WO2017085911A1 - 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法 - Google Patents

負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法 Download PDF

Info

Publication number
WO2017085911A1
WO2017085911A1 PCT/JP2016/004807 JP2016004807W WO2017085911A1 WO 2017085911 A1 WO2017085911 A1 WO 2017085911A1 JP 2016004807 W JP2016004807 W JP 2016004807W WO 2017085911 A1 WO2017085911 A1 WO 2017085911A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
peak
secondary battery
Prior art date
Application number
PCT/JP2016/004807
Other languages
English (en)
French (fr)
Inventor
貴一 廣瀬
博道 加茂
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58718632&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017085911(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to US15/772,566 priority Critical patent/US10686190B2/en
Priority to EP16865915.9A priority patent/EP3364483A4/en
Priority to KR1020187013699A priority patent/KR20180080239A/ko
Priority to CN201680067722.6A priority patent/CN108292748B/zh
Publication of WO2017085911A1 publication Critical patent/WO2017085911A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/86Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material, a mixed negative electrode active material, a negative electrode for a non-aqueous electrolyte secondary battery, a lithium ion secondary battery, a method for producing a negative electrode active material, and a method for producing a lithium ion secondary battery.
  • This secondary battery is not limited to a small electronic device, but is also considered to be applied to a large-sized electronic device represented by an automobile or the like, or an electric power storage system represented by a house.
  • lithium ion secondary batteries are highly expected because they are small in size and easy to increase in capacity, and can obtain higher energy density than lead batteries and nickel cadmium batteries.
  • the above lithium ion secondary battery includes a positive electrode, a negative electrode, and a separator together with an electrolyte, and the negative electrode includes a negative electrode active material involved in a charge / discharge reaction.
  • the negative electrode active material As the negative electrode active material, a carbon material is widely used, but further improvement in battery capacity is required due to recent market demand.
  • silicon As a negative electrode active material, use of silicon as a negative electrode active material has been studied. This is because the theoretical capacity of silicon (4199 mAh / g) is 10 times or more larger than the theoretical capacity of graphite (372 mAh / g), so that significant improvement in battery capacity can be expected.
  • the development of a siliceous material as a negative electrode active material has been examined not only for silicon itself but also for compounds represented by alloys and oxides.
  • the shape of the active material has been studied from a standard coating type for carbon materials to an integrated type directly deposited on a current collector.
  • the negative electrode active material when silicon is used as the negative electrode active material as the main raw material, the negative electrode active material expands and contracts during charge / discharge, and therefore, it tends to break mainly near the surface of the negative electrode active material. Further, an ionic material is generated inside the active material, and the negative electrode active material is easily broken. When the negative electrode active material surface layer is cracked, a new surface is generated thereby increasing the reaction area of the active material. At this time, a decomposition reaction of the electrolytic solution occurs on the new surface, and a coating that is a decomposition product of the electrolytic solution is formed on the new surface, so that the electrolytic solution is consumed. For this reason, the cycle characteristics are likely to deteriorate.
  • silicon and amorphous silicon dioxide are simultaneously deposited using a vapor phase method (see, for example, Patent Document 1). Further, in order to obtain a high battery capacity and safety, a carbon material (electron conductive material) is provided on the surface layer of the silicon oxide particles (see, for example, Patent Document 2). Furthermore, in order to improve cycle characteristics and obtain high input / output characteristics, an active material containing silicon and oxygen is produced, and an active material layer having a high oxygen ratio in the vicinity of the current collector is formed ( For example, see Patent Document 3). Further, in order to improve cycle characteristics, oxygen is contained in the silicon active material, the average oxygen content is 40 at% or less, and the oxygen content is increased at a location close to the current collector. (For example, refer to Patent Document 4).
  • Si phase (for example, see Patent Document 5) by using a nanocomposite containing SiO 2, M y O metal oxide in order to improve the initial charge and discharge efficiency.
  • the molar ratio of oxygen to silicon in the negative electrode active material is set to 0.1 to 1.2, and the difference between the maximum and minimum molar ratios in the vicinity of the active material and current collector interface The active material is controlled within a range of 0.4 or less (see, for example, Patent Document 7).
  • Patent Document 8 a metal oxide containing lithium is used (see, for example, Patent Document 8).
  • a hydrophobic layer such as a silane compound is formed on the surface layer of the siliceous material (see, for example, Patent Document 9).
  • conductivity is imparted by using silicon oxide and forming a graphite film on the surface layer (see, for example, Patent Document 10).
  • Patent Document 10 with respect to the shift value obtained from the Raman spectra for graphite coating, with broad peaks appearing at 1330 cm -1 and 1580 cm -1, their intensity ratio I 1330 / I 1580 is 1.5 ⁇ I 1330 / I 1580 ⁇ 3.
  • particles having a silicon microcrystalline phase dispersed in silicon dioxide are used in order to improve high battery capacity and cycle characteristics (see, for example, Patent Document 11). Further, in order to improve overcharge and overdischarge characteristics, silicon oxide in which the atomic ratio of silicon and oxygen is controlled to 1: y (0 ⁇ y ⁇ 2) is used (see, for example, Patent Document 12).
  • lithium ion secondary batteries which are the main power sources, are required to have an increased battery capacity.
  • development of a lithium ion secondary battery including a negative electrode using a silicon-based active material as a main material is desired.
  • a lithium ion secondary battery using a silicon-based active material is desired to have initial efficiency and cycle characteristics that are similar to those of a lithium ion secondary battery using a carbon-based active material.
  • a negative electrode active material that exhibits the same initial efficiency and cycle stability as a lithium ion secondary battery using a carbon-based active material has not been proposed.
  • the present invention has been made in view of the above problems, and when used as a negative electrode active material of a lithium ion secondary battery, it is possible to improve battery capacity, cycle characteristics, and initial charge / discharge characteristics. It is an object of the present invention to provide a negative electrode active material, a mixed negative electrode active material containing the negative electrode active material, a negative electrode for a non-aqueous electrolyte secondary battery and a lithium ion secondary battery containing the mixed negative electrode active material.
  • Another object of the present invention is to provide a method for producing a negative electrode active material excellent in battery characteristics as described above and a method for producing a lithium ion secondary battery.
  • the present invention provides a negative electrode active material including negative electrode active material particles, wherein the negative electrode active material particles include a silicon compound (SiO x : 0.5 ⁇ x ⁇ 1.6). Containing silicon compound particles, the negative electrode active material particles at least partially containing crystalline Li 2 SiO 3 , and the negative electrode active material particles are formed of Li 2 SiO 3 obtained from a 29 Si-MAS-NMR spectrum.
  • the intensity A of the peak derived from, the intensity B of the peak derived from Si, the intensity C of the peak derived from Li 2 Si 2 O 5 , and the intensity D of the peak derived from SiO 2 satisfy the following formula 1 or 2.
  • a negative electrode active material is provided.
  • the negative electrode active material of the present invention includes negative electrode active material particles containing silicon compound particles, the battery capacity can be improved.
  • the battery capacity can be improved.
  • SiO 2 that becomes an irreversible component is previously modified into a lithium silicate such as crystalline Li 2 SiO 3 .
  • the irreversible capacity generated during charging can be reduced.
  • the negative electrode active material particles satisfy Formula 1 or Formula 2, the amount of SiO 2 contained in the negative electrode active material particles is small with respect to Li 2 SiO 3 and Si, or SiO 2 is Li 2 SiO 3 and Li 2 Si 2. the O 5 it can be said that the less as a reference. Therefore, the initial efficiency and cycle characteristics of the battery can be improved.
  • A> B is satisfied as in Formula 1, it can be said that most of SiO 2 has been transformed into Li 2 SiO 3 , and thus the irreversible capacity of the battery is reduced. Furthermore, if B> D is satisfied as in Equation 1, it can be said that there is a sufficient amount of Si that occludes lithium during charging and discharging of the battery, and thus a higher battery capacity can be obtained. Further, if A> C is satisfied as in Formula 2, among Li silicates in which SiO 2 is changed, stable Li 2 SiO 3 as compared with unstable Li 2 Si 2 O 5 that is easily eluted in an aqueous slurry or the like.
  • the stability with respect to the aqueous slurry used at the time of electrode preparation is improved, and the cycle characteristics of the battery are also improved. Further, when A> C is satisfied and C> D is satisfied as in Expression 2, the negative electrode active material is stable and can reduce the irreversible capacity due to SiO 2 .
  • the chemical shift value obtained from the 29 Si-MAS-NMR spectrum has a peak in the vicinity of -130 ppm.
  • the peak obtained at a position where the chemical shift value is near -130 ppm is presumed to be a peak derived from amorphous silicon (hereinafter also referred to as a-Si).
  • a peak derived from amorphous silicon it can be said that SiO 2 has been sufficiently modified, so that it becomes a negative electrode active material that can further improve the initial efficiency and cycle characteristics of the secondary battery.
  • the chemical shift value obtained from the 29 Si-MAS-NMR spectrum preferably has a peak at ⁇ 40 to ⁇ 60 ppm.
  • the peak appearing in the range of ⁇ 40 to ⁇ 60 ppm as the chemical shift value is also a peak derived from amorphous silicon. Therefore, similarly to the above, it becomes a negative electrode active material capable of further improving the initial efficiency and cycle characteristics of the secondary battery.
  • the silicon compound particles have a half-value width (2 ⁇ ) of a diffraction peak caused by an Si (111) crystal plane obtained by X-ray diffraction of 1.2 ° or more and a crystallite size corresponding to the crystal plane. Is preferably 7.5 nm or less.
  • the negative electrode active material in which the silicon compound particles have the above-described silicon crystallinity is used as the negative electrode active material of the lithium ion secondary battery, better cycle characteristics and initial charge / discharge characteristics can be obtained.
  • a test cell comprising a negative electrode containing a mixture of the negative electrode active material and the carbon-based active material and counter lithium is prepared, and in the test cell, charging is performed such that current is inserted so that lithium is inserted into the negative electrode active material.
  • 30 times of charge / discharge consisting of discharge through which current flows so as to desorb lithium from the negative electrode active material, and the discharge capacity Q in each charge / discharge is differentiated by the potential V of the negative electrode with respect to the counter lithium.
  • the above-mentioned peak in the V-dQ / dV curve is similar to the peak of the siliceous material, and the discharge curve on the higher potential side rises sharply, so that the capacity is easily developed when designing the battery. Moreover, if the said peak expresses by charge / discharge within 30 times, it will become a negative electrode active material in which a stable bulk is formed.
  • the negative electrode active material particles preferably have a median diameter of 1.0 ⁇ m to 15 ⁇ m.
  • the median diameter is 1.0 ⁇ m or more, an increase in battery irreversible capacity due to an increase in surface area per mass can be suppressed.
  • the median diameter is set to 15 ⁇ m or less, the particles are difficult to break and a new surface is difficult to appear.
  • the negative electrode active material particles preferably include a carbon material in the surface layer portion.
  • the conductivity can be improved.
  • the average thickness of the carbon material is preferably 10 nm or more and 5000 nm or less.
  • the average thickness of the carbon material is 10 nm or more, conductivity can be improved. Moreover, if the average thickness of the carbon material to be coated is 5000 nm or less, a sufficient amount of silicon compound particles can be secured by using a negative electrode active material including such negative electrode active material particles in a lithium ion secondary battery. , Battery capacity reduction can be suppressed.
  • a mixed negative electrode active material comprising the above negative electrode active material and a carbon-based active material.
  • the conductivity of the negative electrode active material layer can be improved by including the carbon-based active material together with the negative electrode active material (silicon-based negative electrode active material) of the present invention.
  • the expansion stress associated with charging can be relaxed.
  • the battery capacity can be increased by mixing the silicon negative electrode active material with the carbon active material.
  • the present invention includes the above mixed negative electrode active material, and the ratio of the mass of the negative electrode active material to the total mass of the negative electrode active material and the carbon-based active material is 6
  • a negative electrode for a non-aqueous electrolyte secondary battery characterized by being at least mass%.
  • the ratio of the mass of the negative electrode active material (silicon-based negative electrode active material) to the total mass of the negative electrode active material (silicon-based negative electrode active material) and the carbon-based active material is 6% by mass or more, the battery capacity is further increased. It becomes possible to improve.
  • the present invention includes a negative electrode active material layer formed of the above mixed negative electrode active material and a negative electrode current collector, and the negative electrode active material layer includes the negative electrode current collector.
  • a negative electrode for a non-aqueous electrolyte secondary battery wherein the negative electrode current collector contains carbon and sulfur, and the content thereof is 100 ppm by mass or less.
  • the negative electrode current collector constituting the negative electrode includes carbon and sulfur in the above amounts, deformation of the negative electrode during charging can be suppressed.
  • the present invention provides a lithium ion secondary battery using a negative electrode containing the above negative electrode active material.
  • a lithium ion secondary battery using a negative electrode containing such a negative electrode active material has high capacity and good cycle characteristics and initial charge / discharge characteristics.
  • the present invention provides a method for producing a negative electrode active material including negative electrode active material particles containing silicon compound particles, wherein the silicon compound (SiO x : 0.5 ⁇ x ⁇ 1). .6) a negative electrode active material particle containing silicon compound particles, a crystalline Li 2 SiO 3 at least partially from the negative electrode active material particle, 29 Si-MAS-NMR spectrum
  • the intensity A of the peak derived from Li 2 SiO 3 obtained from the above, the intensity B of the peak derived from Si, the intensity C of the peak derived from Li 2 Si 2 O 5 , and the intensity D of the peak derived from SiO 2
  • a method for producing a negative electrode active material comprising: producing a negative electrode active material using the selected negative electrode active material particles. .
  • the negative electrode active material By selecting the silicon-based active material particles in this way to produce the negative electrode active material, the high capacity and good cycle characteristics and initial charge / discharge characteristics when used as the negative electrode active material of a lithium ion secondary battery
  • the negative electrode active material which has can be manufactured.
  • the present invention produces a negative electrode using the negative electrode active material produced by the method for producing a negative electrode active material, and produces a lithium ion secondary battery using the produced negative electrode.
  • a method for manufacturing a lithium ion secondary battery is provided.
  • the negative electrode active material of the present invention When the negative electrode active material of the present invention is used as a negative electrode active material for a secondary battery, a high capacity and good cycle characteristics and initial charge / discharge characteristics can be obtained. Moreover, the same effect is acquired also in the mixed negative electrode active material material containing this negative electrode active material, a negative electrode, and a lithium ion secondary battery. Moreover, if it is a manufacturing method of the negative electrode active material of this invention, when it uses as a negative electrode active material of a secondary battery, the negative electrode active material which has a favorable cycling characteristic and an initial stage charge / discharge characteristic can be manufactured.
  • FIG. 1 It is sectional drawing which shows the structure of the negative electrode for lithium ion secondary batteries of this invention. It is a figure showing the structural example (laminate film type) of the lithium secondary battery of this invention. It is an example of a spectrum obtained when SiOx containing amorphous silicon is measured using 29 Si-MAS-NMR. It is a 29 Si-MAS-NMR spectrum measured in Example 1-1, Example 1-2, and Comparative example 1-1. 6 is a graph showing an increase rate of battery capacity in Example 8-1 and Comparative Example 8-1.
  • Lithium ion secondary batteries using silicon-based active materials are expected to have initial charge / discharge characteristics and cycle characteristics similar to those of lithium-ion secondary batteries using carbon-based active materials.
  • a silicon-based active material that exhibits the same initial efficiency and cycle stability as the lithium ion secondary battery used has not been proposed.
  • the inventors of the present invention have made extensive studies in order to obtain a negative electrode active material that has a high battery capacity and good cycle characteristics and initial efficiency when used in a secondary battery, and has reached the present invention.
  • the negative electrode active material of the present invention includes negative electrode active material particles.
  • the negative electrode active material particles contain silicon compound particles containing a silicon compound (SiO x : 0.5 ⁇ x ⁇ 1.6).
  • the negative electrode active material particles at least partially contain crystalline Li 2 SiO 3 , and are derived from peak intensities A and Si derived from Li 2 SiO 3 obtained from the 29 Si-MAS-NMR spectrum.
  • the peak intensity B, the peak intensity C derived from Li 2 Si 2 O 5 , and the peak intensity D derived from SiO 2 satisfy the following formula 1 or 2.
  • the negative electrode active material of the present invention includes negative electrode active material particles containing silicon compound particles, the battery capacity can be improved.
  • the silicon compound reacts with lithium during charging of the secondary battery and SiO 2 that is an irreversible component is previously modified into lithium silicate, the irreversible capacity generated during charging is reduced. be able to.
  • the negative electrode active material particles satisfy Formula 1 or Formula 2, the amount of SiO 2 contained in the negative electrode active material particles is small with respect to Li 2 SiO 3 and Si, or SiO 2 is Li 2 SiO 3 and Li 2 Si 2. the O 5 it can be said that the less as a reference. Therefore, the initial efficiency and cycle characteristics of the battery can be improved.
  • A> B is satisfied as in Formula 1, it can be said that most of SiO 2 has been transformed into Li 2 SiO 3 , and thus the irreversible capacity of the battery is reduced.
  • B> D is satisfied as in Equation 1, it can be said that there is a sufficient amount of Si that occludes lithium during charging and discharging of the battery, and thus a higher battery capacity can be obtained.
  • A> C is satisfied as in Formula 2, among Li silicates in which SiO 2 is changed, stable Li 2 SiO 3 as compared with unstable Li 2 Si 2 O 5 that is easily eluted in an aqueous slurry or the like.
  • the stability with respect to the aqueous slurry used at the time of electrode preparation is improved, and the cycle characteristics of the battery are also improved. Further, when A> C is satisfied and C> D is satisfied as in Expression 2, the negative electrode active material is stable and can reduce the irreversible capacity due to SiO 2 .
  • FIG. 1 shows a cross-sectional configuration of a negative electrode for a nonaqueous electrolyte secondary battery (hereinafter also referred to as “negative electrode”) according to an embodiment of the present invention.
  • the negative electrode 10 is configured to have a negative electrode active material layer 12 on a negative electrode current collector 11.
  • the negative electrode active material layer 12 may be provided on both surfaces or only one surface of the negative electrode current collector 11. Furthermore, the negative electrode current collector 11 may be omitted as long as the negative electrode active material of the present invention is used.
  • the negative electrode current collector 11 is an excellent conductive material and is made of a material that is excellent in mechanical strength.
  • Examples of the conductive material that can be used for the negative electrode current collector 11 include copper (Cu) and nickel (Ni). This conductive material is preferably a material that does not form an intermetallic compound with lithium (Li).
  • the negative electrode current collector 11 preferably contains carbon (C) or sulfur (S) in addition to the main element. This is because the physical strength of the negative electrode current collector is improved.
  • the current collector contains the above-described element, there is an effect of suppressing electrode deformation including the current collector.
  • content of said content element is not specifically limited, Especially, it is preferable that it is 100 mass ppm or less, respectively. This is because a higher deformation suppressing effect can be obtained. Such a deformation suppressing effect can further improve the cycle characteristics.
  • the surface of the negative electrode current collector 11 may be roughened or may not be roughened.
  • the roughened negative electrode current collector is, for example, a metal foil subjected to electrolytic treatment, embossing treatment, or chemical etching treatment.
  • the non-roughened negative electrode current collector is, for example, a rolled metal foil.
  • the negative electrode active material layer 12 contains the negative electrode active material of the present invention capable of occluding and releasing lithium ions, and from the viewpoint of battery design, further, other materials such as a negative electrode binder (binder) and a conductive aid. May be included.
  • the negative electrode active material includes negative electrode active material particles, and the negative electrode active material particles include silicon compound particles containing a silicon compound (SiO x : 0.5 ⁇ x ⁇ 1.6).
