself-centered The topology relationship of all adjacent RSUs and the boundary areas between them (ie, the overlapping areas of the coverage of adjacent RSUs). If there are multiple adjacent RSUs in the first RSU, according to the global path, it can be specifically determined which RSU will be As the target of the switch. In the embodiment of the present invention, the first RSU is adjacent to the second RSU, and the second RSU is the switching target of the OBU whose home RSU is about to switch.
  • FIG. 2 shows a flow diagram of a method 100 of switching a roadside navigation unit in a navigation system in accordance with one embodiment of the present invention.
  • S101 to S106 in FIG. 2 are flowcharts necessary for the method 100 of switching the roadside navigation unit in the navigation system embodying the embodiment of the present invention, and each step in the method 100 will be described in detail below.
  • the first RSU sends a first handover pre-processing message to the second RSU.
  • the first RSU determines that the distance between the OBU and the second RSU coverage boundary is the first distance threshold, that is, the OBU approaches the boundary area
  • the first RSU initiates a handover process, and sends a first handover pre-processing message to the second RSU.
  • the coverage of the first RSU and the second RSU has a certain overlap area (denoted as "boundary area"), that is, the first RSU is connected to the autonomous vehicle path determined by the adjacent second RSU, when the self-driving vehicle approaches the boundary In the area, the first RSU and the second RSU will conduct communication negotiation to ensure that the self-driving vehicle can implement seamless switching of the RSU when entering the border area.
  • the first RSU may detect the current position information of the corresponding self-driving vehicle by itself, or obtain the current position information of the corresponding self-driving vehicle through other detecting devices, which is not limited by the present invention.
  • the distance between the autopilot vehicle and the second RSU boundary area starts to trigger the OBU to send a first handover pre-processing message to the second RSU may be in specific implementation. Pre-set specific values or ranges. For example, it may be preset that when the first RSU detects that the distance between the autopilot vehicle and the second RSU coverage boundary is less than 30 m, the handover process is initiated, or when a certain value of 30 m is accurate, the handover process is restarted. This is not limited.
  • the first handover pre-processing message includes a global path of the OBU and location information of the OBU.
  • the first handover pre-processing message is sent to the second RSU, where the first handover pre-processing message includes the global path of the OBU and the location information of the OBU, etc., according to the OBU.
  • the global path and the location information of the OBU may determine the local path information of the OBU in the second RSU range in advance or may prepare in advance for determining the local path information of the OBU in the second RSU range, and may perform relevant in advance. Resource allocation and other work.
  • the first switching pre-processing message may further carry information such as the authentication information of the OBU in the first RSU, the lane attribute, the load condition of each lane, and the destination direction of the self-driving vehicle, so that the first The second RSU can formulate new local path information for the self-driving vehicle according to the first switching pre-processing message to achieve lane load balancing, improve the efficiency and quality of the self-driving vehicle, for example, control the vehicle speed, less parking, etc. Not limited.
  • the first RSU sends a handover notification message to the OBU, where the handover notification message is used to indicate that the OBU is ready to switch the home RSU of the OBU from the first RSU to the second RSU.
  • the first RSU determines that the distance between the OBU and the second RSU coverage boundary is a second distance threshold (the second distance threshold is less than the first distance threshold), that is, when the OBU enters the boundary area
  • the first RSU The OBU sends a handover notification message, where the handover notification message may carry information of the second RSU, for example, an identifier of the second RSU, an address of the second RSU, and a name of the second RSU, to indicate that the OBU is to the OBU.
  • the home RSU is handed over from the first RSU to the second RSU.
  • the second RSU determines, according to the first handover pre-processing message, local path information of the OBU within the coverage of the second RSU.
  • the second RSU receives the first handover pre-processing message sent by the first RSU, and the second RSU can determine that the OBU is in the second according to the first handover pre-processing message (eg, the global path of the OBU and the location information of the OBU) Local path information within the coverage of the RSU. That is to say, through the negotiation of the first RSU and the second RSU, a local path in the second RSU range is formulated for the OBU, thereby implementing seamless handover of the OSU to which the OBU belongs.
  • the first handover pre-processing message eg, the global path of the OBU and the location information of the OBU
  • the RSU can be regarded as a computer system
  • a new self-driving vehicle enters the range covered by the second RSU
  • the second RSU needs to be responsible for controlling and managing the self-driving vehicle, that is, the second
  • the RSU needs to allocate corresponding computing resources, memory resources, storage resources, and the like to the self-driving vehicle.
  • the OBU After receiving the handover notification message sent by the first RSU, the OBU sends a registration request to the second RSU to request to obtain the local path information of the OBU in the coverage of the second RSU.
  • the handover notification message may trigger the OBU to send a registration request to the second RSU, so that the OBU can obtain the local path information that is determined by the second RSU to be within the coverage of the second RSU.
  • the second RSU sends the determined local path information to the OBU according to the registration request sent by the OBU.
  • the second RSU receives the registration request sent by the OBU, and may send the determined local path information to the OBU when the second RSU determines that the OBU is successfully registered on the second RSU.
  • the sending, by the OBU, the registration request to the second RSU to obtain the local path information of the OBU in the coverage of the second RSU includes:
  • the OBU receives the second RSU to send a registration success message
  • the OBU sends a local path request to the second RSU according to the registration success message.
  • the OBU receives the local path information sent by the second RSU in response to the local path request.
  • the OBU after receiving the handover notification message sent by the first RSU, the OBU sends a registration request to the second RSU, where the registration request may carry the identifier information of the OBU, for example, the identifier information may be an identification number of the self-driving vehicle or Customer identification module, etc.
  • the second RSU performs authentication processing according to the identification information.
  • the OBU When it is confirmed that the OBU is a legitimate user, it indicates that the OBU is successfully registered on the second RSU.
  • the second RSU may send a registration success message to the OBU.
  • the OBU After receiving the registration success message, the OBU sends a local path request to the second RSU, that is, the registration success message may trigger the second RSU to send a local path request to the OBU.
  • the second RSU sends the local path information in the second RSU coverage of the OBU that responds to the local path request to the OBU, and the local path information may be determined in advance by the first handover pre-processing message sent by the first RSU. Or when the second RSU receives the registration request sent by the OBU.
  • the OBU receives the local path information sent by the second RSU, and switches the home RSU of the OBU from the first RSU to the second RSU according to the local path information.
  • the local path request may be a triggering action, that is, the second RSU is triggered to send the local path information of the OBU determined by the second RSU according to the first handover pre-processing message to the second RSU coverage.
  • the local path request may also carry the current location information of the self-driving vehicle or the path planning strategy and the current auto-driving vehicle load condition of the road, etc., so that the second RSU can re-request according to the local path request and the first handover pre-processing message.
  • the local path information of the OBU in the coverage of the second RSU is determined, which is not limited by the present invention.
  • the OBU receives the local path information sent by the second RSU, including:
  • the OBU receives the local path information that is sent by the second RSU when determining that the OBU registration is successful.
  • the OBU after receiving the handover notification message sent by the first RSU, the OBU sends a registration request to the second RSU, where the registration request may carry the identifier information of the OBU, for example, the identifier information. It can be an identification number of an autonomous vehicle or a customer identification module.
  • the second RSU performs authentication processing according to the identification information. When it is confirmed that the OBU is a legitimate user, it indicates that the OBU is successfully registered on the second RSU.
  • the second RSU may directly send the local path information to the OBU, where the local path information may be determined in advance by the first handover pre-processing message sent by the first RSU, or when the second RSU receives the OBU. Determined after registration request.
  • the OBU receives the local path information, and switches the home RSU of the OBU from the first RSU to the second RSU according to the local path information. In this way, the OBU does not need to be the master of the second RSU. Applying local path information saves resource overhead.
  • the OBU switches the home RSU of the OBU from the first RSU to the second RSU according to the local path information.
  • the OBU stops the execution of the original path (that is, the path planned by the first RSU), and travels according to the local path information of the new second RSU plan, and the The action is instantaneous, and there is no time interruption, that is, the seamless switching of the RSU is realized, thereby ensuring the safe driving of the self-driving vehicle.
  • the OBU is only an executor of the RSU handover, and only needs to perform the corresponding handover according to the instruction of the RSU.
  • the OBU does not need to know the coverage of the RSU, and does not need to decide whether to perform the RSU handover.
  • the second RSU determines the local path information of the OBU within the coverage of the second RSU according to the first handover pre-processing message sent by the first RSU, and the OBU And switching the home RSU of the OBU from the first RSU to the second RSU according to the local path information sent by the second RSU, so that the OBU can implement seamless handover of the RSU through negotiation of the first RSU and the second RSU, thereby ensuring automatic Driving the vehicle is safe.
  • the method for switching the roadside navigation unit can complete the seamless handover of the RSU through the negotiation of the first RSU and the second RSU, and the seamless transition based on the RSU can implement the lane-level path planning of the whole process, thereby Simplifies the design and operational burden of CSU and RSU.
  • the method further includes:
  • the OBU sends the location information of the OBU to the first RSU, and determines whether to initiate an RSU handover to the OBU to determine whether to send the handover notification message or determine whether to send the first handover pre-processing message.
  • the OBU periodically reports its own information (ie, location information) to the first RSU, so that the first RSU determines the distance between the OBU and the second RSU coverage boundary according to the location information of the OBU, and further determines whether to initiate the RSU handover.
  • the first RSU determines that the distance between the OBU and the second RSU coverage boundary is the first distance threshold, that is, the OBU approaches the boundary area, and sends a first handover pre-processing message to the second RSU.
  • the first RSU determines that the distance between the OBU and the second RSU coverage boundary is a second distance threshold (the second distance threshold is less than the first distance threshold), that is, when the OBU enters the boundary area, the first RSU sends a handover notification to the OBU. Message. If necessary, the OBU can also carry the current speed or driving direction of the self-driving vehicle in the position information of the OBU. The invention is not limited thereto.
  • the OBU after the OBU switches the home RSU of the OBU from the first RSU to the second RSU, the OBU also periodically reports its location information to the second RSU, so that the OBU travels to the next third.
  • seamless switching is performed according to the location information of the OBU.
  • the OBU also periodically sends the location information of the OBU to the CSU, which may be forwarded to the CSU through the first RSU.
  • the OBU and the CSU do not directly communicate with each other, but in actual application deployment, the CSU and the OBU can directly communicate with each other, that is, the OBU can also directly send the OBU location information to the CSU. This invention is not limited thereto.
  • the method before the OBU receives the handover notification message sent by the first RSU, the method further includes:
  • the OBU receives a second handover pre-processing message sent by the first RSU, where the second handover pre-processing message includes at least one of an identifier ID of the second RSU, an address of the second RSU, and a name of the second RSU.
  • the first RSU initiates a handover process and transmits a second handover pre-processing message to the OBU.
  • the OBU receives the second handover pre-processing message sent by the first RSU, where the second handover pre-processing information includes information of the second RSU, for example, an identifier of the second RSU (Identity, ID), an address of the second RSU, and a second RSU. At least one of the names.
  • the OBU can know in advance that the home RSU of the OBU is about to switch to the second RSU according to at least one of the identifier ID of the second RSU, the address of the second RSU, and the name of the second RSU.
  • the OBU when the OBU receives the second handover pre-processing message of the second RSU that is sent by the first RSU, the information about the second RSU may not be carried in the handover notification message sent by the first RSU to the OBU.
  • the handover notification message may be used only to trigger the OBU to send a registration request to the second RSU, which is not limited by the present invention.
  • the first handover pre-processing message is sent to the second RSU, and the second handover pre-processing message is sent to the OBU at the same time; or the first pre-process message may be sent to the second RSU first. And sending the second pre-processing message to the OBU; or sending the second pre-processing message to the OBU, and then sending the first pre-processing message to the second RSU, which is not limited by the disclosure.
  • the method further includes:
  • the OBU sends a handover report message to the central service unit CSU, which is used to notify the CSU that the home RSU of the OBU has switched to the second RSU.
  • the navigation system further includes a central service unit CSU, and the CSU is responsible for planning the global path.
  • the OBU After the OBU switches the home RSU of the OBU from the first RSU to the second RSU, the OBU sends a handover report message to the CSU to notify the CSU that the OBU has Switch the home RSU of the OBU to the second RSU.
  • the OBU sending a handover report message to the CSU may be forwarded by the home RSU of the OBU, that is, the OBU first sends the information to the second RSU that belongs to the second RSU, and the second RSU sends the information to the CSU.
  • the OBU and the CSU do not directly communicate with each other, but in actual application deployment, the CSU and the OBU can directly communicate with each other, that is, the OBU can also directly send the handover report message to the CSU. This invention is not limited thereto.
  • the method further includes:
  • the second RSU sends a handover report message to the CSU, where the handover report message is used to notify the CSU that the home RSU of the OBU has switched to the second RSU.
  • the RSU can be viewed as a computer system in which a new autonomous vehicle enters the coverage of the second RSU and the second RSU is responsible for controlling and managing the autonomous vehicle. Therefore, when the OBU switches the home RSU of the OBU to the second RSU, the second RSU starts to take over the OBU, and generates a handover report message to the CSU, informing the CSU that the OBU has switched the home RSU of the OBU to the second RSU. .
  • the CSU basically does not participate in the handover process of the RSU. Therefore, when a large number of self-driving vehicles frequently perform RSU switching operations, the burden of the CSU can be greatly reduced.
  • the method further includes:
  • the OBU sends a logout message to the first RSU, so that the first RSU releases the resource corresponding to the OBU according to the logout message.
  • the ORU sends a logout message to the first RSU, so that the first RSU releases the resources corresponding to the OBU according to the logout message, that is, releases the resources of the OBU and the OBU. control.
  • the first RSU may first send a logout message to the first RSU, so that the first RSU releases the resource corresponding to the OBU according to the logout message, and may also send the CSU to the CSU first.
  • Switch the report message to inform the CSU that the OBU has The home RSU of the OBU is switched to the second RSU, or the logout message is sent to the first RSU and the switch report message is sent to the CSU, which is not limited by the present invention.
  • the method further includes:
  • the second RSU sends a logout message to the first RSU, so that the first RSU releases the resource corresponding to the OBU according to the logout message.
  • the second RSU when the second RSU starts to take over the OBU, it indicates that the OBU has switched the home RSU of the OBU to the second RSU. At this time, the second RSU sends a logout message to the first RSU, so that the first RSU releases the resources corresponding to the OBU according to the logout message, that is, releases the resources of the OBU and controls the OBU.
  • the second RSU may first send a logout message to the first RSU, so that the first RSU releases the resource corresponding to the OBU according to the logout message.
  • the handover report message may be sent to the CSU to notify the CSU that the OBU has switched the home RSU of the OBU to the second RSU, or may send a logout message to the first RSU and send a handover report message to the CSU. Not limited.
  • the OBU can only belong to one RSU at the same time. After the OBU registers successfully on the second RSU and before the first RSU receives the logout message, the OBU actually has two registered RSUs. The OBU supports this short time. There are two registered OBUs, but the OBU still performs the path of the first RSU plan before switching to the second RSU, and then follows the path planned by the second RSU after switching to the second RSU. In other words, there can only be one OBU's final home RSU.
  • the second RSU determines the local path information of the OBU within the coverage of the second RSU according to the first handover pre-processing message sent by the first RSU, and the OBU And switching the home RSU of the OBU from the first RSU to the second RSU according to the local path information sent by the second RSU, so that the OBU can implement seamless handover of the RSU through negotiation of the first RSU and the second RSU, thereby ensuring automatic Driving the vehicle is safe.
  • the method for switching the roadside navigation unit can complete the seamless handover of the RSU through the negotiation of the first RSU and the second RSU, and the seamless transition based on the RSU can implement the lane-level path planning of the whole process, thereby Simplifies the design and operational burden of CSU and RSU.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be The implementation process of the embodiments of the present invention constitutes any limitation.
  • the OBU periodically reports the location information to the first RSU, so that the first RSU determines the distance between the OBU and the second RSU coverage boundary according to the location information of the OBU, and further determines whether to initiate the RSU handover.
  • the first RSU determines that the OBU is close to the border area
  • the first RSU initiates a handover process, and sends a first handover pre-processing message to the second RSU, so that the second RSU determines that the OBU is covered by the second RSU according to the first handover pre-processing message.
  • the local path information in the range.
  • the first RSU determines that the OBU enters the border area
  • the first RSU sends a handover notification message to the OBU to cause the OBU to send a registration request to the second RSU.
  • the second RSU determines that the OBU sends a registration success message to the OBU when the registration on the second RSU is successful.
  • the OBU sends a local path request to the second RSU, so that the second RSU sends the local path information of the OBU in the coverage of the second RSU to the OBU.
  • the OBU receives the local path information sent by the second RSU, and switches the home RSU of the OBU from the first RSU to the second RSU according to the local path information.
  • the OBU After the OBU switches the home RSU of the OBU from the first RSU to the second RSU, it sends a handover report message to the CSU to notify the CSU that the OBU has switched the home RSU of the OBU to the second RSU. In addition, after the OBU switches the home RSU of the OBU to the second RSU, the OBU sends a logout message to the first RSU, so that the first RSU receives the logout message and then releases the resource corresponding to the OBU.
  • FIG. 3 is a schematic diagram of an interaction process of switching a roadside navigation unit in a navigation system according to an embodiment of the present invention.
  • the meanings of the various terms in the embodiments of the present invention are the same as those of the foregoing embodiments.
  • the OBU sends the location information of the OBU to the first RSU.
  • the first RSU determines, according to the location information of the OBU, whether the OBU needs to initiate an RSU handover process.
  • the first RSU first determines the distance between the OBU and the second RSU coverage boundary according to the location information of the OBU, and then determines whether to initiate the RSU handover.
  • the first RSU sends a first handover pre-processing message to the second RSU, where the first handover pre-processing message includes a global path of the OBU and location information of the OBU.
  • the first RSU sends a second handover pre-processing message to the OBU, where the second handover pre-processing message includes at least one of an identifier ID of the second RSU, an address of the second RSU, and a name of the second RSU.
  • the first handover pre-processing message is sent to the second RSU, and the second handover pre-processing message is sent to the OBU at the same time, or the first pre-process message may be sent to the second RSU, and then the OBU is sent to the OBU.
  • the second RSU determines, according to the first handover pre-processing message, local path information of the OBU within the coverage of the second RSU.
  • the first RSU determines a distance between the OBU and the second RSU coverage boundary according to the location information of the OBU. When entering the boundary area, the first RSU sends a handover notification message to the OBU.
  • the OBU After receiving the handover notification message, the OBU sends a registration request to the second RSU.
  • the second RSU determines to send a registration success message to the OBU when the OBU registration is successful.
  • the OBU After receiving the registration success message, the OBU sends a local path request to the second RSU to obtain the local path information of the OBU in the coverage of the second RSU.
  • the OBU receives the local path information that is sent by the second RSU and is in response to the local path request.
  • the OBU switches the home RSU of the OBU from the first RSU to the second RSU according to the local path information.
  • the OBU sends a handover report message to the central service unit CSU, where the handover report message is used to notify the CSU that the home RSU of the OBU has switched to the second RSU.
  • the OBU sends a logout message to the first RSU.
  • the ORU may first send a logout message to the first RSU, or may first send a handover report message to the CSU, or may simultaneously send a logout message to the first RSU.
  • the CSU sends a handover report message.
  • the first RSU releases the resource corresponding to the OBU according to the logout message.
  • the second RSU determines the local path information of the OBU within the coverage of the second RSU according to the first handover pre-processing message sent by the first RSU, and the OBU
  • the local RSU of the OBU is switched from the first RSU to the second RSU according to the local path information sent by the second RSU, so that the OBU can implement seamless handover of the RSU through negotiation of the first RSU and the second RSU, thereby ensuring Driving safety of self-driving vehicles.