  • the negative electrode active material layer 12 may include a mixed negative electrode active material containing the negative electrode active material (silicon-based negative electrode active material) of the present invention and a carbon-based active material.
  • the carbon-based active material include pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, carbon blacks, and the like.
  • the mass ratio of the silicon-based negative electrode active material to the total mass of the silicon-based negative electrode active material and the carbon-based active material is preferably 6% by mass or more. If the ratio of the mass of the negative electrode active material of the present invention to the total mass of the silicon-based negative electrode active material and the carbon-based active material is 6% by mass or more, the battery capacity can be reliably improved.
  • the negative electrode active material of the present invention contains silicon compound particles, and the silicon compound particles are a silicon oxide material containing a silicon compound (SiO x : 0.5 ⁇ x ⁇ 1.6).
  • the composition is preferably such that x is close to 1. This is because high cycle characteristics can be obtained.
  • the composition of the silicon compound in the present invention does not necessarily mean a purity of 100%, and may contain a trace amount of impurity elements.
  • the silicon compound particles may further contain Li 4 SiO 4 in addition to the crystalline Li 2 SiO 3 .
  • a lithium silicate is also a silicon compound in which the SiO 2 component part that is destabilized at the time of charging / discharging of the battery and destabilized at the time of charging / discharging of the battery is modified in advance to another lithium silicate. The irreversible capacity that sometimes occurs can be reduced.
  • lithium silicates can be quantified by NMR (Nuclear Magnetic Resonance) or XPS (X-ray photoelectron spectroscopy: X-ray photoelectron spectroscopy).
  • NMR Nuclear Magnetic Resonance
  • XPS X-ray photoelectron spectroscopy: X-ray photoelectron spectroscopy
  • the XPS and NMR measurements can be performed, for example, under the following conditions.
  • XPS ⁇ Device X-ray photoelectron spectrometer, ⁇ X-ray source: Monochromatic Al K ⁇ ray, ⁇ X-ray spot diameter: 100 ⁇ m, Ar ion gun sputtering conditions: 0.5 kV / 2 mm ⁇ 2 mm.
  • 29 Si MAS NMR (magic angle rotating nuclear magnetic resonance) Apparatus 700 NMR spectrometer manufactured by Bruker, ⁇ Probe: 4mmHR-MAS rotor 50 ⁇ L, Sample rotation speed: 10 kHz, -Measurement environment temperature: 25 ° C.
  • the negative electrode active material particles preferably have a peak around ⁇ 130 ppm as a chemical shift value obtained from a 29 Si-MAS-NMR spectrum.
  • the peak obtained at a position where the chemical shift value is near -130 ppm is presumed to be a peak derived from amorphous silicon.
  • SiO 2 has been sufficiently modified, so that it becomes a negative electrode active material that can further improve the initial efficiency and cycle characteristics of the secondary battery.
  • the negative electrode active material particles preferably have a peak at ⁇ 40 to ⁇ 60 ppm as a chemical shift value obtained from the 29 Si-MAS-NMR spectrum.
  • the peak appearing in the range of ⁇ 40 to ⁇ 60 ppm as the chemical shift value is also a peak derived from amorphous silicon. Therefore, similarly to the above, it becomes a negative electrode active material capable of further improving the initial efficiency and cycle characteristics of the secondary battery.
  • FIG. 3 An example of a peak derived from amorphous silicon is shown in FIG. As shown in FIG. 3, the peak derived from amorphous silicon appears as a gentle peak in the region where the chemical shift value of the 29 Si-MAS-NMR spectrum is ⁇ 40 to ⁇ 60 ppm. Furthermore, a peak derived from amorphous silicon also appears at a position where the chemical shift value is near -130 ppm.
  • the silicon compound particles have a half-value width (2 ⁇ ) of a diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction of 1.2 ° or more, and the crystallite size corresponding to the crystal plane is It is preferable that it is 7.5 nm or less.
  • the silicon crystallinity of the silicon compound in the silicon compound particles is preferably as low as possible. In particular, if the amount of Si crystal is small, battery characteristics can be improved, and a stable Li compound can be generated.
  • the negative electrode active material particles preferably include a carbon material in the surface layer portion.
  • the conductivity can be improved. Therefore, when the negative electrode active material containing such negative electrode active material particles is used as the negative electrode active material of a secondary battery. Battery characteristics can be improved.
  • the average thickness of the carbon material in the surface layer portion of the negative electrode active material particles is preferably 10 nm or more and 5000 nm or less. If the average thickness of the carbon material is 10 nm or more, conductivity can be improved, and if the average thickness of the carbon material to be coated is 5000 nm or less, the negative electrode active material containing such negative electrode active material particles is converted into lithium ion When used as a negative electrode active material for a secondary battery, a decrease in battery capacity can be suppressed.
  • the average thickness of the carbon material can be calculated by the following procedure, for example. First, negative electrode active material particles are observed at an arbitrary magnification using a TEM (transmission electron microscope). This magnification is preferably a magnification capable of visually confirming the thickness of the carbon material so that the thickness can be measured. Subsequently, the thickness of the carbon material is measured at any 15 points. In this case, it is preferable to set the measurement position widely and randomly without concentrating on a specific place as much as possible. Finally, the average value of the thicknesses of the 15 carbon materials is calculated.
  • TEM transmission electron microscope
  • the coverage of the carbon material is not particularly limited, but is preferably as high as possible. A coverage of 30% or more is preferable because electric conductivity is further improved.
  • the method for coating the carbon material is not particularly limited, but a sugar carbonization method and a pyrolysis method of hydrocarbon gas are preferable. This is because the coverage can be improved.
  • the median diameter (D 50 : particle diameter when the cumulative volume becomes 50%) of the negative electrode active material particles is 1.0 ⁇ m or more and 15 ⁇ m or less. This is because, if the median diameter is in the above range, lithium ions are easily occluded and released during charging and discharging, and the particles are difficult to break.
  • the median diameter is 1.0 ⁇ m or more, the surface area per mass can be reduced, and an increase in battery irreversible capacity can be suppressed.
  • the median diameter is set to 15 ⁇ m or less, the particles are difficult to break and a new surface is difficult to appear.
  • the negative electrode active material (silicon-based active material) of the present invention is a test cell comprising a negative electrode containing a mixture of the silicon-based active material and a carbon-based active material and counter electrode lithium, and in the test cell, Charging / discharging consisting of charging in which current is inserted to insert lithium into the silicon-based active material and discharging in which current is discharged to detach lithium from the silicon-based active material is performed 30 times, and the discharge capacity Q in each charging / discharging is determined.
  • the negative electrode during the Xth and subsequent discharges (1 ⁇ X ⁇ 30) It is preferable that the potential V of the electrode has a peak in the range of 0.40V to 0.55V.
  • the above-mentioned peak in the V-dQ / dV curve is similar to the peak of the siliceous material, and the discharge curve on the higher potential side rises sharply, so that the capacity is easily developed when designing the battery.
  • it is a negative electrode active material which the said peak expresses by charge / discharge within 30 times, it can be judged that the stable bulk is formed.
  • the negative electrode binder contained in the negative electrode active material layer for example, one or more of polymer materials, synthetic rubbers and the like can be used.
  • the polymer material include polyvinylidene fluoride, polyimide, polyamideimide, aramid, polyacrylic acid, lithium polyacrylate, and carboxymethylcellulose.
  • the synthetic rubber include styrene butadiene rubber, fluorine rubber, and ethylene propylene diene.
  • the negative electrode conductive additive for example, one or more carbon materials such as carbon black, acetylene black, graphite, ketjen black, carbon nanotube, and carbon nanofiber can be used.
  • the negative electrode active material layer is formed by, for example, a coating method.
  • the coating method is a method in which negative electrode active material particles and the above-mentioned binder, and the like, and a conductive additive and a carbon material are mixed as necessary, and then dispersed and applied in an organic solvent or water.
  • the negative electrode can be produced, for example, by the following procedure.
  • negative electrode active material particles containing silicon compound particles containing a silicon compound SiO x : 0.5 ⁇ x ⁇ 1.6
  • the negative electrode active material particles At least part of the crystalline Li 2 SiO 3 is contained, and the peak intensity A derived from Li 2 SiO 3 obtained from the 29 Si-MAS-NMR spectrum is obtained.
  • the intensity B, the peak intensity C derived from Li 2 Si 2 O 5 , and the peak intensity D derived from SiO 2 satisfy the following formula 1 or formula 2.
  • the negative electrode active material is manufactured using the selected negative electrode active material particles.
  • a step of coating the silicon compound particles with a carbon material may be further included.
  • the negative electrode active material particles in which the surface of the silicon compound particles is coated with a carbon material are excellent in conductivity.
  • the negative electrode active material can be produced as follows. First, a raw material for generating silicon oxide gas is heated in a temperature range of 900 ° C. to 1600 ° C. under reduced pressure in the presence of an inert gas to generate silicon oxide gas. Considering the surface oxygen of the metal silicon powder and the presence of a trace amount of oxygen in the reaction furnace, the mixing molar ratio is preferably in the range of 0.8 ⁇ metal silicon powder / silicon dioxide powder ⁇ 1.3.
  • the generated silicon oxide gas is solidified and deposited on the adsorption plate.
  • a silicon oxide deposit is taken out in a state where the temperature in the reactor is lowered to 100 ° C. or lower, and pulverized and powdered using a ball mill, a jet mill or the like.
  • silicon compound particles can be produced. Note that the Si crystallites in the silicon compound particles can be controlled by changing the vaporization temperature or by heat treatment after generation.
  • a carbon material layer may be formed on the surface layer of the silicon compound particles.
  • a thermal decomposition CVD method is desirable. A method for generating a carbon material layer by pyrolytic CVD will be described.
  • silicon compound particles are set in a furnace.
  • hydrocarbon gas is introduced into the furnace to raise the temperature in the furnace.
  • the decomposition temperature is not particularly limited, but is preferably 1200 ° C. or lower, and more preferably 950 ° C. or lower. By setting the decomposition temperature to 1200 ° C. or lower, unintended disproportionation of the silicon compound particles can be suppressed.
  • a carbon layer is generated on the surface of the silicon compound particles. Thereby, negative electrode active material particles can be manufactured.
  • the hydrocarbon gas used as the raw material for the carbon material is not particularly limited, but it is desirable that n ⁇ 3 in the C n H m composition. If n ⁇ 3, the production cost can be reduced, and the physical properties of the decomposition product can be improved.
  • negative electrode active material particles produced as described above may be modified by inserting Li.
  • negative electrode active material particles can contain crystalline lithium silicates such as crystalline Li 2 SiO 3 and Li 4 SiO 4 .
  • the negative electrode active material particles can be modified by mixing with LiH powder or Li powder and heating in a non-oxidizing atmosphere.
  • a non-oxidizing atmosphere for example, an Ar atmosphere can be used as the non-oxidizing atmosphere. More specifically, first, LiH powder or Li powder and silicon oxide powder are sufficiently mixed in an Ar atmosphere, sealed, and homogenized by stirring the sealed container. Thereafter, heating is performed in the range of 700 ° C. to 750 ° C. for reforming. In this case, in order to desorb Li from the silicon compound, a method of sufficiently cooling the heated powder and then washing with alcohol, alkaline water, weak acid or pure water can be used.
  • Li can be inserted by an oxidation-reduction method.
  • lithium can be inserted by first immersing the negative electrode active material particles in a solution A in which lithium is dissolved in an ether solvent.
  • the solution A may further contain a polycyclic aromatic compound or a linear polyphenylene compound.
  • active lithium can be desorbed from the negative electrode active material particles by immersing the negative electrode active material particles in a solution B containing a polycyclic aromatic compound or a derivative thereof.
  • the solvent of the solution B for example, an ether solvent, a ketone solvent, an ester solvent, an alcohol solvent, an amine solvent, or a mixed solvent thereof can be used.
  • the active material lithium is further removed from the negative electrode active material particles by immersing the negative electrode active material particles in a solution C containing an alcohol solvent, a carboxylic acid solvent, water, or a mixed solvent thereof. Many can be detached.
  • a solution C ′ containing a compound having a quinoid structure in the molecule as a solute and containing an ether solvent, a ketone solvent, an ester solvent, or a mixed solvent thereof as a solvent may be used.
  • the immersion of the negative electrode active material particles in the solutions B, C, and C ′ may be repeated.
  • active lithium is desorbed after insertion of lithium, a negative electrode active material with higher water resistance is obtained. Then, you may wash
  • a negative electrode active material can be produced in which reforming further proceeds and battery characteristics are further improved. More specifically, it is more preferable to first perform modification using a thermal doping method and then perform modification using a redox method. In this case, it is possible to selectively modify the silicon dioxide portion, which has been insufficiently modified by the thermal doping method, by the oxidation-reduction method.
  • a negative electrode active material particles after modification at least a part contains Li 2 SiO 3 crystalline, 29 Si-MAS-NMR intensity of the peak A derived from the Li 2 SiO 3 derived from the spectra,
  • the peak intensity B derived from Si, the peak intensity C derived from Li 2 Si 2 O 5 , and the peak intensity D derived from SiO 2 are selected so as to satisfy the following formula 1 or formula 2.
  • 29 Si-MAS-NMR The measurement by 29 Si-MAS-NMR can be carried out under the following conditions.
  • 29 Si MAS NMR Apparatus 700 NMR spectrometer manufactured by Bruker, ⁇ Probe: 4mmHR-MAS rotor 50 ⁇ L, Sample rotation speed: 10 kHz, -Measurement environment temperature: 25 ° C.
  • the peak appearing at a position where the chemical shift value is near -72 to 75 ppm is a peak derived from Li 2 SiO 3
  • the peak appearing near -83 ppm is a peak derived from Si.
  • the peak appearing in the vicinity of ⁇ 93 ppm of the chemical shift value is a peak derived from Li 2 Si 2 O 5
  • the peak appearing in the vicinity of ⁇ 110 ppm is a peak derived from SiO 2 .
  • Li silicate other than Li 2 SiO 3 and Li 4 SiO 4 may be a peak derived from Li silicate other than Li 2 SiO 3 and Li 4 SiO 4 in the range of ⁇ 80 to ⁇ 100 ppm.
  • a peak derived from Li 4 SiO 4 may appear in the vicinity of ⁇ 63 ppm.
  • the intensity of the peak is represented by the height of the peak from the baseline calculated from the 29 Si-MAS-NMR spectrum.
  • the baseline can be calculated by a normal method.
  • the peak near ⁇ 72 to 75 ppm derived from Li 2 SiO 3 does not take the maximum value.
  • the peak intensity A is set to the maximum value of the intensity of the spectrum of ⁇ 72 ppm.
  • the peak intensity B is the intensity at ⁇ 83 ppm.
  • the peak intensity C is the intensity at ⁇ 93 ppm.
  • the peak intensity D is set to an intensity at ⁇ 110 ppm.
  • the selection of the negative electrode active material particles does not necessarily have to be performed every time the negative electrode active material is produced. If the production conditions satisfying the above formulas 1 and 2 are found and selected, then the selected conditions and The negative electrode active material can be manufactured under the same conditions.
  • the negative electrode active material produced as described above is mixed with other materials such as a negative electrode binder and a conductive aid to form a negative electrode mixture, and then an organic solvent or water is added to obtain a slurry. Next, the above slurry is applied to the surface of the negative electrode current collector and dried to form a negative electrode active material layer. At this time, you may perform a heat press etc. as needed. Moreover, if the negative electrode current collector contains carbon and sulfur of 100 ppm by mass or less, the effect of suppressing deformation of the negative electrode can be obtained.
  • a negative electrode can be produced as described above.
  • the lithium ion secondary battery of the present invention uses a negative electrode containing the negative electrode active material of the present invention.
  • a laminated film type lithium ion secondary battery is taken as an example.
  • a laminated film type lithium ion secondary battery 20 shown in FIG. 2 is one in which a wound electrode body 21 is accommodated mainly in a sheet-like exterior member 25. This wound body has a separator between a positive electrode and a negative electrode and is wound. There is also a case where a separator is provided between the positive electrode and the negative electrode and a laminate is accommodated.
  • the positive electrode lead 22 is attached to the positive electrode
  • the negative electrode lead 23 is attached to the negative electrode.
  • the outermost peripheral part of the electrode body is protected by a protective tape.
  • the positive and negative electrode leads are led out in one direction from the inside of the exterior member 25 to the outside.
  • the positive electrode lead 22 is formed of a conductive material such as aluminum
  • the negative electrode lead 23 is formed of a conductive material such as nickel or copper.
  • the exterior member 25 is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order.
  • This laminate film is composed of two films so that the fusion layer faces the electrode body 21.
  • the outer peripheral edges of the fusion layer are bonded together with an adhesive or an adhesive.
  • the fused part is, for example, a film such as polyethylene or polypropylene, and the metal part is aluminum foil or the like.
  • the protective layer is, for example, nylon.
  • An adhesion film 24 is inserted between the exterior member 25 and the positive and negative electrode leads to prevent intrusion of outside air.
  • This material is, for example, polyethylene, polypropylene, or polyolefin resin.
  • the positive electrode has, for example, a positive electrode active material layer on both sides or one side of the positive electrode current collector, similarly to the negative electrode 10 of FIG.
  • the positive electrode current collector is made of, for example, a conductive material such as aluminum.
  • the positive electrode active material layer includes one or more positive electrode materials capable of occluding and releasing lithium ions, and includes other materials such as a binder, a conductive additive, and a dispersant depending on the design. You can leave. In this case, details regarding the binder and the conductive additive are the same as, for example, the negative electrode binder and the negative electrode conductive additive already described.
  • a lithium-containing compound is desirable.
  • the lithium-containing compound include a composite oxide composed of lithium and a transition metal element, or a phosphate compound having lithium and a transition metal element.
  • compounds having at least one of nickel, iron, manganese, and cobalt are preferable.
  • These chemical formulas are represented by, for example, Li x M1O 2 or Li y M2PO 4 .
  • M1 and M2 represent at least one or more transition metal elements.
  • the values of x and y vary depending on the battery charge / discharge state, but are generally expressed as 0.05 ⁇ x ⁇ 1.10 and 0.05 ⁇ y ⁇ 1.10.
  • Examples of the composite oxide having lithium and a transition metal element include lithium cobalt composite oxide (Li x CoO 2 ) and lithium nickel composite oxide (Li x NiO 2 ).
  • Examples of the phosphate compound having lithium and a transition metal element include a lithium iron phosphate compound (LiFePO 4 ) or a lithium iron manganese phosphate compound (LiFe 1-u Mn u PO 4 (0 ⁇ u ⁇ 1)). Is mentioned. This is because, when these positive electrode materials are used, a high battery capacity can be obtained and excellent cycle characteristics can be obtained.
  • the negative electrode has the same configuration as the above-described negative electrode 10 for a lithium ion secondary battery in FIG. 1.
  • the negative electrode has negative electrode active material layers 12 on both surfaces of the current collector 11.
  • the negative electrode preferably has a negative electrode charge capacity larger than the electric capacity (charge capacity as a battery) obtained from the positive electrode active material agent. This is because the deposition of lithium metal on the negative electrode can be suppressed.
  • the positive electrode active material layer is provided on a part of both surfaces of the positive electrode current collector, and the negative electrode active material layer is also provided on a part of both surfaces of the negative electrode current collector.
  • the negative electrode active material layer provided on the negative electrode current collector is provided with a region where there is no opposing positive electrode active material layer. This is to perform a stable battery design.
  • the non-opposing region that is, the region where the negative electrode active material layer and the positive electrode active material layer are not opposed to each other, there is almost no influence of charge / discharge. Therefore, the state of the negative electrode active material layer is maintained as it is immediately after formation. This makes it possible to accurately examine the composition with good reproducibility without depending on the presence or absence of charge / discharge, such as the composition of the negative electrode active material.
  • the separator separates the positive electrode and the negative electrode, and allows lithium ions to pass through while preventing current short-circuiting due to bipolar contact.
  • This separator is formed of, for example, a porous film made of synthetic resin or ceramic, and may have a laminated structure in which two or more kinds of porous films are laminated.
  • the synthetic resin include polytetrafluoroethylene, polypropylene, and polyethylene.
  • Electrode At least a part of the active material layer or the separator is impregnated with a liquid electrolyte (electrolytic solution).
  • This electrolytic solution has an electrolyte salt dissolved in a solvent, and may contain other materials such as additives.
  • a non-aqueous solvent for example, a non-aqueous solvent can be used.
  • the non-aqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, 1,2-dimethoxyethane, and tetrahydrofuran.
  • a high viscosity solvent such as ethylene carbonate or propylene carbonate
  • a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate or diethyl carbonate. This is because the dissociation property and ion mobility of the electrolyte salt are improved.
  • the halogenated chain carbonate ester is a chain carbonate ester having halogen as a constituent element (at least one hydrogen is replaced by halogen).
  • the halogenated cyclic carbonate is a cyclic carbonate having halogen as a constituent element (that is, at least one hydrogen is replaced by a halogen).
  • halogen is not particularly limited, but fluorine is preferred. This is because a film having a better quality than other halogens is formed. Further, the larger the number of halogens, the better. This is because the resulting coating is more stable and the decomposition reaction of the electrolyte is reduced.
  • halogenated chain carbonate examples include fluoromethyl methyl carbonate and difluoromethyl methyl carbonate.
  • halogenated cyclic carbonate examples include 4-fluoro-1,3-dioxolane-2-one, 4,5-difluoro-1,3-dioxolane-2-one, and the like.
  • the solvent additive contains an unsaturated carbon bond cyclic carbonate. This is because a stable film is formed on the surface of the negative electrode during charging and discharging, and the decomposition reaction of the electrolytic solution can be suppressed.
  • unsaturated carbon bond cyclic ester carbonate include vinylene carbonate and vinyl ethylene carbonate.
  • sultone cyclic sulfonic acid ester
  • solvent additive examples include propane sultone and propene sultone.
  • the solvent preferably contains an acid anhydride. This is because the chemical stability of the electrolytic solution is improved.
  • the acid anhydride include propanedisulfonic acid anhydride.
  • the electrolyte salt can contain, for example, any one or more of light metal salts such as lithium salts.
  • the lithium salt include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ).
  • the content of the electrolyte salt is preferably 0.5 mol / kg or more and 2.5 mol / kg or less with respect to the solvent. This is because high ionic conductivity is obtained.
  • a negative electrode is produced using the negative electrode active material manufactured with the manufacturing method of said negative electrode active material of this invention, and a lithium ion secondary battery is manufactured using this produced negative electrode.
  • a positive electrode is produced using the positive electrode material described above.
  • a positive electrode active material and, if necessary, a binder, a conductive additive and the like are mixed to form a positive electrode mixture, and then dispersed in an organic solvent to form a positive electrode mixture slurry.
  • the mixture slurry is applied to the positive electrode current collector with a coating apparatus such as a die coater having a knife roll or a die head, and dried with hot air to obtain a positive electrode active material layer.
  • the positive electrode active material layer is compression molded with a roll press or the like. At this time, heating may be performed, or heating or compression may be repeated a plurality of times.
  • a negative electrode is produced by forming a negative electrode active material layer on the negative electrode current collector using the same operating procedure as the production of the negative electrode 10 for lithium ion secondary batteries described above.
  • the positive electrode lead 22 is attached to the positive electrode current collector as shown in FIG. 2 and the negative electrode lead 23 is attached to the negative electrode current collector by ultrasonic welding or the like.
  • the positive electrode and the negative electrode are laminated or wound via a separator to produce a wound electrode body 21, and a protective tape is adhered to the outermost periphery thereof.
  • the wound body is molded so as to have a flat shape.
  • the insulating portions of the exterior member are bonded to each other by a heat fusion method, and the wound electrode body is released in only one direction. Enclose.
  • An adhesion film is inserted between the positive electrode lead and the negative electrode lead and the exterior member.
  • a predetermined amount of the adjusted electrolytic solution is introduced from the release portion, and vacuum impregnation is performed. After impregnation, the release part is bonded by a vacuum heat fusion method. As described above, the laminated film type lithium ion secondary battery 20 can be manufactured.
  • Example 1-1 The laminate film type lithium secondary battery 20 shown in FIG. 2 was produced by the following procedure.
  • the positive electrode active material is 95% by mass of LiNi 0.7 Co 0.25 Al 0.05 O, which is a lithium nickel cobalt composite oxide (NCA), 2.5% by mass of a positive electrode conductive additive, and a positive electrode binder ( Polyvinylidene fluoride: PVDF) 2.5% by mass was mixed to prepare a positive electrode mixture.
  • the positive electrode mixture was dispersed in an organic solvent (N-methyl-2-pyrrolidone: NMP) to obtain a paste slurry.
  • the slurry was applied to both surfaces of the positive electrode current collector with a coating apparatus having a die head, and dried with a hot air drying apparatus. At this time, a positive electrode current collector having a thickness of 15 ⁇ m was used.
  • compression molding was performed with a roll press.
  • a negative electrode active material was produced as follows. A raw material mixed with metallic silicon and silicon dioxide was introduced into a reaction furnace, and vaporized in a 10 Pa vacuum atmosphere was deposited on an adsorption plate, cooled sufficiently, and then the deposit was taken out and pulverized with a ball mill. . The x value of SiO x of the silicon compound particles thus obtained was 1.0. Subsequently, the particle size of the silicon compound particles was adjusted by classification. Then, the carbon material was coat
  • lithium was inserted into the negative electrode active material particles for modification by performing a thermal doping method.
  • LiH powder having a mass corresponding to 4% by mass with respect to the negative electrode active material particles was mixed with the negative electrode active material particles in an argon atmosphere, and stirred with a shaker. Thereafter, the agitated powder was modified by heat treatment at 740 ° C. in an atmosphere control furnace.
  • the anode active material particles were washed with alcohol, alkaline water, weak acid or pure water.
  • the negative electrode active material particles thus produced contained crystalline Li 2 SiO 3 .
  • Example 1-1 when the negative electrode active material particles (silicon-based active material particles) produced in Example 1-1 were measured by 29 Si-MAS-NMR, a spectrum as shown in FIG. 4 was obtained.
  • the baseline was set in the spectrum of FIG. 4 and the peak intensity was calculated.
  • the peak intensity A derived from Li 2 SiO 3 , the peak intensity B derived from Si, and the peak derived from Li 2 Si 2 O 5 The intensity C and the intensity D of the peak derived from SiO 2 satisfy Expression 2 (A>C> D) and do not satisfy Expression 1 (A>D> B).
  • the negative electrode active material particles and the carbon-based active material were blended at a mass ratio of 1: 9 to prepare a mixed negative electrode active material.
  • the carbon-based active material a mixture of natural graphite and artificial graphite coated with a pitch layer at a mass ratio of 5: 5 was used.
  • the median diameter of the carbon-based active material was 20 ⁇ m.
  • the prepared mixed negative electrode active material conductive additive 1 (carbon nanotube, CNT), conductive additive 2 (carbon fine particles having a median diameter of about 50 nm), styrene butadiene rubber (styrene butadiene copolymer, hereinafter referred to as SBR).
  • SBR styrene butadiene rubber
  • CMC carboxymethylcellulose
  • said SBR and CMC are negative electrode binders (negative electrode binder).
  • an electrolytic copper foil having a thickness of 15 ⁇ m was used as the negative electrode current collector.
  • This electrolytic copper foil contained carbon and sulfur at a concentration of 100 mass ppm.
  • the negative electrode mixture slurry was applied to the negative electrode current collector and dried in a vacuum atmosphere at 100 ° C. for 1 hour.
  • the amount of deposition (also referred to as area density) of the negative electrode active material layer per unit area on one side of the negative electrode after drying was 5 mg / cm 2 .
  • an electrolyte salt lithium hexafluorophosphate: LiPF 6
  • FEC fluoro-1,3-dioxolan-2-one
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • an electrolyte salt lithium hexafluorophosphate: LiPF 6
  • the content of the electrolyte salt was 1.2 mol / kg with respect to the solvent.
  • a secondary battery was assembled as follows. First, an aluminum lead was ultrasonically welded to one end of the positive electrode current collector, and a nickel lead was welded to one end of the negative electrode current collector. Subsequently, a positive electrode, a separator, a negative electrode, and a separator were laminated in this order, and wound in the longitudinal direction to obtain a wound electrode body. The end portion was fixed with a PET protective tape. As the separator, a laminated film (thickness: 12 ⁇ m) sandwiched between a film mainly composed of porous polyethylene and a film mainly composed of porous polypropylene was used.
  • the outer peripheral edges excluding one side were heat-sealed, and the electrode body was housed inside.
  • the exterior member a nylon film, an aluminum foil, and an aluminum laminate film in which a polypropylene film was laminated were used.
  • an electrolytic solution prepared from the opening was injected, impregnated in a vacuum atmosphere, heat-sealed, and sealed.
  • the cycle characteristics were examined as follows. First, in order to stabilize the battery, charge and discharge was performed for 2 cycles at 0.2 C in an atmosphere at 25 ° C., and the discharge capacity at the second cycle was measured. Subsequently, charge and discharge were performed until the total number of cycles reached 499 cycles, and the discharge capacity was measured each time. Finally, the discharge capacity at the 500th cycle obtained by 0.2 C charge / discharge was divided by the discharge capacity at the second cycle to calculate a capacity retention rate (hereinafter also simply referred to as a retention rate). In the normal cycle, that is, from the 3rd cycle to the 499th cycle, charging and discharging were performed with a charge of 0.7 C and a discharge of 0.5 C.
  • initial efficiency (initial discharge capacity / initial charge capacity) ⁇ 100.
  • initial efficiency (%) (initial discharge capacity / initial charge capacity) ⁇ 100.
  • the atmosphere and temperature were the same as when the cycle characteristics were examined.
  • a 2032 size coin cell type test cell was prepared from the negative electrode and the counter electrode lithium prepared as described above, and the discharge behavior was evaluated. More specifically, first, constant current and constant voltage charging was performed up to 0 V with the counter electrode Li, and the charging was terminated when the current density reached 0.05 mA / cm 2 . Then, constant current discharge was performed to 1.2V. The current density at this time was 0.2 mA / cm 2 . This charge / discharge was repeated 30 times, and from the data obtained in each charge / discharge, a graph was drawn with the vertical axis representing the rate of change in capacity (dQ / dV) and the horizontal axis representing the voltage (V). It was confirmed whether a peak was obtained in the range of .55 (V).
  • the initial efficiency of the silicon-based active material alone was calculated as follows. First, the prepared negative electrode active material particles and polyacrylic acid were mixed at a mass ratio of 85:15, and this mixture was applied to a copper foil. The area density of the mixture applied at this time was about 2 mg / cm 2 . Thereafter, after vacuum drying at 90 ° C. for 1 hour, constant current and constant voltage charging was started at a voltage of 0 V and a current density of 0.2 mA / cm 2 using a counter electrode Li in the form of a 2032 size coin battery. And constant current constant voltage charge was stopped when the electric current value became 0.1 mA. Subsequently, constant current discharge was performed and the discharge was stopped when the voltage reached 1.2V.
  • the current density during discharging was the same as that for charging.
  • the initial efficiency of the silicon-based active material alone is (discharge capacity) / (charge capacity) ⁇ 100 ( %).
  • the initial efficiency of SiOx alone was calculated using this formula. As a result, the initial efficiency of SiOx alone was 80.5%.
  • Example 1-2 As shown in FIG. 4, in the same manner as in Example 1-1, except that negative electrode active material particles in which peak intensities A, B, C, and D in the 29 Si-MAS-NMR spectrum satisfy Formulas 1 and 2 were used. A secondary battery was manufactured. As can be seen from FIG. 4, a peak was also obtained at a position where the chemical shift value was near -130 ppm. Furthermore, a gentle peak appeared at a position where the chemical shift value was ⁇ 40 to ⁇ 60 ppm.
  • Example 1-2 the negative electrode active material particles after the modification by the thermal doping method were further modified by using a redox method. Specifically, first, the negative electrode active material particles modified by the thermal doping method were immersed in a solution (solution A 1 ) in which lithium pieces and biphenyl were dissolved in tetrahydrofuran (hereinafter also referred to as THF).
  • solution A 1 of Example 1-1 was obtained by dissolving biphenyl in a THF solvent at a concentration of 1 mol / L, and then adding a lithium piece having a mass of 10% by mass with respect to the mixed solution of THF and biphenyl. Produced.
  • the temperature of the solution when dipping the negative electrode active material particles was 20 ° C., and the dipping time was 10 hours. Thereafter, the negative electrode active material particles were collected by filtration. Through the above treatment, lithium was inserted into the negative electrode active material particles.
  • solution B a solution in which naphthalene was dissolved in THF.
  • Solution B of Example 1-2 was prepared by dissolving naphthalene in a THF solvent at a concentration of 2 mol / L. Further, the temperature of the solution when the negative electrode active material particles were immersed was 20 ° C., and the immersion time was 20 hours. Thereafter, the negative electrode active material particles were collected by filtration.
  • the negative electrode active material particles after being brought into contact with the solution B were immersed in a solution (solution C) in which p-benzoquinone was dissolved in THF at a concentration of 1 mol / L.
  • the immersion time was 2 hours.
  • the negative electrode active material particles were collected by filtration.
  • the silicon compound after the washing treatment was dried under reduced pressure. After the modification, washing was performed with alcohol, alkaline water, weak acid or pure water.
  • a coin cell type test cell of 2032 size was produced from the same negative electrode and counter lithium as the secondary battery produced in Example 1-2, and the discharge behavior was evaluated in the same manner as in Example 1-1. .
  • a peak was obtained in the range of V to 0.4 to 0.55 (V) in charge and discharge within 30 times.
  • the initial efficiency of SiOx alone was calculated in the same manner as in Example 1-1, the initial efficiency of SiOx alone was 85.3%.
  • Example 1 As shown in FIG. 4, Example 1 except that the negative electrode active material particles in which the peak intensities A, B, C, and D in the 29 Si-MAS-NMR spectrum did not satisfy either of the formulas 1 and 2 were used. In the same manner as in Example 1, a secondary battery was manufactured. As can be seen from FIG. 4, the spectrum has the highest intensity D of the peak derived from the silicon dioxide region obtained in the vicinity of ⁇ 110 ppm in the chemical shift value. Note that it was not possible to determine whether or not the chemical shift value of the 29 Si-MAS-NMR spectrum had a peak in the vicinity of -130 ppm.
  • Example 1-1 negative electrode active material particles produced by the same procedure as Example 1-1 were used except that the modification of Example 1-1 was not performed.
  • a coin cell type test cell of 2032 size was produced from the same negative electrode and counter lithium as the secondary battery produced in Comparative Example 1-1, and the discharge behavior was evaluated in the same manner as in Example 1-1. .
  • a peak was obtained in the range of V to 0.4 to 0.55 (V) in charge and discharge within 30 times.
  • the initial efficiency of SiOx alone was calculated in the same manner as in Example 1-1, the initial efficiency of SiOx alone was 71%.
  • the negative electrode active material particles of Examples 1-1 and 1-2 and Comparative Example 1-1 had the following properties.
  • the median diameter D 50 of the negative electrode active material particles was 4.0 ⁇ m.
  • the average thickness of the carbon material on the surface of the negative electrode active material particles was 100 nm.
  • the silicon compounds of Examples 1-1 and 1-2 have a half-value width (2 ⁇ ) of a diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction of 1.755 °, and Si (111 ) The crystallite size attributable to the crystal plane was 4.86 nm.
  • Table 1 shows the results of Examples 1-1 and 1-2 and Comparative Example 1-1.
  • Example 1-1 When the negative electrode active material of Example 1-1, ie, the negative electrode active material particles were modified by the thermal doping method as in Example 1-1, the silicon dioxide corresponding to the irreversible component was reduced by a certain amount, Negative electrode active material particles that can be changed to silicate or the like and satisfy Formula 2 were obtained.
  • Table 1 the capacity retention ratio and the initial efficiency were improved as compared with Comparative Example 1-1 in which neither of the expressions 1 and 2 was satisfied.
  • Example 1-2 the silicon dioxide component remaining after the thermal doping method is further modified using the oxidation-reduction method, whereby a negative electrode active material satisfying both formulas 1 and 2 can be obtained. It was. In this case, the capacity retention ratio and the initial efficiency were better than those of Example 1-1.
  • Example 2-1 and 2-2 Comparative Examples 2-1 and 2-2
  • a secondary battery was manufactured in the same manner as in Example 1-2 except that the amount of oxygen in the bulk of the silicon compound was adjusted. In this case, the amount of oxygen was adjusted by changing the ratio of metal silicon and silicon dioxide in the raw material of the silicon compound and the heating temperature.
  • Table 2 shows the values of x of the silicon compounds represented by SiO x in Examples 2-1 and 2-2 and Comparative Examples 2-1 and 2-2.
  • Example 3-1 29 In the same manner as in Example 1-1, except that the modification conditions of the negative electrode active material particles were changed so that no peak appeared at a position where the chemical shift value of the Si-MAS-NMR spectrum was ⁇ 40 to ⁇ 60 ppm. The next battery was manufactured. In this case, the heat treatment temperature in thermal dope, the particle size of LiH, and the heat treatment time were changed.
  • Examples 4-1 to 4-5 A secondary battery was fabricated under the same conditions as in Example 1-2 except that the crystallinity of the Si crystallites in the silicon compound particles was changed as shown in Table 4, and the cycle characteristics and initial efficiency were evaluated. Note that the crystallinity of the Si crystallites in the silicon compound particles can be controlled by changing the vaporization temperature of the raw material or by heat treatment after the generation of the silicon compound particles.
  • the capacity retention rate and the initial efficiency changed according to the crystallinity of the Si crystallites in the silicon compound particles.
  • a high capacity retention ratio was obtained with a low crystalline material having a half width of 1.2 ° or more and a crystallite size attributable to the Si (111) plane of 7.5 nm or less.
  • Examples 5-1 to 5-5 A secondary battery was fabricated under the same conditions as in Example 1-2 except that the median diameter of the negative electrode active material particles was changed as shown in Table 5, and the cycle characteristics and initial efficiency were evaluated.
  • the maintenance rate was improved. This is presumably because the surface area per mass of the silicon compound was not too large, the area where the side reaction occurred could be reduced, and consumption of the electrolyte could be suppressed.
  • the median diameter is 15 ⁇ m or less, particles are difficult to break during charging, and SEI (solid electrolyte interface) due to a new surface is difficult to be generated during charging / discharging, so that loss of reversible Li can be suppressed.
  • the median diameter of the silicon-based active material particles is 15 ⁇ m or less, the amount of expansion of the silicon compound particles during charging does not increase, so that physical and electrical destruction of the negative electrode active material layer due to expansion can be prevented.
  • Example 6-1 A secondary battery was fabricated under the same conditions as in Example 1-1 except that the surface of the silicon compound particles was not coated with a carbon material, and the cycle characteristics and initial efficiency were evaluated.
  • Examples 6-2 to 6-5 A secondary battery was fabricated under the same conditions as in Example 1-1 except that the average thickness of the carbon material coated on the surface of the silicon compound particles was changed, and the cycle characteristics and initial efficiency were evaluated.
  • the average thickness of the carbon material can be adjusted by changing the CVD conditions.
  • the conductivity is particularly improved when the average thickness of the carbon material is 10 nm or more, the capacity retention ratio and the initial efficiency can be improved.
  • the average thickness of the carbon material is 5000 nm or less, the amount of silicon compound particles can be sufficiently ensured in battery design, so that the battery capacity can be sufficiently ensured.
  • Example 7-1 A secondary battery was fabricated under the same conditions as in Example 1-1, except that a copper foil containing no carbon and sulfur was used as the negative electrode current collector, and the cycle characteristics and initial efficiency were evaluated.
  • the negative electrode current collector contains 100 mass ppm or less of carbon and sulfur, the strength of the current collector is improved. Therefore, when using a silicon-based negative electrode active material having a large expansion and contraction during charging / discharging of the secondary battery, it is possible to suppress the deformation and distortion of the current collector, and the battery characteristics as in Example 1-1, particularly Cycle characteristics are improved.
  • Example 8-1 A secondary battery was produced under the same conditions as in Example 1-1 except that the mass ratio of the negative electrode active material particles (silicon-based active material particles) in the negative electrode active material was changed, and the rate of increase in battery capacity was evaluated. .
  • silicon-type active material particle silicon nanotube, CNT
  • conductive support Agent 2 carbon fine particles having a median diameter of about 50 nm
  • a negative electrode binder precursor polyamic acid
  • NMP was used as a solvent for the polyamic acid.
  • the negative electrode mixture slurry was applied to both surfaces of the negative electrode current collector with a coating apparatus and then dried.
  • baking was performed at 400 ° C. for 1 hour in a vacuum atmosphere. Thereby, the negative electrode binder (polyimide) was formed.
  • Comparative Example 8-1 A secondary battery was fabricated under the same conditions as Comparative Example 1-1 except that the mass ratio of the negative electrode active material particles (silicon-based active material particles) in the negative electrode active material was changed, and the rate of increase in battery capacity was evaluated. .
  • FIG. 5 is a graph showing the relationship between the ratio of the silicon-based active material particles to the total amount of the negative electrode active material in Example 8-1 and Comparative Example 8-1 and the increase rate of the battery capacity of the secondary battery.
  • the ratio of the silicon-based compound in Example 8-1 was 6% by mass or more
  • the rate of increase in battery capacity was larger than that in Comparative Example 8-1, and the volume energy density was particularly high. Increase significantly.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本発明は、負極活物質粒子を含む負極活物質であって、前記負極活物質粒子は、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を含有し、前記負極活物質粒子は少なくとも一部に結晶質のLiSiOを含有し、前記負極活物質粒子は、29Si-MAS-NMR スペクトルから得られるLiSiOに由来するピークの強度A、Siに由来するピークの強度B、LiSiに由来するピークの強度C、及びSiOに由来するピークの強度Dが、下記式1又は式2を満たすものであることを特徴とする負極活物質である。これにより、リチウムイオン二次電池の負極活物質として用いた際に、電池容量の増加、サイクル特性及び初期充放電特性を向上させることが可能な負極活物質が提供される。 A>B>D ・・・ (1) A>C>D ・・・ (2)