  • the method for switching the roadside navigation unit can complete the seamless handover of the RSU through the negotiation of the first RSU and the second RSU, and the seamless transition based on the RSU can implement the lane-level path planning of the whole process, thereby Simplifies the design and operational burden of CSU and RSU.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be directed to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the OBU periodically reports the location information to the first RSU, so that the first RSU determines the distance between the OBU and the second RSU coverage boundary according to the location information of the OBU, and further determines whether to initiate the RSU handover.
  • the first RSU determines that the OBU is close to the border area
  • the first RSU initiates a handover process, and sends a first handover pre-processing message to the second RSU, so that the second RSU determines that the OBU is covered by the second RSU according to the first handover pre-processing message.
  • the local path information in the range.
  • the first RSU determines that the OBU enters the border area
  • the first RSU sends a handover notification message to the OBU to cause the OBU to send a registration request to the second RSU.
  • the second RSU determines that the OBU successfully registers with the second RSU, it directly sends the local path information of the OBU within the coverage of the second RSU to the OBU.
  • the OBU receives the local path information sent by the second RSU, and switches the home RSU of the OBU from the first RSU to the second RSU according to the local path information.
  • the second RSU After determining that the OBU switches the home RSU of the OBU from the first RSU to the second RSU, the second RSU sends a handover report message to the CSU to notify the CSU that the OBU has switched the home RSU of the OBU to the second RSU. In addition, after determining that the OBU switches the home RSU of the OBU to the second RSU, the second RSU sends a logout message to the first RSU, so that after the first RSU receives the logout message, the resource corresponding to the OBU is released.
  • FIG. 4 is a schematic diagram showing the interaction process of a method for switching a roadside navigation unit in a navigation system according to another embodiment of the present invention.
  • the meanings of the various terms in the embodiments of the present invention are the same as those of the foregoing embodiments.
  • the OBU sends the location information of the OBU to the first RSU.
  • the first RSU determines, according to location information of the OBU, whether the OBU needs to initiate RSU handover pre-processing.
  • the first RSU first determines the distance between the OBU and the second RSU coverage boundary according to the location information of the OBU, and then determines whether to initiate the RSU handover.
  • the first RSU sends a first handover pre-processing message to the second RSU, where the first handover pre-processing message includes a global path of the OBU and location information of the OBU.
  • the first RSU sends a second handover pre-processing message to the OBU, where the second handover pre-processing message includes at least one of an identifier ID of the second RSU, an address of the second RSU, and a name of the second RSU.
  • the first handover pre-processing message is sent to the second RSU, and the second handover pre-processing message is sent to the OBU at the same time, or the first pre-process message may be sent to the second RSU, and then the OBU is sent to the OBU.
  • the second RSU determines, according to the first handover pre-processing message, local path information of the OBU within the coverage of the second RSU.
  • the first RSU determines a distance between the OBU and the second RSU coverage boundary according to the location information of the OBU. When entering the boundary region, the first RSU sends a handover notification message to the OBU.
  • the OBU After receiving the handover notification message, the OBU sends a registration request to the second RSU.
  • the second RSU sends the local path information to the OBU when determining that the OBU registration is successful.
  • the OBU switches the home RSU of the OBU from the first RSU to the second RSU according to the local path information.
  • the second RSU After determining that the OBU switches the home RSU of the OBU from the first RSU to the second RSU, the second RSU sends a handover report message to the central service unit CSU, where the handover report message is used to notify the CSU that the home RSU of the OBU has been switched. To the second RSU.
  • the second RSU After determining that the OBU switches the home RSU of the OBU from the first RSU to the second RSU, the second RSU sends a logout message to the first RSU.
  • the second RSU may first send a logout message to the first RSU, or may first send a handover report message to the CSU.
  • the logout message can be sent to the first RSU and the switch report message can be sent to the CSU.
  • the first RSU releases the resource corresponding to the OBU according to the logout message.
  • the second RSU determines the coverage of the OBU in the second RSU according to the first handover pre-processing message sent by the first RSU.
  • the local path information in the area the OBU switches the home RSU of the OBU from the first RSU to the second RSU according to the local path information sent by the second RSU, so that the OBU can negotiate through the first RSU and the second RSU.
  • the seamless switching of the RSU ensures the safe driving of the self-driving vehicle.
  • the method for switching the roadside navigation unit can complete the seamless handover of the RSU through the negotiation of the first RSU and the second RSU, and the seamless transition based on the RSU can implement the lane-level path planning of the whole process, thereby Simplifies the design and operational burden of CSU and RSU.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be directed to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • FIG. 5 shows a schematic block diagram of a car navigation unit OBU 900 in accordance with an embodiment of the present invention.
  • the OBU 900 includes:
  • the receiving module 910 is configured to receive a handover notification message sent by the first RSU, where the handover notification message is used to indicate that the OBU is ready to switch the home RSU of the OBU from the first RSU to the second RSU;
  • the sending module 920 is configured to send a registration request to the second RSU to request obtaining local path information of the OBU within the coverage of the second RSU;
  • the receiving module 910 is further configured to receive the local path information sent by the second RSU;
  • the switching module 930 is configured to switch the home RSU of the OBU from the first RSU to the second RSU according to the local path information received by the receiving module.
  • the sending module 920 is further configured to: before the OBU receives the handover notification message sent by the first RSU, send the location information of the OBU to the first RSU, where the location information is used.
  • the first RSU determines whether to initiate an RSU handover to the OBU to determine whether to send the handover notification message.
  • the first handover pre-processing message includes a global path of the OBU and location information of the OBU.
  • the receiving module 910 is further configured to receive, after the OBU receives the handover notification message sent by the first RSU, a second handover pre-processing message sent by the first RSU, where the The second handover pre-processing message includes an identifier ID of the second RSU, and the second RSU At least one of the address and the name of the second RSU.
  • the sending module 920 is further configured to:
  • the receiving module 910 is specifically configured to:
  • the sending module 920 is further configured to send a handover report message to the central service unit CSU, where the handover report message is used to notify the CSU that the home RSU of the OBU has switched to the second RSU. .
  • the sending module 920 is further configured to send a logout message to the first RSU, so that the first RSU releases the resource corresponding to the OBU according to the logout message.
  • the device 900 may correspond to an OBU in a method of switching a roadside navigation unit in a navigation system according to an embodiment of the present invention, and the above and other operations and/or functions of respective modules in the device 900 are respectively implemented
  • OBU organic light-to-emitting diode
  • the corresponding processes of the foregoing various methods are not described herein for the sake of brevity.
  • the OBU of the roadside navigation unit is switched, and the second RSU determines the local path information of the OBU within the coverage of the second RSU according to the first handover pre-processing message sent by the first RSU, and the OBU
  • the local RSU of the OBU is switched from the first RSU to the second RSU according to the local path information sent by the second RSU, so that the OBU can implement seamless handover of the RSU through negotiation of the first RSU and the second RSU, thereby ensuring Driving safety of self-driving vehicles.
  • the OBU of the roadside navigation unit is switched, and the seamless switching of the RSU can be completed through the negotiation of the first RSU and the second RSU, and the seamless path switching based on the RSU can implement the lane-level path planning of the entire process. Simplifies the design and operational burden of CSU and RSU.
  • FIG. 6 shows a schematic block diagram of a roadside navigation unit RSU 1100 in accordance with an embodiment of the present invention. As shown in FIG. 6, the RSU 1100 includes:
  • the sending module 1110 is configured to send a first handover pre-processing message to the second RSU, so that the second RSU determines, according to the first handover pre-processing message, a local area of the car navigation unit OBU within the coverage of the second RSU. Path information
  • the sending module 1110 is further configured to send a handover notification message to the OBU, so that the OBU Obtaining the local path information from the second RSU according to the handover notification message, and switching the home RSU of the OBU from the RSU to the second RSU, where the handover notification message is used to indicate that the OBU is ready to The RSU switches to the second RSU.
  • the RSU 1100 further includes:
  • a receiving module configured to receive location information of the OBU sent by the OBU before the RSU sends the first handover pre-processing message to the second RSU;
  • a determining module configured to determine, according to the location information of the OBU, whether to initiate an RSU handover to the OBU to determine whether to send the handover notification message or determine whether to send the first handover pre-processing message.
  • the first handover pre-processing message includes a global path of the OBU and location information of the OBU.
  • the sending module 1110 is further configured to: before the RSU sends a handover notification message to the OBU, send a second handover pre-processing message to the OBU, where the second handover pre-processing message includes At least one of an identification ID of the second RSU, an address of the second RSU, and a name of the second RSU.
  • the receiving module is further configured to receive the logout message sent by the OBU or sent by the second RSU;
  • the logout module is configured to release the resource corresponding to the OBU according to the logout message.
  • the RSU of the roadside navigation unit is switched, and the second RSU determines the local path information of the OBU within the coverage of the second RSU according to the first handover pre-processing message sent by the first RSU, the OBU.
  • the local RSU of the OBU is switched from the first RSU to the second RSU according to the local path information sent by the second RSU, so that the OBU can implement seamless handover of the RSU through negotiation of the first RSU and the second RSU, thereby ensuring Driving safety of self-driving vehicles.
  • the RSU of the roadside navigation unit is switched, and the seamless switching of the RSU can be completed through the negotiation of the first RSU and the second RSU, and the seamless path switching based on the RSU can implement the lane-level path planning of the whole process, thereby Simplifies the design and operational burden of CSU and RSU.
  • the RSU 1100 may correspond to a first RSU in a method of switching a roadside navigation unit in a navigation system according to an embodiment of the present invention, and the above and other operations and/or functions of respective modules in the RSU 1100 are respectively.
  • the above and other operations and/or functions of respective modules in the RSU 1100 are respectively.
  • FIG. 7 shows a schematic block diagram of a roadside navigation unit RSU 1300 in accordance with an embodiment of the present invention. As shown in FIG. 7, the RSU 1300 includes:
  • the receiving module 1310 is configured to receive a first handover pre-processing message sent by the first RSU;
  • a determining module 1320 configured to determine, according to the first switching pre-processing message, local path information of the car navigation unit OBU within the coverage of the RSU;
  • the receiving module 1310 is further configured to receive a request for the OBU to obtain a registration request for the local path information.
  • the sending module 1330 is configured to send the local path information to the OBU, so that the OBU switches the home RSU of the OBU from the first RSU to the RSU according to the local path information.
  • the sending module 1330 is further configured to send a registration success message to the OBU.
  • the receiving module 1310 is further configured to receive a local path request sent by the OBU according to the registration success message.
  • the sending module 1330 is specifically configured to:
  • the local path information that responds to the local path request is sent to the OBU.
  • the sending module 1330 is specifically configured to:
  • the local path information is sent to the OBU.
  • the first handover pre-processing message includes a global path of the OBU and location information of the OBU.
  • the sending module 1330 is further configured to send a handover report message to the central service unit CSU, where the handover report message is used to notify the CSU that the home RSU of the OBU has switched to the RSU.
  • the sending module 1330 is further configured to send a logout message to the first RSU, so that the first RSU releases the resource corresponding to the OBU according to the logout message.
  • the RSU of the roadside navigation unit is switched, and the second RSU determines the local path information of the OBU within the coverage of the second RSU according to the first handover pre-processing message sent by the first RSU, the OBU.
  • the local RSU of the OBU is switched from the first RSU to the second RSU according to the local path information sent by the second RSU, so that the OBU can implement seamless handover of the RSU through negotiation of the first RSU and the second RSU, thereby ensuring Driving safety of self-driving vehicles.
  • the RSU of the roadside navigation unit is switched, and the first RSU is adopted.
  • the negotiation with the second RSU can complete the seamless switching of the RSU, and the seamless switching based on the RSU can realize the whole lane-level path planning, thereby simplifying the design and operation burden of the CSU and the RSU.
  • the RSU 1300 may correspond to a second RSU in a method of switching a roadside navigation unit in a navigation system according to an embodiment of the present invention, and the above and other operations and/or functions of respective modules in the RSU 1300 are respectively.
  • the above and other operations and/or functions of respective modules in the RSU 1300 are respectively.
  • system 1400 includes:
  • FIG. 9 shows a structure of a car navigation unit OBU device provided by still another embodiment of the present invention, including at least one processor 1502 (for example, a general-purpose processor CPU having a computing and processing capability, a digital signal processor (DSP), and a dedicated An integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA), etc., which manages and schedules various modules and devices within the OBU device. Also included is at least one network interface 1505 or other communication interface, memory 1506, and at least one bus system 1503.
  • processor 1502 for example, a general-purpose processor CPU having a computing and processing capability, a digital signal processor (DSP), and a dedicated An integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA), etc.
  • processor 1502 for example, a general-purpose processor CPU having a computing and processing capability, a digital signal processor (DSP), and a dedicated An integrated circuit (ASIC), an off-the-shelf programmable gate array (F
  • bus system 1503 which may include a data bus, a power bus, a control bus, a status signal bus, etc., but for clarity of description, various buses are labeled as a bus system in the figure. 1503.
  • the method disclosed in the above embodiments of the present invention may be applied to the processor 1502 or used to execute an executable module, such as a computer program, stored in the memory 1506.
  • the memory 1506 may include a high speed random access memory (RAM: Random Access Memory), and may also include a non-volatile memory.
  • RAM Random Access Memory
  • the memory may include a read only memory and a random access memory, and provide the processor with Required signaling or data, programs, etc.
  • a portion of the memory may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • a communication connection with at least one other network element is achieved by at least one network interface 1505 (which may be wired or wireless).
  • the memory 1506 stores a program 15061, and the processor 1502 executes the program 15061 for performing some operations:
  • a handover notification message sent by the first roadside navigation unit RSU is used to indicate that the car navigation unit OBU is ready to switch the home RSU of the OBU from the first RSU to the second RSU;
  • the local path information is determined by the second RSU according to the first handover pre-processing message sent by the first RSU;
  • the home RSU of the OBU is switched from the first RSU to the second RSU.
  • the OBU may be specifically the OBU in the foregoing embodiment, and may be used to perform various steps and/or processes corresponding to the OBU in the foregoing method embodiment.
  • the second RSU determines the local path information of the OBU in the coverage of the second RSU according to the first handover pre-processing message sent by the first RSU, and the OBU is based on the second RSU.
  • the transmitted local path information is used to switch the home RSU of the OBU from the first RSU to the second RSU, so that the OBU can implement seamless handover of the RSU through negotiation of the first RSU and the second RSU, thereby ensuring the auto-driving vehicle.
  • Driving safety is used to switch the home RSU of the OBU from the first RSU to the second RSU, so that the OBU can implement seamless handover of the RSU through negotiation of the first RSU and the second RSU, thereby ensuring the auto-driving vehicle.
  • the seamless switching of the RSU can be completed through the negotiation of the first RSU and the second RSU, and the seamless switching based on the RSU can implement the lane-level path planning of the whole process, thereby simplifying the design and operation burden of the CSU and the RSU.
  • FIG. 10 shows a structure of a roadside navigation unit RSU provided by still another embodiment of the present invention, including at least one processor 1702 (for example, a general purpose processor CPU having a computing and processing capability, a digital signal processor (DSP), and a dedicated An integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA), etc., which manages and schedules various modules and devices within the OBU device. Also included is at least one network interface 1705 or other communication interface, memory 1706, and at least one bus system 1703.
  • processor 1702 for example, a general purpose processor CPU having a computing and processing capability, a digital signal processor (DSP), and a dedicated An integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA), etc.
  • processor 1702 for example, a general purpose processor CPU having a computing and processing capability, a digital signal processor (DSP), and a dedicated An integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA),
  • bus system 1703 which may include a data bus, a power bus, a control bus, a status signal bus, etc., but for clarity of description, various buses are labeled as a bus system in the figure. 1703.
  • the method disclosed in the above embodiments of the present invention may be applied to the processor 1702, or used to execute an executable module, such as a computer program, stored in the memory 1706.
  • the memory 1706 may include a high speed random access memory (RAM: Random Access Memory), and may also include a non-volatile memory.
  • RAM Random Access Memory
  • the memory may include a read only memory and a random access memory, and provide the processor with Required signaling or data, programs, etc.
  • a portion of the memory may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • a communication connection with at least one other network element is achieved by at least one network interface 1705 (which may be wired or wireless).
  • memory 1706 stores program 17061, and processor 1702 executes program 17061 for performing some operations:
  • the handover notification message is used to indicate that the OBU is ready to switch the home RSU of the OBU from the RSU to the second RSU, so that the OBU receives the handover notification message according to the
  • the two RSUs acquire the local path information and switch the home RSU of the OBU from the RSU to the second RSU.
  • the RSU may be specifically the first RSU in the foregoing embodiment, and may be used to perform various steps and/or processes corresponding to the first RSU in the foregoing method embodiments.
  • the second RSU determines the local path information of the OBU in the coverage of the second RSU according to the first handover pre-processing message sent by the first RSU, and the OBU is based on the second RSU.
  • the transmitted local path information is used to switch the home RSU of the OBU from the first RSU to the second RSU, so that the OBU can implement seamless handover of the RSU through negotiation of the first RSU and the second RSU, thereby ensuring the auto-driving vehicle.
  • Driving safety is used to switch the home RSU of the OBU from the first RSU to the second RSU, so that the OBU can implement seamless handover of the RSU through negotiation of the first RSU and the second RSU, thereby ensuring the auto-driving vehicle.
  • the seamless switching of the RSU can be completed through the negotiation of the first RSU and the second RSU, and the seamless switching based on the RSU can implement the lane-level path planning of the whole process, thereby simplifying the design and operation burden of the CSU and the RSU.
  • FIG. 11 shows a structure of an RSU provided by still another embodiment of the present invention, including at least one processor 1902 (eg, a general purpose processor CPU having a computing and processing capability, a digital signal processor (DSP), an application specific integrated circuit (ASIC) ), off-the-shelf programmable gate array (FPGA), etc., the processor manages and schedules each module and device in the OBU device. Also included is at least one network interface 1905 or other communication interface, memory 1906, and at least one bus system 1903. The various components of the OBU are coupled together by a bus system 1903, which may include a data bus, a power bus, a control bus, a status signal bus, etc., but for clarity of description, various buses are labeled as a bus system in the figure. 1903.
  • a bus system 1903 which may include a data bus, a power bus, a control bus, a status signal bus, etc., but for clarity of description, various buses are labeled as a bus system in the figure. 1903.
  • the method disclosed in the above embodiments of the present invention may be applied to the processor 1902 or to execute an executable module, such as a computer program, stored in the memory 1906.
  • the memory 1906 may include a high speed random access memory (RAM), and may also include a non-volatile memory.
  • the memory may include a read only memory and a random access memory, and provides the processor with Required signaling or data, programs, etc.
  • a portion of the memory may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • memory 1906 stores program 19061, and processor 1902 executes program 19061 for performing some operations:
  • the local path information is sent to the OBU through the network interface 1905, so that the OBU switches the home RSU of the OBU from the first RSU to the RSU according to the local path information.
  • the RSU may be specifically the second RSU in the foregoing embodiment, and may be used to perform various steps and/or processes corresponding to the second RSU in the foregoing method embodiment.
  • the second RSU determines the local path information of the OBU in the coverage of the second RSU according to the first handover pre-processing message sent by the first RSU, and the OBU is based on the second RSU.
  • the transmitted local path information is used to switch the home RSU of the OBU from the first RSU to the second RSU, so that the OBU can implement seamless handover of the RSU through negotiation of the first RSU and the second RSU, thereby ensuring the auto-driving vehicle.
  • Driving safety is used to switch the home RSU of the OBU from the first RSU to the second RSU, so that the OBU can implement seamless handover of the RSU through negotiation of the first RSU and the second RSU, thereby ensuring the auto-driving vehicle.
  • the seamless switching of the RSU can be completed through the negotiation of the first RSU and the second RSU, and the seamless switching based on the RSU can implement the lane-level path planning of the whole process, thereby simplifying the design and operation burden of the CSU and the RSU.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be directed to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

一种导航***中切换路侧导航单元的方法,包括:OBU接收第一RSU发送的切换通知消息(102),该切换通知消息用于指示该OBU准备将该OBU的归属RSU从该第一RSU切换至第二RSU;该OBU向该第二RSU发送注册请求以请求获得OBU在第二RSU的覆盖范围内的局域路径信息(104);该OBU接收该局域路径信息(105);该OBU根据该局域路径信息,将该OBU的归属RSU从该第一RSU切换至该第二RSU(106)。通过第一RSU和第二RSU的协商能够实现RSU的无缝切换,从而保证了自动驾驶车辆的行车安全。

Description

导航***中切换路侧导航单元的方法和设备 技术领域
本发明涉及通信领域和交通领域,并且更具体地,涉及导航***中切换路侧导航单元的方法、车载导航单元和路侧导航单元。
背景技术
近年来,智能交通技术快速发展,以网络通信为基础的自动驾驶将会成为未来自动驾驶的主流和必然趋势,而路侧导航单元(Road Side Unit,RSU)则是自动驾驶场景中非常关键的设备。
现有技术中,整个网络被划分为不同的区域,每个区域除了收集本区域的路由请求信息和自动驾驶车辆位置报告,仅和其他区域的RSU交互区域内的车流进行路由决策,这种分布式信息采集和路由决策方式可以降低导航算法的计算复杂度和提升导航***的实时性。但是,该方案是以面向人的应用为出发点,不能解决面向车辆自动驾驶情况下的RSU导航与切换。此外,该方案更不能解决自动驾驶车辆穿越不同RSU时的无缝切换和接管,进而不能保证自动驾驶车辆的安全。
发明内容
本发明实施例提供了一种导航***中切换路侧导航单元的方法和设备,能够实现RSU的无缝切换,适用于规模化的自动驾驶场景。
第一方面,提供了一种导航***中切换路侧导航单元的方法。车载导航单元OBU接收第一RSU发送的切换通知消息,该切换通知消息用于指示该OBU准备将该OBU的归属RSU从该第一RSU切换至第二RSU;然后OBU向第二RSU发送注册请求,请求获得所述OBU在第二RSU的覆盖范围内的局域路径信息;OBU接收该第二RSU发送的该局域路径信息,根据该局域路径信息,将该OBU的归属RSU从该第一RSU切换至该第二RSU。
结合第一方面,在第一方面的第一种可能的实现方式中,在该OBU接收该第一RSU发送的切换通知消息之前,OBU还可以向该第一RSU发送该OBU的位置信息,第一RSU可以根据OBU的位置信息判断是否对该OBU启动RSU切换以确定是否发送该切换通知消息。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,该第一切换预处理消息包括该OBU的全局路径和该OBU的位置信息。
结合第一方面或第一方面的第一种可能的实现方式和第一方面的第二种可能的实现方式中的任一种可能的实现方式,在第一方面的第三种可能的实现方式中,在该OBU接收该第一RSU发送的切换通知消息之前,该方法还包括:
该OBU接收该第一RSU发送的第二切换预处理消息,该第二切换预处理消息包括该第二RSU的标识ID、该第二RSU的地址和该第二RSU的名称中的至少一项。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第三种可能的实现方式中的任一种可能的实现方式,在第一方面的第四种可能的实现方式中,该OBU向该第二RSU发送注册请求以请求获得该OBU在该第二RSU的覆盖范围内的局域路径信息,包括:
该OBU接收该第二RSU发送的注册成功消息;
该OBU根据该注册成功消息向该第二RSU发送局域路径请求;
该OBU接收该第二RSU发送的响应该局域路径请求的该局域路径信息。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第四种可能的实现方式中的任一种可能的实现方式,在第一方面的第五种可能的实现方式中,该OBU接收该第二RSU发送的该局域路径信息,包括:
该OBU接收该第二RSU在确定该OBU注册成功时发送的该局域路径信息。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第五种可能的实现方式中的任一种可能的实现方式,在第一方面的第六种可能的实现方式中,该方法还包括:
该OBU向中央服务单元CSU发送切换报告消息,该切换报告消息用于通知该CSU该OBU的归属RSU已切换至该第二RSU。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第六种可能的实现方式中的任一种可能的实现方式,在第一方面的第七种可能的实现方式中,该方法还包括:
该OBU向该第一RSU发送注销消息,以使该第一RSU根据该注销消 息释放该OBU对应的资源。
第二方面,提供了一种导航***中切换路侧导航单元RSU的方法,该方法包括:
第一RSU向第二RSU发送第一切换预处理消息,以使该第二RSU根据该第一切换预处理消息确定车载导航单元OBU在该第二RSU的覆盖范围内的局域路径信息;
该第一RSU向该OBU发送切换通知消息,该切换通知消息用于指示该OBU准备将该OBU的归属RSU从该第一RSU切换至该第二RSU,以使该OBU根据该切换通知消息从该第二RSU获取该局域路径信息并将该OBU的归属RSU从该第一RSU切换至该第二RSU。
结合第二方面,在第二方面的第一种可能的实现方式中,该方法还包括:
该第一RSU接收该OBU发送的该OBU的位置信息;
该第一RSU根据该OBU的位置信息,判断是否对该OBU启动RSU切换以确定是否发送该切换通知消息或确定是否发送该第一切换预处理消息。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,该第一切换预处理消息包括该OBU的全局路径和该OBU的位置信息。
结合第二方面或第二方面第一种可能的实现方式和第二方面第二种可能的实现方式中的任一种可能的实现方式,在第二方面的第三种可能的实现方式中,在该第一RSU向该OBU发送切换通知消息之前,该方法还包括:
该第一RSU向该OBU发送第二切换预处理消息,该第二切换预处理消息包括该第二RSU的标识ID、该第二RSU的地址和该第二RSU的名称中的至少一项。
结合第二方面或第二方面的第一种可能的实现方式至第二方面的第三种可能的实现方式中的任一种可能的实现方式,在第二方面的第四种可能的实现方式中,该方法还包括:
该第一RSU接收该OBU或该第二RSU发送的注销消息;
该第一RSU根据该注销消息释放该OBU对应的资源。
第三方面,提供了一种导航***中切换路侧导航单元RSU的方法,该方法包括:
第二RSU接收第一RSU发送的第一切换预处理消息;
该第二RSU根据该第一切换预处理消息确定车载导航单元OBU在该第二RSU的覆盖范围内的局域路径信息;
该第二RSU接收该OBU发送的请求获得所述局域路径信息的注册请求;
该第二RSU向该OBU发送该局域路径信息,以使该OBU根据该局域路径信息,将该OBU的归属RSU从该第一RSU切换至该第二RSU。
结合第三方面,在第三方面的第一种可能的实现方式中,该方法还包括:
该第二RSU向该OBU发送注册成功消息;
该第二RSU接收该OBU根据该注册成功消息发送的局域路径请求;
其中,该第二RSU向该OBU发送该局域路径信息,包括:
该第二RSU向该OBU发送响应该局域路径请求的该局域路径信息。
结合第三方面,在第三方面的第二种可能的实现方式中,该第二RSU向该OBU发送该局域路径信息,包括:
该第二RSU在确定该OBU注册成功时,向该OBU发送该局域路径信息。
结合第三方面或第三方面的第一种可能的实现方式和第三方面的第二种可能的实现方式中的任一种可能的实现方式,在第三方面的第三种可能的实现方式中,该第一切换预处理消息包括该OBU的全局路径和该OBU的位置信息;
其中,该第二RSU根据该第一切换预处理消息确定该OBU在该第二RSU的覆盖范围内的局域路径信息,包括:
该第二RSU根据该OBU的全局路径和该OBU的位置信息,确定该OBU在该第二RSU的覆盖范围内的局域路径信息。
结合第三方面或第三方面的第一种可能的实现方式至第三方面的第三种可能的实现方式中的任一种可能的实现方式,在第三方面的第四种可能的实现方式中,该方法还包括:
该第二RSU向中央服务单元CSU发送切换报告消息,该切换报告消息用于通知该CSU该OBU的归属RSU已切换至该第二RSU。
结合第三方面或第三方面的第一种可能的实现方式至第三方面的第四种可能的实现方式中的任一种可能的实现方式,在第三方面的第五种可能的实现方式中,该方法还包括:
该第二RSU向该第一RSU发送注销消息,以使该第一RSU根据该注 销消息释放该OBU对应的资源。
第四方面,提供了一种车载导航单元OBU,包括:
接收模块,用于接收第一路侧导航单元RSU发送的切换通知消息,该切换通知消息用于指示该OBU准备将该OBU的归属RSU从该第一RSU切换至第二RSU;
发送模块,用于向该第二RSU发送注册请求以请求获得所述OBU在所述第二RSU的覆盖范围内的局域路径信息;
该接收模块,还用于接收该第二RSU发送的该局域路径信息;
切换模块,用于根据该接收模块接收的该局域路径信息,将该OBU的归属RSU从该第一RSU切换至该第二RSU。
结合第四方面,在第四方面的第一种可能的实现方式中,该发送模块,还用于在该OBU接收该第一RSU发送的切换通知消息之前,向该第一RSU发送该OBU的位置信息,该位置信息用于该第一RSU判断是否对该OBU启动RSU切换以确定是否发送该切换通知消息。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,该第一切换预处理消息包括该OBU的全局路径和该OBU的位置信息。
结合第四方面或第四方面的第一种可能的实现方式和第四方面的第二种可能的实现方式中任一种可能的实现方式,在第四方面的第三种可能的实现方式中,该接收模块,还用于在该OBU接收该第一RSU发送的切换通知消息之前,接收该第一RSU发送的第二切换预处理消息,该第二切换预处理消息包括该第二RSU的标识ID、该第二RSU的地址和该第二RSU的名称中的至少一项。
结合第四方面或第四方面的第一种可能的实现方式至第四方面的第三种可能的实现方式中任一种可能的实现方式,在第四方面的第四种可能的实现方式中,该发送模块,还用于:
接收该第二RSU发送注册成功消息;
根据该注册成功消息向该第二RSU发送局域路径请求;
接收该第二RSU发送的响应该局域路径请求的该局域路径信息。
结合第四方面或第四方面的第一种可能的实现方式至第四方面的第四种可能的实现方式中任一种可能的实现方式,在第四方面的第五种可能的实 现方式中,该接收模块,具体用于:
接收该第二RSU在确定该OBU注册成功时发送的该局域路径信息。
结合第四方面或第四方面的第一种可能的实现方式至第四方面的第五种可能的实现方式中任一种可能的实现方式,在第四方面的第六种可能的实现方式中,该发送模块,还用于向中央服务单元CSU发送切换报告消息,该切换报告消息用于通知该CSU该OBU的归属RSU已切换至该第二RSU。
结合第四方面或第四方面的第一种可能的实现方式至第四方面的第六种可能的实现方式中的任一种可能的实现方式,在第四方面的第七种可能的实现方式中,该发送模块,还用于向该第一RSU发送注销消息,以使该第一RSU根据该注销消息释放该OBU对应的资源。
第五方面,提供了一种导航单元RSU,包括:
发送模块,用于向第二RSU发送第一切换预处理消息,该第一切换预处理消息用于该第二RSU确定车载导航单元OBU在该第二RSU的覆盖范围内的局域路径信息;
该发送模块,还用于向该OBU发送切换通知消息,以使该OBU根据该切换通知消息从该第二RSU获取该局域路径信息并将该OBU的归属RSU从该RSU切换至该第二RSU,该切换通知消息用于指示该OBU准备将该OBU的归属RSU从该RSU切换至该第二RSU。
结合第五方面,在第五方面的第一种可能的实现方式中,该RSU还包括:
接收模块,用于在该RSU向该第二RSU发送第一切换预处理消息之前,接收该OBU发送的该OBU的位置信息;
确定模块,用于根据该OBU的位置信息,判断是否对该OBU启动RSU切换以确定是否发送该切换通知消息或确定是否发送所述第一切换预处理消息。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,该第一切换预处理消息包括该OBU的全局路径和该OBU的位置信息。
结合第五方面或第五方面的第一种可能的实现方式和第五方面的第二种可能的实现方式中的任一种可能的实现方式,在第五方面的第三种可能的实现方式中,该发送模块,还用于在该RSU向该OBU发送切换通知消息之 前,向该OBU发送第二切换预处理消息,该第二切换预处理消息包括该第二RSU的标识ID、该第二RSU的地址和该第二RSU的名称中的至少一项。
结合第五方面或第五方面的第一种可能的实现方式至第五方面的第三种可能的实现方式中的任一种可能的实现方式,在第五方面的第四种可能的实现方式中,该接收模块,还用于接收该OBU或该第二RSU发送的注销消息;
注销模块,用于根据该注销消息释放该OBU对应的资源。
第六方面,提供了一种路侧导航单元RSU,包括:
接收模块,用于接收第一RSU发送的第一切换预处理消息;
确定模块,用于根据该第一切换预处理消息确定车载导航单元OBU在该RSU的覆盖范围内的局域路径信息;
该接收模块,还用于接收该OBU发送的请求获得所述局域路径信息的注册请求;
发送模块,用于向该OBU发送该局域路径信息,以使该OBU根据该局域路径信息,将该OBU的归属RSU从该第一RSU切换至该RSU。
结合第六方面,在第六方面的第一种可能的实现方式中,该发送模块,用于向该OBU发送注册成功消息;
该接收模块,用于接收该OBU根据该注册成功消息发送的局域路径请求;
其中,该发送模块,具体用于:
向该OBU发送响应该局域路径请求的该局域路径信息。
结合第六方面,在第六方面的第二种可能的实现方式中,该发送模块,具体用于:
在确定该OBU注册成功时,向该OBU发送该局域路径信息。
结合第六方面或第六方面的第一种可能的实现方式和第六方面的第二种可能的实现方式中的任一种可能的实现方式,在第六方面的第三种可能的实现方式中,该第一切换预处理消息包括该OBU的全局路径和该OBU的位置信息;
其中,该确定模块,具体用于:
该第二RSU根据该OBU的全局路径和该OBU的位置信息,确定该OBU在该第二RSU的覆盖范围内的局域路径信息。
结合第六方面或第六方面的第一种可能的实现方式至第六方面的第三种可能的实现方式中的任一种可能的实现方式,在第六方面的第四种可能的实现方式中,该发送模块,还用于向中央服务单元CSU发送切换报告消息,该切换报告消息用于通知该CSU该OBU的归属RSU已经切换至该RSU。
结合第六方面或第六方面的第一种可能的实现方式至第六方面的第四种可能的实现方式中的任一种可能的实现方式,在第六方面的第五种可能的实现方式中,该发送模块,还用于向该第一RSU发送注销消息,以使该第一RSU根据该注销消息释放该OBU对应的资源。
第七方面,提供了一种***,包括:上述第四方面的OBU、第五方面的RSU和第六方面的RSU。