Description

負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法
 本発明は、負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法に関する。
 近年、モバイル端末などに代表される小型の電子機器が広く普及しており、さらなる小型化、軽量化及び長寿命化が強く求められている。このような市場要求に対し、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。この二次電池は、小型の電子機器に限らず、自動車などに代表される大型の電子機器、家屋などに代表される電力貯蔵システムへの適用も検討されている。
 その中でも、リチウムイオン二次電池は小型かつ高容量化が行いやすく、また、鉛電池、ニッケルカドミウム電池よりも高いエネルギー密度が得られるため、大いに期待されている。
 上記のリチウムイオン二次電池は、正極および負極、セパレータと共に電解液を備えており、負極は充放電反応に関わる負極活物質を含んでいる。
 この負極活物質としては、炭素材料が広く使用されている一方で、最近の市場要求から電池容量のさらなる向上が求められている。電池容量向上のために、負極活物質材としてケイ素を用いることが検討されている。なぜならば、ケイ素の理論容量(4199mAh/g)は黒鉛の理論容量(372mAh/g)よりも10倍以上大きいため、電池容量の大幅な向上を期待できるからである。負極活物質材としてのケイ素材の開発はケイ素単体だけではなく、合金、酸化物に代表される化合物などについても検討されている。また、活物質形状は、炭素材では標準的な塗布型から、集電体に直接堆積する一体型まで検討されている。
 しかしながら、負極活物質としてケイ素を主原料として用いると、充放電時に負極活物質が膨張収縮するため、主に負極活物質表層近傍で割れやすくなる。また、活物質内部にイオン性物質が生成し、負極活物質が割れやすい物質となる。負極活物質表層が割れると、それによって新表面が生じ、活物質の反応面積が増加する。この時、新表面において電解液の分解反応が生じるとともに、新表面に電解液の分解物である被膜が形成されるため電解液が消費される。このためサイクル特性が低下しやすくなる。
 これまでに、電池初期効率やサイクル特性を向上させるために、ケイ素材を主材としたリチウムイオン二次電池用負極材料、電極構成についてさまざまな検討がなされている。
 具体的には、良好なサイクル特性や高い安全性を得る目的で、気相法を用いケイ素及びアモルファス二酸化ケイ素を同時に堆積させている(例えば特許文献1参照)。また、高い電池容量や安全性を得るために、ケイ素酸化物粒子の表層に炭素材(電子伝導材)を設けている(例えば特許文献2参照)。さらに、サイクル特性を改善するとともに高入出力特性を得るために、ケイ素及び酸素を含有する活物質を作製し、かつ、集電体近傍での酸素比率が高い活物質層を形成している(例えば特許文献3参照)。また、サイクル特性向上させるために、ケイ素活物質中に酸素を含有させ、平均酸素含有量が40at%以下であり、かつ集電体に近い場所で酸素含有量が多くなるように形成している(例えば特許文献4参照)。
 また、初回充放電効率を改善するためにSi相、SiO、MO金属酸化物を含有するナノ複合体を用いている(例えば特許文献5参照)。また、サイクル特性改善のため、SiO(0.8≦x≦1.5、粒径範囲=1μm~50μm)と炭素材を混合して高温焼成している(例えば特許文献6参照)。また、サイクル特性改善のために、負極活物質中におけるケイ素に対する酸素のモル比を0.1~1.2とし、活物質、集電体界面近傍におけるモル比の最大値、最小値との差が0.4以下となる範囲で活物質の制御を行っている(例えば特許文献7参照)。また、電池負荷特性を向上させるため、リチウムを含有した金属酸化物を用いている(例えば特許文献8参照)。また、サイクル特性を改善させるために、ケイ素材表層にシラン化合物などの疎水層を形成している(例えば特許文献9参照)。また、サイクル特性改善のため、酸化ケイ素を用い、その表層に黒鉛被膜を形成することで導電性を付与している(例えば特許文献10参照)。特許文献10において、黒鉛被膜に関するラマンスペクトルから得られるシフト値に関して、1330cm-1及び1580cm-1にブロードなピークが現れるとともに、それらの強度比I1330/I1580が1.5<I1330/I1580<3となっている。また、高い電池容量、サイクル特性の改善のため、二酸化ケイ素中に分散されたケイ素微結晶相を有する粒子を用いている(例えば、特許文献11参照)。また、過充電、過放電特性を向上させるために、ケイ素と酸素の原子数比を1:y(0<y<2)に制御したケイ素酸化物を用いている(例えば特許文献12参照)。
特開2001-155127号公報 特開2002-042806号公報 特開2006-164954号公報 特開2006-114454号公報 特開2009-070825号公報 特開2008-282819号公報 特開2008-251369号公報 特開2008-177346号公報 特開2007-234255号公報 特開2009-212074号公報 特開2009-205950号公報 特許第2997741号明細書
 上述したように、近年、電子機器に代表される小型のモバイル機器は高性能化、多機能化がすすめられており、その主電源であるリチウムイオン二次電池は電池容量の増加が求められている。この問題を解決する1つの手法として、ケイ素系活物質を主材として用いた負極からなるリチウムイオン二次電池の開発が望まれている。また、ケイ素系活物質を用いたリチウムイオン二次電池は、炭素系活物質を用いたリチウムイオン二次電池と同等に近い初回効率、サイクル特性が望まれている。しかしながら、炭素系活物質を用いたリチウムイオン二次電池と同等の初回効率、サイクル安定性を示す負極活物質を提案するには至っていなかった。
 本発明は、上記問題点に鑑みてなされたものであって、リチウムイオン二次電池の負極活物質として用いた際に、電池容量の増加、サイクル特性及び初期充放電特性を向上させることが可能な負極活物質、この負極活物質を含む混合負極活物質材、この混合負極活物質材を含む非水電解質二次電池用負極及びリチウムイオン二次電池を提供することを目的とする。
 また本発明は、上記のような電池特性に優れる負極活物質の製造方法及びリチウムイオン二次電池の製造方法を提供することも目的とする。
 上記目的を達成するために、本発明は、負極活物質粒子を含む負極活物質であって、前記負極活物質粒子は、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を含有し、前記負極活物質粒子は少なくとも一部に結晶質のLiSiOを含有し、前記負極活物質粒子は、29Si-MAS-NMR スペクトルから得られるLiSiOに由来するピークの強度A、Siに由来するピークの強度B、LiSiに由来するピークの強度C、及びSiOに由来するピークの強度Dが、下記式1又は式2を満たすものであることを特徴とする負極活物質を提供する。
 A>B>D ・・・ (1)
 A>C>D ・・・ (2)
 本発明の負極活物質は、ケイ素化合物粒子を含む負極活物質粒子を含むため、電池容量を向上できる。また、ケイ素化合物中の、二次電池の充電時に一部がリチウムと反応し、不可逆成分となるSiOを予め結晶性のLiSiO等のリチウムシリケートに改質させたものであるので、充電時に発生する不可逆容量を低減することができる。また、負極活物質粒子が式1又は式2を満たす場合、負極活物質粒子に含まれるSiOがLiSiO及びSiを基準として少ない、又はSiOがLiSiO及びLiSiを基準として少ないといえる。よって、電池の初期効率及びサイクル特性を向上させることができる。また、式1のようにA>Bを満たせば、SiOの多くがLiSiOに変質していると言えるため、電池の不可逆容量が低減する。さらに、式1のようにB>Dを満たせば、電池の充放電時にリチウムを吸蔵するSiが、十分な量存在すると言えるため、より高い電池容量が得られる。また、式2のようにA>Cを満たせば、SiOを変化させたリチウムシリケートの中でも、水系スラリー等に溶出しやすい不安定なLiSiに比べ、安定なLiSiOが多く存在していると言えるため、電極作製時に用いる水系スラリーに対する安定性が向上し、電池のサイクル特性も向上する。また、式2のようにA>Cを満たした上でC>Dを満たせば、安定であるとともに、SiOに起因する不可逆容量を低減できる負極活物質となる。
 このとき、前記29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-130ppm付近にピークを有するものであることが好ましい。
 ケミカルシフト値が-130ppm付近の位置に得られるピークはアモルファスケイ素(以下、a-Siとも呼称する)に由来するピークであると推測される。このように、アモルファスケイ素に由来するピークが検出される場合、SiOがより十分に改質されたと言えるため、二次電池の初期効率及びサイクル特性をより向上させることができる負極活物質となる。
 またこのとき、前記29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-40~-60ppmにピークを有するものであることが好ましい。
 ケミカルシフト値として-40~-60ppmの範囲内で現れるピークもアモルファスケイ素に由来するピークである。よって上記と同様に、二次電池の初期効率及びサイクル特性をより向上させることができる負極活物質となる。
 また、前記ケイ素化合物粒子は、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であるとともに、その結晶面に対応する結晶子サイズは7.5nm以下であることが好ましい。
 ケイ素化合物粒子が上記のケイ素結晶性を有する負極活物質をリチウムイオン二次電池の負極活物質として用いれば、より良好なサイクル特性及び初期充放電特性が得られる。
 また、前記負極活物質と炭素系活物質との混合物を含む負極電極と対極リチウムとから成る試験セルを作製し、該試験セルにおいて、前記負極活物質にリチウムを挿入するよう電流を流す充電と、前記負極活物質からリチウムを脱離するよう電流を流す放電とから成る充放電を30回実施し、各充放電における放電容量Qを前記対極リチウムを基準とする前記負極電極の電位Vで微分した微分値dQ/dVと前記電位Vとの関係を示すグラフを描いた場合に、X回目以降(1≦X≦30)の放電時における、前記負極電極の電位Vが0.40V~0.55Vの範囲にピークを有するものであることが好ましい。
 V-dQ/dV曲線における上記のピークはケイ素材のピークと類似しており、より高電位側における放電カーブが鋭く立ち上がるため、電池設計を行う際、容量発現しやすくなる。また、上記ピークが30回以内の充放電で発現するものであれば、安定したバルクが形成される負極活物質となる。
 また、前記負極活物質粒子はメジアン径が1.0μm以上15μm以下であることが好ましい。
 メジアン径が1.0μm以上であれば、質量当たりの表面積の増加により電池不可逆容量が増加することを抑制することができる。一方で、メジアン径を15μm以下とすることで、粒子が割れ難くなるため新表面が出難くなる。
 また、前記負極活物質粒子は、表層部に炭素材を含むことが好ましい。
 このように、負極活物質粒子がその表層部に炭素材を含むことで、導電性の向上が得られる。
 また、前記炭素材の平均厚さは10nm以上5000nm以下であることが好ましい。
 炭素材の平均厚さが10nm以上であれば導電性向上が得られる。また、被覆する炭素材の平均厚さが5000nm以下であれば、このような負極活物質粒子を含む負極活物質をリチウムイオン二次電池に用いることにより、ケイ素化合物粒子を十分な量確保できるので、電池容量の低下を抑制することができる。
 上記の負極活物質と炭素系活物質とを含むことを特徴とする混合負極活物質材料を提供する。
 このように、負極活物質層を形成する材料として、本発明の負極活物質(ケイ素系負極活物質)とともに炭素系活物質を含むことで、負極活物質層の導電性を向上させることができるとともに、充電に伴う膨張応力を緩和することが可能となる。また、ケイ素負極系活物質を炭素系活物質に混合することで電池容量を増加させることができる。
 また、上記目的を達成するために、本発明は、上記の混合負極活物質材料を含み、前記負極活物質と前記炭素系活物質の質量の合計に対する、前記負極活物質の質量の割合が6質量%以上であることを特徴とする非水電解質二次電池用負極を提供する。
 上記の負極活物質(ケイ素系負極活物質)と炭素系活物質の質量の合計に対する、負極活物質(ケイ素系負極活物質)の質量の割合が6質量%以上であれば、電池容量をより向上させることが可能となる。
 また、上記目的を達成するために、本発明は、上記の混合負極活物質材料で形成された負極活物質層と、負極集電体とを有し、前記負極活物質層は前記負極集電体上に形成されており、前記負極集電体は炭素及び硫黄を含むとともに、それらの含有量がいずれも100質量ppm以下であることを特徴とする非水電解質二次電池用負極を提供する。
 このように、負極電極を構成する負極集電体が、炭素及び硫黄を上記のような量で含むことで、充電時の負極電極の変形を抑制することができる。
 また、上記目的を達成するために、本発明は、上記の負極活物質を含む負極を用いたものであることを特徴とするリチウムイオン二次電池を提供する。
 このような負極活物質を含む負極を用いたリチウムイオン二次電池であれば、高容量であるとともに良好なサイクル特性及び初期充放電特性が得られる。
 また、上記目的を達成するために、本発明は、ケイ素化合物粒子を含有する負極活物質粒子を含む負極活物質を製造する方法であって、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を含有する負極活物質粒子を作製する工程と、前記負極活物質粒子から、少なくとも一部に結晶質のLiSiOを含有し、29Si-MAS-NMR スペクトルから得られるLiSiOに由来するピークの強度A、Siに由来するピークの強度B、LiSiに由来するピークの強度C、及びSiOに由来するピークの強度Dが、下記式1又は式2を満たすものを選別する工程とを含み、該選別した前記負極活物質粒子を用いて、負極活物質を製造することを特徴とする負極活物質の製造方法を提供する。
 A>B>D ・・・ (1)
 A>C>D ・・・ (2)
 ケイ素系活物質粒子をこのように選別して、負極活物質を製造することで、リチウムイオン二次電池の負極活物質として使用した際に高容量であるとともに良好なサイクル特性及び初期充放電特性を有する負極活物質を製造することができる。
 また、上記目的を達成するために、本発明は、上記の負極活物質の製造方法によって製造した負極活物質を用いて負極を作製し、該作製した負極を用いてリチウムイオン二次電池を製造することを特徴とするリチウムイオン二次電池の製造方法を提供する。
 上記のように製造された負極活物質を用いることにより、高容量であるとともに良好なサイクル特性及び初期充放電特性を有するリチウムイオン二次電池を製造することができる。
 本発明の負極活物質は、二次電池の負極活物質として用いた際に、高容量で良好なサイクル特性及び初期充放電特性が得られる。また、この負極活物質を含む混合負極活物質材料、負極、及びリチウムイオン二次電池においても同様の効果が得られる。また、本発明の負極活物質の製造方法であれば、二次電池の負極活物質として用いた際に、良好なサイクル特性及び初期充放電特性を有する負極活物質を製造することができる。
本発明のリチウムイオン二次電池用負極の構成を示す断面図である。 本発明のリチウム二次電池の構成例(ラミネートフィルム型)を表す図である。 アモルファスケイ素を含むSiOxを29Si-MAS-NMRを用いて測定した場合に得られるスペクトルの一例である。 実施例1-1、実施例1-2、及び比較例1-1において測定された、29Si-MAS-NMRスペクトルである。 実施例8-1、比較例8-1における電池容量の増加率を示すグラフである。
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
 前述のように、リチウムイオン二次電池の電池容量を増加させる1つの手法として、ケイ素系活物質を主材として用いた負極を用いることが検討されている。このケイ素系活物質を用いたリチウムイオン二次電池は、炭素系活物質を用いたリチウムイオン二次電池と同等に近い初期充放電特性、サイクル特性が望まれているが、炭素系活物質を用いたリチウムイオン二次電池と同等の初期効率及びサイクル安定性を示すケイ素系活物質を提案するには至っていなかった。
 そこで、本発明者らは、二次電池に用いた場合、高電池容量となるとともに、サイクル特性及び初回効率が良好となる負極活物質を得るために鋭意検討を重ね、本発明に至った。
 本発明の負極活物質は、負極活物質粒子を含む。そして、負極活物質粒子は、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を含有する。そして、負極活物質粒子は少なくとも一部に結晶質のLiSiOを含有し、かつ、29Si-MAS-NMR スペクトルから得られるLiSiOに由来するピークの強度A、Siに由来するピークの強度B、LiSiに由来するピークの強度C、及びSiOに由来するピークの強度Dが、下記式1又は式2を満たす。
 A>B>D ・・・ (1)
 A>C>D ・・・ (2)
 本発明の負極活物質は、ケイ素化合物粒子を含む負極活物質粒子を含むため、電池容量を向上できる。また、ケイ素化合物中の、二次電池の充電時に一部がリチウムと反応し、不可逆成分となるSiOを予めリチウムシリケートに改質させたものであるので、充電時に発生する不可逆容量を低減することができる。また、負極活物質粒子が式1又は式2を満たす場合、負極活物質粒子に含まれるSiOがLiSiO及びSiを基準として少ない、又はSiOがLiSiO及びLiSiを基準として少ないといえる。よって、電池の初期効率及びサイクル特性を向上させることができる。また、式1のようにA>Bを満たせば、SiOの多くがLiSiOに変質していると言えるため、電池の不可逆容量が低減する。また、式1のようにB>Dを満たせば、電池の充放電時にリチウムを吸蔵するSiが、十分な量存在すると言えるため、より高い電池容量が得られる。また、式2のようにA>Cを満たせば、SiOを変化させたリチウムシリケートの中でも、水系スラリー等に溶出しやすい不安定なLiSiに比べ、安定なLiSiOが多く存在していると言えるため、電極作製時に用いる水系スラリーに対する安定性が向上し、電池のサイクル特性も向上する。また、式2のようにA>Cを満たした上でC>Dを満たせば、安定であるとともに、SiOに起因する不可逆容量を低減できる負極活物質となる。
<非水電解質二次電池用負極>
 まず、非水電解質二次電池用負極について説明する。図1は本発明の一実施形態における非水電解質二次電池用負極(以下、「負極」とも呼称する)の断面構成を表している。
[負極の構成]
 図1に示したように、負極10は、負極集電体11の上に負極活物質層12を有する構成になっている。この負極活物質層12は負極集電体11の両面、又は、片面だけに設けられていても良い。さらに、本発明の負極活物質が用いられたものであれば、負極集電体11はなくてもよい。
[負極集電体]
 負極集電体11は、優れた導電性材料であり、かつ、機械的な強度に長けた物で構成される。負極集電体11に用いることができる導電性材料として、例えば銅(Cu)やニッケル(Ni)があげられる。この導電性材料は、リチウム(Li)と金属間化合物を形成しない材料であることが好ましい。
 負極集電体11は、主元素以外に炭素(C)や硫黄(S)を含んでいることが好ましい。負極集電体の物理的強度が向上するためである。特に、充電時に膨張する活物質層を有する場合、集電体が上記の元素を含んでいれば、集電体を含む電極変形を抑制する効果があるからである。上記の含有元素の含有量は、特に限定されないが、中でも、それぞれ100質量ppm以下であることが好ましい。より高い変形抑制効果が得られるからである。このような変形抑制効果によりサイクル特性をより向上できる。
 また、負極集電体11の表面は粗化されていてもよいし、粗化されていなくてもよい。粗化されている負極集電体は、例えば、電解処理、エンボス処理、又は、化学エッチング処理された金属箔などである。粗化されていない負極集電体は、例えば、圧延金属箔などである。
[負極活物質層]
 負極活物質層12は、リチウムイオンを吸蔵、放出可能な本発明の負極活物質を含んでおり、電池設計上の観点から、さらに、負極結着剤(バインダ)や導電助剤など他の材料を含んでいてもよい。負極活物質は負極活物質粒子を含み、負極活物質粒子はケイ素化合物(SiO:0.5≦x≦1.6)を含有するケイ素化合物粒子を含む。
 また、負極活物質層12は、本発明の負極活物質(ケイ素系負極活物質)と炭素系活物質とを含む混合負極活物質材料を含んでいても良い。これにより、負極活物質層の電気抵抗が低下するとともに、充電に伴う膨張応力を緩和することが可能となる。炭素系活物質としては、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、カーボンブラック類などを使用できる。
 また、本発明の負極は、ケイ素系負極活物質と炭素系活物質の質量の合計に対する、ケイ素系負極活物質の質量の割合が6質量%以上であることが好ましい。ケイ素系負極活物質と炭素系活物質の質量の合計に対する、本発明の負極活物質の質量の割合が6質量%以上であれば、電池容量を確実に向上させることが可能となる。
 また、上記のように本発明の負極活物質は、ケイ素化合物粒子を含み、ケイ素化合物粒子はケイ素化合物(SiO:0.5≦x≦1.6)を含有する酸化ケイ素材であるが、その組成はxが1に近い方が好ましい。なぜならば、高いサイクル特性が得られるからである。なお、本発明におけるケイ素化合物の組成は必ずしも純度100%を意味しているわけではなく、微量の不純物元素を含んでいてもよい。