第八方面,提供了一种导航***中的OBU,包括:处理器和存储器;
所述存储器存储了程序,所述处理器执行所述程序,用于执行上述第一方面或第一方面任一种可能的实现方式所述的导航***中切换路侧导航单元RSU的方法。
第九方面,提供了一种导航***中的RSU,包括:处理器和存储器;
所述存储器存储了程序,所述处理器执行所述程序,用于执行上述第二方面或第二方面任一种可能的实现方式所述的导航***中切换路侧导航单元RSU的方法。
第十方面,提供了一种导航***中的RSU,包括:处理器和存储器;
所述存储器存储了程序,所述处理器执行所述程序,用于执行上述第三方面或第三方面任一种可能的实现方式所述的导航***中切换路侧导航单元RSU的方法。
基于上述技术方案,在本发明实施例中,第二RSU根据第一RSU发送的第一切换预处理消息确定OBU在第二RSU的覆盖范围内的局域路径信息,OBU根据第二RSU发送的该局域路径信息将该OBU的归属RSU从第一RSU切换到第二RSU,使得OBU能够通过第一RSU和第二RSU的协商实现RSU的无缝切换,从而保证了自动驾驶车辆的行车安全。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图 仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的导航***的架构示例。
图2是本发明一个实施例的导航***中切换路侧导航单元的方法的示意性流程图。
图3是本发明一个实施例的导航***中切换路侧导航单元的方法的交互流程示意图。
图4是本发明另一实施例的导航***中切换路侧导航单元的方法的交互流程示意图。
图5是根据本发明一个实施例的OBU的示意性框图。
图6是根据本发明另一实施例的RSU的示意性框图。
图7是根据本发明又一实施例的RSU的示意性框图。
图8是根据本发明实施例的***的示意性框图。
图9是根据本发明一个实施例的OBU的结构示意图。
图10是根据本发明另一实施例的RSU的结构示意图。
图11是根据本发明又一实施例的RSU的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1是本发明实施例的导航***的一个架构示例。图1所示的基于网络控制的智能交通主要涉及中央服务单元(Central Service Unit,CSU)、RSU、车载导航单元(On Board Unit,OBU)三层,其职能划分主要有:
CSU,负责全局路径规划。所谓全局路径,就是一段由起点到终点的单向行车路线,起点一般是汽车当前的位置,终点是由乘车人根据需求指定的。全局路径规划的目标是找到一条最短路径,这里所说的“最短路径”,不仅仅指距离上的最短,还有可能是时间最快、费用最少等等,根据不同的需求而定,且全局路径的精度要求达到道路级。CSU在做全局路径规划时,需要考虑整个路网的动态路况信息,进行智能分析与综合调度。在一个交通***中, 只有一个CSU,要求具有非常高的处理性能和可靠性,在绝大多数故障和灾难场景下能够保证业务连续性,导航服务不中断。
RSU,负责局部路径规划。所谓局部路径,是指在汽车沿全局路径行驶的过程中,在其所在位置到前方相对较短的路线上的详细行车路线,其范围是在RSU所覆盖区域内。局部路径规划的目标是选择一条合适的车道,局部路径的精度要求达到车道级。RSU在做局部路径规划时,需要考虑区域内的车道属性、每条车道的负载情况、自动驾驶车辆的目的地方向,进行局部区域自动驾驶车辆调度与控制,以实现车道负载均衡,并提高自动驾驶车辆通行效率与质量(控制车速、少停车)。RSU需要沿路侧部署,因此在一个交通***中,会有多个RSU,RSU也需要根据业务处理需求具有足够的处理性能和较高的可靠性。
OBU,负责自动驾驶车辆自主路径规划。所谓自主路径,是指自动驾驶车辆不依赖CSU和RSU的路径规划,而是由自动驾驶车辆自身规划的临时路径,自主路径规划是自动驾驶车辆自身对周围紧急情况或简单决策场景做出的应急路径调整,如紧急避障,且自主路径的精度要求达到车道级。OBU在做自主路径规划时,需要综合自动驾驶车辆所感知到的周边信息,进行快速的决策判断,在保证安全的情况,选择一条应急路径。
在本发明实施例中,该导航***架构中的OBU可以集成在自动驾驶车辆中。
CSU作为全路网的控制中心,掌握全局信息。整个交通地图可以看作是被分割为多个区域,每个区域都有一个RSU管理,一个RSU的管辖区域会与另外一个或多个RSU管辖区域相连,每个RSU可以知道以自己为中心的所有相邻的RSU的拓扑关系以及相互间的边界区域(即相邻的RSU的覆盖范围的重叠区域),若第一RSU存在多个相邻的RSU,根据全局路径,能够具体确定哪个RSU将作为切换的目标。在本发明实施例中,第一RSU与第二RSU相邻,且第二RSU为OBU的归属RSU即将切换的切换目标。
图2示出了根据本发明一个实施例的导航***中切换路侧导航单元的方法100的流程图。图2中的S101至S106为实施本发明实施例的导航***中切换路侧导航单元的方法100必须执行的流程,下面将对方法100中的每个步骤进行详细说明。
S101,第一RSU向第二RSU发送第一切换预处理消息。
具体而言,第一RSU确定OBU与第二RSU覆盖范围边界的距离为第一距离阈值即OBU接近边界区域时,第一RSU启动切换处理,并向第二RSU发送第一切换预处理消息。
第一RSU和第二RSU的覆盖范围有一定的重叠区域(表示为“边界区域”),即第一RSU与相邻的第二RSU确定的自动驾驶车辆路径有衔接,当自动驾驶车辆接近边界区域时,第一RSU和第二RSU会进行通信协商,以保证自动驾驶车辆在进入边界区域时能够实施RSU的无缝切换。
应理解,第一RSU可以自己检测对应自动驾驶车辆的当前位置信息,或者通过其他检测装置获取对应自动驾驶车辆的当前位置信息,本发明对此不作限定。
还应理解,这里的自动驾驶车辆接近第二RSU边界区域多远的距离开始触发OBU向第二RSU发送第一切换预处理消息,即该第一距离阈值的设定,可以是在具体实施时对具体值或范围进行预先设定。例如,可以预先设定当第一RSU检测到自动驾驶车辆与第二RSU覆盖范围边界的距离小于30m时,启动切换处理,或者是精确到一个确定值30m时,再启动切换处理,本发明对此不进行限定。
可选地,该第一切换预处理消息包括OBU的全局路径和OBU的位置信息。
具体而言,当第一RSU确定OBU需要启动切换处理时,向第二RSU发送第一切换预处理消息,该第一切换预处理消息包括OBU的全局路径和OBU的位置信息等,根据OBU的全局路径和OBU的位置信息可以提前确定OBU在第二RSU范围内的局域路径信息或可以提前为确定OBU在第二RSU范围内的局域路径信息做好准备工作,以及可以提前做好相关的资源分配等工作。
在本发明实施例中,该第一切换预处理消息中还可以携带OBU在第一RSU的鉴权信息、车道属性、每条车道的负载情况和自动驾驶车辆的目的地方向等信息,使得第二RSU能够根据第一切换预处理消息对自动驾驶车辆制定新的局域路径信息,以实现车道负载均衡,提高自动驾驶车辆通行效率与质量,例如,控制车速、少停车等,本发明对此不进行限定。
S102,第一RSU向OBU发送切换通知消息,该切换通知消息用于指示OBU准备将OBU的归属RSU从第一RSU切换至第二RSU。
具体而言,当第一RSU确定OBU与第二RSU覆盖范围边界的距离为第二距离阈值(该第二距离阈值小于该第一距离阈值),即OBU驶入边界区域时,第一RSU向OBU发送切换通知消息,该切换通知消息可以携带第二RSU的信息,例如,第二RSU的标识(Identity,ID)、第二RSU的地址和第二RSU的名称等,以指示OBU将该OBU的归属RSU从第一RSU切换到第二RSU。
S103,第二RSU根据该第一切换预处理消息确定OBU在第二RSU的覆盖范围内的局域路径信息。
具体而言,第二RSU接收第一RSU发送的第一切换预处理消息,第二RSU根据该第一切换预处理消息(例如,OBU的全局路径和OBU的位置信息)能够确定OBU在第二RSU的覆盖范围内的局域路径信息。也就是说,通过第一RSU和第二RSU的协商,为OBU制定在第二RSU范围内的局域路径,进而实现OBU归属的RSU的无缝切换。
在本发明实施例中,RSU可以看作是一个计算机***,一辆新的自动驾驶车辆进入第二RSU覆盖的范围内,第二RSU需要负责对该自动驾驶车辆进行控制和管理,即第二RSU需要为该自动驾驶车辆分配相应的计算资源、内存资源和存储资源等。
S104,OBU在收到第一RSU发送的切换通知消息后,向第二RSU发送注册请求以请求获得所述OBU在所述第二RSU的覆盖范围内的局域路径信息。
具体而言,该切换通知消息可以触发OBU向第二RSU发送注册请求,这样OBU才可以获得第二RSU已经为OBU确定好的在第二RSU的覆盖范围内的局域路径信息。
S105,第二RSU根据OBU发送的注册请求,向OBU发送已经确定的局域路径信息。
具体而言,第二RSU接收OBU发送的注册请求,在第二RSU确定OBU在第二RSU上注册成功时,才可以向OBU发送已经确定的局域路径信息。
在本发明实施例中,可选地,所述OBU向所述第二RSU发送注册请求以请求获得所述OBU在所述第二RSU的覆盖范围内的局域路径信息包括:
OBU接收第二RSU发送注册成功消息;
OBU根据该注册成功消息向第二RSU发送局域路径请求;
OBU接收第二RSU发送的响应该局域路径请求的该局域路径信息。
具体而言,OBU接收到第一RSU发送的切换通知消息后,向第二RSU发送注册请求,该注册请求可以携带OBU的标识信息,例如,该标识信息可以为自动驾驶车辆的身份标识号或者客户识别模块等。第二RSU根据该标识信息进行鉴权处理,当确认OBU为合法用户时,则表示OBU在第二RSU上注册成功。此时,第二RSU可以向OBU发送注册成功消息。OBU收到该注册成功消息后,向第二RSU发送局域路径请求,也就是说该注册成功消息可以触发第二RSU向OBU发送局域路径请求。这样第二RSU向OBU发送响应该局域路径请求的OBU在第二RSU覆盖范围内的局域路径信息,该局域路径信息可以是通过第一RSU发送的第一切换预处理消息提前确定的,或者是当第二RSU收到OBU发送的注册请求后确定的。OBU接收第二RSU发送的该局域路径信息,并根据该局域路径信息将OBU的归属RSU从第一RSU切换到第二RSU。
本发明实施例中,局域路径请求可以是触发作用,即触发第二RSU向OBU发送第二RSU根据第一切换预处理消息确定的OBU在第二RSU覆盖范围内的局域路径信息。但是,该局域路径请求还可以携带自动驾驶车辆当前的位置信息或者路径规划策略以及道路当前自动驾驶车辆负载情况等,使得第二RSU能够根据该局域路径请求和第一切换预处理消息重新确定OBU在第二RSU覆盖范围内的局域路径信息,本发明对此不进行限定。
在本发明实施例中,可选地,OBU接收该第二RSU发送的该局域路径信息,包括:
OBU接收第二RSU在确定OBU注册成功时发送的该局域路径信息。
具体而言,在本发明的另一个实施例中,OBU接收到第一RSU发送的切换通知消息后,向第二RSU发送注册请求,该注册请求可以携带OBU的标识信息,例如,该标识信息可以为自动驾驶车辆的身份标识号或者客户识别模块等。第二RSU根据该标识信息进行鉴权处理,当确认OBU为合法用户时,则表示OBU在第二RSU上注册成功。此时,第二RSU可以直接向OBU发送局域路径信息,该局域路径信息可以是通过第一RSU发送的第一切换预处理消息提前确定的,或者是当第二RSU收到OBU发送的注册请求后确定的。OBU接收该局域路径信息,并根据该局域路径信息将OBU的归属RSU从第一RSU切换到第二RSU。这样,OBU不需要向第二RSU的主 动申请局域路径信息,节省了资源开销。
S106,OBU根据该局域路径信息,将OBU的归属RSU从第一RSU切换至第二RSU。
具体而言,OBU将OBU的归属RSU切换到第二RSU后,OBU停止对原来路径(即第一RSU规划的路径)的执行,按照新的第二RSU规划的局域路径信息行驶,且该动作是瞬时完成的,没有时间的中断,即实现了RSU的无缝切换,进而保证了自动驾驶车辆的安全行驶。
应理解,OBU只是作为RSU切换的执行者,只需要按照RSU的指令执行相应的切换,OBU可以不需要知道RSU的覆盖范围,不需要自主决定是否进行RSU切换。
因此,本发明实施例的导航***中切换路侧导航单元的方法,第二RSU根据第一RSU发送的第一切换预处理消息确定OBU在第二RSU的覆盖范围内的局域路径信息,OBU根据第二RSU发送的该局域路径信息将OBU的归属RSU从第一RSU切换到第二RSU,使得OBU能够通过第一RSU和第二RSU的协商实现RSU的无缝切换,从而保证了自动驾驶车辆的行车安全。
本发明实施例的导航***中切换路侧导航单元的方法,通过第一RSU和第二RSU的协商能够完成RSU的无缝切换,基于RSU的无缝切换可以实现全程的车道级路径规划,从而简化了CSU和RSU的设计和运行负担。
可选地,在本发明实施例中,该方法还包括:
OBU向第一RSU发送OBU的位置信息,判断是否对所述OBU启动RSU切换以确定是否发送所述切换通知消息或确定是否发送所述第一切换预处理消息。
具体而言,OBU定时向第一RSU上报自身的信息(即位置信息),可以使第一RSU根据OBU的位置信息确定OBU与第二RSU覆盖范围边界的距离,进而确定是否启动RSU切换。第一RSU确定OBU与第二RSU覆盖范围边界的距离为第一距离阈值即OBU接近边界区域时,向第二RSU发送第一切换预处理消息。当第一RSU确定OBU与第二RSU覆盖范围边界的距离为第二距离阈值(该第二距离阈值小于该第一距离阈值),即OBU驶入边界区域时,第一RSU向OBU发送切换通知消息。若根据需要,OBU还可以在OBU的位置信息中携带自动驾驶车辆当前的速度或者行驶方向等, 本发明对此不进行限定。
在本发明实施例中,当OBU将OBU的归属RSU从第一RSU切换到第二RSU后,OBU也会周期性的向第二RSU上报自身的位置信息,以便于OBU行驶到下一个第三RSU的覆盖区域时,根据OBU的位置信息实现无缝切换。
应理解,OBU也会定时向CSU发送OBU的位置信息,可以是通过第一RSU转发给CSU。在本发明实施例中的OBU和CSU没有直接进行通信的接口,但在实际应用部署时,CSU和OBU之间可以直接进行通信,也就是说,OBU也可以直接向该CSU发送OBU的位置信息,本发明对此不进行限定。
可选地,在本发明实施例中,在OBU接收第一RSU发送的切换通知消息之前,该方法还包括:
OBU接收第一RSU发送的第二切换预处理消息,该第二切换预处理消息包括第二RSU的标识ID、第二RSU的地址和第二RSU的名称中的至少一项。
具体而言,当OBU与第二RSU的覆盖范围边界的距离为第一距离阈值,即自动驾驶车辆接近该边界区域时,第一RSU启动切换处理,并向OBU发送第二切换预处理消息。OBU接收第一RSU发送的第二切换预处理消息,该第二切换预处理信息包括第二RSU的信息,例如,第二RSU的标识(Identity,ID)、第二RSU的地址和第二RSU的名称中的至少一项。OBU根据第二RSU的标识ID、第二RSU的地址和第二RSU的名称中的至少一项能够提前获知OBU的归属RSU即将切换到第二RSU。
在本发明实施例中,OBU接收到第一RSU发送的携带第二RSU的信息的第二切换预处理消息时,第一RSU向OBU发送的切换通知消息中可以不携带第二RSU的信息,此时,该切换通知消息可以只用于触发OBU向第二RSU发送注册请求,本发明对此不进行限定。
应理解,当第一RSU确定启动切换处理时,向第二RSU发送第一切换预处理消息,且同时向OBU发送第二切换预处理消息;或者可以先向第二RSU发送第一预处理消息,再向OBU发送第二预处理消息;或者先向OBU发送第二预处理消息,再向第二RSU发送第一预处理消息,本发明对此不进行限定。
在本发明实施例中,可选地,该方法还包括:
OBU向中央服务单元CSU发送切换报告消息,该切换报告消息用于通知该CSU该OBU的归属RSU已切换至第二RSU。
具体而言,导航***还包括中央服务单元CSU,CSU负责全局路径的规划,OBU将OBU的归属RSU从第一RSU切换到第二RSU之后,向CSU发送切换报告消息,以通知CSU该OBU已将OBU的归属RSU切换至第二RSU。
应理解,OBU向CSU发送切换报告消息可以是通过OBU的归属RSU转发的,即OBU先将信息发送给归属的第二RSU,第二RSU再将该信息发送给CSU。在本发明实施例中的OBU和CSU没有直接进行通信的接口,但在实际应用部署时,CSU和OBU之间可以直接进行通信,也就是说,OBU也可以直接向该CSU发送该切换报告消息,本发明对此不进行限定。
可选地,在本发明实施例中,该方法还包括:
该第二RSU向该CSU发送切换报告消息,该切换报告消息用于通知该CSU该OBU的归属RSU已切换至该第二RSU。
具体而言,RSU可以看作是一个计算机***,一辆新的自动驾驶车辆进入第二RSU覆盖的范围内,第二RSU需要负责对该自动驾驶车辆进行控制和管理。因此,当OBU将该OBU的归属RSU切换到第二RSU时,第二RSU开始对OBU进行接管,并向CSU发生切换报告消息,通知CSU该OBU已将该OBU的归属RSU切换至第二RSU。
在本发明实施例中,CSU基本不参与RSU的切换过程,因此,当有大量自动驾驶车辆频繁进行RSU切换操作时,可以极大地降低CSU的负担。
在本发明实施例中,可选地,该方法还包括:
OBU向第一RSU发送注销消息,以使第一RSU根据该注销消息释放OBU对应的资源。
具体而言,OBU将OBU的归属RSU切换为第二RSU后,会主动向第一RSU发送注销消息,使得第一RSU根据该注销消息释放OBU对应的资源,即释放OBU的资源和对此OBU的控制。
应理解,OBU将OBU的归属RSU从第一RSU切换到第二RSU之后,可以先向第一RSU发送注销消息,使得第一RSU根据该注销消息释放OBU对应的资源,也可以先向CSU发送切换报告消息,以通知CSU该OBU已 将OBU的归属RSU切换至第二RSU,或者可以同时向第一RSU发送注销消息和向CSU发送切换报告消息,本发明对此不进行限定。
在本发明实施例中,可选地,该方法还包括:
该第二RSU向该第一RSU发送注销消息,以使该第一RSU根据该注销消息释放该OBU对应的资源。
具体而言,第二RSU开始对OBU进行接管时,表示OBU已经将该OBU的归属RSU切换至第二RSU。此时,第二RSU向第一RSU发送注销消息,使第一RSU根据该注销消息释放OBU对应的资源,即释放OBU的资源和对此OBU的控制。
应理解,第二RSU在确定OBU将该OBU的归属RSU从第一RSU切换到第二RSU之后,可以先向第一RSU发送注销消息,使得第一RSU根据该注销消息释放OBU对应的资源,也可以先向CSU发送切换报告消息,以通知CSU该OBU已将该OBU的归属RSU切换至第二RSU,或者可以同时向第一RSU发送注销消息和向CSU发送切换报告消息,本发明对此不进行限定。
OBU在同一时刻只能归属于一个RSU,OBU在第二RSU上注册成功之后且在第一RSU接收到该注销消息之前,OBU实际上有两个注册的RSU,OBU支持在这一短暂的时间有两个注册的OBU,但OBU在切换到第二RSU之前,仍然执行第一RSU规划的路径,直到切换到第二RSU后便按照第二RSU规划的路径行驶。也就是说,OBU最终的归属RSU只能有一个。
因此,本发明实施例的导航***中切换路侧导航单元的方法,第二RSU根据第一RSU发送的第一切换预处理消息确定OBU在第二RSU的覆盖范围内的局域路径信息,OBU根据第二RSU发送的该局域路径信息将OBU的归属RSU从第一RSU切换到第二RSU,使得OBU能够通过第一RSU和第二RSU的协商实现RSU的无缝切换,从而保证了自动驾驶车辆的行车安全。
本发明实施例的导航***中切换路侧导航单元的方法,通过第一RSU和第二RSU的协商能够完成RSU的无缝切换,基于RSU的无缝切换可以实现全程的车道级路径规划,从而简化了CSU和RSU的设计和运行负担。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应 对本发明实施例的实施过程构成任何限定。
下面结合图3详细描述本发明实施例。应注意,这只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
在本发明的一个实施例中,OBU定时向第一RSU上报位置信息,使第一RSU根据该OBU的位置信息确定OBU与第二RSU覆盖范围边界的距离,进而确定是否启动RSU切换。第一RSU在确定OBU接近边界区域时,第一RSU启动切换处理,并向第二RSU发送第一切换预处理消息,使得第二RSU根据该第一切换预处理消息确定OBU在第二RSU覆盖范围内的该局域路径信息。当第一RSU确定OBU进入边界区域时,第一RSU向OBU发送切换通知消息,以使OBU向第二RSU发送注册请求。第二RSU确定OBU在第二RSU上注册成功时,向OBU发送注册成功消息。OBU收到该注册成功消息后,向第二RSU发送局域路径请求,以使第二RSU向OBU发送OBU在第二RSU覆盖范围内的局域路径信息。OBU接收第二RSU发送的该局域路径信息,并根据该局域路径信息将该OBU的归属RSU从第一RSU切换到第二RSU。OBU将该OBU的归属RSU从第一RSU切换到第二RSU之后,向CSU发送切换报告消息,以通知CSU该OBU已将该OBU的归属RSU切换至第二RSU。此外,在OBU将该OBU的归属RSU切换为第二RSU后,OBU会向第一RSU发送注销消息,使第一RSU收到该注销消息后,释放OBU对应的资源。
图3是本发明实施例的导航***中切换路侧导航单元的交互流程示意图。本发明实施例中的各种术语的含义与前述各实施例相同。
701,OBU向第一RSU发送OBU的位置信息。
702,第一RSU根据该OBU的位置信息确定OBU是否需要启动RSU切换处理。
第一RSU根据OBU的位置信息首先确定OBU与第二RSU覆盖范围边界的距离,进而确定是否启动RSU切换。
703,第一RSU向第二RSU发送第一切换预处理消息,该第一切换预处理消息包括该OBU的全局路径、OBU的位置信息。
704,第一RSU向OBU发送第二切换预处理消息,该第二切换预处理消息包括第二RSU的标识ID、第二RSU的地址和第二RSU的名称中的至少一项。
第一RSU确定启动切换处理时,向第二RSU发送第一切换预处理消息,且同时向OBU发送第二切换预处理消息,或者可以先向第二RSU发送第一预处理消息,再向OBU发送第二预处理消息,或者先向OBU发送第二预处理消息,再向第二RSU发送第一预处理消息。
705,第二RSU根据该第一切换预处理消息确定OBU在第二RSU的覆盖范围内的局域路径信息。
706,第一RSU根据OBU的位置信息确定OBU与第二RSU覆盖范围边界的距离,当驶入边界区域时,第一RSU向OBU发送切换通知消息。
707,OBU收到该切换通知消息后,向第二RSU发送注册请求。
708,第二RSU确定OBU注册成功时,向OBU发送注册成功消息。
709,OBU收到该注册成功消息后,向第二RSU发送局域路径请求,以请求获得该OBU在第二RSU的覆盖范围内的局域路径信息。
710,OBU接收第二RSU发送的响应该局域路径请求的该局域路径信息。
711,OBU根据该局域路径信息,将该OBU的归属RSU从第一RSU切换至第二RSU。
712,OBU向中央服务单元CSU发送切换报告消息,该切换报告消息用于通知CSU该OBU的归属RSU已切换至第二RSU。
713,OBU向第一RSU发送注销消息。
OBU将该OBU的归属RSU从第一RSU切换到第二RSU之后,可以先向第一RSU发送注销消息,也可以先向CSU发送切换报告消息,或者可以同时向第一RSU发送注销消息和向CSU发送切换报告消息。
714,第一RSU根据该注销消息释放OBU对应的资源。
应理解,上述相应信息的具体指示方式可参考前述各实施例,为了简洁,在此不再赘述。
因此,本发明实施例的导航***中切换路侧导航单元的方法,第二RSU根据第一RSU发送的第一切换预处理消息确定OBU在第二RSU的覆盖范围内的局域路径信息,OBU根据第二RSU发送的该局域路径信息将该OBU的归属RSU从第一RSU切换到第二RSU,使得OBU能够通过第一RSU和第二RSU的协商实现RSU的无缝切换,从而保证了自动驾驶车辆的行车安全。
本发明实施例的导航***中切换路侧导航单元的方法,通过第一RSU和第二RSU的协商能够完成RSU的无缝切换,基于RSU的无缝切换可以实现全程的车道级路径规划,从而简化了CSU和RSU的设计和运行负担。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
下面结合图4详细描述本发明实施例。应注意,这只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
在本发明的另一个实施例中,OBU定时向第一RSU上报位置信息,使第一RSU根据该OBU的位置信息确定OBU与第二RSU覆盖范围边界的距离,进而确定是否启动RSU切换。第一RSU在确定OBU接近边界区域时,第一RSU启动切换处理,并向第二RSU发送第一切换预处理消息,使得第二RSU根据该第一切换预处理消息确定OBU在第二RSU覆盖范围内的该局域路径信息。当第一RSU确定OBU进入边界区域时,第一RSU向OBU发送切换通知消息,以使OBU向第二RSU发送注册请求。第二RSU确定OBU在第二RSU上注册成功时,直接向OBU发送OBU在第二RSU覆盖范围内的局域路径信息。OBU接收第二RSU发送的该局域路径信息,并根据该局域路径信息将该OBU的归属RSU从第一RSU切换到第二RSU。第二RSU在确定OBU将该OBU的归属RSU从第一RSU切换到第二RSU之后,向CSU发送切换报告消息,以通知CSU该OBU已将该OBU的归属RSU切换至第二RSU。此外,第二RSU在确定OBU将该OBU的归属RSU切换为第二RSU后,会向第一RSU发送注销消息,使第一RSU收到该注销消息后,释放OBU对应的资源。
下面结合图4根据本发明另一实施例的导航***中切换路侧导航单元的方法的交互流程示意图。本发明实施例中的各种术语的含义与前述各实施例相同。
801,OBU向第一RSU发送OBU的位置信息。
802,第一RSU根据该OBU的位置信息确定OBU是否需要启动RSU切换预处理。
第一RSU根据OBU的位置信息首先确定OBU与第二RSU覆盖范围边界的距离,进而确定是否启动RSU切换。
803,第一RSU向第二RSU发送第一切换预处理消息,该第一切换预处理消息包括该OBU的全局路径、OBU的位置信息。
804,第一RSU向OBU发送第二切换预处理消息,该第二切换预处理消息包括第二RSU的标识ID、第二RSU的地址和第二RSU的名称中的至少一项。
第一RSU确定启动切换处理时,向第二RSU发送第一切换预处理消息,且同时向OBU发送第二切换预处理消息,或者可以先向第二RSU发送第一预处理消息,再向OBU发送第二预处理消息,或者先向OBU发送第二预处理消息,再向第二RSU发送第一预处理消息。
805,第二RSU根据该第一切换预处理消息确定OBU在第二RSU的覆盖范围内的局域路径信息。
806,第一RSU根据OBU的位置信息确定OBU与第二RSU覆盖范围边界的距离,当驶入边界区域时,第一RSU向OBU发送切换通知消息。
807,OBU收到该切换通知消息后,向第二RSU发送注册请求。
808,第二RSU在确定OBU注册成功时向OBU发送该局域路径信息。
809,OBU根据该局域路径信息,将该OBU的归属RSU从第一RSU切换至第二RSU。
810,第二RSU在确定OBU将该OBU的归属RSU从第一RSU切换至第二RSU之后,向中央服务单元CSU发送切换报告消息,该切换报告消息用于通知CSU该OBU的归属RSU已切换至第二RSU。
811,第二RSU在确定OBU将该OBU的归属RSU从第一RSU切换至第二RSU之后,向第一RSU发送注销消息。
第二RSU在确定OBU将该OBU的归属RSU从第一RSU切换至第二RSU,即第二RSU开始接管OBU之后,可以先向第一RSU发送注销消息,也可以先向CSU发送切换报告消息,或者可以同时向第一RSU发送注销消息和向CSU发送切换报告消息。
812,第一RSU根据该注销消息释放OBU对应的资源。
应理解,上述相应信息的具体指示方式可参考前述各实施例,为了简洁,在此不再赘述。
因此,本发明实施例的导航***中切换路侧导航单元的方法,第二RSU根据第一RSU发送的第一切换预处理消息确定OBU在第二RSU的覆盖范 围内的局域路径信息,OBU根据第二RSU发送的该局域路径信息将该OBU的归属RSU从第一RSU切换到第二RSU,使得OBU能够通过第一RSU和第二RSU的协商实现RSU的无缝切换,从而保证了自动驾驶车辆的行车安全。
本发明实施例的导航***中切换路侧导航单元的方法,通过第一RSU和第二RSU的协商能够完成RSU的无缝切换,基于RSU的无缝切换可以实现全程的车道级路径规划,从而简化了CSU和RSU的设计和运行负担。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
上文中详细描述了根据本发明实施例的导航***中切换路侧导航单元的方法,下面将描述根据本发明实施例的OBU、第一RSU和第二RSU。
图5示出了根据本发明实施例的车载导航单元OBU 900的示意性框图。如图5所示,该OBU 900包括:
接收模块910,用于接收第一RSU发送的切换通知消息,该切换通知消息用于指示该OBU准备将该OBU的归属RSU从该第一RSU切换至第二RSU;
发送模块920,用于向该第二RSU发送注册请求以请求获得所述OBU在所述第二RSU的覆盖范围内的局域路径信息;
该接收模块910,还用于接收该第二RSU发送的该局域路径信息;
切换模块930,用于根据该接收模块接收的该局域路径信息,将该OBU的归属RSU从该第一RSU切换至该第二RSU。
可选地,在本发明实施例中,该发送模块920,还用于在该OBU接收该第一RSU发送的切换通知消息之前,向该第一RSU发送该OBU的位置信息,该位置信息用于该第一RSU判断是否对该OBU启动RSU切换以确定是否发送该切换通知消息。