 また、本発明の負極活物質において、ケイ素化合物粒子は、結晶性のLiSiOに加えて、さらにLiSiOを含有していても良い。このようなリリウムシリケートも、ケイ素化合物中の、電池の充放電時のリチウムの挿入、脱離時に不安定化するSiO成分部を予め別のリチウムシリケートに改質させたものであるので、充電時に発生する不可逆容量を低減することができる。
 また、ケイ素化合物粒子のバルク内部にLiSiO、LiSiOを共存させる場合に電池特性がより向上する。なお、これらのリチウムシリケートは、NMR(Nuclear Magnetic Resonance:核磁気共鳴)又はXPS(X-ray photoelectron spectroscopy:X線光電子分光)で定量可能である。XPSとNMRの測定は、例えば、以下の条件により行うことができる。
XPS
・装置: X線光電子分光装置、
・X線源: 単色化Al Kα線、
・X線スポット径: 100μm、
・Arイオン銃スパッタ条件: 0.5kV/2mm×2mm。
29Si MAS NMR(マジック角回転核磁気共鳴)
・装置: Bruker社製700NMR分光器、
・プローブ: 4mmHR-MASローター 50μL、
・試料回転速度: 10kHz、
・測定環境温度: 25℃。
 また、本発明において、負極活物質粒子は、29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-130ppm付近にピークを有するものであることが好ましい。ケミカルシフト値が-130ppm付近の位置に得られるピークはアモルファスケイ素に由来するピークであると推測される。このように、アモルファスケイ素に由来するピークが検出される場合、SiOがより十分に改質されたと言えるため、二次電池の初期効率及びサイクル特性をより向上させることができる負極活物質となる。
 また、本発明において、負極活物質粒子は、29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-40~-60ppmにピークを有するものであることが好ましい。ケミカルシフト値として-40~-60ppmの範囲内で現れるピークもアモルファスケイ素に由来するピークである。よって上記と同様に、二次電池の初期効率及びサイクル特性をより向上させることができる負極活物質となる。
 なお、アモルファスケイ素に由来するピークの一例を図3に示す。図3のように、アモルファスケイ素に由来するピークが29Si-MAS-NMR スペクトルのケミカルシフト値が-40~-60ppmの領域に緩やかなピークとして現れる。さらに、アモルファスケイ素に由来するピークはケミカルシフト値が-130ppm付近の位置にも現れる。
 また、ケイ素化合物粒子は、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であるとともに、その結晶面に対応する結晶子サイズは7.5nm以下であることが好ましい。ケイ素化合物粒子におけるケイ素化合物のケイ素結晶性は低いほどよく、特に、Si結晶の存在量が少なければ、電池特性を向上でき、さらに、安定的なLi化合物が生成できる。
 また、本発明の負極活物質において、負極活物質粒子は、表層部に炭素材を含むことが好ましい。負極活物質粒子がその表層部に炭素材を含むことで、導電性の向上が得られるため、このような負極活物質粒子を含む負極活物質を二次電池の負極活物質として用いた際に、電池特性を向上させることができる。
 また、負極活物質粒子の表層部の炭素材の平均厚さは、10nm以上5000nm以下であることが好ましい。炭素材の平均厚さが10nm以上であれば導電性向上が得られ、被覆する炭素材の平均厚さが5000nm以下であれば、このような負極活物質粒子を含む負極活物質をリチウムイオン二次電池の負極活物質として用いた際に、電池容量の低下を抑制することができる。
 この炭素材の平均厚さは、例えば、以下の手順により算出できる。先ず、TEM(透過型電子顕微鏡)により任意の倍率で負極活物質粒子を観察する。この倍率は、厚さを測定できるように、目視で炭素材の厚さを確認できる倍率が好ましい。続いて、任意の15点において、炭素材の厚さを測定する。この場合、できるだけ特定の場所に集中せず、広くランダムに測定位置を設定することが好ましい。最後に、上記の15点の炭素材の厚さの平均値を算出する。
 炭素材の被覆率は特に限定されないが、できるだけ高い方が望ましい。被覆率が30%以上であれば、電気伝導性がより向上するため好ましい。炭素材の被覆手法は特に限定されないが、糖炭化法、炭化水素ガスの熱分解法が好ましい。なぜならば、被覆率を向上させることができるからである。
 また、負極活物質粒子のメジアン径(D50:累積体積が50%となる時の粒子径)が1.0μm以上15μm以下であることが好ましい。メジアン径が上記の範囲であれば、充放電時においてリチウムイオンの吸蔵放出がされやすくなるとともに、粒子が割れにくくなるからである。メジアン径が1.0μm以上であれば、質量当たりの表面積を小さくでき、電池不可逆容量の増加を抑制することができる。一方で、メジアン径を15μm以下とすることで、粒子が割れ難くなるため新表面が出難くなる。
 また、本発明の負極活物質(ケイ素系活物質)は、該ケイ素系活物質と炭素系活物質との混合物を含む負極電極と対極リチウムとから成る試験セルを作製し、該試験セルにおいて、ケイ素系活物質にリチウムを挿入するよう電流を流す充電と、ケイ素系活物質からリチウムを脱離するよう電流を流す放電とから成る充放電を30回実施し、各充放電における放電容量Qを対極リチウムを基準とする負極電極の電位Vで微分した微分値dQ/dVと電位Vとの関係を示すグラフを描いた場合に、X回目以降(1≦X≦30)の放電時における、負極電極の電位Vが0.40V~0.55Vの範囲にピークを有するものであることが好ましい。V-dQ/dV曲線における上記のピークはケイ素材のピークと類似しており、より高電位側における放電カーブが鋭く立ち上がるため、電池設計を行う際、容量発現しやすくなる。また、30回以内の充放電で上記ピークが発現する負極活物質であれば、安定したバルクが形成されるものであると判断できる。
 また、負極活物質層に含まれる負極結着剤としては、例えば、高分子材料、合成ゴムなどのいずれか1種類以上を用いることができる。高分子材料は、例えば、ポリフッ化ビニリデン、ポリイミド、ポリアミドイミド、アラミド、ポリアクリル酸、ポリアクリル酸リチウム、カルボキシメチルセルロースなどである。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴム、エチレンプロピレンジエンなどである。
 負極導電助剤としては、例えば、カーボンブラック、アセチレンブラック、黒鉛、ケチェンブラック、カーボンナノチューブ、カーボンナノファイバーなどの炭素材料のいずれか1種以上を用いることができる。
 負極活物質層は、例えば、塗布法で形成される。塗布法とは、負極活物質粒子と上記の結着剤など、また、必要に応じて導電助剤、炭素材料を混合した後に、有機溶剤や水などに分散させ塗布する方法である。
 負極は、例えば、以下の手順により製造できる。まず、負極に使用する負極活物質の製造方法を説明する。最初に、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を含有する負極活物質粒子を作製する。その後、負極活物質粒子から、少なくとも一部に結晶質のLiSiOを含有し、29Si-MAS-NMR スペクトルから得られるLiSiOに由来するピークの強度A、Siに由来するピークの強度B、LiSiに由来するピークの強度C、及びSiOに由来するピークの強度Dが、下記式1又は式2を満たすものを選別する。そして、選別した負極活物質粒子を用いて、負極活物質を製造する。
 A>B>D ・・・ (1)
 A>C>D ・・・ (2)
 また、負極活物質粒子を作製するのに、さらに、ケイ素化合物粒子に炭素材を被覆する工程を有していても良い。ケイ素化合物粒子の表面に炭素材を被覆した負極活物質粒子は導電性に優れる。
 より具体的には以下のように負極活物質を製造できる。先ず、酸化珪素ガスを発生する原料を不活性ガスの存在下、減圧下で900℃~1600℃の温度範囲で加熱し、酸化珪素ガスを発生させる。金属珪素粉末の表面酸素及び反応炉中の微量酸素の存在を考慮すると、混合モル比が、0.8<金属珪素粉末/二酸化珪素粉末<1.3の範囲であることが望ましい。
 発生した酸化珪素ガスは吸着板上で固体化され堆積される。次に、反応炉内温度を100℃以下に下げた状態で酸化珪素の堆積物を取出し、ボールミル、ジェットミルなどを用いて粉砕、粉末化を行う。以上のようにして、ケイ素化合物粒子を作製することができる。なお、ケイ素化合物粒子中のSi結晶子は、気化温度の変更、又は、生成後の熱処理で制御できる。
 ここで、ケイ素化合物粒子の表層に炭素材の層を生成しても良い。炭素材の層を生成する方法としては、熱分解CVD法が望ましい。熱分解CVD法で炭素材の層を生成する方法について説明する。
 先ず、ケイ素化合物粒子を炉内にセットする。次に、炉内に炭化水素ガスを導入し、炉内温度を昇温させる。分解温度は特に限定しないが、1200℃以下が望ましく、より望ましいのは950℃以下である。分解温度を1200℃以下にすることで、ケイ素化合物粒子の意図しない不均化を抑制することができる。所定の温度まで炉内温度を昇温させた後に、ケイ素化合物粒子の表面に炭素層を生成する。これにより負極活物質粒子が製造できる。また、炭素材の原料となる炭化水素ガスは、特に限定しないが、C組成においてn≦3であることが望ましい。n≦3であれは、製造コストを低くでき、また、分解生成物の物性を良好にすることができる。
 次に、上記のように作製した負極活物質粒子に、Liを挿入して改質しても良い。このとき、負極活物質粒子に結晶性のLiSiO、及びLiSiO等のリチウムシリケートを含有させることができる。
 Liの挿入は熱ドープ法により行うことが好ましい。この場合、例えば、負極活物質粒子をLiH粉やLi粉と混合し、非酸化雰囲気下で加熱をすることで改質可能である。非酸化雰囲気としては、例えば、Ar雰囲気などが使用できる。より具体的には、まず、Ar雰囲気下でLiH粉又はLi粉と酸化珪素粉末を十分に混ぜ、封止を行い、封止した容器ごと撹拌することで均一化する。その後、700℃~750℃の範囲で加熱し改質を行う。またこの場合、Liをケイ素化合物から脱離するには、加熱後の粉末を十分に冷却し、その後、アルコールやアルカリ水、弱酸や純水で洗浄する方法などを使用できる。
 また、Liの挿入は、酸化還元法により行うこともできる。酸化還元法による改質では、例えば、まず、エーテル溶媒にリチウムを溶解した溶液Aに負極活物質粒子を浸漬することで、リチウムを挿入できる。この溶液Aに更に多環芳香族化合物又は直鎖ポリフェニレン化合物を含ませても良い。リチウムの挿入後、多環芳香族化合物やその誘導体を含む溶液Bに負極活物質粒子を浸漬することで、負極活物質粒子から活性なリチウムを脱離できる。この溶液Bの溶媒は例えば、エーテル系溶媒、ケトン系溶媒、エステル系溶媒、アルコール系溶媒、アミン系溶媒、又はこれらの混合溶媒を使用できる。さらに、溶液Bに浸漬した後、アルコール系溶媒、カルボン酸系溶媒、水、又はこれらの混合溶媒を含む溶液Cに負極活物質粒子を浸漬することで、負極活物質粒子から活性なリチウムをより多く脱離できる。また、溶液Cの代わりに、溶質として分子中にキノイド構造を持つ化合物を含み、溶媒としてエーテル系溶媒、ケトン系溶媒、エステル系溶媒、又はこれらの混合溶媒を含む溶液C’を用いても良い。また、溶液B、C、C’への負極活物質粒子の浸漬は繰り返し行っても良い。このようにして、リチウムの挿入後、活性なリチウムを脱離すれば、より耐水性の高い負極活物質となる。その後、アルコール、炭酸リチウムを溶解したアルカリ水、弱酸、又は純水などで洗浄する方法などで洗浄しても良い。
 また、二つの改質手法による改質を行うことで、改質がより進行し、より電池特性が向上する負極活物質を作製できる。より具体的には、まず、熱ドープ法を用いて改質を行い、その後に酸化還元法による改質を行うことがより好ましい。この場合、熱ドープ法で改質が不十分であった二酸化ケイ素部を、酸化還元法により選択的に改質する事が可能である。
 次に、改質後の負極活物質粒子から、少なくとも一部に結晶質のLiSiOを含有し、29Si-MAS-NMR スペクトルから得られるLiSiOに由来するピークの強度A、Siに由来するピークの強度B、LiSiに由来するピークの強度C、及びSiOに由来するピークの強度Dが、下記式1又は式2を満たすものを選別する。
 A>B>D ・・・ (1)
 A>C>D ・・・ (2)
 29Si-MAS-NMRによる測定は以下のような条件にて実施できる。
29Si MAS NMR
・装置: Bruker社製700NMR分光器、
・プローブ: 4mmHR-MASローター 50μL、
・試料回転速度: 10kHz、
・測定環境温度: 25℃。
 また、29Si-MAS-NMR スペクトルにおいて、ケミカルシフト値が-72~75ppm付近の位置に現れるピークがLiSiOに由来するピークであり、-83ppm付近に現れるピークがSiに由来するピークである。また、ケミカルシフト値が-93ppm付近に現れるピークがLiSiに由来するピークであり、-110ppm付近に現れるピークがSiOに由来するピークである。
 なお、-80~-100ppmにかけて、LiSiO、LiSiO以外のLiシリケートに由来するピークを有する場合もある。その他にも、-63ppm付近にLiSiOに由来するピークが現れる場合もある。
 ピークの強度は、29Si-MAS-NMRスペクトルから算出されたベースラインからのピークの高さで表される。この際、ベースラインは通常の方法によって算出できる。
 また、LiSiOに由来する-72~75ppm付近のピークが、極大値を取っていない場合が有る。このときピーク強度Aは-72ppmのスペクトルの強度の最大値とする。また、Siに由来する-83ppm付近のピークが極大値を有しない場合、ピーク強度Bは-83ppmにおける強度とする。また、LiSiに由来する-93ppm付近のピークが極大値を有しない場合、ピーク強度Cは-93ppmにおける強度とする。また、SiOに由来する-110ppm付近のピークが極大値を有しない場合、ピーク強度Dは-110ppmにおける強度とする。
 尚、負極活物質粒子の選別は、必ずしも負極活物質の製造の都度行う必要はなく、上記の式1及び式2を満たす製造条件を見出して選択すれば、その後は、その選択された条件と同じ条件で負極活物質を製造することができる。
 以上のようにして作製した負極活物質を、負極結着剤、導電助剤などの他の材料と混合して、負極合剤とした後に、有機溶剤又は水などを加えてスラリーとする。次に負極集電体の表面に、上記のスラリーを塗布し、乾燥させて、負極活物質層を形成する。この時、必要に応じて加熱プレスなどを行ってもよい。また、負極集電体が炭素および硫黄をそれぞれ100質量ppm以下含んでいれば、負極の変形を抑える効果を得ることができる。以上のようにして、負極を作製できる。
<リチウムイオン二次電池>
 次に、本発明のリチウムイオン二次電池について説明する。本発明のリチウムイオン二次電池は、本発明の負極活物質を含む負極を用いたものである。ここでは具体例として、ラミネートフィルム型のリチウムイオン二次電池を例に挙げる。
[ラミネートフィルム型のリチウムイオン二次電池の構成]
 図2に示すラミネートフィルム型のリチウムイオン二次電池20は、主にシート状の外装部材25の内部に巻回電極体21が収納されたものである。この巻回体は正極、負極間にセパレータを有し、巻回されたものである。また正極、負極間にセパレータを有し積層体を収納した場合も存在する。どちらの電極体においても、正極に正極リード22が取り付けられ、負極に負極リード23が取り付けられている。電極体の最外周部は保護テープにより保護されている。
 正負極リードは、例えば、外装部材25の内部から外部に向かって一方向で導出されている。正極リード22は、例えば、アルミニウムなどの導電性材料により形成され、負極リード23は、例えば、ニッケル、銅などの導電性材料により形成される。
 外装部材25は、例えば、融着層、金属層、表面保護層がこの順に積層されたラミネートフィルムであり、このラミネートフィルムは融着層が電極体21と対向するように、2枚のフィルムの融着層における外周縁部同士が融着、又は、接着剤などで張り合わされている。融着部は、例えばポリエチレンやポリプロピレンなどのフィルムであり、金属部はアルミ箔などである。保護層は例えば、ナイロンなどである。
 外装部材25と正負極リードとの間には、外気侵入防止のため密着フィルム24が挿入されている。この材料は、例えば、ポリエチレン、ポリプロピレン、ポリオレフィン樹脂である。
 [正極]
 正極は、例えば、図1の負極10と同様に、正極集電体の両面又は片面に正極活物質層を有している。
 正極集電体は、例えば、アルミニウムなどの導電性材により形成されている。
 正極活物質層は、リチウムイオンの吸蔵放出可能な正極材のいずれか1種又は2種以上を含んでおり、設計に応じて結着剤、導電助剤、分散剤などの他の材料を含んでいても良い。この場合、結着剤、導電助剤に関する詳細は、例えば既に記述した負極結着剤、負極導電助剤と同様である。
 正極材料としては、リチウム含有化合物が望ましい。このリチウム含有化合物は、例えばリチウムと遷移金属元素からなる複合酸化物、又はリチウムと遷移金属元素を有するリン酸化合物があげられる。これら記述される正極材の中でもニッケル、鉄、マンガン、コバルトの少なくとも1種以上を有する化合物が好ましい。これらの化学式として、例えば、LiM1OあるいはLiM2POで表される。式中、M1、M2は少なくとも1種以上の遷移金属元素を示す。x、yの値は電池充放電状態によって異なる値を示すが、一般的に0.05≦x≦1.10、0.05≦y≦1.10で示される。
 リチウムと遷移金属元素とを有する複合酸化物としては、例えば、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケル複合酸化物(LiNiO)などが挙げられる。リチウムと遷移金属元素とを有するリン酸化合物としては、例えば、リチウム鉄リン酸化合物(LiFePO)あるいはリチウム鉄マンガンリン酸化合物(LiFe1-uMnPO(0<u<1))などが挙げられる。これらの正極材を用いれば、高い電池容量が得られるとともに、優れたサイクル特性も得られるからである。
[負極]
 負極は、上記した図1のリチウムイオン二次電池用負極10と同様の構成を有し、例えば、集電体11の両面に負極活物質層12を有している。この負極は、正極活物質剤から得られる電気容量(電池として充電容量)に対して、負極充電容量が大きくなることが好ましい。負極上でのリチウム金属の析出を抑制することができるためである。
 正極活物質層は、正極集電体の両面の一部に設けられており、負極活物質層も負極集電体の両面の一部に設けられている。この場合、例えば、負極集電体上に設けられた負極活物質層は対向する正極活物質層が存在しない領域が設けられている。これは、安定した電池設計を行うためである。
 非対向領域、すなわち、上記の負極活物質層と正極活物質層とが対向しない領域では、充放電の影響をほとんど受けることが無い。そのため負極活物質層の状態が形成直後のまま維持される。これによって負極活物質の組成など、充放電の有無に依存せずに再現性良く組成などを正確に調べることができる。
[セパレータ]
 セパレータは正極、負極を隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば合成樹脂、あるいはセラミックからなる多孔質膜により形成されており、2種以上の多孔質膜が積層された積層構造を有しても良い。合成樹脂として例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどが挙げられる。
[電解液]
 活物質層の少なくとも一部、又は、セパレータには、液状の電解質(電解液)が含浸されている。この電解液は、溶媒中に電解質塩が溶解されており、添加剤など他の材料を含んでいても良い。
 溶媒は、例えば、非水溶媒を用いることができる。非水溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、1,2-ジメトキシエタン又はテトラヒドロフランなどが挙げられる。この中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルのうちの少なくとも1種以上を用いることが望ましい。より良い特性が得られるからである。またこの場合、炭酸エチレン、炭酸プロピレンなどの高粘度溶媒と、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチルなどの低粘度溶媒を組み合わせることにより、より優位な特性を得ることができる。電解質塩の解離性やイオン移動度が向上するためである。
 合金系負極を用いる場合、特に溶媒として、ハロゲン化鎖状炭酸エステル、又は、ハロゲン化環状炭酸エステルのうち少なくとも1種を含んでいることが望ましい。これにより、充放電時、特に充電時において、負極活物質表面に安定な被膜が形成される。ここで、ハロゲン化鎖状炭酸エステルとは、ハロゲンを構成元素として有する(少なくとも1つの水素がハロゲンにより置換された)鎖状炭酸エステルである。また、ハロゲン化環状炭酸エステルとは、ハロゲンを構成元素として有する(すなわち、少なくとも1つの水素がハロゲンにより置換された)環状炭酸エステルである。
 ハロゲンの種類は特に限定されないが、フッ素が好ましい。これは、他のハロゲンよりも良質な被膜を形成するからである。また、ハロゲン数は多いほど望ましい。これは、得られる被膜がより安定的であり、電解液の分解反応が低減されるからである。
 ハロゲン化鎖状炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ジフルオロメチルメチルなどが挙げられる。ハロゲン化環状炭酸エステルとしては、4-フルオロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オンなどが挙げられる。