在本发明实施例中,可选地,该第一切换预处理消息包括该OBU的全局路径和该OBU的位置信息。
可选地,在本发明实施例中,该接收模块910,还用于在该OBU接收该第一RSU发送的切换通知消息之前,接收该第一RSU发送的第二切换预处理消息,该第二切换预处理消息包括该第二RSU的标识ID、该第二RSU 的地址和该第二RSU的名称中的至少一项。
可选地,在本发明实施例中,该发送模块920,还用于:
接收该第二RSU发送注册成功消息;
根据该注册成功消息向该第二RSU发送局域路径请求;
接收该第二RSU发送的响应该局域路径请求的该局域路径信息。
在本发明实施例中,可选地,该接收模块910,具体用于:
接收该第二RSU在确定该OBU注册成功时发送的该局域路径信息。
可选地,在本发明实施例中,该发送模块920,还用于向中央服务单元CSU发送切换报告消息,该切换报告消息用于通知该CSU该OBU的归属RSU已切换至该第二RSU。
在本发明实施例中,可选地,发送模块920,还用于向该第一RSU发送注销消息,以使该第一RSU根据该注销消息释放该OBU对应的资源。
根据本发明实施例的设备900可对应于根据本发明实施例的导航***中切换路侧导航单元的方法中的OBU,并且设备900中的各个模块的上述和其它操作和/或功能分别为了实现前述各个方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的导航***中切换路侧导航单元的OBU,第二RSU根据第一RSU发送的第一切换预处理消息确定OBU在第二RSU的覆盖范围内的局域路径信息,OBU根据第二RSU发送的该局域路径信息将该OBU的归属RSU从第一RSU切换到第二RSU,使得OBU能够通过第一RSU和第二RSU的协商实现RSU的无缝切换,从而保证了自动驾驶车辆的行车安全。
本发明实施例的导航***中切换路侧导航单元的OBU,通过第一RSU和第二RSU的协商能够完成RSU的无缝切换,基于RSU的无缝切换可以实现全程的车道级路径规划,从而简化了CSU和RSU的设计和运行负担。
图6示出了根据本发明实施例的路侧导航单元RSU 1100的示意性框图。如图6所示,该RSU 1100包括:
发送模块1110,用于向第二RSU发送第一切换预处理消息,以使该第二RSU根据该第一切换预处理消息确定该车载导航单元OBU在该第二RSU的覆盖范围内的局域路径信息;
该发送模块1110,还用于向该OBU发送切换通知消息,以使该OBU 根据该切换通知消息从该第二RSU获取该局域路径信息并将该OBU的归属RSU从该RSU切换至该第二RSU,该切换通知消息用于指示该OBU准备将该OBU的归属RSU从该RSU切换至该第二RSU。
可选地,在本发明实施例中,该RSU 1100还包括:
接收模块,用于在该RSU向该第二RSU发送第一切换预处理消息之前,接收该OBU发送的该OBU的位置信息;
确定模块,用于根据该OBU的位置信息,判断是否对该OBU启动RSU切换以确定是否发送该切换通知消息或确定是否发送所述第一切换预处理消息。
在本发明实施例中,可选地,该第一切换预处理消息包括该OBU的全局路径和该OBU的位置信息。
在本发明实施例中,可选地,该发送模块1110,还用于在该RSU向该OBU发送切换通知消息之前,向该OBU发送第二切换预处理消息,该第二切换预处理消息包括该第二RSU的标识ID、该第二RSU的地址和该第二RSU的名称中的至少一项。
可选地,该接收模块,还用于接收该OBU发送或该第二RSU发送的注销消息;
注销模块,用于根据该注销消息释放该OBU对应的资源。
因此,本发明实施例的导航***中切换路侧导航单元的RSU,第二RSU根据第一RSU发送的第一切换预处理消息确定OBU在第二RSU的覆盖范围内的局域路径信息,OBU根据第二RSU发送的该局域路径信息将该OBU的归属RSU从第一RSU切换到第二RSU,使得OBU能够通过第一RSU和第二RSU的协商实现RSU的无缝切换,从而保证了自动驾驶车辆的行车安全。
本发明实施例的导航***中切换路侧导航单元的RSU,通过第一RSU和第二RSU的协商能够完成RSU的无缝切换,基于RSU的无缝切换可以实现全程的车道级路径规划,从而简化了CSU和RSU的设计和运行负担。
根据本发明实施例的RSU 1100可对应于根据本发明实施例的导航***中切换路侧导航单元的方法中的第一RSU,并且RSU 1100中的各个模块的上述和其它操作和/或功能分别为了实现前述各个方法的相应流程,为了简洁,在此不再赘述。
图7示出了根据本发明实施例的路侧导航单元RSU 1300的示意性框图。如图7所示,该RSU 1300包括:
接收模块1310,用于接收第一RSU发送的第一切换预处理消息;
确定模块1320,用于根据该第一切换预处理消息确定车载导航单元OBU在该RSU的覆盖范围内的局域路径信息;
该接收模块1310,还用于接收该OBU发送的请求获得所述局域路径信息的注册请求;
发送模块1330,用于向该OBU发送该局域路径信息,以使该OBU根据该局域路径信息,将该OBU的归属RSU从该第一RSU切换至该RSU。
在本发明实施例中,可选地,该发送模块1330,还用于向该OBU发送注册成功消息;
该接收模块1310,还用于接收该OBU根据该注册成功消息发送的局域路径请求;
其中,该发送模块1330,具体用于:
向该OBU发送响应该局域路径请求的该局域路径信息。
可选地,在本发明实施例中,该发送模块1330,具体用于:
在确定该OBU注册成功时,向该OBU发送该局域路径信息。
在本发明实施例中,可选地,该第一切换预处理消息包括该OBU的全局路径和该OBU的位置信息。
可选地,在本发明实施例中,该发送模块1330,还用于向中央服务单元CSU发送切换报告消息,该切换报告消息用于通知该CSU该OBU的归属RSU已经切换至该RSU。
在本发明实施例中,可选地,该发送模块1330,还用于向该第一RSU发送注销消息,以使该第一RSU根据该注销消息释放该OBU对应的资源。
因此,本发明实施例的导航***中切换路侧导航单元的RSU,第二RSU根据第一RSU发送的第一切换预处理消息确定OBU在第二RSU的覆盖范围内的局域路径信息,OBU根据第二RSU发送的该局域路径信息将该OBU的归属RSU从第一RSU切换到第二RSU,使得OBU能够通过第一RSU和第二RSU的协商实现RSU的无缝切换,从而保证了自动驾驶车辆的行车安全。
本发明实施例的导航***中切换路侧导航单元的RSU,通过第一RSU 和第二RSU的协商能够完成RSU的无缝切换,基于RSU的无缝切换可以实现全程的车道级路径规划,从而简化了CSU和RSU的设计和运行负担。
根据本发明实施例的RSU 1300可对应于根据本发明实施例的导航***中切换路侧导航单元的方法中的第二RSU,并且RSU 1300中的各个模块的上述和其它操作和/或功能分别为了实现前述各个方法的相应流程,为了简洁,在此不再赘述。
本发明实施例还提供了一种***。如图8所示,***1400包括:
前述本发明实施例的OBU 900、本发明实施例的RSU 1100和本发明实施例的RSU 1300。
图9示出了本发明的又一实施例提供的车载导航单元OBU设备的结构,包括至少一个处理器1502(例如具有计算和处理能力的通用处理器CPU、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)等),处理器对OBU设备内各模块和器件进行管理和调度。还包括至少一个网络接口1505或者其他通信接口,存储器1506,和至少一个总线***1503。OBU的各个组件通过总线***1503耦合在一起,其中总线***1503可能包括数据总线、电源总线、控制总线和状态信号总线等,但是为了清楚说明起见,在图中将各种总线都标为总线***1503。
上述本发明实施例揭示的方法可以应用于处理器1502,或者用于执行存储器1506中存储的可执行模块,例如计算机程序。存储器1506可能包含高速随机存取存储器(RAM:Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),存储器可以包括只读存储器和随机存取存储器,并向处理器提供需要的信令或数据、程序等等。存储器的一部分还可以包括非易失行随机存取存储器(NVRAM)。通过至少一个网络接口1505(可以是有线或者无线)实现与至少一个其他网元之间的通信连接。
在一些实施方式中,存储器1506存储了程序15061,处理器1502执行程序15061,用于执行一些操作:
通过网络接口1505接收第一路侧导航单元RSU发送的切换通知消息,该切换通知消息用于指示车载导航单元OBU准备将该OBU的归属RSU从该第一RSU切换至第二RSU;
通过网络接口1505向该第二RSU发送注册请求;
通过网络接口1505接收该第二RSU根据该注册请求发送的该OBU在 该第二RSU的覆盖范围内的局域路径信息,该局域路径信息是由该第二RSU根据该第一RSU发送的第一切换预处理消息确定的;
根据该局域路径信息,将该OBU的归属RSU从该第一RSU切换至该第二RSU。
需要说明的是,该OBU可以具体为上述实施例中的OBU,并且可以用于执行上述方法实施例中与OBU对应的各个步骤和/或流程。
从本发明实施例提供的以上技术方案可以看出,第二RSU根据第一RSU发送的第一切换预处理消息确定OBU在第二RSU的覆盖范围内的局域路径信息,OBU根据第二RSU发送的该局域路径信息将该OBU的归属RSU从第一RSU切换到第二RSU,使得OBU能够通过第一RSU和第二RSU的协商实现RSU的无缝切换,从而保证了自动驾驶车辆的行车安全。
本发明实施例通过第一RSU和第二RSU的协商能够完成RSU的无缝切换,基于RSU的无缝切换可以实现全程的车道级路径规划,从而简化了CSU和RSU的设计和运行负担。
图10示出了本发明的又一实施例提供的路侧导航单元RSU的结构,包括至少一个处理器1702(例如具有计算和处理能力的通用处理器CPU、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)等),处理器对OBU设备内各模块和器件进行管理和调度。还包括至少一个网络接口1705或者其他通信接口,存储器1706,和至少一个总线***1703。OBU的各个组件通过总线***1703耦合在一起,其中总线***1703可能包括数据总线、电源总线、控制总线和状态信号总线等,但是为了清楚说明起见,在图中将各种总线都标为总线***1703。
上述本发明实施例揭示的方法可以应用于处理器1702,或者用于执行存储器1706中存储的可执行模块,例如计算机程序。存储器1706可能包含高速随机存取存储器(RAM:Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),存储器可以包括只读存储器和随机存取存储器,并向处理器提供需要的信令或数据、程序等等。存储器的一部分还可以包括非易失行随机存取存储器(NVRAM)。通过至少一个网络接口1705(可以是有线或者无线)实现与至少一个其他网元之间的通信连接。
在一些实施方式中,存储器1706存储了程序17061,处理器1702执行程序17061,用于执行一些操作:
通过网络接口1705向第二路侧导航单元RSU发送第一切换预处理消息,该第一切换预处理消息用于该第二RSU确定车载导航单元OBU在该第二RSU的覆盖范围内的局域路径信息;
通过网络接口1705向该OBU发送切换通知消息,该切换通知消息用于指示该OBU准备将该OBU的归属RSU从该RSU切换至该第二RSU,以使该OBU根据该切换通知消息从该第二RSU获取该局域路径信息并将该OBU的归属RSU从该RSU切换至该第二RSU。
需要说明的是,该RSU可以具体为上述实施例中的第一RSU,并且可以用于执行上述方法实施例中与第一RSU对应的各个步骤和/或流程。
从本发明实施例提供的以上技术方案可以看出,第二RSU根据第一RSU发送的第一切换预处理消息确定OBU在第二RSU的覆盖范围内的局域路径信息,OBU根据第二RSU发送的该局域路径信息将该OBU的归属RSU从第一RSU切换到第二RSU,使得OBU能够通过第一RSU和第二RSU的协商实现RSU的无缝切换,从而保证了自动驾驶车辆的行车安全。
本发明实施例通过第一RSU和第二RSU的协商能够完成RSU的无缝切换,基于RSU的无缝切换可以实现全程的车道级路径规划,从而简化了CSU和RSU的设计和运行负担。
图11示出了本发明的又一实施例提供的RSU的结构,包括至少一个处理器1902(例如具有计算和处理能力的通用处理器CPU、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)等),处理器对OBU设备内各模块和器件进行管理和调度。还包括至少一个网络接口1905或者其他通信接口,存储器1906,和至少一个总线***1903。OBU的各个组件通过总线***1903耦合在一起,其中总线***1903可能包括数据总线、电源总线、控制总线和状态信号总线等,但是为了清楚说明起见,在图中将各种总线都标为总线***1903。
上述本发明实施例揭示的方法可以应用于处理器1902,或者用于执行存储器1906中存储的可执行模块,例如计算机程序。存储器1906可能包含高速随机存取存储器(RAM:Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),存储器可以包括只读存储器和随机存取存储器,并向处理器提供需要的信令或数据、程序等等。存储器的一部分还可以包括非易失行随机存取存储器(NVRAM)。通过至少一个网络接口1905 (可以是有线或者无线)实现与至少一个其他网元之间的通信连接。
在一些实施方式中,存储器1906存储了程序19061,处理器1902执行程序19061,用于执行一些操作:
通过网络接口1905接收第一路侧导航单元RSU发送的第一切换预处理消息;
根据该第一切换预处理消息确定车载导航单元OBU在该RSU的覆盖范围内的局域路径信息;
通过网络接口1905接收该OBU发送的注册请求;
通过网络接口1905向该OBU发送该局域路径信息,以使该OBU根据该局域路径信息,将该OBU的归属RSU从第一RSU切换至该RSU。
需要说明的是,该RSU可以具体为上述实施例中的第二RSU,并且可以用于执行上述方法实施例中与第二RSU对应的各个步骤和/或流程。
从本发明实施例提供的以上技术方案可以看出,第二RSU根据第一RSU发送的第一切换预处理消息确定OBU在第二RSU的覆盖范围内的局域路径信息,OBU根据第二RSU发送的该局域路径信息将该OBU的归属RSU从第一RSU切换到第二RSU,使得OBU能够通过第一RSU和第二RSU的协商实现RSU的无缝切换,从而保证了自动驾驶车辆的行车安全。
本发明实施例通过第一RSU和第二RSU的协商能够完成RSU的无缝切换,基于RSU的无缝切换可以实现全程的车道级路径规划,从而简化了CSU和RSU的设计和运行负担。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (20)

  1. 一种导航***中切换路侧导航单元RSU的方法,其特征在于,所述方法包括:
    车载导航单元OBU接收第一RSU发送的切换通知消息,所述切换通知消息用于指示所述OBU准备将所述OBU的归属RSU从所述第一RSU切换至第二RSU;
    所述OBU向所述第二RSU发送注册请求以请求获得所述OBU在所述第二RSU的覆盖范围内的局域路径信息;
    所述OBU接收所述第二RSU发送的所述局域路径信息;
    所述OBU根据所述局域路径信息,将所述OBU的归属RSU从所述第一RSU切换至所述第二RSU。
  2. 根据权利要求1所述的方法,其特征在于,在所述OBU接收第一RSU发送的切换通知消息之前,所述方法还包括:
    所述OBU向所述第一RSU发送所述OBU的位置信息,所述位置信息用于所述第一RSU判断是否对所述OBU启动RSU切换以确定是否发送所述切换通知消息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述OBU向所述第二RSU发送注册请求以请求获得所述OBU在所述第二RSU的覆盖范围内的局域路径信息,包括:
    所述OBU接收所述第二RSU发送的注册成功消息;
    所述OBU根据所述注册成功消息向所述第二RSU发送局域路径请求;
    所述OBU接收所述第二RSU发送的响应所述局域路径请求的所述局域路径信息。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述OBU向中央服务单元CSU发送切换报告消息,所述切换报告消息用于通知所述CSU所述OBU的归属RSU已切换至所述第二RSU。
  5. 一种导航***中切换路侧导航单元RSU的方法,其特征在于,所述方法包括:
    第一RSU向第二RSU发送第一切换预处理消息,所述第一切换预处理消息用于所述第二RSU确定车载导航单元OBU在所述第二RSU的覆盖范 围内的局域路径信息;
    所述第一RSU向所述OBU发送切换通知消息,所述切换通知消息用于指示所述OBU准备将所述OBU的归属RSU从所述第一RSU切换至所述第二RSU,以使所述OBU根据所述切换通知消息从所述第二RSU获取所述局域路径信息并将所述OBU的归属RSU从所述第一RSU切换至所述第二RSU。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第一RSU接收所述OBU发送的所述OBU的位置信息;
    所述第一RSU根据所述OBU的位置信息,判断是否对所述OBU启动RSU切换以确定是否发送所述切换通知消息或确定是否发送所述第一切换预处理消息。
  7. 根据权利要求5或6所述的方法,其特征在于,在所述第一RSU向所述OBU发送切换通知消息之前,所述方法还包括:
    所述第一RSU向所述OBU发送第二切换预处理消息,所述第二切换预处理消息包括所述第二RSU的标识ID、所述第二RSU的地址和所述第二RSU的名称中的至少一项。
  8. 一种导航***中切换路侧导航单元RSU的方法,其特征在于,所述方法包括:
    第二RSU接收第一RSU发送的第一切换预处理消息;
    所述第二RSU根据所述第一切换预处理消息确定车载导航单元OBU在所述第二RSU的覆盖范围内的局域路径信息;
    所述第二RSU接收所述OBU发送的请求获得所述局域路径信息的注册请求;
    所述第二RSU向所述OBU发送所述局域路径信息,以使所述OBU根据所述局域路径信息将所述OBU的归属RSU从所述第一RSU切换至所述第二RSU。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述第二RSU向所述OBU发送注册成功消息;
    所述第二RSU接收所述OBU根据所述注册成功消息发送的局域路径请求;
    其中,所述第二RSU向所述OBU发送所述局域路径信息,包括:
    所述第二RSU向所述OBU发送响应所述局域路径请求的所述局域路径信息。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述第二RSU向中央服务单元CSU发送切换报告消息,所述切换报告消息用于通知所述CSU所述OBU的归属RSU已切换至所述第二RSU。
  11. 一种车载导航单元OBU,其特征在于,包括:
    接收模块,用于接收第一路侧导航单元RSU发送的切换通知消息,所述切换通知消息用于指示所述OBU准备将所述OBU的归属RSU从所述第一RSU切换至第二RSU;
    发送模块,用于向所述第二RSU发送注册请求以请求获得所述OBU在所述第二RSU的覆盖范围内的局域路径信息;
    所述接收模块,还用于接收所述第二RSU发送的所述局域路径信息;
    切换模块,用于根据所述接收模块接收的所述局域路径信息,将所述OBU的归属RSU从所述第一RSU切换至所述第二RSU。
  12. 根据权利要求11所述的OBU,其特征在于,所述发送模块,还用于在所述OBU接收所述第一RSU发送的切换通知消息之前,向所述第一RSU发送所述OBU的位置信息,所述位置信息用于所述第一RSU判断是否对所述OBU启动RSU切换以确定是否发送所述切换通知消息。
  13. 根据权利要求11或12所述的OBU,其特征在于,所述发送模块还用于:
    接收所述第二RSU发送注册成功消息;
    根据所述注册成功消息向所述第二RSU发送局域路径请求;
    接收所述第二RSU发送的响应所述局域路径请求的所述局域路径信息。
  14. 根据权利要求11至13中任一项所述的OBU,其特征在于,所述发送模块,还用于:
    向中央服务单元CSU发送切换报告消息,所述切换报告消息用于通知所述CSU所述OBU的归属RSU已切换至所述第二RSU。
  15. 一种路侧导航单元RSU,其特征在于,包括:
    发送模块,用于向第二RSU发送第一切换预处理消息,所述第一切换预处理消息用于所述第二RSU确定车载导航单元OBU在所述第二RSU的覆盖范围内的局域路径信息;
    所述发送模块,还用于向所述OBU发送切换通知消息,所述切换通知消息用于指示所述OBU准备将所述OBU的归属RSU从所述RSU切换至所述第二RSU,以使所述OBU根据所述切换通知消息从所述第二RSU获取所述局域路径信息并将所述OBU的归属RSU从所述RSU切换至所述第二RSU。
  16. 根据权利要求15所述的RSU,其特征在于,所述接收模块,还用于在所述RSU向所述第二RSU发送第一切换预处理消息之前,接收所述OBU发送的所述OBU的位置信息;
    确定模块,用于根据所述OBU的位置信息,判断是否对所述OBU启动RSU切换以确定是否发送所述切换通知消息或确定是否发送所述第一切换预处理消息。
  17. 根据权利要求15或16所述的RSU,其特征在于,所述发送模块,还用于在所述RSU向所述OBU发送切换通知消息之前,向所述OBU发送第二切换预处理消息,所述第二切换预处理消息包括所述第二RSU的标识ID、所述第二RSU的地址和所述第二RSU的名称中的至少一项。
  18. 一种路侧导航单元RSU,其特征在于,包括:
    接收模块,用于接收第一RSU发送的第一切换预处理消息;
    确定模块,用于根据所述第一切换预处理消息确定车载导航单元OBU在所述RSU的覆盖范围内的局域路径信息;
    所述接收模块,还用于接收所述OBU发送的请求获得所述局域路径信息的注册请求;
    发送模块,用于向所述OBU发送所述局域路径信息,以使所述OBU根据所述局域路径信息,将所述OBU的归属RSU从所述第一RSU切换至所述RSU。
  19. 根据权利要求18所述的RSU,其特征在于,所述发送模块,还用于向所述OBU发送注册成功消息;
    所述接收模块,还用于接收所述OBU根据所述注册成功消息发送的局域路径请求;
    其中,所述发送模块,具体用于:
    向所述OBU发送响应所述局域路径请求的所述局域路径信息。
  20. 根据权利要求18或19所述的RSU,其特征在于,所述发送模块, 还用于向中央服务单元CSU发送切换报告消息,所述切换报告消息用于通知所述CSU所述OBU的归属RSU已经切换至所述RSU。
PCT/CN2015/095594 2015-11-26 2015-11-26 导航***中切换路侧导航单元的方法和设备 WO2017088137A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2015/095594 WO2017088137A1 (zh) 2015-11-26 2015-11-26 导航***中切换路侧导航单元的方法和设备
CN201580084801.3A CN108291811B (zh) 2015-11-26 2015-11-26 导航***中切换路侧导航单元的方法和设备
EP15909049.7A EP3370036B1 (en) 2015-11-26 2015-11-26 Method and device for switching road side unit in a navigation system
JP2018527762A JP6679091B2 (ja) 2015-11-26 2015-11-26 ナビゲーションシステムにおいて路側ナビゲーションユニットを切り替えるための方法、およびデバイス
US15/989,958 US10827399B2 (en) 2015-11-26 2018-05-25 Method for switching roadside navigation unit in navigation system, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/095594 WO2017088137A1 (zh) 2015-11-26 2015-11-26 导航***中切换路侧导航单元的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/989,958 Continuation US10827399B2 (en) 2015-11-26 2018-05-25 Method for switching roadside navigation unit in navigation system, and device