 溶媒添加物として、不飽和炭素結合環状炭酸エステルを含んでいることが好ましい。充放電時に負極表面に安定な被膜が形成され、電解液の分解反応が抑制できるからである。不飽和炭素結合環状炭酸エステルとして、例えば炭酸ビニレン又は炭酸ビニルエチレンなどが挙げられる。
 また、溶媒添加物として、スルトン(環状スルホン酸エステル)を含んでいることが好ましい。電池の化学的安定性が向上するからである。スルトンとしては、例えばプロパンスルトン、プロペンスルトンが挙げられる。
 さらに、溶媒は、酸無水物を含んでいることが好ましい。電解液の化学的安定性が向上するからである。酸無水物としては、例えば、プロパンジスルホン酸無水物が挙げられる。
 電解質塩は、例えば、リチウム塩などの軽金属塩のいずれか1種類以上含むことができる。リチウム塩として、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)などが挙げられる。
 電解質塩の含有量は、溶媒に対して0.5mol/kg以上2.5mol/kg以下であることが好ましい。高いイオン伝導性が得られるからである。
[ラミネートフィルム型二次電池の製造方法]
 本発明では、上記の本発明の負極活物質の製造方法によって製造した負極活物質を用いて負極を作製し、該作製した負極を用いてリチウムイオン二次電池を製造する。
 最初に上記した正極材を用い正極電極を作製する。まず、正極活物質と、必要に応じて結着剤、導電助剤などを混合し正極合剤としたのち、有機溶剤に分散させ正極合剤スラリーとする。続いて、ナイフロール又はダイヘッドを有するダイコーターなどのコーティング装置で正極集電体に合剤スラリーを塗布し、熱風乾燥させて正極活物質層を得る。最後に、ロールプレス機などで正極活物質層を圧縮成型する。この時、加熱しても良く、また加熱又は圧縮を複数回繰り返しても良い。
 次に、上記したリチウムイオン二次電池用負極10の作製と同様の作業手順を用い、負極集電体に負極活物質層を形成し負極を作製する。
 正極及び負極を作製する際に、正極及び負極集電体の両面にそれぞれの活物質層を形成する。この時、どちらの電極においても両面部の活物質塗布長がずれていても良い(図1を参照)。
 続いて、電解液を調整する。続いて、超音波溶接などにより、図2のように正極集電体に正極リード22を取り付けると共に、負極集電体に負極リード23を取り付ける。続いて、正極と負極とをセパレータを介して積層、又は巻回させて巻回電極体21を作製し、その最外周部に保護テープを接着させる。次に、扁平な形状となるように巻回体を成型する。続いて、折りたたんだフィルム状の外装部材25の間に巻回電極体を挟み込んだ後、熱融着法により外装部材の絶縁部同士を接着させ、一方向のみ解放状態にて、巻回電極体を封入する。正極リード、及び負極リードと外装部材の間に密着フィルムを挿入する。解放部から上記調整した電解液を所定量投入し、真空含浸を行う。含浸後、解放部を真空熱融着法により接着させる。以上のようにして、ラミネートフィルム型のリチウムイオン二次電池20を製造することができる。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1-1)
 以下の手順により、図2に示したラミネートフィルム型リチウム二次電池20を作製した。
 最初に正極を作製した。正極活物質はリチウムニッケルコバルト複合酸化物(NCA)であるLiNi0.7Co0.25Al0.05Oを95質量%と、正極導電助剤2.5質量%と、正極結着剤(ポリフッ化ビニリデン:PVDF)2.5質量%とを混合し、正極合剤とした。続いて正極合剤を有機溶剤(N-メチル-2-ピロリドン:NMP)に分散させてペースト状のスラリーとした。続いてダイヘッドを有するコーティング装置で正極集電体の両面にスラリーを塗布し、熱風式乾燥装置で乾燥した。この時正極集電体は厚み15μmのものを用いた。最後にロールプレスで圧縮成型を行った。
 次に負極を作製した。まず、負極活物質を以下のようにして作製した。金属ケイ素と二酸化ケイ素を混合した原料を反応炉に導入し、10Paの真空度の雰囲気中で気化させたものを吸着板上に堆積させ、十分に冷却した後、堆積物を取出しボールミルで粉砕した。このようにして得たケイ素化合物粒子のSiOのxの値は1.0であった。続いて、ケイ素化合物粒子の粒径を分級により調整した。その後、熱分解CVDを行うことで、ケイ素化合物粒子の表面に炭素材を被覆した。これを負極活物質粒子とした。
 続いて、負極活物質粒子に熱ドープ法を行うことによりリチウムを挿入し改質した。まず、負極活物質粒子(炭素材を被覆したケイ素化合物粒子)に対して4質量%に相当する質量のLiH粉末を、負極活物質粒子とアルゴン雰囲気下で混合し、シェイカーで撹拌した。その後、雰囲気制御炉で、攪拌した粉末を740℃の熱処理を行うことで改質を行った。
 改質後はアルコールやアルカリ水、弱酸や純水で負極活物質粒子の洗浄を行った。
 このようにして作製した負極活物質粒子には、結晶質のLiSiOが含まれていた。
 ここで、実施例1-1で作製した負極活物質粒子(ケイ素系活物質粒子)を29Si-MAS-NMRによって測定したところ、図4のようなスペクトルが得られた。図4のスペクトルにおいてベースラインを設定し、ピーク強度を算出したところ、LiSiOに由来するピークの強度A、Siに由来するピークの強度B、LiSiに由来するピークの強度C、及びSiOに由来するピークの強度Dが、式2を満たし(A>C>D)、式1を満たさない(A>D>B)ものであった。
 また、図4から分かるように、ケミカルシフト値が-130ppm近辺の位置にもピークが得られた。さらに、ケミカルシフト値が-40~-60ppmの位置に緩やかなピークが僅かに見られた。
 続いて、負極活物質粒子と、炭素系活物質を1:9の質量比で配合し、混合負極活物質を作製した。ここで、炭素系活物質としては、ピッチ層で被覆した天然黒鉛及び人造黒鉛を5:5の質量比で混合したものを使用した。また、炭素系活物質のメジアン径は20μmであった。
 次に、作製した混合負極活物質、導電助剤1(カーボンナノチューブ、CNT)、導電助剤2(メジアン径が約50nmの炭素微粒子)、スチレンブタジエンゴム(スチレンブタジエンコポリマー、以下、SBRと称する)、カルボキシメチルセルロース(以下、CMCと称する)92.5:1:1:2.5:3の乾燥質量比で混合した後、純水で希釈し負極合剤スラリーとした。尚、上記のSBR、CMCは負極バインダー(負極結着剤)である。
 また、負極集電体としては、厚さ15μmの電解銅箔を用いた。この電解銅箔には、炭素及び硫黄がそれぞれ100質量ppmの濃度で含まれていた。最後に、負極合剤スラリーを負極集電体に塗布し真空雰囲気中で100℃×1時間の乾燥を行った。乾燥後の、負極の片面における単位面積あたりの負極活物質層の堆積量(面積密度とも称する)は5mg/cmであった。
 次に、溶媒(4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、エチレンカーボネート(EC)およびジメチルカーボネート(DMC))を混合した後、電解質塩(六フッ化リン酸リチウム:LiPF)を溶解させて電解液を調製した。この場合には、溶媒の組成を堆積比でFEC:EC:DMC=10:20:70とし、電解質塩の含有量を溶媒に対して1.2mol/kgとした。
 次に、以下のようにして二次電池を組み立てた。最初に、正極集電体の一端にアルミリードを超音波溶接し、負極集電体の一端にはニッケルリードを溶接した。続いて、正極、セパレータ、負極、セパレータをこの順に積層し、長手方向に倦回させ倦回電極体を得た。その捲き終わり部分をPET保護テープで固定した。セパレータは多孔性ポリプロピレンを主成分とするフィルムにより多孔性ポリエチレンを主成分とするフィルムに挟まれた積層フィルム(厚さ12μm)を用いた。続いて、外装部材間に電極体を挟んだ後、一辺を除く外周縁部同士を熱融着し、内部に電極体を収納した。外装部材はナイロンフィルム、アルミ箔及び、ポリプロピレンフィルムが積層されたアルミラミネートフィルムを用いた。続いて、開口部から調整した電解液を注入し、真空雰囲気下で含浸した後、熱融着し、封止した。
 以上のようにして作製した二次電池のサイクル特性及び初回充放電特性を評価した。
 サイクル特性については、以下のようにして調べた。最初に、電池安定化のため25℃の雰囲気下、0.2Cで2サイクル充放電を行い、2サイクル目の放電容量を測定した。続いて、総サイクル数が499サイクルとなるまで充放電を行い、その都度放電容量を測定した。最後に、0.2C充放電で得られた500サイクル目の放電容量を2サイクル目の放電容量で割り、容量維持率(以下、単に維持率ともいう)を算出した。通常サイクル、すなわち3サイクル目から499サイクル目までは、充電0.7C、放電0.5Cで充放電を行った。
 初回充放電特性を調べる場合には、初回効率(以下では初期効率と呼ぶ場合もある)を算出した。初回効率は、初回効率(%)=(初回放電容量/初回充電容量)×100で表される式から算出した。雰囲気、温度は、サイクル特性を調べた場合と同様にした。
 また、上記のように作製した負極と対極リチウムとから、2032サイズのコイン電池型の試験セルを作製し、その放電挙動を評価した。より具体的には、まず、対極Liで0Vまで定電流定電圧充電を行い、電流密度が0.05mA/cmに達した時点で充電を終止させた。その後、1.2Vまで定電流放電を行った。この時の電流密度は0.2mA/cmであった。この充放電を30回繰り返し、各充放電において得られたデータから、縦軸を容量の変化率(dQ/dV)、横軸を電圧(V)としてグラフを描き、Vが0.4~0.55(V)の範囲にピークが得られるかを確認した。その結果、30回以内の充放電においてVが0.4~0.55(V)の範囲にピークが得られ、このピークが初めて発現した充放電から30回目の充放電まで、全ての充放電においてこのピークが得られた。
 また、以下のようにして、ケイ素系活物質単独(SiOx単独)の初回効率を算出した。まず、上記作製した負極活物質粒子とポリアクリル酸を85:15の質量比で混ぜ、この混合物を銅箔に塗布した。この時塗布した混合物の面積密度は約2mg/cmであった。その後、90℃で1時間真空乾燥した後に2032サイズのコイン電池形態で、対極Liを用いて、電圧0Vで電流密度0.2mA/cmで定電流定電圧充電を開始した。そして、電流値が0.1mAとなった時点で定電流定電圧充電を終止させた。続いて、定電流放電を行い電圧が1.2Vに達した時点で放電を終止させた。放電時の電流密度は充電と同じとした。この時、負極にLiをインプットする条件を充電、負極からLiを取り出す条件を放電とした場合、ケイ素系活物質単独(SiOx単独)の初回効率は(放電容量)/(充電容量)×100(%)となる。この式を用いてSiOx単独の初回効率を算出した。その結果、SiOx単独の初回効率は80.5%であった。
(実施例1-2)
 図4に示すように、29Si-MAS-NMRスペクトルにおけるピーク強度A、B、C、Dが式1及び式2を満たす負極活物質粒子を用いたこと以外、実施例1-1と同様に、二次電池の製造を行った。また、図4から分かるように、ケミカルシフト値が-130ppm近辺の位置にもピークが得られた。さらに、ケミカルシフト値が-40~-60ppmの位置に緩やかなピークが現れた。
 実施例1-2では、熱ドープ法による改質後の負極活物質粒子に、さらに、酸化還元法を用いた改質を行った。具体的には、まず、熱ドープ法による改質後の負極活物質粒子を、リチウム片とビフェニルをテトラヒドロフラン(以下、THFとも呼称する)に溶解させた溶液(溶液A)に浸漬した。実施例1-1の溶液Aは、THF溶媒にビフェニルを1mol/Lの濃度で溶解させた後に、このTHFとビフェニルの混合液に対して10質量%の質量分のリチウム片を加えることで作製した。また、負極活物質粒子を浸漬する際の溶液の温度は20℃で、浸漬時間は10時間とした。その後、負極活物質粒子を濾取した。以上の処理により、負極活物質粒子にリチウムを挿入した。
 次に、THFにナフタレンを溶解させた溶液(溶液B)に、リチウム挿入後の負極活物質粒子を浸漬した。実施例1-2の溶液Bは、THF溶媒にナフタレンを2mol/Lの濃度で溶解させて作製した。また、負極活物質粒子を浸漬する際の溶液の温度は20℃、浸漬時間は20時間とした。その後、負極活物質粒子を濾取した。
 次に、溶液Bに接触させた後の負極活物質粒子を、THFにp-ベンゾキノンを1mol/Lの濃度で溶解させた溶液(溶液C)に浸漬した。浸漬時間は2時間とした。その後、負極活物質粒子を濾取した。次に、洗浄処理後のケイ素化合物を減圧下で乾燥処理した。改質後はアルコールやアルカリ水、弱酸や純水で洗浄を行った。
 また、実施例1-2で作製した二次電池と同様の負極と対極リチウムとから、2032サイズのコイン電池型の試験セルを作製し、その放電挙動を実施例1-1と同様に評価した。その結果、30回以内の充放電においてVが0.4~0.55(V)の範囲にピークが得られた。また、実施例1-1と同様にSiOx単独の初回効率を算出したところ、SiOx単独の初回効率は85.3%であった。
(比較例1-1)
 図4に示すように、29Si-MAS-NMRスペクトルにおけるピーク強度A、B、C、Dが式1及び式2のいずれをも満たさない負極活物質粒子を用いたこと以外、実施例1-1と同様に、二次電池の製造を行った。図4からわかるように、ケミカルシフト値が-110ppm付近に得られる二酸化ケイ素領域に由来するピークの強度Dが最も大きいスペクトルとなっている。なお、29Si-MAS-NMRスペクトルのケミカルシフト値が-130ppm付近にピークが有るか否かは判別することができなかった。また、29Si-MAS-NMRスペクトルのケミカルシフト値が-40~-60ppmの位置にピークは現れなかった。比較例1-1では、実施例1-1の改質を行っていないこと以外、実施例1-1と同様の手順で作製した負極活物質粒子を用いた。
 また、比較例1-1で作製した二次電池と同様の負極と対極リチウムとから、2032サイズのコイン電池型の試験セルを作製し、その放電挙動を実施例1-1と同様に評価した。その結果、30回以内の充放電においてVが0.4~0.55(V)の範囲にピークが得られた。また、実施例1-1と同様にSiOx単独の初回効率を算出したところ、SiOx単独の初回効率は71%であった。
 このとき、実施例1-1、1-2及び比較例1-1の負極活物質粒子は以下のような性質を有していた。負極活物質粒子のメジアン径D50は4.0μmであった。また、負極活物質粒子の表面の炭素材の平均厚さは100nmであった。
 また、実施例1-1、1-2のケイ素化合物は、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.755°であり、Si(111)結晶面に起因する結晶子サイズは4.86nmであった。
 表1に実施例1-1、1-2及び比較例1-1の結果を示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1-1の負極活物質、即ち、実施例1-1のように負極活物質粒子に熱ドープ法による改質を行った場合、不可逆成分に相当する二酸化ケイ素を一定量低減し、リチウムシリケート等に変化させることができ、式2を満たす負極活物質粒子が得られた。この場合、表1に示すように、式1、2のいずれも満たさない比較例1-1に比べて、容量維持率及び初期効率が向上した。また、実施例1-2のように、熱ドープ法を行った後に残った二酸化ケイ素成分を、酸化還元法を用いさらに改質することで、式1、2を両方満たす負極活物質が得られた。この場合、実施例1-1よりもさらに良好な容量維持率及び初期効率となった。
(実施例2-1、2-2、比較例2-1、2-2)
 ケイ素化合物のバルク内酸素量を調整したことを除き、実施例1-2と同様に、二次電池の製造を行った。この場合、ケイ素化合物の原料中の金属ケイ素と二酸化ケイ素との比率や加熱温度を変化させることで、酸素量を調整した。実施例2-1、2-2、比較例2-1、2-2における、SiOで表されるケイ素化合物のxの値を表2中に示した。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、SiOxで表わされるケイ素化合物において、xの値が、0.5≦x≦1.6の範囲内の場合、電池特性がより向上した。比較例2-1のように、酸素が十分にない場合(x=0.3)、初回効率が向上するが、容量維持率が著しく悪化する。一方、比較例2-2に示すように、酸素量が多い場合(x=1.8)は、酸素量が多過ぎるため、リチウムの吸蔵脱離が起きづらいため、実質的にケイ素酸化物の容量が発現しないため、評価を停止した。
(実施例3-1)
 29Si-MAS-NMRスペクトルのケミカルシフト値が-40~-60ppmの位置にピークが現れないよう、負極活物質粒子の改質条件を変更したこと以外、実施例1-1と同様に、二次電池の製造を行った。この場合、熱ドープにおける熱処理温度、LiHの粒径、及び熱処理時間を変更した。
Figure JPOXMLDOC01-appb-T000003
 ケミカルシフト値が-40~-60ppmの位置にピークが現れた場合、容量維持率及び初期効率が向上した。
(実施例4-1~4-5)
 ケイ素化合物粒子中のSi結晶子の結晶性を表4のように変化させたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。なお、ケイ素化合物粒子中のSi結晶子の結晶性は、原料の気化温度の変更、又は、ケイ素化合物粒子の生成後の熱処理で制御できる。
Figure JPOXMLDOC01-appb-T000004
 ケイ素化合物粒子中のSi結晶子の結晶性に応じて容量維持率および初回効率が変化した。特に半値幅が1.2°以上で、尚且つSi(111)面に起因する結晶子サイズが7.5nm以下の低結晶性材料で高い容量維持率が得られた。
(実施例5-1~5-5)
 負極活物質粒子のメジアン径を表5のように変化させたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
Figure JPOXMLDOC01-appb-T000005
 ケイ素化合物のメジアン径が1.0μm以上であれば、維持率が向上した。これは、ケイ素化合物の質量当たりの表面積が大すぎず、副反応が起きる面積を小さくでき、電解液の消費を抑制できたためと考えられる。一方、メジアン径が15μm以下であれば、充電時に粒子が割れ難く、充放電時に新生面によるSEI(固体電解質界面)が生成し難いため、可逆Liの損失を抑制することができる。また、ケイ素系活物質粒子のメジアン径が15μm以下であれば、充電時のケイ素化合物粒子の膨張量が大きくならないため、膨張による負極活物質層の物理的、電気的破壊を防止できる。
(実施例6-1)
 ケイ素化合物粒子の表面に炭素材を被覆しなかったこと以外、実施例1-1と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
(実施例6-2~6-5)
 ケイ素化合物粒子の表面に被覆された炭素材の平均厚さを変更したこと以外、実施例1-1と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。炭素材の平均厚さは、CVD条件を変更することで調整できる。
Figure JPOXMLDOC01-appb-T000006
 表6からわかるように、炭素材の平均厚さが10nm以上で導電性が特に向上するため、容量維持率及び初期効率を向上させることができる。一方、炭素材の平均厚さが5000nm以下であれば、電池設計上、ケイ素化合物粒子の量を十分に確保できるため、電池容量を十分に確保できる。
(実施例7-1)
 負極の集電体として、炭素及び硫黄を含まない銅箔を用いたこと以外、実施例1-1と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
Figure JPOXMLDOC01-appb-T000007
 負極の集電体に炭素及び硫黄をそれぞれ100質量ppm以下含む場合、集電体の強度が向上する。従って、二次電池の充放電時における膨張、収縮が大きいケイ素系負極活物質を用いる場合、これに伴う集電体の変形及び歪みを抑制でき、実施例1-1のように電池特性、特にサイクル特性が向上する。
(実施例8-1)
 負極活物質中の負極活物質粒子(ケイ素系活物質粒子)の質量の割合を変更したこと以外、実施例1-1と同じ条件で二次電池を作製し、電池容量の増加率を評価した。
 なお、炭素系活物質を用いない場合(負極活物質中のケイ素系活物質の比率を100質量%とした場合)、ケイ素系活物質粒子、導電助剤1(カーボンナノチューブ、CNT)、導電助剤2(メジアン径が約50nmの炭素微粒子)、負極結着剤の前駆体(ポリアミック酸)とを83:10:2:5の乾燥重量比で混合したのち、NMPで希釈してペースト状の負極合剤スラリーとした。この場合には、ポリアミック酸の溶媒としてNMPを用いた。続いて、コーティング装置で負極集電体の両面に負極合剤スラリーを塗布してから乾燥させた。この負極集電体としては、電解銅箔(厚さ=15μm)を用いた。最後に、真空雰囲気中で400℃で1時間焼成した。これにより、負極結着剤(ポリイミド)が形成された。
(比較例8-1)
 負極活物質中の負極活物質粒子(ケイ素系活物質粒子)の質量の割合を変更したこと以外、比較例1-1と同じ条件で二次電池を作製し、電池容量の増加率を評価した。
 図5に、実施例8-1と比較例8-1における負極活物質の総量に対するケイ素系活物質粒子の割合と二次電池の電池容量の増加率との関係を表すグラフを示す。図5から分かるように、実施例8-1においてケイ素系の化合物の割合が6質量%以上となると、電池容量の増加率は比較例8-1に比べて大きくなり、体積エネルギー密度が、特に顕著に増加する。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (14)