Publications (1)

Publication Number Publication Date
WO2017088137A1 true WO2017088137A1 (zh) 2017-06-01

Family

ID=58762823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095594 WO2017088137A1 (zh) 2015-11-26 2015-11-26 导航***中切换路侧导航单元的方法和设备

Country Status (5)

Country Link
US (1) US10827399B2 (zh)
EP (1) EP3370036B1 (zh)
JP (1) JP6679091B2 (zh)
CN (1) CN108291811B (zh)
WO (1) WO2017088137A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107421554A (zh) * 2017-06-28 2017-12-01 奇瑞汽车股份有限公司 导航路径确定方法、装置、车载设备和存储介质
CN110337088A (zh) * 2019-03-18 2019-10-15 北京千方科技股份有限公司 车辆编队通信***及方法
CN110570674A (zh) * 2019-09-06 2019-12-13 杭州博信智联科技有限公司 车路协同数据交互方法、***、电子设备及可读存储介质
CN110599787A (zh) * 2018-06-12 2019-12-20 郑州宇通客车股份有限公司 自动驾驶车辆的智能调度***
CN111212401A (zh) * 2019-12-26 2020-05-29 天地融科技股份有限公司 一种obu定位方法及装置
WO2021195952A1 (zh) * 2020-03-31 2021-10-07 Oppo广东移动通信有限公司 信息处理方法、设备、***及存储介质

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11614741B2 (en) * 2016-08-02 2023-03-28 Transportation Ip Holdings, Llc Vehicle control system and method
US10449968B2 (en) * 2016-09-23 2019-10-22 Ford Motor Company Methods and apparatus for adaptively assisting developmentally disabled or cognitively impaired drivers
EP3389291B1 (de) * 2017-04-13 2022-09-07 Deutsche Telekom AG Kommunikation zwischen einem fahrzeug und mehreren roadside units
CN107613533B (zh) * 2017-09-12 2020-10-23 华为技术有限公司 Tcu切换方法、消息同步方法及装置
US11842642B2 (en) * 2018-06-20 2023-12-12 Cavh Llc Connected automated vehicle highway systems and methods related to heavy vehicles
KR102163575B1 (ko) * 2018-12-18 2020-10-08 부경대학교 산학협력단 협업 네트워크 시스템의 암호화폐 기반 인센티브 지급 시스템 및 방법
US20220327929A1 (en) * 2019-06-12 2022-10-13 Lg Electronics Inc. Method by which rsus transmit and receive signals in wireless communication system
CN110244741A (zh) * 2019-06-28 2019-09-17 奇瑞汽车股份有限公司 智能汽车的控制方法、装置及存储介质
US12002361B2 (en) * 2019-07-03 2024-06-04 Cavh Llc Localized artificial intelligence for intelligent road infrastructure
CN110164157A (zh) * 2019-07-16 2019-08-23 华人运通(上海)新能源驱动技术有限公司 路侧设备、用于路侧设备的方法和车路协同***
CN111114317B (zh) * 2019-12-30 2022-04-22 上海移为通信技术股份有限公司 车速控制方法、装置和设备
KR20220045311A (ko) * 2020-10-05 2022-04-12 현대자동차주식회사 V2x 네트워크 핸드오버 시스템 및 그 방법
CN112700639B (zh) * 2020-12-07 2022-03-08 电子科技大学 一种基于联邦学习与数字孪生的智能交通路径规划方法
CN112800156B (zh) * 2021-01-06 2023-10-13 迪爱斯信息技术股份有限公司 一种基于路侧单元地图分幅方法、***、设备和存储介质
CN115088274B (zh) * 2021-01-19 2023-04-18 华为技术有限公司 一种消息发送方法、接收方法和装置
CN114543832B (zh) * 2022-04-27 2022-07-01 深圳本地宝新媒体技术有限公司 基于本地区域特性的道路出行信息分析推送方法及***
CN115240453B (zh) * 2022-09-26 2023-01-24 智道网联科技(北京)有限公司 自动驾驶车辆的行驶控制方法、装置、***及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102256322A (zh) * 2011-06-20 2011-11-23 北京新岸线移动多媒体技术有限公司 基于路车协同的通信方法及设备
US20110306353A1 (en) * 2010-06-11 2011-12-15 Electronics And Telecommunications Research Institute Channel allocation device and method using wireless access in vehicular enviroments
US20120146811A1 (en) * 2010-12-14 2012-06-14 Institute For Information Industry Driving assisting system, method and computer readable storage medium for storing thereof
CN103415082A (zh) * 2013-08-09 2013-11-27 北京邮电大学 车载无线通信信道接入方法、基站单元和车载移动终端
CN103441847A (zh) * 2013-08-13 2013-12-11 广东工业大学 一种基于虚拟机迁移技术的车辆身份认证方法
CN104703239A (zh) * 2015-03-24 2015-06-10 河海大学常州校区 基于发送切换邀请的准周期越区切换触发机制
CN104949684A (zh) * 2015-06-23 2015-09-30 西华大学 基于车路协同的车载导航***

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3674178B2 (ja) * 1996-09-27 2005-07-20 住友電気工業株式会社 路車間通信システムにおけるセル移行方法
JP4912007B2 (ja) * 2005-03-28 2012-04-04 株式会社Ihi 交通渋滞緩和装置および方法
CN101383745B (zh) * 2008-10-23 2010-10-27 北京交通大学 一种适用于特定场景的移动ip解决方法
KR20110065262A (ko) * 2009-12-08 2011-06-15 한국전자통신연구원 차량통신 핸드오버 지원을 위한 장치 및 방법
KR101075021B1 (ko) * 2010-03-26 2011-10-20 전자부품연구원 Wave 통신 시스템의 적응적 채널 조정 방법 및 시스템
CN101932059B (zh) * 2010-08-02 2012-11-14 清华大学深圳研究生院 V2i通信中基于网络的导航辅助快速三层切换方法
US8892028B2 (en) * 2011-09-27 2014-11-18 Broadcom Corporation Method and apparatus for a cellular assisted intelligent transportation system
GB2496165A (en) * 2011-11-03 2013-05-08 Renesas Mobile Corp Method and Apparatus for Handover Using Predicted Vehicular Locations
CN102802121B (zh) * 2012-09-01 2014-05-14 北京理工大学 基于地理位置的车载物联网路由选择方法
KR101549114B1 (ko) * 2013-12-30 2015-09-02 전자부품연구원 차량단말의 핸드오버 방법 및 그 차량단말
CN104637328B (zh) 2015-01-07 2016-08-17 浙江大学 一种车辆自组织网络中基于rsu的分布式实时导航方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110306353A1 (en) * 2010-06-11 2011-12-15 Electronics And Telecommunications Research Institute Channel allocation device and method using wireless access in vehicular enviroments
US20120146811A1 (en) * 2010-12-14 2012-06-14 Institute For Information Industry Driving assisting system, method and computer readable storage medium for storing thereof
CN102256322A (zh) * 2011-06-20 2011-11-23 北京新岸线移动多媒体技术有限公司 基于路车协同的通信方法及设备
CN103415082A (zh) * 2013-08-09 2013-11-27 北京邮电大学 车载无线通信信道接入方法、基站单元和车载移动终端
CN103441847A (zh) * 2013-08-13 2013-12-11 广东工业大学 一种基于虚拟机迁移技术的车辆身份认证方法
CN104703239A (zh) * 2015-03-24 2015-06-10 河海大学常州校区 基于发送切换邀请的准周期越区切换触发机制
CN104949684A (zh) * 2015-06-23 2015-09-30 西华大学 基于车路协同的车载导航***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LV , ZIRU: "Position Based Handoff Scheme in Vanets", ELECTRONIC TECHNOLOGY & INFORMATION SCIENCE , CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 September 2011 (2011-09-15), pages 30, XP009506603, ISSN: 1674-0246 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107421554A (zh) * 2017-06-28 2017-12-01 奇瑞汽车股份有限公司 导航路径确定方法、装置、车载设备和存储介质
CN110599787A (zh) * 2018-06-12 2019-12-20 郑州宇通客车股份有限公司 自动驾驶车辆的智能调度***
CN110337088A (zh) * 2019-03-18 2019-10-15 北京千方科技股份有限公司 车辆编队通信***及方法
CN110570674A (zh) * 2019-09-06 2019-12-13 杭州博信智联科技有限公司 车路协同数据交互方法、***、电子设备及可读存储介质
CN111212401A (zh) * 2019-12-26 2020-05-29 天地融科技股份有限公司 一种obu定位方法及装置
CN111212401B (zh) * 2019-12-26 2023-06-13 天地融科技股份有限公司 一种obu定位方法及装置
WO2021195952A1 (zh) * 2020-03-31 2021-10-07 Oppo广东移动通信有限公司 信息处理方法、设备、***及存储介质

Also Published As

Publication number Publication date
EP3370036A1 (en) 2018-09-05
JP6679091B2 (ja) 2020-04-15
CN108291811B (zh) 2021-07-09
US20180279183A1 (en) 2018-09-27
EP3370036A4 (en) 2018-11-21
CN108291811A (zh) 2018-07-17
US10827399B2 (en) 2020-11-03
JP2018537039A (ja) 2018-12-13
EP3370036B1 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
WO2017088137A1 (zh) 导航***中切换路侧导航单元的方法和设备
WO2019085955A1 (zh) 一种紧急车辆的调度方法及装置
US20200312133A1 (en) Express Lane Planning Method and Unit
US10809086B2 (en) Navigation system, apparatus, and method
WO2017107169A1 (zh) 导航***中切换路侧导航单元的方法和设备
JP6682629B2 (ja) 車両の車線変更のために2車両間の交通空隙を特定する方法および制御システム
RU2737080C1 (ru) Система дистанционного управления транспортным средством и устройство дистанционного управления
EP3582204B1 (en) Method and system for traffic management
JP2020506566A (ja) ハンドオーバの先行準備およびトラッキング/ページングエリアハンドリングならびにセルラネットワーク内のインテリジェントルート選択
WO2019091288A1 (zh) 车联网中的交通流控制方法及其装置
US20200213921A1 (en) TCU Switching Method and Apparatus, and Message Synchronization Method and Apparatus
WO2019069868A1 (ja) 判定装置及び判定方法並びに判定用プログラム
WO2020107991A1 (zh) 自动驾驶规划的方法、设备及***
WO2021164003A1 (zh) 一种紧急车辆通行方法和装置
JP6733997B2 (ja) 車両を制御する方法、装置およびシステム
JP2018022391A (ja) 情報処理装置,及び情報送信制御方法
CN111164573A (zh) 启用雾服务层并应用于智能运输***
WO2018010083A1 (zh) 车辆外联通信方法、装置及终端
WO2017147797A1 (zh) 导航***中确定切换的路侧单元的方法及相关装置
WO2019101159A1 (zh) 基于移动设备运动状态的基站切换方法和设备
WO2019042592A1 (en) METHOD, DEVICES AND SYSTEM FOR CONTROLLING VEHICLE
CN113335297B (zh) 一种车辆控制方法及装置
US12035177B2 (en) Communication device, user terminal, communication system, notification method, and program for handover communications
US11887476B2 (en) Emergency service vehicle notification and acknowledgement
JP5280907B2 (ja) 車上通信装置、無線接続方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909049

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018527762

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015909049

Country of ref document: EP