  1.  負極活物質粒子を含む負極活物質であって、
     前記負極活物質粒子は、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を含有し、
     前記負極活物質粒子は少なくとも一部に結晶質のLiSiOを含有し、
     前記負極活物質粒子は、29Si-MAS-NMR スペクトルから得られるLiSiOに由来するピークの強度A、Siに由来するピークの強度B、LiSiに由来するピークの強度C、及びSiOに由来するピークの強度Dが、下記式1又は式2を満たすものであることを特徴とする負極活物質。
     A>B>D ・・・ (1)
     A>C>D ・・・ (2)
  2.  前記29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-130ppm付近にピークを有するものであることを特徴とする請求項1に記載の負極活物質。
  3.  前記29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-40~-60ppmにピークを有するものであることを特徴とする請求項1又は請求項2に記載の負極活物質。
  4.  前記ケイ素化合物粒子は、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であるとともに、その結晶面に対応する結晶子サイズは7.5nm以下であることを特徴とする請求項1から請求項3のいずれか1項に記載の負極活物質。
  5.  前記負極活物質と炭素系活物質との混合物を含む負極電極と対極リチウムとから成る試験セルを作製し、該試験セルにおいて、前記負極活物質にリチウムを挿入するよう電流を流す充電と、前記負極活物質からリチウムを脱離するよう電流を流す放電とから成る充放電を30回実施し、各充放電における放電容量Qを前記対極リチウムを基準とする前記負極電極の電位Vで微分した微分値dQ/dVと前記電位Vとの関係を示すグラフを描いた場合に、X回目以降(1≦X≦30)の放電時における、前記負極電極の電位Vが0.40V~0.55Vの範囲にピークを有するものであることを特徴とする請求項1から請求項4のいずれか1項に記載の負極活物質。
  6.  前記負極活物質粒子はメジアン径が1.0μm以上15μm以下であることを特徴とする請求項1から請求項5のいずれか1項に記載の負極活物質。
  7.  前記負極活物質粒子は、表層部に炭素材を含むことを特徴とする請求項1から請求項6のいずれか1項に記載の負極活物質。
  8.  前記炭素材の平均厚さは10nm以上5000nm以下であることを特徴とする請求項7に記載の負極活物質。
  9.  請求項1から請求項8のいずれか1項に記載の負極活物質と炭素系活物質とを含むことを特徴とする混合負極活物質材料。
  10.  請求項9に記載の混合負極活物質材料を含み、前記負極活物質と前記炭素系活物質の質量の合計に対する、前記負極活物質の質量の割合が6質量%以上であることを特徴とする非水電解質二次電池用負極。
  11.  請求項9に記載の混合負極活物質材料で形成された負極活物質層と、
     負極集電体とを有し、
     前記負極活物質層は前記負極集電体上に形成されており、
     前記負極集電体は炭素及び硫黄を含むとともに、それらの含有量がいずれも100質量ppm以下であることを特徴とする非水電解質二次電池用負極。
  12.  負極として、請求項1から請求項8のいずれか1項に記載の負極活物質を含む負極を用いたものであることを特徴とするリチウムイオン二次電池。
  13.  ケイ素化合物粒子を含有する負極活物質粒子を含む負極活物質を製造する方法であって、
     ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を含有する負極活物質粒子を作製する工程と、
     前記負極活物質粒子から、少なくとも一部に結晶質のLiSiOを含有し、29Si-MAS-NMR スペクトルから得られるLiSiOに由来するピークの強度A、Siに由来するピークの強度B、LiSiに由来するピークの強度C、及びSiOに由来するピークの強度Dが、下記式1又は式2を満たすものを選別する工程とを含み、
     該選別した前記負極活物質粒子を用いて、負極活物質を製造することを特徴とする負極活物質の製造方法。
     A>B>D ・・・ (1)
     A>C>D ・・・ (2)
  14.  請求項13に記載の負極活物質の製造方法によって製造した負極活物質を用いて負極を作製し、該作製した負極を用いてリチウムイオン二次電池を製造することを特徴とするリチウムイオン二次電池の製造方法。
PCT/JP2016/004807 2015-11-18 2016-11-04 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法 WO2017085911A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/772,566 US10686190B2 (en) 2015-11-18 2016-11-04 Negative electrode active material, mixed negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and, production method of negative electrode active material
EP16865915.9A EP3364483A4 (en) 2015-11-18 2016-11-04 NEGATIVE ELECTRODE ACTIVE MATERIAL AND METHOD FOR MANUFACTURING SAME, MIXED NEGATIVE ELECTRODE ACTIVE MATERIAL, NEGATIVE ELECTRODE FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, AND LITHIUM-ION SECONDARY BATTERY, AND METHOD FOR MANUFACTURING THE SAME
KR1020187013699A KR20180080239A (ko) 2015-11-18 2016-11-04 부극 활물질, 혼합 부극 활물질 재료, 비수 전해질 이차 전지용 부극, 리튬 이온 이차 전지, 부극 활물질의 제조 방법 및 리튬 이온 이차 전지의 제조 방법
CN201680067722.6A CN108292748B (zh) 2015-11-18 2016-11-04 负极活性物质、锂离子二次电池及其制造方法、混合负极活性物质材料、负极

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-225323 2015-11-18
JP2015225323A JP6535581B2 (ja) 2015-11-18 2015-11-18 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2017085911A1 true WO2017085911A1 (ja) 2017-05-26

Family

ID=58718632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004807 WO2017085911A1 (ja) 2015-11-18 2016-11-04 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法

Country Status (7)

Country Link
US (1) US10686190B2 (ja)
EP (1) EP3364483A4 (ja)
JP (1) JP6535581B2 (ja)
KR (1) KR20180080239A (ja)
CN (2) CN108292748B (ja)
TW (1) TWI705606B (ja)
WO (1) WO2017085911A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221268A1 (ja) * 2017-06-01 2018-12-06 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び、負極活物質粒子の製造方法
WO2020195575A1 (ja) * 2019-03-28 2020-10-01 パナソニックIpマネジメント株式会社 非水電解質二次電池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6964386B2 (ja) * 2017-08-03 2021-11-10 信越化学工業株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
WO2019142744A1 (ja) * 2018-01-19 2019-07-25 三洋電機株式会社 非水電解質二次電池
EP3869593B1 (en) * 2018-10-18 2022-07-20 Panasonic Intellectual Property Management Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode, and nonaqueous electrolyte secondary battery
KR20240037971A (ko) * 2021-07-28 2024-03-22 신에쓰 가가꾸 고교 가부시끼가이샤 비수전해액 및 이것을 구비하는 비수전해질 이차 전지
JP2023018964A (ja) * 2021-07-28 2023-02-09 信越化学工業株式会社 負極、リチウムイオン二次電池及びリチウムイオン二次電池の製造方法
JP2023030970A (ja) * 2021-08-24 2023-03-08 信越化学工業株式会社 非水系電解質及び非水電解質二次電池
JP2023030946A (ja) * 2021-08-24 2023-03-08 信越化学工業株式会社 非水系電解質及び非水電解質二次電池
JP2023030979A (ja) * 2021-08-24 2023-03-08 信越化学工業株式会社 非水系電解質及び非水電解質二次電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251097A (ja) * 2012-05-31 2013-12-12 Toyota Industries Corp 非水電解質二次電池
JP2015508559A (ja) * 2012-11-30 2015-03-19 エルジー・ケム・リミテッド ケイ素系複合体及びその製造方法
WO2015063979A1 (ja) * 2013-10-29 2015-05-07 信越化学工業株式会社 負極活物質、負極活物質の製造方法、並びに、リチウムイオン二次電池
JP2015153520A (ja) * 2014-02-12 2015-08-24 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池の負極用粉末、およびその製造方法
JP2015156355A (ja) * 2013-08-21 2015-08-27 信越化学工業株式会社 負極活物質、負極活物質材料、負極電極、リチウムイオン二次電池、負極電極の製造方法、負極活物質の製造方法、並びに、リチウムイオン二次電池の製造方法
JP2015165482A (ja) * 2014-02-07 2015-09-17 信越化学工業株式会社 非水電解質二次電池用負極及び非水電解質二次電池

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997741B2 (ja) 1992-07-29 2000-01-11 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
JP2001185127A (ja) 1999-12-24 2001-07-06 Fdk Corp リチウム2次電池
JP2002042806A (ja) 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2004071542A (ja) * 2002-06-14 2004-03-04 Japan Storage Battery Co Ltd 負極活物質、それを用いた負極、それを用いた非水電解質電池、ならびに負極活物質の製造方法
WO2005123586A2 (en) * 2004-06-14 2005-12-29 Signa Chemistry Llc Silicide compositions containing alkali metals and methods of making the same
JP4367311B2 (ja) 2004-10-18 2009-11-18 ソニー株式会社 電池
JP4994634B2 (ja) 2004-11-11 2012-08-08 パナソニック株式会社 リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
JP4911990B2 (ja) 2006-02-27 2012-04-04 三洋電機株式会社 リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP2008177346A (ja) 2007-01-18 2008-07-31 Sanyo Electric Co Ltd エネルギー貯蔵デバイス
JP5108355B2 (ja) 2007-03-30 2012-12-26 パナソニック株式会社 リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法
KR100913177B1 (ko) 2007-09-17 2009-08-19 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이의 제조 방법
JP5196149B2 (ja) 2008-02-07 2013-05-15 信越化学工業株式会社 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP5555978B2 (ja) 2008-02-28 2014-07-23 信越化学工業株式会社 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
JP5272492B2 (ja) * 2008-04-21 2013-08-28 信越化学工業株式会社 非水電解質二次電池用負極材及びその製造方法、ならびに非水電解質二次電池用負極及び非水電解質二次電池
JP5329858B2 (ja) 2008-07-10 2013-10-30 株式会社東芝 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質
JP2010177033A (ja) * 2009-01-29 2010-08-12 Sony Corp 負極および二次電池
JP5831268B2 (ja) * 2012-02-07 2015-12-09 株式会社豊田自動織機 二次電池用活物質およびその製造方法
US20150221950A1 (en) * 2012-09-27 2015-08-06 Sanyo Electric Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery using negative electrode active material
EP2922120A4 (en) * 2012-11-13 2016-11-30 Nec Corp NEGATIVE ELECTRODE ACTIVE SUBSTANCE, METHOD FOR MANUFACTURING SAME, AND LITHIUM SECONDARY CELL
JP2014220216A (ja) * 2013-05-10 2014-11-20 帝人株式会社 非水電解質二次電池用の複合粒子
CN104662715B (zh) * 2013-05-30 2018-09-28 株式会社Lg 化学 多孔性硅类负极活性物质及其制备方法、包含它的锂二次电池
CN103400971B (zh) * 2013-07-29 2016-07-06 宁德新能源科技有限公司 硅基复合材料及其制备方法以及其应用
JP6181590B2 (ja) * 2014-04-02 2017-08-16 信越化学工業株式会社 非水電解質二次電池用負極及び非水電解質二次電池
JP6196183B2 (ja) * 2014-04-22 2017-09-13 信越化学工業株式会社 非水電解質二次電池用負極材及びその製造方法、並びに非水電解質二次電池用負極活物質層、非水電解質二次電池用負極、非水電解質二次電池
JP6389159B2 (ja) 2015-10-08 2018-09-12 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池、非水電解質二次電池用負極材の製造方法、及び非水電解質二次電池の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251097A (ja) * 2012-05-31 2013-12-12 Toyota Industries Corp 非水電解質二次電池
JP2015508559A (ja) * 2012-11-30 2015-03-19 エルジー・ケム・リミテッド ケイ素系複合体及びその製造方法
JP2015156355A (ja) * 2013-08-21 2015-08-27 信越化学工業株式会社 負極活物質、負極活物質材料、負極電極、リチウムイオン二次電池、負極電極の製造方法、負極活物質の製造方法、並びに、リチウムイオン二次電池の製造方法
WO2015063979A1 (ja) * 2013-10-29 2015-05-07 信越化学工業株式会社 負極活物質、負極活物質の製造方法、並びに、リチウムイオン二次電池
JP2015165482A (ja) * 2014-02-07 2015-09-17 信越化学工業株式会社 非水電解質二次電池用負極及び非水電解質二次電池
JP2015153520A (ja) * 2014-02-12 2015-08-24 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池の負極用粉末、およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3364483A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221268A1 (ja) * 2017-06-01 2018-12-06 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び、負極活物質粒子の製造方法
JP2018206560A (ja) * 2017-06-01 2018-12-27 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び、負極活物質粒子の製造方法
CN110679019A (zh) * 2017-06-01 2020-01-10 信越化学工业株式会社 负极活性物质、混合负极活性物质材料、以及负极活性物质颗粒的制造方法
US11283060B2 (en) 2017-06-01 2022-03-22 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material particle
CN110679019B (zh) * 2017-06-01 2022-11-18 信越化学工业株式会社 负极活性物质、混合负极活性物质材料、以及负极活性物质颗粒的制造方法
US11901545B2 (en) 2017-06-01 2024-02-13 Shin-Etsu Chemical Co., Ltd. Method for producing negative electrode active material particle
WO2020195575A1 (ja) * 2019-03-28 2020-10-01 パナソニックIpマネジメント株式会社 非水電解質二次電池
JP7458036B2 (ja) 2019-03-28 2024-03-29 パナソニックIpマネジメント株式会社 非水電解質二次電池

Also Published As

Publication number Publication date
CN108292748A (zh) 2018-07-17
TW201735422A (zh) 2017-10-01
KR20180080239A (ko) 2018-07-11
US10686190B2 (en) 2020-06-16
JP2017097952A (ja) 2017-06-01
CN108292748B (zh) 2021-05-18
JP6535581B2 (ja) 2019-06-26
EP3364483A4 (en) 2019-07-10
TWI705606B (zh) 2020-09-21
CN113178559A (zh) 2021-07-27
EP3364483A1 (en) 2018-08-22
US20190097223A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
JP7265668B2 (ja) リチウムイオン二次電池、モバイル端末、自動車及び電力貯蔵システム
WO2017061073A1 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池、非水電解質二次電池用負極材の製造方法、及び非水電解質二次電池の製造方法
JP6867821B2 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、負極の製造方法、及びリチウムイオン二次電池の製造方法
WO2017085911A1 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法
JP6445956B2 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池
JP6719554B2 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用混合負極活物質材料、及びリチウムイオン二次電池用負極活物質の製造方法
JP6592603B2 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
WO2017141661A1 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、及び負極活物質の製造方法
JP6422847B2 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法
JP6460960B2 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法
WO2017119031A1 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法
JP6719262B2 (ja) 負極活物質、混合負極活物質材料、負極活物質の製造方法
JP2017188319A (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
WO2017208627A1 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
WO2018051710A1 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP6862091B2 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、及び負極活物質の製造方法
JP6746526B2 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP2017147055A (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187013699

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016865915

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE