WO2017085753A1 - 表示装置及びその駆動方法 - Google Patents

表示装置及びその駆動方法 Download PDF

Info

Publication number
WO2017085753A1
WO2017085753A1 PCT/JP2015/005780 JP2015005780W WO2017085753A1 WO 2017085753 A1 WO2017085753 A1 WO 2017085753A1 JP 2015005780 W JP2015005780 W JP 2015005780W WO 2017085753 A1 WO2017085753 A1 WO 2017085753A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
data
image data
scanning order
input image
Prior art date
Application number
PCT/JP2015/005780
Other languages
English (en)
French (fr)
Inventor
中西 英行
純久 大石
Original Assignee
パナソニック液晶ディスプレイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック液晶ディスプレイ株式会社 filed Critical パナソニック液晶ディスプレイ株式会社
Priority to PCT/JP2015/005780 priority Critical patent/WO2017085753A1/ja
Publication of WO2017085753A1 publication Critical patent/WO2017085753A1/ja
Priority to US15/983,447 priority patent/US10621937B2/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0213Addressing of scan or signal lines controlling the sequence of the scanning lines with respect to the patterns to be displayed, e.g. to save power
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0278Details of driving circuits arranged to drive both scan and data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/061Details of flat display driving waveforms for resetting or blanking
    • G09G2310/062Waveforms for resetting a plurality of scan lines at a time
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0204Compensation of DC component across the pixels in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general

Definitions

  • the present invention relates to a display device and a driving method thereof.
  • Patent Document 1 discloses that gates based on an input image are driven so that a plurality of source lines are driven with a driving power smaller than a driving power of a plurality of source lines required when a plurality of gate lines are selected in the arrangement order.
  • a technique for determining the scanning order of lines is disclosed.
  • FIG. 18 is a schematic diagram for explaining the principle of occurrence of DC image sticking.
  • (a) to (d) show the input image data of the first frame to the fourth frame
  • (e) to (h) show the scanning order of the first frame to the fourth frame, respectively.
  • the display panel is composed of 8 lines.
  • Each frame image is assumed to be composed of a white image (255 gradations), a gray image (128 gradations), and a black image (0 gradations).
  • the timing chart shown in FIG. 19 shows the gate signal G1 supplied to the first gate line GL1 and the source voltage supplied to the pixels on the first line (Line1).
  • the first to eighth lines are selected in the scanning order shown in (e) to (h)
  • the average value of the source voltage shifts from the common voltage and the DC component remains as shown in the timing chart.
  • burn-in of the display screen occurs.
  • the present invention has been made in view of the above problems, and an object of the present invention is to reduce burn-in of a display screen in a display device that determines the scanning order of gate lines based on an input image.
  • a display device includes a plurality of data lines extending in a first direction, a plurality of gate lines extending in a second direction, and data signals to the plurality of data lines.
  • a source driver that supplies a gate signal
  • a gate driver that supplies a gate signal to the plurality of gate lines
  • a timing for determining a scanning order of the plurality of gate lines and outputting image data to the source driver based on the scanning order
  • the timing controller determines a scanning order of the plurality of gate lines based on an input image corresponding to input image data input from the outside, and sets the scanning order to each other for each of a plurality of frames. A different first scanning order and second scanning order are switched.
  • the first scanning order is the order in which the gradation of the input image data is low
  • the second scanning order is the order in which the gradation of the input image data is high. Also good.
  • the timing controller determines the scanning order in units of N lines (N is an integer of 2 or more), and includes first line data corresponding to a preceding line in the input image data, In a plurality of second line data corresponding to a plurality of lines included in the N line, the timing controller includes pixels corresponding to the same data line in the first line data and each of the second line data.
  • the scanning order may be determined based on the voltage level difference between them.
  • the first line data when determining the first scanning line among the first N lines of each frame includes each pixel.
  • the second scanning order is determined using the first virtual line data in which the voltage level is set to the halftone voltage level
  • the first scanning line of the first N lines of each frame is determined.
  • the second virtual line data in which the voltage level of each pixel is set to a low gradation voltage level or a high gradation voltage level may be used.
  • the timing controller may determine, as a line to be scanned next, a line having a minimum sum of the voltage level differences among the plurality of lines.
  • the timing controller includes a plurality of line memories that store the input image data for each line, and the timing controller sequentially inputs the input images from the plurality of line memories according to the scanning order. Data may be read and output to the source driver.
  • a driving method of a display device includes a plurality of data lines extending in a first direction, a plurality of gate lines extending in a second direction, and the plurality of data.
  • a source driver that supplies a data signal to the line; a gate driver that supplies a gate signal to the plurality of gate lines; and a scanning order of the plurality of gate lines, and image data to the source driver based on the scanning order
  • a timing controller that outputs a plurality of frames, wherein a scanning order of the plurality of gate lines is determined based on an input image corresponding to input image data input from the outside, and a plurality of frames
  • the plurality of gate lines are scanned by switching between the first scanning order and the second scanning order, which are different from each other in the scanning order.
  • the display device and the driving method thereof according to the present invention it is possible to reduce the burn-in of the display screen in the display device that determines the scanning order of the gate lines based on the input image.
  • FIG. 1 It is a top view which shows schematic structure of the liquid crystal display device which concerns on this embodiment. It is a block diagram which shows schematic structure of the timing controller which concerns on this embodiment. It is a block diagram which shows the specific structure of the timing controller which concerns on this embodiment.
  • (A) is a figure which shows input image data
  • (b) is a figure which shows the data polarity corresponding to column inversion drive.
  • (A) is a figure which shows the sum total of the voltage level difference before switching of a scanning order
  • (b) is a figure which shows the sum total of the voltage level difference after switching of a scanning order (1st scanning order). It is a figure which shows the input image data after converting the voltage level in a 5th frame.
  • (A) is a figure which shows the sum total of the voltage level difference before switching of a scanning order
  • (b) is a figure which shows the sum total of the voltage level difference after switching of a scanning order (2nd scanning order).
  • It is a block diagram which shows the specific structure of the gate driver which concerns on this embodiment. 5 is a timing chart showing the operation of the gate driver according to the present embodiment.
  • FIG. 1 It is a timing chart which shows the output timing of the liquid crystal display device which concerns on this embodiment.
  • A is a figure which shows input image data
  • (b) is a figure which shows the data polarity corresponding to dot inversion drive.
  • It is a block diagram which shows the other structure of the timing controller which concerns on this embodiment.
  • It is a figure which shows the example of calculation of the voltage level difference between 2 lines in the case of 4 line units.
  • It is a timing chart which shows the scanning order in the conventional display apparatus.
  • a liquid crystal display device is taken as an example of a display device, but the present invention is not limited to this, and may be, for example, an organic EL display device.
  • FIG. 1 is a plan view showing a schematic configuration of the liquid crystal display device according to the present embodiment.
  • the liquid crystal display device 100 includes a display panel 10, a source driver 20, a gate driver 30, a timing controller 40, and a backlight device (not shown).
  • the display panel 10 is provided with a plurality of data lines 11 extending in the column direction and a plurality of gate lines 12 extending in the row direction. At each intersection of each data line 11 and each gate line 12, a thin film transistor 13 (TFT) is provided. Each data line 11 is connected to a source driver 20, and each gate line 12 is connected to a gate driver 30. In the display panel 10, a plurality of pixels 14 are arranged in a matrix (row direction and column direction) corresponding to each intersection of each data line 11 and each gate line 12.
  • the display panel 10 includes a thin film transistor substrate (TFT substrate), a color filter substrate (CF substrate), and a liquid crystal layer sandwiched between the substrates.
  • a plurality of pixel electrodes 15 are provided on the TFT substrate corresponding to each pixel 14.
  • a common electrode 16 common to each pixel 14 is provided on the CF substrate. The common electrode 16 may be provided on the TFT substrate.
  • a data signal (data voltage) is supplied from the source driver 20 to each data line 11.
  • a gate signal (gate voltage) is supplied from each gate driver 30 to each gate line 12.
  • a common voltage Vcom is supplied to the common electrode 16 from a common driver (not shown).
  • the ON voltage of the gate signal is supplied to the gate line 12
  • the thin film transistor 13 connected to the gate line 12 is turned ON, and the data voltage is supplied to the pixel electrode 15 via the data line 11 connected to the thin film transistor 13.
  • the An electric field is generated by the difference between the data voltage supplied to the pixel electrode 15 and the common voltage Vcom supplied to the common electrode 16.
  • the liquid crystal is driven by this electric field, and the image display is performed by controlling the light transmittance of the backlight.
  • a desired data voltage is applied to each data line 11 connected to the pixel electrode 15 of each pixel 14 corresponding to red, green, and blue formed by a vertical stripe color filter. This is realized by supplying In order to prevent display burn-in and the like, for example, a positive data voltage and a negative data voltage are alternately supplied to each data line 11.
  • the timing controller 40 generates output image data DA for image display and a plurality of control signals for defining operation timings in the source driver 20 and the gate driver 30. Specifically, the timing controller 40 generates a polarity control signal POL, a data start based on timing signals (clock signal CK, vertical synchronization signal Vsyn, horizontal synchronization signal Hsyn) supplied from an external system (not shown). A plurality of control signals including a pulse DSP, a data clock DCK, a gate start pulse STV, a gate clock CPV, and a gate select signal Gsel are generated. The timing controller 40 supplies the generated plurality of control signals to the source driver 20 and the gate driver 30 and controls driving of the source driver 20 and the gate driver 30.
  • the timing controller 40 supplies the polarity control signal POL, the data start pulse DSP, the data clock DCK, and the output image data DA to the source driver 20.
  • the timing controller 40 also supplies the gate driver 30 with a gate start pulse STV, a gate clock CPV, and a gate select signal Gsel.
  • the polarity control signal POL is a control signal for determining the polarity of the data voltage supplied to the data line 11.
  • the polarity control signal POL is a signal for switching between a high level and a low level every frame (or a plurality of frames) or one line (or a plurality of lines). For example, when the polarity control signal POL is at a low level, the source driver 20 supplies a voltage (positive data voltage) higher than the common voltage Vcom to the data line 11 based on the output image data DA. On the other hand, when the polarity control signal POL is at a high level, the source driver 20 supplies a voltage (negative data voltage) lower than the common voltage Vcom to the data line 11 based on the output image data DA.
  • the source driver 20 supplies the data line 11 with the data voltage corresponding to the output image data DA while switching the polarity in a predetermined cycle. Accordingly, the liquid crystal display device 100 performs image display by column inversion driving or dot inversion driving.
  • FIG. 2 is a block diagram showing a schematic configuration of the timing controller 40.
  • the timing controller 40 includes a memory 41, a calculation unit 42, an image data output unit 43, and a control signal generation unit 44.
  • the memory 41 stores the image signal (input image data Data) supplied from the system in units of one line or one frame. That is, the memory 41 functions as a line memory or a frame memory.
  • the memory 41 may include N line memories that store a plurality of lines (N lines).
  • the calculation unit 42 determines the reading order of the plurality of input image data Data stored in the memory 41 and the scanning order of the plurality of gate lines 12 based on the voltage level of the input image data Data supplied from the system. .
  • the arithmetic unit 42 reads the four lines of input image data Data stored in the four line memories, and the four gate lines 12 that select the pixel lines corresponding to the input image data Data. The scanning order is determined.
  • the image data output unit 43 sequentially reads the input image data Data from the memory 41 according to a predetermined rule based on the calculation result of the calculation unit 42 and outputs the input image data Data to the source driver 20. A specific method for reading the input image data Data from the memory 41 will be described later.
  • the control signal generator 44 Based on the timing signals (clock signal CK, vertical synchronization signal Vsyn, horizontal synchronization signal Hsyn) supplied from the system, the control signal generator 44 generates a polarity control signal POL, a data start pulse DSP, a data clock DCK, and a gate start pulse. STV and gate clock CPV are generated. Further, the control signal generation unit 44 generates a gate select signal Gsel based on the timing signal and the calculation result of the calculation unit 42. The control signal generation unit 44 supplies the polarity control signal POL, the data start pulse DSP, and the data clock DCK to the source driver 20. In addition, the control signal generation unit 44 supplies the gate driver 30 with the gate start pulse STV, the gate clock CPV, and the gate select signal Gsel.
  • the source driver 20 sequentially obtains the output image data DA from the image data output unit 43, the data voltage corresponding to the output image data DA is obtained in the order of the acquisition based on the data start pulse DSP and the timing signal of the data clock DCK. 11 is supplied.
  • the source driver 20 switches the polarity of the data voltage based on the polarity control signal POL.
  • the gate driver 30 sequentially selects the plurality of gate lines 12 based on the gate start pulse STV, the gate clock CPV, and the gate select signal Gsel input from the image data output unit 43 and supplies the gate voltage.
  • the liquid crystal display device 100 determines the reading order of the plurality of input image data Data stored in the memory 41 and the scanning order of the plurality of gate lines 12 based on the input image corresponding to the input image data Data. decide.
  • a specific method for reading the input image data Data from the memory 41 will be described.
  • FIG. 3 is a block diagram showing a specific configuration of the timing controller 40.
  • the timing controller 40 for the input image data Data, in units of N lines (N is an integer of 2 or more), the sum of the voltage level differences for each pixel from the previous line (the sum of the voltage level differences for each line of pixels).
  • the scanning order is determined so that the line with the smallest value becomes the line to be driven next.
  • the voltage level difference refers to a voltage level difference corresponding to each of two pixels connected to (corresponding to) the same data line 11.
  • a 4-line unit is taken as an example. That is, the memory 41 shown in FIG. 3 is composed of four line memories.
  • the timing controller 40 further includes a D / V conversion unit 421, a selector 422, a previous stage line selector 423, a difference summation unit 424, and a difference minimum line determination unit 425, which constitute a calculation unit 42 (see FIG. 2). , A read target memory control unit 426, a write control unit, and a read control unit.
  • the D / V conversion unit 421 converts the input image data Data of digital data into a voltage level that is actually applied to the liquid crystal.
  • the D / V conversion unit 421 converts the voltage level of the input image data Data of the current line supplied from the system, and the voltage level of the input image data Data-L1 read from the first line memory.
  • the selector 422 includes a first selector to which the image data Data-M0 output from the input conversion unit and the image data Data-M1 output from the first conversion unit are input, and the image data Data-M0 and the second conversion unit.
  • the second selector to which the image data Data-M2 output from is input, the third selector to which the image data Data-M0 and the image data Data-M3 output from the third converter are input, and the image data A fourth selector to which Data-M0 and image data Data-M4 output from the fourth conversion unit are input.
  • the first selector outputs one of the image data Data-M0 and the image data Data-M1 as the image data Data-Q1 based on the switching signal output from the read target memory control unit 426.
  • the second selector outputs one of the image data Data-M0 and the image data Data-M2 as the image data Data-Q2 based on the switching signal.
  • the third selector outputs one of the image data Data-M0 and the image data Data-M3 as the image data Data-Q3 based on the switching signal.
  • the fourth selector outputs one of the image data Data-M0 and the image data Data-M4 as the image data Data-Q4 based on the switching signal.
  • the pre-stage line selector 423 selects the image data Data corresponding to the line memory number information output from the minimum difference line determination unit 425 among the image data Data-M1 to M4, and sets the difference summation unit as the image data Data-Q0. Output to 424.
  • the difference summation unit 424 includes a first difference summation unit to which the image data Data-Q0 output from the previous stage line selector 423 and the image data Data-Q1 output from the first selector are input, and the image data Data-Q0.
  • the second difference summing unit to which the image data Data-Q2 output from the second selector is input, and the third difference to which the image data Data-Q0 and image data Data-Q3 output from the third selector are input.
  • the first difference summation unit adds the voltage level differences between pixels corresponding to the same data line 11 in the image data Data-Q0 and the image data Data-Q1, and calculates a difference sum S1 for one line.
  • the second difference summation unit adds the voltage level differences between pixels corresponding to the same data line 11 in the image data Data-Q0 and the image data Data-Q2, and calculates a difference sum S2 for one line.
  • the third difference summation unit adds the voltage level differences for each pixel corresponding to the same data line 11 in the image data Data-Q0 and the image data Data-Q3, and calculates a difference sum S3 for one line.
  • the fourth difference summation unit adds the voltage level differences for each pixel corresponding to the same data line 11 in the image data Data-Q0 and the image data Data-Q4, and calculates a difference sum S4 for one line.
  • the minimum difference line determination unit 425 determines a line memory number having the minimum difference sum value among the difference sums S1 to S4 output from the difference summation unit 424, and outputs line memory number information.
  • the line memory number information is input to the previous stage line selector 423, the read target memory control unit 426, the write control unit, and the output selector 430.
  • the read target memory control unit 426 selects a line to be driven next (a line that minimizes the sum of voltage level differences for each pixel from the previous stage line). Determine the memory. Specifically, the read target memory control unit 426 determines the target line memory by excluding the line memory having the line memory number indicated by the line memory number information from the read target memory one line before. The determined information of the target line memory is input to the read control unit, the selector 422, and the minimum difference line determination unit 425.
  • the writing control unit writes the input image data Data into a desired line memory based on the line memory number information.
  • the output selector 430 reads the input image data Data from the line memory having the line memory number indicated by the line memory number information and outputs it to the source driver 20 as the output image data DA.
  • the output selector 430 is included in the image data output unit 43 (see FIG. 2).
  • FIG. 4 shows input image data Data (digital data) and data polarity corresponding to column inversion driving.
  • the timing controller 40 scans the input image data Data in the order of scanning so that the line in which the sum of the voltage level differences for each pixel from the preceding line is the smallest is the next line in units of four lines. To decide. Further, the timing controller 40 determines the first scanning order by the first method, determines the second scanning order by the second method, and the first scanning order and the second scanning order for each of a plurality of frames. And replace.
  • FIG. 5 is a timing chart showing the operation of the timing controller 40. Line 1 indicates the image data of the first line.
  • the memory 41 stores the first line input image data Data-L1 (Line1) in the first line memory and the second line memory.
  • 2-line input image data Data-L2 Line 2
  • third-line input image data Data-L3 Line 3
  • fourth-line input image data is stored in the fourth-line memory.
  • Data-L4 Line 4
  • the input image data Data-L4 is stored in the fourth line memory and input to the input conversion unit as input image data of the current line.
  • the read control unit based on the line memory number information (here, the first line memory, the second line memory, and the third line memory) output from the read target memory control unit 426, the input image data Data -L1 is read and input to the first conversion unit, input image data Data-L2 is read and input to the second conversion unit, input image data Data-L3 is read and input to the third conversion unit, and input image data Data-L4 is read and input to the fourth conversion unit.
  • Each conversion unit of the D / V conversion unit 421 converts the voltage level of the input image data Data based on, for example, the conversion characteristics shown in FIG. FIG. 7 shows the converted image data Data.
  • the input conversion unit converts the input image data Data-L4 into image data Data-M0 (Line4), and the first conversion unit converts the input image data Data-L1 into image data Data-M1 (Line1), The second conversion unit converts the input image data Data-L2 into image data Data-M2 (Line2), and the third conversion unit converts the input image data Data-L3 into image data Data-M3 (Line3).
  • the 4 conversion unit converts the input image data Data-L4 into image data Data-M4 (Line 4).
  • the image data Data-M0 and the image data Data-M4 are at the same voltage level.
  • the selector 422 selects the converted image data Data based on the line memory number information (first line memory, second line memory, third line memory).
  • the first selector selects the image data Data-M1 (Line1) and outputs it as image data Data-Q1 (Line1)
  • the second selector selects the image data Data-M2 (Line2) and outputs the image data Data- Q2 (Line2) is output
  • the third selector selects the image data Data-M3 (Line3) and outputs it as image data Data-Q3 (Line3)
  • the fourth selector is the image data Data-M0 (Line4). Is selected and output as image data Data-Q4 (Line 4).
  • the pre-stage line selector 423 outputs the input image data Data of the pre-stage line (here, virtual line (Line 0)) among the image data Data-M1 to M4 to the difference summation unit 424 as image data Data-Q0.
  • the first difference summation unit sums the voltage level differences between pixels corresponding to the same data line 11 in the image data Data-Q0 of the previous stage and the image data Data-Q1 (Line1) of the first line.
  • difference sum S1 570
  • the minimum difference line determination unit 425 determines a line memory number having the minimum difference sum value among the difference sums S1 to S4, and outputs line memory number information.
  • the difference minimum line determination unit 425 outputs line memory number information indicating the first line memory.
  • the output selector 430 reads the input image data Data-L1 (Line1) of the first line memory based on the line memory number information (first line memory) and outputs it to the source driver 20 as output image data DA. Output. Simultaneously with the reading of the input image data Data-L1 (Line1), the writing control unit obtains the input image data Data-L5 (Line5) of the fifth line based on the line memory number information (first line memory). Write to the first line memory (see “W / R” of the first line memory in FIG. 5).
  • the minimum difference line determination unit 425 determines the line memory number having the minimum difference sum value from S2 to S4 excluding the difference sum S1 having the minimum value, and outputs the line memory number information.
  • the difference minimum line determination unit 425 outputs line memory number information indicating the third line memory.
  • the output selector 430 reads the input image data Data-L3 (Line3) in the third line memory based on the line memory number information (third line memory) and outputs it to the source driver 20 as output image data DA.
  • the writing control unit obtains the input image data Data-L6 (Line 6) of the sixth line based on the line memory number information (third line memory). Write to the third line memory (see “W / R” in the third line memory in FIG. 5).
  • the writing control unit obtains the input image data Data-L7 (Line7) for the seventh line based on the line memory number information (second line memory). Write to the second line memory (see “W / R” of the second line memory in FIG. 5). Finally, the output selector 430 reads the input image data Data-L4 (Line 4) from the fourth line memory and outputs it to the source driver 20 as output image data DA.
  • the input image data Data-L1 to L4 (Line1 to Line4) of the first to fourth lines of the first frame are output to the source driver 20 in the order of Line1, Line3, Line2, and Line4.
  • the input image data Data-L8 (Line8) of the eighth line is stored in the fourth line memory
  • the input image data Data-L8 is simultaneously converted into the input conversion unit as the input image data of the current line. Is input.
  • the read control unit obtains the input image data Data-L5 based on the line memory number information (first line memory, second line memory, third line memory) output from the read target memory control unit 426.
  • First line memory, second line memory, third line memory read target memory control unit 426.
  • FIG. 7 shows image data Data after voltage level conversion by the D / V conversion unit 421.
  • the input conversion unit converts the input image data Data-L8 into image data Data-M0 (Line8), and the first conversion unit converts the input image data Data-L5 into image data Data-M1 (Line5).
  • the second conversion unit converts the input image data Data-L7 into image data Data-M2 (Line7), and the third conversion unit converts the input image data Data-L6 into image data Data-M3 (Line6).
  • the 4 conversion unit converts the input image data Data-L8 into image data Data-M4 (Line8).
  • the image data Data-M0 and the image data Data-M4 are at the same voltage level.
  • the selector 422 selects the converted image data Data based on the line memory number information (first line memory, second line memory, third line memory).
  • the first selector selects the image data Data-M1 (Line5) and outputs it as image data Data-Q1 (Line5)
  • the second selector selects the image data Data-M2 (Line7) and outputs the image data Data- Q2 (Line 7) is output
  • the third selector selects the image data Data-M3 (Line 6) and outputs it as image data Data-Q3 (Line 6)
  • the fourth selector is the image data Data-M0 (Line 8). Is selected and output as image data Data-Q4 (Line 8).
  • the pre-stage line selector 423 selects image data Data-M4 (Line 4) corresponding to the input image data Data of the pre-stage line (here, the fourth line (Line 4)) from the image data Data-M1 to M4,
  • the image data Data-Q0 (Line 4) is output to the difference summation unit 424.
  • the first difference summation unit compares the voltages of pixels connected to the same data line 11 in the image data Data-Q0 (Line 4) of the previous line and the image data Data-Q1 (Line 5) of the fifth line.
  • the second difference summation unit calculates a voltage level difference between pixels connected to the same data line 11 in the image data Data-Q0 (Line 4) of the previous line and the image data Data-Q2 (Line 7) of the seventh line.
  • the third difference summation unit calculates the voltage level difference between pixels connected to the same data line 11 in the image data Data-Q0 (Line 4) of the previous line and the image data Data-Q3 (Line 6) of the sixth line.
  • the fourth difference summation unit calculates the voltage level difference between pixels connected to the same data line 11 in the image data Data-Q0 (Line 4) of the previous line and the image data Data-Q4 (Line 8) of the eighth line.
  • the minimum difference line determination unit 425 determines a line memory number having the minimum difference sum value among the difference sums S1 to S4, and outputs line memory number information.
  • the difference sum S3 is the minimum value (399)
  • the difference minimum line determination unit 425 outputs line memory number information indicating the third line memory.
  • the output selector 430 reads the input image data Data-L6 (Line 6) of the third line memory based on the line memory number information (third line memory), and outputs it to the source driver 20 as output image data DA. Output. Simultaneously with the reading of the input image data Data-L6 (Line 6), the writing control unit obtains the input image data Data-L9 (Line 9) of the ninth line based on the line memory number information (third line memory). Write to the third line memory (see “W / R” in the third line memory in FIG. 5).
  • the minimum difference line determination unit 425 determines a line memory number having the minimum difference sum value out of S1, S2, and S4 excluding the difference sum S3 having the minimum value, and outputs line memory number information. To do.
  • the difference minimum line determination unit 425 outputs line memory number information indicating the second line memory.
  • the output selector 430 reads the input image data Data-L7 (Line 7) in the second line memory and outputs it to the source driver 20 as output image data DA.
  • the writing control unit obtains the input image data Data-L10 (Line10) of the tenth line based on the line memory number information (second line memory). Write to the second line memory (see “W / R” of the second line memory in FIG. 5).
  • the output selector 430 reads the input image data Data-L8 (Line8) in the fourth line memory based on the line memory number information (fourth line memory), and outputs it to the source driver 20 as output image data DA. Simultaneously with the reading of the input image data Data-L8 (Line8), the writing control unit obtains the input image data Data-L11 (Line11) of the eleventh line based on the line memory number information (fourth line memory). Write to the fourth line memory. Finally, the output selector 430 reads the input image data Data-L5 (Line5) from the first line memory and outputs it to the source driver 20 as the output image data DA.
  • the input image data Data-L5 to L8 (Line5 to Line8) of the fifth to eighth lines of the first frame are output to the source driver 20 in the order of Line6 ⁇ Line7 ⁇ Line8 ⁇ Line5.
  • the previous line selector 423 includes the previous line of the image data Data-M1 to M4.
  • the image data Data-M1 (Line5) corresponding to the input image data Data on the fifth line (Line5) is selected and output to the difference summation unit 424 as image data Data-Q0 (Line5). That is, the image data Data-Q0 (Line 5) of the fifth line (Line 5) becomes the preceding line.
  • the timing controller 40 repeats the above operation in units of 4 lines for the first frame. In this way, the first scanning order is determined.
  • the operation in the first scanning order determined by the first method is executed in a plurality of consecutive frames (for example, the first frame to the fourth frame).
  • the voltage level after the conversion of the pixel data corresponding to the virtual line (Line 0) preceding the first line is set to 512/0 as shown in FIG.
  • the voltage level of the positive (+) column of the virtual line Line0 is set to a high gradation (for example, 512), and the voltage level of the negative ( ⁇ ) column of the virtual line Line0 is set to a lower level.
  • key for example, 0
  • the lines are selected in order from the line close to the black level (in the order of low gradation of the input image data Data).
  • the voltage level of the positive (+) column of the virtual line Line0 is set to 512 and the voltage level of the negative ( ⁇ ) column of the virtual line Line0 is set to 0 (second method)
  • the lines are selected in order from the line (in descending order of the gradation of the input image data Data).
  • the gradation of the input image data Data refers to the sum of the gradations of the pixels corresponding to the image signal (input image data Data) (for one line) input during one horizontal scanning period.
  • the scanning order can be substantially reversed with respect to the scanning order (first scanning order) according to the first method (FIG. 8B). That is, in the above example, in the first frame (first scanning order), the order is Line 1 ⁇ Line 3 ⁇ Line 2 ⁇ Line 4 ⁇ Line 6 ⁇ Line 7 ⁇ Line 8 ⁇ Line 5 (see FIG. 8B). In the second scanning order), the order is Line 4 ⁇ Line 2 ⁇ Line 3 ⁇ Line 1 ⁇ Line 5 ⁇ Line 8 ⁇ Line 7 ⁇ Line 6 (see FIG.
  • the operation in the second scanning order determined by the second method is executed in a plurality of consecutive frames (for example, the fifth to eighth frames). In the subsequent ninth to twelfth frames, the operation in the first scanning order determined by the first method is executed.
  • the line data of the preceding line when determining the first scanning line among the first N lines (here, 4 lines) of each frame includes In the case of determining the second scanning order using the first virtual line data in which the pixel voltage level is set to the halftone voltage level (“256” in the above example), the first N lines of each frame Among the line data of the preceding line when determining the line to be scanned first, the voltage level of each pixel is set to a low gradation level or a high gradation voltage level (in the above example, “512”, “0”). The second virtual line data is used.
  • the timing controller 40 switches the first scanning order determined by the first method and the second scanning order determined by the second method for each of a plurality of frames.
  • the timing controller 40 switches the first scanning order and the second scanning order every even frame.
  • the timing controller 40 switches the first scanning order and the second scanning order every odd frame.
  • the method for reversing the scanning order is not limited to the above method.
  • the first line to be driven first in each frame is determined as the first line or the fourth line
  • the head line is switched between the first line and the fourth line for each of a plurality of frames
  • the scanning order for each N line is changed.
  • the method of deciding may be used.
  • FIG. 11 is a block diagram showing a specific configuration of the gate driver 30.
  • the gate driver 30 includes a plurality of gate selectors and a plurality of shift registers. N gate lines 12 are electrically connected to each gate selector. Each shift register is connected to a plurality of gate selectors.
  • a gate start pulse STV and a gate clock CPV output from the timing controller 40 are input to the first-stage shift register.
  • the shift clock output from the previous shift register and the gate clock CPV output from the timing controller 40 are input to the second and subsequent shift registers.
  • Each shift register sequentially selects a gate selector based on the gate clock CPV.
  • a gate select signal Gsel output from the timing controller 40 is input to the gate selector.
  • FIG. 12 is a timing chart showing the operation of the gate driver 30.
  • the gate selectors of the first to fourth lines are selected by the selector selection signal B1, and the first line G1, the third line G3, the second line G2, and the second line are selected according to the gate selection signal Gsel.
  • the gate lines 12 are selected in the order of the 4 lines G4.
  • the gate selectors of the fifth to eighth lines are selected by the selector selection signal B2, and according to the gate selection signal Gsel, the sixth line G6 ⁇ the seventh line G7 ⁇ the eighth line G8 ⁇ the fifth line G5.
  • the gate line 12 is selected in order.
  • the gate driver 30 is not limited to the above configuration, and a known configuration can also be adopted.
  • FIG. 13 is a timing chart showing the output timing of the liquid crystal display device 100.
  • the 4-line counter is reset at the beginning of every 4 lines of the input image data Data, and cycles through the counter values 0-3.
  • the timing for writing the input image data Data to the line memory and the timing for switching the counter value of the 4-line counter are set to be the same.
  • Each line memory of the memory 41 is provided with a counter value holding unit 410 (see FIG. 3).
  • gate select information (counter value) is added to the head of the input image data Data. Added.
  • the gate clock CPV is generated by inverting the upper bit of the 4-line counter. Since the output image data DA is delayed by 1H by the source driver 20, a 1H delay circuit (see FIG.
  • the output timing of the gate selector 45 and the output timing of the output selector 430 are set to be the same. As a result, the output timing of the source driver 20 and the output timing of the gate select signal Gsel become the same, and the source voltage is supplied to the pixels on a predetermined line.
  • the 4-line counter, the gate selector 45, and the delay circuit shown in FIG. 3 are included in the control signal generation unit 44 (see FIG. 2).
  • the reading order of the plurality of input image data Data stored in the memory 41 and the scanning of the plurality of gate lines 12 are based on the input image corresponding to the input image data Data. The order is determined and the image is displayed.
  • column inversion driving is taken as an example, but the liquid crystal display device 100 is not limited to this, and display operation may be performed by dot inversion driving.
  • the D / V conversion unit 421 converts the input image data Data (see FIG. 4A) to the voltage level shown in FIG.
  • Other operations are the same as those of the liquid crystal display device 100 described above.
  • the sum of the difference in voltage level for each pixel from the previous line is compared.
  • the liquid crystal display device 100 is not limited to this, and the total of the power difference in each pixel from the previous line is compared. May be. In this case, for example, the sum of the squares of the difference in voltage level for each pixel from the preceding line may be obtained and compared.
  • the method for determining the scanning order of the plurality of gate lines 12 is not limited to the above method.
  • the total sum of the voltage level differences between pixels connected to the same data line 11 between two adjacent lines is calculated in units of N lines, and the total sum of the combinations in the scanning order is the smallest.
  • the order may be determined.
  • FIG. 15 is a block diagram showing a specific configuration of the timing controller 40 for realizing this method. 3 is different from the block diagram shown in FIG. 3 in that the voltage sum calculation unit 431 and the scan order determination unit 432 are the same in other configurations.
  • the voltage sum total calculation unit 431 calculates the sum of the voltage level differences between pixels connected to the same data line 11 between two adjacent lines, and calculates the sum of the voltage level differences of all combinations in the scanning order. calculate.
  • the scanning order determination unit 432 determines the scanning order of the gate lines 12 based on the calculation result of the voltage sum calculation unit 431.
  • FIG. 16 shows an example of calculating the voltage level difference between two lines in the case of four lines.
  • FIG. 17 shows a calculation example of all combinations in the scanning order in the case of four lines and the sum of voltage level differences in each scanning order.
  • the voltage level after conversion of the pixel data corresponding to the virtual line (Line 0) preceding the first line is set to 512/0 (second method) ) And determined in the same manner as in the examples of FIGS.
  • the liquid crystal display device 100 scans the gate lines 12 by switching the first scanning order and the second scanning order determined in this way for every plurality of frames.
  • the method of determining the scanning order of the plurality of gate lines 12 may be the following method.
  • the scanning order may be determined so that scanning is performed in ascending order (or descending order) of the total value of the voltage levels of each line (digital data value or gradation of the input image data Data) in units of N lines.
  • the odd-numbered blocks are scanned in ascending order of voltage level (first scanning order)
  • the even-numbered blocks are scanned in order of increasing voltage level (second scanning order). Scan to.
  • the first scanning order and the second scanning order are switched every plural frames.
  • the memory 41 may be composed of a frame memory.
  • the timing controller 40 determines the scanning order in units of frames. For example, in the first to fourth frames, the timing controller 40 scans in the first scanning order determined by the first method (for example, the frame order in which the voltage level (or gradation) is low in four frames), In the fifth to eighth frames, scanning is performed in the second scanning order determined by the second method (for example, the order of frames in which the voltage level (or gradation) is high in four frames).
  • the gradation of the input image data Data refers to the sum of the gradation of each pixel corresponding to the image signal (input image data Data) (for one frame) input during one vertical scanning period.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

表示装置は、複数のデータ線と、複数のゲート線と、前記複数のデータ線にデータ信号を供給するソースドライバと、前記複数のゲート線にゲート信号を供給するゲートドライバと、前記複数のゲート線の走査順を決定するとともに、前記走査順に基づいて前記ソースドライバに画像データを出力するタイミングコントローラと、を含み、前記タイミングコントローラは、外部から入力された入力画像データに対応する入力画像に基づいて前記複数のゲート線の走査順を決定するとともに、複数フレーム毎に、互いに前記走査順が異なる第1の走査順と第2の走査順とを切り替える。

Description

表示装置及びその駆動方法
 本発明は、表示装置及びその駆動方法に関する。
 従来、表示装置において、低消費電力化や電源回路の小型化を図るために、入力画像に基づいてゲート線を選択する順序(走査順)を決定する技術が提案されている。例えば特許文献1には、複数のゲート線が配置順に選択される場合に要する複数のソース線の駆動電力よりも小さい駆動電力で複数のソース線が駆動されるように、入力画像に基づいてゲート線の走査順を決定する技術が開示されている。
特許第5378613号公報
 しかし、上記従来の技術では、所謂DC焼き付きの問題が生じる。図18は、DC焼き付きの発生原理を説明するための模式図である。図18において、(a)~(d)は、第1フレーム~第4フレームの入力画像データを示し、(e)~(h)は、第1フレーム~第4フレームそれぞれの走査順を示している。ここでは、表示パネルは8ラインで構成されていると仮定する。また各フレーム画像は、白画像(255階調)とグレー画像(128階調)と黒画像(0階調)とで構成されていると仮定する。図19に示すタイミングチャートは、1番目のゲート線GL1に供給されるゲート信号G1と、1ライン目(Line1)の画素に供給されるソース電圧とを示している。第1ライン~第8ラインを(e)~(h)に示す走査順で選択すると、上記タイミングチャートに示すように、ソース電圧の平均値がコモン電圧からシフトし、DC成分が残留することになる。これにより、表示画面の焼き付きが生じる。
 本発明は、上記問題点に鑑みてなされたものであり、その目的は、入力画像に基づいてゲート線の走査順を決定する表示装置において、表示画面の焼き付きを低減することにある。
 上記課題を解決するために、本発明に係る表示装置は、第1方向に延在する複数のデータ線と、第2方向に延在する複数のゲート線と、前記複数のデータ線にデータ信号を供給するソースドライバと、前記複数のゲート線にゲート信号を供給するゲートドライバと、前記複数のゲート線の走査順を決定するとともに、前記走査順に基づいて前記ソースドライバに画像データを出力するタイミングコントローラと、を含み、前記タイミングコントローラは、外部から入力された入力画像データに対応する入力画像に基づいて前記複数のゲート線の走査順を決定するとともに、複数フレーム毎に、互いに前記走査順が異なる第1の走査順と第2の走査順とを切り替える、ことを特徴とする。
 本発明に係る表示装置では、前記第1の走査順は、前記入力画像データの階調が低い順であり、前記第2の走査順は、前記入力画像データの階調が高い順であってもよい。
 本発明に係る表示装置では、前記タイミングコントローラは、Nライン単位(Nは2以上の整数)で前記走査順を決定し、前記入力画像データにおける、前段ラインに対応する第1ラインデータと、前記Nラインに含まれる複数ラインに対応する複数の第2ラインデータとにおいて、前記タイミングコントローラは、前記第1ラインデータと前記各第2ラインデータのそれぞれとにおける、同一の前記データ線に対応する画素同士の電圧レベルの差に基づいて前記走査順を決定してもよい。
 本発明に係る表示装置では、前記第1の走査順を決定する場合において、各フレームの最初のNラインのうち1番目に走査するラインを決定する際の前記第1ラインデータには、各画素の電圧レベルが中間調の電圧レベルに設定された第1仮想ラインデータを用い、前記第2の走査順を決定する場合において、各フレームの最初のNラインのうち1番目に走査するラインを決定する際の前記第1ラインデータには、各画素の電圧レベルを低階調又は高階調の電圧レベルに設定された第2仮想ラインデータを用いてもよい。
 本発明に係る表示装置では、前記タイミングコントローラは、前記複数ラインのうち前記電圧レベルの差の総和が最小となるラインを、次に走査するラインに決定してもよい。
 本発明に係る表示装置では、前記タイミングコントローラは、前記入力画像データを1ライン毎に記憶する複数のラインメモリを含み、前記タイミングコントローラは、前記走査順に従って前記複数のラインメモリから順に前記入力画像データを読み出して、前記ソースドライバに出力してもよい。
 また上記課題を解決するために、本発明に係る表示装置の駆動法は、第1方向に延在する複数のデータ線と、第2方向に延在する複数のゲート線と、前記複数のデータ線にデータ信号を供給するソースドライバと、前記複数のゲート線にゲート信号を供給するゲートドライバと、前記複数のゲート線の走査順を決定するとともに、前記走査順に基づいて前記ソースドライバに画像データを出力するタイミングコントローラと、を含む表示装置の駆動方法であって、外部から入力された入力画像データに対応する入力画像に基づいて前記複数のゲート線の走査順を決定するとともに、複数フレーム毎に、互いに前記走査順が異なる第1の走査順と第2の走査順とを切り替えて、前記複数のゲート線を走査する、ことを特徴とする。
 本発明に係る表示装置及びその駆動方法によれば、入力画像に基づいてゲート線の走査順を決定する表示装置において、表示画面の焼き付きを低減することができる。
本実施形態に係る液晶表示装置の概略構成を示す平面図である。 本実施形態に係るタイミングコントローラの概略構成を示すブロック図である。 本実施形態に係るタイミングコントローラの具体的な構成を示すブロック図である。 (a)は入力画像データを示す図であり、(b)はカラム反転駆動に対応するデータ極性を示す図である。 本実施形態に係るタイミングコントローラの動作を示すタイミングチャートである。 画像データの電圧レベルの変換特性を示すグラフである。 第1フレームにおける電圧レベルを変換した後の入力画像データを示す図である。 (a)は走査順の入れ替え前の電圧レベル差の総和を示す図であり、(b)は走査順の入れ替え後(第1の走査順)の電圧レベル差の総和を示す図である。 第5フレームにおける電圧レベルを変換した後の入力画像データを示す図である。 (a)は走査順の入れ替え前の電圧レベル差の総和を示す図であり、(b)は走査順の入れ替え後(第2の走査順)の電圧レベル差の総和を示す図である。 本実施形態に係るゲートドライバの具体的な構成を示すブロック図である。 本実施形態に係るゲートドライバの動作を示すタイミングチャートである。 本実施形態に係る液晶表示装置の出力タイミングを示すタイミングチャートである。 (a)は入力画像データを示す図であり、(b)はドット反転駆動に対応するデータ極性を示す図である。 本実施形態に係るタイミングコントローラの他の構成を示すブロック図である。 4ライン単位の場合の2ライン間の電圧レベル差の算出例を示す図である。 4ライン単位の場合の走査順の全組み合わせと、それぞれの走査順における電圧レベル差の総和の算出例を示す図である。 DC焼き付きの発生原理を説明するための模式図である。 従来の表示装置における走査順を示すタイミングチャートである。
 本発明の一実施形態について、図面を用いて以下に説明する。本発明の実施形態では、表示装置として、液晶表示装置を例に挙げるが、本発明はこれに限定されず、例えば有機EL表示装置等であってもよい。
 図1は、本実施形態に係る液晶表示装置の概略構成を示す平面図である。液晶表示装置100は、表示パネル10と、ソースドライバ20と、ゲートドライバ30と、タイミングコントローラ40と、バックライト装置(図示せず)とを含んでいる。
 表示パネル10には、列方向に延在する複数のデータ線11と、行方向に延在する複数のゲート線12とが設けられている。各データ線11と各ゲート線12との各交差部には、薄膜トランジスタ13(TFT)が設けられている。各データ線11はソースドライバ20に接続されており、各ゲート線12はゲートドライバ30に接続されている。また表示パネル10には、各データ線11と各ゲート線12との各交差部に対応して、複数の画素14がマトリクス状(行方向及び列方向)に配置されている。なお、図示はしないが、表示パネル10は、薄膜トランジスタ基板(TFT基板)と、カラーフィルタ基板(CF基板)と、両基板間に挟持された液晶層とを含んでいる。TFT基板には、各画素14に対応して、複数の画素電極15が設けられている。CF基板には、各画素14に共通する共通電極16が設けられている。なお、共通電極16はTFT基板に設けられてもよい。
 各データ線11には、ソースドライバ20からデータ信号(データ電圧)が供給される。各ゲート線12には、ゲートドライバ30からゲート信号(ゲート電圧)が供給される。共通電極16には、図示しないコモンドライバから共通電圧Vcomが供給される。ゲート信号のオン電圧がゲート線12に供給されると、ゲート線12に接続された薄膜トランジスタ13がオンし、薄膜トランジスタ13に接続されたデータ線11を介して、データ電圧が画素電極15に供給される。画素電極15に供給されたデータ電圧と、共通電極16に供給された共通電圧Vcomとの差により電界が生じる。この電界により液晶を駆動してバックライトの光の透過率を制御することによって画像表示を行う。なお、カラー表示を行う場合は、縦ストライプ状のカラーフィルタで形成された赤色、緑色、青色に対応するそれぞれの画素14の画素電極15に接続されたそれぞれのデータ線11に、所望のデータ電圧を供給することにより実現される。また、表示の焼き付き等を防止するために、例えば、正極性のデータ電圧と負極性のデータ電圧とが、交互に各データ線11に供給される。
 タイミングコントローラ40は、画像表示用の出力画像データDAと、ソースドライバ20及びゲートドライバ30における動作タイミングを規定するための複数の制御信号とを生成する。具体的には、タイミングコントローラ40は、外部のシステム(図示せず)から供給されるタイミング信号(クロック信号CK、垂直同期信号Vsyn、水平同期信号Hsyn)に基づいて、極性制御信号POL、データスタートパルスDSP、データクロックDCK、ゲートスタートパルスSTV、ゲートクロックCPV、ゲートセレクト信号Gselを含む複数の制御信号を生成する。タイミングコントローラ40は、生成した複数の制御信号をソースドライバ20及びゲートドライバ30に供給し、ソースドライバ20及びゲートドライバ30の駆動を制御する。具体的には、タイミングコントローラ40は、極性制御信号POL、データスタートパルスDSP、データクロックDCK、出力画像データDAをソースドライバ20に供給する。また、タイミングコントローラ40は、ゲートスタートパルスSTV、ゲートクロックCPV、ゲートセレクト信号Gselをゲートドライバ30に供給する。
 極性制御信号POLは、データ線11に供給されるデータ電圧の極性を決定するための制御信号である。極性制御信号POLは、1フレーム(あるいは複数フレーム)又は1ライン(あるいは複数ライン)ごとにハイレベルとローレベルとが切り替わる信号である。例えば、極性制御信号POLがローレベルのときは、ソースドライバ20は、出力画像データDAに基づき、共通電圧Vcomよりも高い電圧(正極性のデータ電圧)をデータ線11に供給する。一方、極性制御信号POLがハイレベルのときは、ソースドライバ20は、出力画像データDAに基づき、共通電圧Vcomよりも低い電圧(負極性のデータ電圧)をデータ線11に供給する。このようにソースドライバ20は、データ線11に対して、出力画像データDAに応じたデータ電圧を、所定の周期で極性を切り替えて供給する。これにより、液晶表示装置100は、カラム反転駆動又はドット反転駆動により画像表示を行う。
 図2は、タイミングコントローラ40の概略構成を示すブロック図である。タイミングコントローラ40は、メモリ41と、演算部42と、画像データ出力部43と、制御信号生成部44とを含んでいる。メモリ41は、システムから供給された画像信号(入力画像データData)を、1ライン単位又は1フレーム単位で記憶する。すなわち、メモリ41は、ラインメモリ又はフレームメモリとして機能する。例えば、メモリ41は、複数ライン(Nライン)分を記憶するN個のラインメモリを含んで構成されていてもよい。
 演算部42は、システムから供給された入力画像データDataの電圧レベルに基づいて、メモリ41に記憶された複数の入力画像データDataの読み出し順と、複数のゲート線12の走査順とを決定する。例えば、演算部42は、4個のラインメモリに記憶された4ライン分の入力画像データDataの読み出し順と、それぞれの入力画像データDataに対応する画素ラインを選択する4本のゲート線12の走査順とを決定する。
 画像データ出力部43は、演算部42の演算結果に基づいて、メモリ41から所定のルールに従って入力画像データDataを順に読み出して、ソースドライバ20に出力する。メモリ41から入力画像データDataを読み出す具体的な方法は後述する。
 制御信号生成部44は、システムから供給されたタイミング信号(クロック信号CK、垂直同期信号Vsyn、水平同期信号Hsyn)に基づいて、極性制御信号POL、データスタートパルスDSP、データクロックDCK、ゲートスタートパルスSTV、ゲートクロックCPVを生成する。また、制御信号生成部44は、上記タイミング信号と演算部42の演算結果とに基づいて、ゲートセレクト信号Gselを生成する。制御信号生成部44は、極性制御信号POL、データスタートパルスDSP、データクロックDCKをソースドライバ20に供給する。また、制御信号生成部44は、ゲートスタートパルスSTV、ゲートクロックCPV、ゲートセレクト信号Gselをゲートドライバ30に供給する。
 ソースドライバ20は、画像データ出力部43から出力画像データDAを順に取得すると、データスタートパルスDSP及びデータクロックDCKのタイミング信号に基づいて、取得した順に出力画像データDAに応じたデータ電圧をデータ線11に供給する。また、ソースドライバ20は、極性制御信号POLに基づいてデータ電圧の極性を切り替える。
 ゲートドライバ30は、画像データ出力部43から入力された、ゲートスタートパルスSTV、ゲートクロックCPV、ゲートセレクト信号Gselに基づいて、複数のゲート線12を順に選択してゲート電圧を供給する。
 上記構成を有する液晶表示装置100は、入力画像データDataに対応する入力画像に基づいて、メモリ41に記憶された複数の入力画像データDataの読み出し順と、複数のゲート線12の走査順とを決定する。以下、メモリ41から入力画像データDataを読み出す具体的な方法について説明する。
 図3は、タイミングコントローラ40の具体的な構成を示すブロック図である。タイミングコントローラ40は、入力画像データDataについて、Nライン単位(Nは2以上の整数)で、前段ラインとの画素毎の電圧レベル差の総和(1ライン分の画素毎の電圧レベル差の総和)が最小となるラインを次に駆動するラインとなるように走査順を決定する。なお、上記電圧レベル差は、同一のデータ線11に接続される(対応する)2つの画素それぞれに対応する電圧レベルの差をいう。図3では、4ライン単位を例に挙げている。すなわち、図3に示すメモリ41は、4個のラインメモリで構成されている。タイミングコントローラ40は、さらに、演算部42(図2参照)を構成する、D/V変換部421と、セレクタ422と、前段ラインセレクタ423と、差分総和部424と、差分最小ライン決定部425と、読出対象メモリ制御部426と、書込制御部と、読出制御部と、を含んでいる。
 D/V変換部421は、デジタルデータの入力画像データDataを、実際に液晶に印加する電圧レベルに変換する。D/V変換部421は、システムから供給された現ラインの入力画像データDataの電圧レベルを変換する入力変換部と、第1ラインメモリから読み出された入力画像データData-L1の電圧レベルを変換する第1変換部と、第2ラインメモリから読み出された入力画像データData-L2の電圧レベルを変換する第2変換部と、第3ラインメモリから読み出された入力画像データData-L3の電圧レベルを変換する第3変換部と、第4ラインメモリから読み出された入力画像データData-L4の電圧レベルを変換する第4変換部とを含んでいる。
 セレクタ422は、入力変換部から出力された画像データData-M0と第1変換部から出力された画像データData-M1とが入力される第1セレクタと、画像データData-M0と第2変換部から出力された画像データData-M2とが入力される第2セレクタと、画像データData-M0と第3変換部から出力された画像データData-M3とが入力される第3セレクタと、画像データData-M0と第4変換部から出力された画像データData-M4とが入力される第4セレクタと、を含んでいる。第1セレクタは、読出対象メモリ制御部426から出力される切替信号に基づいて、画像データData-M0及び画像データData-M1の何れか一方を画像データData-Q1として出力する。第2セレクタは、上記切替信号に基づいて、画像データData-M0及び画像データData-M2の何れか一方を画像データData-Q2として出力する。第3セレクタは、上記切替信号に基づいて、画像データData-M0及び画像データData-M3の何れか一方を画像データData-Q3として出力する。第4セレクタは、上記切替信号に基づいて、画像データData-M0及び画像データData-M4の何れか一方を画像データData-Q4として出力する。
 前段ラインセレクタ423は、画像データData-M1~M4のうち、差分最小ライン決定部425から出力されるラインメモリ番号情報に対応する画像データDataを選択して、画像データData-Q0として差分総和部424に出力する。
 差分総和部424は、前段ラインセレクタ423から出力された画像データData-Q0と第1セレクタから出力された画像データData-Q1とが入力される第1差分総和部と、画像データData-Q0と第2セレクタから出力された画像データData-Q2とが入力される第2差分総和部と、画像データData-Q0と第3セレクタから出力された画像データData-Q3とが入力される第3差分総和部と、画像データData-Q0と第4セレクタから出力された画像データData-Q4とが入力される第4差分総和部と、を含んでいる。第1差分総和部は、画像データData-Q0及び画像データData-Q1における、同一のデータ線11に対応する画素同士の電圧レベル差を合算し1ライン分の差分総和S1を算出する。第2差分総和部は、画像データData-Q0及び画像データData-Q2における、同一のデータ線11に対応する画素同士の電圧レベル差を合算し1ライン分の差分総和S2を算出する。第3差分総和部は、画像データData-Q0及び画像データData-Q3における、同一のデータ線11に対応する画素毎の電圧レベル差を合算し1ライン分の差分総和S3を算出する。第4差分総和部は、画像データData-Q0及び画像データData-Q4における、同一のデータ線11に対応する画素毎の電圧レベル差を合算し1ライン分の差分総和S4を算出する。
 差分最小ライン決定部425は、差分総和部424から出力された差分総和S1~S4のうち、差分総和値が最小となるラインメモリ番号を決定しラインメモリ番号情報を出力する。ラインメモリ番号情報は、前段ラインセレクタ423と、読出対象メモリ制御部426と、書込制御部と、出力セレクタ430とに入力される。
 読出対象メモリ制御部426は、上記ラインメモリ番号情報に基づいて、次に駆動するライン(前段ラインとの画素毎の電圧レベル差の総和が最小となるライン)を選定するために対象となるラインメモリを決定する。具体的には、読出対象メモリ制御部426は、1ライン前の読出対象メモリから、上記ラインメモリ番号情報が示すラインメモリ番号のラインメモリを除外して、対象ラインメモリを決定する。決定した対象ラインメモリの情報は、読出制御部とセレクタ422と差分最小ライン決定部425とに入力される。
 書込制御部は、上記ラインメモリ番号情報に基づいて、入力画像データDataを所望のラインメモリに書き込む。
 出力セレクタ430は、上記ラインメモリ番号情報が示すラインメモリ番号のラインメモリから入力画像データDataを読み出して、出力画像データDAとしてソースドライバ20に出力する。出力セレクタ430は、画像データ出力部43(図2参照)に含まれる。
 ここで、具体例を挙げてタイミングコントローラ40の動作について説明する。図4は、入力画像データData(デジタルデータ)とカラム反転駆動に対応するデータ極性とを示している。概略的には、タイミングコントローラ40は、入力画像データDataについて、4ライン単位で、前段ラインとの画素毎の電圧レベル差の総和が最小となるラインを次に駆動するラインとなるように走査順を決定する。また、タイミングコントローラ40は、第1の方法により第1の走査順を決定し、第2の方法により第2の走査順を決定し、複数フレーム毎に第1の走査順と第2の走査順とを入れ替える。図5は、タイミングコントローラ40の動作を示すタイミングチャートである。なお、Line1は、第1ラインの画像データを示している。
 以下、第1の走査順を決定する第1の方法について説明する。先ず、第1フレームの第1ライン~第4ラインの入力画像データData-L1(Line1)~L4(Line4)に対する動作について説明する。
 外部のシステムから入力画像データDataがタイミングコントローラ40に入力されると、メモリ41は、第1ラインメモリに第1ラインの入力画像データData-L1(Line1)を記憶し、第2ラインメモリに第2ラインの入力画像データData-L2(Line2)を記憶し、第3ラインメモリに第3ラインの入力画像データData-L3(Line3)を記憶し、第4ラインメモリに第4ラインの入力画像データData-L4(Line4)を記憶する。入力画像データData-L4は、第4ラインメモリに記憶されるとともに、現ラインの入力画像データとして入力変換部に入力される。またこのとき、読出制御部は、読出対象メモリ制御部426から出力されるラインメモリ番号情報(ここでは、第1ラインメモリ、第2ラインメモリ、第3ラインメモリ)に基づいて、入力画像データData-L1を読み出して第1変換部に入力し、入力画像データData-L2を読み出して第2変換部に入力し、入力画像データData-L3を読み出して第3変換部に入力し、入力画像データData-L4を読み出して第4変換部に入力する。D/V変換部421の各変換部は、例えば図6に示す変換特性に基づいて、入力画像データDataの電圧レベルを変換する。図7は、変換後の画像データDataを示している。なお、第1ラインの前段の仮想ライン(Line0)の画素データは、厳密には前フレームの最終ラインの電圧レベルになるが、カラム反転駆動の場合は前フレームのソース電圧は、通常は極性の異なる電圧が印加されているため、変換後の電圧レベルは、全画素について256と仮定することができる。入力変換部は、入力画像データData-L4を画像データData-M0(Line4)に変換し、第1変換部は、入力画像データData-L1を画像データData-M1(Line1)に変換し、第2変換部は、入力画像データData-L2を画像データData-M2(Line2)に変換し、第3変換部は、入力画像データData-L3を画像データData-M3(Line3)に変換し、第4変換部は、入力画像データData-L4を画像データData-M4(Line4)に変換する。なお、ここでは、画像データData-M0と、画像データData-M4とは同一の電圧レベルとなる。
 次に、セレクタ422は、上記ラインメモリ番号情報(第1ラインメモリ、第2ラインメモリ、第3ラインメモリ)に基づいて、変換後の画像データDataを選択する。第1セレクタは、画像データData-M1(Line1)を選択して画像データData-Q1(Line1)として出力し、第2セレクタは、画像データData-M2(Line2)を選択して画像データData-Q2(Line2)として出力し、第3セレクタは、画像データData-M3(Line3)を選択して画像データData-Q3(Line3)として出力し、第4セレクタは、画像データData-M0(Line4)を選択して画像データData-Q4(Line4)として出力する。
 前段ラインセレクタ423は、画像データData-M1~M4のうち、前段ライン(ここでは、仮想ライン(Line0))の入力画像データDataを、画像データData-Q0として差分総和部424に出力する。
 次に、第1差分総和部は、前段ラインの画像データData-Q0と第1ラインの画像データData-Q1(Line1)とにおける、同一のデータ線11に対応する画素同士の電圧レベル差の総和(差分総和S1=570)を算出する。第2差分総和部は、前段ラインの画像データData-Q0と第2ラインの画像データData-Q2(Line2)とにおける、同一のデータ線11に対応する画素同士の電圧レベル差の総和(差分総和S2=581)を算出する。第3差分総和部は、前段ラインの画像データData-Q0と第3ラインの画像データData-Q3(Line3)とにおける、同一のデータ線11に対応する画素同士の電圧レベル差の総和(差分総和S3=577)を算出する。第4差分総和部は、前段ラインの画像データData-Q0と第4ラインの画像データData-Q4(Line4)とにおける、同一のデータ線11に対応する画素同士の電圧レベル差の総和(差分総和S4=595)を算出する。
 次に、差分最小ライン決定部425は、上記差分総和S1~S4のうち、差分総和値が最小となるラインメモリ番号を決定しラインメモリ番号情報を出力する。ここでは、差分総和S1が最小値(570)となるため、差分最小ライン決定部425は、第1ラインメモリを示すラインメモリ番号情報を出力する。
 次に、出力セレクタ430は、上記ラインメモリ番号情報(第1ラインメモリ)に基づいて、第1ラインメモリの入力画像データData-L1(Line1)を読み出して、出力画像データDAとしてソースドライバ20に出力する。また入力画像データData-L1(Line1)の読み出しと同時に、書込制御部が、上記ラインメモリ番号情報(第1ラインメモリ)に基づいて、第5ラインの入力画像データData-L5(Line5)を第1ラインメモリに書き込む(図5の第1ラインメモリの「W/R」参照)。
 次に、差分最小ライン決定部425は、最小値となった上記差分総和S1を除いたS2~S4のうち、差分総和値が最小となるラインメモリ番号を決定しラインメモリ番号情報を出力する。ここでは、差分総和S3が最小値(51)となるため、差分最小ライン決定部425は、第3ラインメモリを示すラインメモリ番号情報を出力する。出力セレクタ430は、上記ラインメモリ番号情報(第3ラインメモリ)に基づいて、第3ラインメモリの入力画像データData-L3(Line3)を読み出して、出力画像データDAとしてソースドライバ20に出力する。また入力画像データData-L3(Line3)の読み出しと同時に、書込制御部が、上記ラインメモリ番号情報(第3ラインメモリ)に基づいて、第6ラインの入力画像データData-L6(Line6)を第3ラインメモリに書き込む(図5の第3ラインメモリの「W/R」参照)。
 次に、差分最小ライン決定部425は、最小値となった上記差分総和S1及びS3を除いたS2及びS4のうち、差分総和値が最小(S2=720)となるラインメモリ番号(第2ラインメモリ)を決定しラインメモリ番号情報を出力する。なお、S2及びS4は同一のため、ここでは、入力順により決定する。出力セレクタ430は、上記ラインメモリ番号情報(第2ラインメモリ)に基づいて、第2ラインメモリの入力画像データData-L2(Line2)を読み出して、出力画像データDAとしてソースドライバ20に出力する。また入力画像データData-L2(Line2)の読み出しと同時に、書込制御部が、上記ラインメモリ番号情報(第2ラインメモリ)に基づいて、第7ラインの入力画像データData-L7(Line7)を第2ラインメモリに書き込む(図5の第2ラインメモリの「W/R」参照)。最後に、出力セレクタ430は、第4ラインメモリの入力画像データData-L4(Line4)を読み出して、出力画像データDAとしてソースドライバ20に出力する。
 このようにして、第1フレームの第1ライン~第4ラインの入力画像データData-L1~L4(Line1~Line4)は、Line1→Line3→Line2→Line4の順にソースドライバ20に出力される。
 次に、第1フレームの第5ライン~第8ラインの入力画像データData-L5(Line5)~L8(Line8)に対する動作について説明する。
 上記の動作に続いて第4ラインメモリに第8ラインの入力画像データData-L8(Line8)が記憶されると、同時に、入力画像データData-L8は、現ラインの入力画像データとして入力変換部に入力される。またこのとき、読出制御部は、読出対象メモリ制御部426から出力されるラインメモリ番号情報(第1ラインメモリ、第2ラインメモリ、第3ラインメモリ)に基づいて、入力画像データData-L5を読み出して第1変換部に入力し、入力画像データData-L6を読み出して第3変換部に入力し、入力画像データData-L7を読み出して第2変換部に入力し、入力画像データData-L8を読み出して第4変換部に入力する。図7には、D/V変換部421による電圧レベル変換後の画像データDataを示している。入力変換部は、入力画像データData-L8を画像データData-M0(Line8)に変換し、第1変換部は、入力画像データData-L5を画像データData-M1(Line5)に変換し、第2変換部は、入力画像データData-L7を画像データData-M2(Line7)に変換し、第3変換部は、入力画像データData-L6を画像データData-M3(Line6)に変換し、第4変換部は、入力画像データData-L8を画像データData-M4(Line8)に変換する。なお、ここでは、画像データData-M0と、画像データData-M4とは同一の電圧レベルとなる。
 次に、セレクタ422は、上記ラインメモリ番号情報(第1ラインメモリ、第2ラインメモリ、第3ラインメモリ)に基づいて、変換後の画像データDataを選択する。第1セレクタは、画像データData-M1(Line5)を選択して画像データData-Q1(Line5)として出力し、第2セレクタは、画像データData-M2(Line7)を選択して画像データData-Q2(Line7)として出力し、第3セレクタは、画像データData-M3(Line6)を選択して画像データData-Q3(Line6)として出力し、第4セレクタは、画像データData-M0(Line8)を選択して画像データData-Q4(Line8)として出力する。
 前段ラインセレクタ423は、画像データData-M1~M4のうち、前段ライン(ここでは、第4ライン(Line4))の入力画像データDataに対応する画像データData-M4(Line4)を選択して、画像データData-Q0(Line4)として差分総和部424に出力する。
 次に、第1差分総和部は、前段ラインの画像データData-Q0(Line4)と第5ラインの画像データData-Q1(Line5)とにおける、同一のデータ線11に接続される画素同士の電圧レベル差の総和(差分総和S1=790)を算出する。第2差分総和部は、前段ラインの画像データData-Q0(Line4)と第7ラインの画像データData-Q2(Line7)とにおける、同一のデータ線11に接続される画素同士の電圧レベル差の総和(差分総和S2=469)を算出する。第3差分総和部は、前段ラインの画像データData-Q0(Line4)と第6ラインの画像データData-Q3(Line6)とにおける、同一のデータ線11に接続される画素同士の電圧レベル差の総和(差分総和S3=399)を算出する。第4差分総和部は、前段ラインの画像データData-Q0(Line4)と第8ラインの画像データData-Q4(Line8)とにおける、同一のデータ線11に接続される画素同士の電圧レベル差の総和(差分総和S4=477)を算出する。
 次に、差分最小ライン決定部425は、上記差分総和S1~S4のうち、差分総和値が最小となるラインメモリ番号を決定しラインメモリ番号情報を出力する。ここでは、差分総和S3が最小値(399)となるため、差分最小ライン決定部425は、第3ラインメモリを示すラインメモリ番号情報を出力する。
 次に、出力セレクタ430は、上記ラインメモリ番号情報(第3ラインメモリ)に基づいて、第3ラインメモリの入力画像データData-L6(Line6)を読み出して、出力画像データDAとしてソースドライバ20に出力する。また入力画像データData-L6(Line6)の読み出しと同時に、書込制御部が、上記ラインメモリ番号情報(第3ラインメモリ)に基づいて、第9ラインの入力画像データData-L9(Line9)を第3ラインメモリに書き込む(図5の第3ラインメモリの「W/R」参照)。
 次に、差分最小ライン決定部425は、最小値となった上記差分総和S3を除いたS1,S2,S4のうち、差分総和値が最小となるラインメモリ番号を決定しラインメモリ番号情報を出力する。ここでは、差分総和S2が最小値(70)となるため、差分最小ライン決定部425は、第2ラインメモリを示すラインメモリ番号情報を出力する。出力セレクタ430は、上記ラインメモリ番号情報(第2ラインメモリ)に基づいて、第2ラインメモリの入力画像データData-L7(Line7)を読み出して、出力画像データDAとしてソースドライバ20に出力する。また入力画像データData-L7(Line7)の読み出しと同時に、書込制御部が、上記ラインメモリ番号情報(第2ラインメモリ)に基づいて、第10ラインの入力画像データData-L10(Line10)を第2ラインメモリに書き込む(図5の第2ラインメモリの「W/R」参照)。
 次に、差分最小ライン決定部425は、最小値となった上記差分総和S2及びS3を除いたS1及びS4のうち、差分総和値が最小(S4=54)となるラインメモリ番号(第4ラインメモリ)を決定しラインメモリ番号情報を出力する。出力セレクタ430は、上記ラインメモリ番号情報(第4ラインメモリ)に基づいて、第4ラインメモリの入力画像データData-L8(Line8)を読み出して、出力画像データDAとしてソースドライバ20に出力する。また入力画像データData-L8(Line8)の読み出しと同時に、書込制御部が、上記ラインメモリ番号情報(第4ラインメモリ)に基づいて、第11ラインの入力画像データData-L11(Line11)を第4ラインメモリに書き込む。最後に、出力セレクタ430は、第1ラインメモリの入力画像データData-L5(Line5)を読み出して、出力画像データDAとしてソースドライバ20に出力する。
 このようにして、第1フレームの第5ライン~第8ラインの入力画像データData-L5~L8(Line5~Line8)は、Line6→Line7→Line8→Line5の順にソースドライバ20に出力される。次の第1フレームの第9ライン~第12ラインの入力画像データData-L9(Line9)~L12(Line12)に対する動作では、前段ラインセレクタ423は、画像データData-M1~M4のうち、前段ライン(ここでは、第5ライン(Line5))の入力画像データDataに対応する画像データData-M1(Line5)を選択して、画像データData-Q0(Line5)として差分総和部424に出力する。すなわち、第5ライン(Line5))の画像データData-Q0(Line5)が前段ラインとなる。以降、タイミングコントローラ40は、第1フレームについて4ライン単位で上記動作を繰り返す。このようにして、第1の走査順が決定される。
 上記構成によれば、図8に示すように、走査順を入れ替えた後では、Nライン(ここでは4ライン)分の画素毎の電圧レベル差の総和が、走査順を入れ替える前よりも小さくなるため、駆動電力を低減することができる。上記第1の方法により決定された第1の走査順による動作は、連続する複数フレーム(例えば、第1フレーム~第4フレーム)で実行される。
 次に、第2の走査順を決定する第2の方法について説明する。ここでは、第5フレームの第1ライン~第4ラインの入力画像データData-L1(Line1)~L4(Line4)に対する動作について説明する。第2の方法では、上記第1の方法と異なり、第1ラインの前段の仮想ライン(Line0)に対応する画素データの変換後の電圧レベルは、図9に示すように512/0に設定される。具体的には、カラム反転駆動において、仮想ラインLine0の正極(+)の列の電圧レベルを高階調(例えば512)に設定し、仮想ラインLine0の負極(-)の列の電圧レベルを低階調(例えば0)に設定する。仮想ラインLine0の電圧レベルをセンターレベル(中間調;例えば256)に設定した場合は(第1の方法)、黒レベルに近いラインから順(入力画像データDataの階調が低い順)に選択されるが、仮想ラインLine0の正極(+)の列の電圧レベルを512、仮想ラインLine0の負極(-)の列の電圧レベルを0に設定した場合は(第2の方法)、白レベルに近いラインから順(入力画像データDataの階調が高い順)に選択される。なお、入力画像データDataの階調は、1水平走査期間に入力される画像信号(入力画像データData)(1ライン分)に対応する各画素の階調の総和をいう。これにより、図10(b)に示すように、走査順を、第1の方法による走査順(第1の走査順)(図8(b))に対して概ね逆転させることができる。すなわち、上記の例では、第1フレーム(第1の走査順)では、Line1→Line3→Line2→Line4→Line6→Line7→Line8→Line5の順になり(図8(b)参照)、第5フレーム(第2の走査順)では、Line4→Line2→Line3→Line1→Line5→Line8→Line7→Line6の順になり(図10(b)参照)、走査順が互いに逆転する。第2の方法により決定された第2の走査順による動作は、連続する複数フレーム(例えば、第5フレーム~第8フレーム)で実行される。続く第9フレーム~第12フレームでは、第1の方法により決定された第1の走査順による動作が実行される。このように、第1の走査順を決定する場合において、各フレームの最初のNライン(ここでは4ライン)のうち1番目に走査するラインを決定する際の前段ラインのラインデータには、各画素の電圧レベルが中間調の電圧レベル(上記の例では「256」)に設定された第1仮想ラインデータを用い、第2の走査順を決定する場合において、各フレームの最初のNラインのうち1番目に走査するラインを決定する際の前段ラインのラインデータには、各画素の電圧レベルを低階調又は高階調の電圧レベル(上記の例では「512」,「0」)に設定された第2仮想ラインデータを用いる。
 このようにして、タイミングコントローラ40は、複数フレーム毎に、第1の方法により決定した第1の走査順と、第2の方法により決定した第2の走査順とを入れ替える。これにより、ソース電圧の平均値がコモン電圧からシフトすること(図19参照)を抑えることができるため、表示画面の焼き付きを低減することができる。また、極性が奇数フレーム毎に反転する場合(例えば1フレーム反転駆動の場合)、タイミングコントローラ40は、偶数フレーム毎に第1の走査順と第2の走査順とを入れ替えることが好ましい。また、同様に、極性が偶数フレーム毎に反転する場合(例えば2フレーム反転駆動の場合)、タイミングコントローラ40は、奇数フレーム毎に第1の走査順と第2の走査順とを入れ替えることが好ましい。これにより、ソース電圧の平均値をコモン電圧により近づけることができる。
 走査順を逆転させる方法は上記の方法に限定されない。例えば、各フレームにおいて最初に駆動する先頭ラインを1ライン目又は4ライン目と決めておき、複数フレーム毎に、先頭ラインを1ライン目と4ライン目で切り替えて、Nライン毎の走査順を決定していく方法でもよい。
 次に、ゲートドライバ30の具体的な構成について説明する。図11は、ゲートドライバ30の具体的な構成を示すブロック図である。ゲートドライバ30は、複数のゲートセレクタと、複数のシフトレジスタとを含んでいる。各ゲートセレクタには、n本のゲート線12が電気的に接続されている。各シフトレジスタには、複数のゲートセレクタが接続されている。初段のシフトレジスタには、タイミングコントローラ40から出力されたゲートスタートパルスSTVとゲートクロックCPVとが入力される。2段目以降のシフトレジスタには、前段のシフトレジスタから出力されたシフトクロックと、タイミングコントローラ40から出力されたゲートクロックCPVとが入力される。各シフトレジスタは、ゲートクロックCPVに基づいて、順次、ゲートセレクタを選択する。ゲートセレクタには、タイミングコントローラ40から出力されたゲートセレクト信号Gselが入力される。
 図12は、ゲートドライバ30の動作を示すタイミングチャートである。図12では、上記の例(図5等)に対応して、1つのゲートセレクタに4本のゲート線が接続される場合(n=4)を例に挙げている。図12に示すように、セレクタ選択信号B1により第1ライン~第4ラインのゲートセレクタが選択され、ゲートセレクト信号Gselに応じて、第1ラインG1→第3ラインG3→第2ラインG2→第4ラインG4の順にゲート線12が選択される。続いて、セレクタ選択信号B2により第5ライン~第8ラインのゲートセレクタが選択され、ゲートセレクト信号Gselに応じて、第6ラインG6→第7ラインG7→第8ラインG8→第5ラインG5の順にゲート線12が選択される。ゲートドライバ30は上記構成に限定されず、周知の構成を採用することもできる。
 次に、タイミングコントローラ40とソースドライバ20とゲートドライバ30の出力タイミングについて説明する。図13は、液晶表示装置100の出力タイミングを示すタイミングチャートである。
 4ラインカウンタは、入力画像データDataの4ライン毎の先頭でリセットされて、カウンタ値0~3を巡回する。入力画像データDataのラインメモリへの書き込みタイミングと、4ラインカウンタのカウンタ値の切り替えタイミングとは同一に設定される。メモリ41の各ラインメモリにはカウンタ値保持部410(図3参照)が設けられ、入力画像データDataがラインメモリに書き込まれるときに、入力画像データDataの先頭にゲートセレクト情報(カウンタ値)が付加される。ゲートクロックCPVは、4ラインカウンタの上位bitを反転して生成される。出力画像データDAはソースドライバ20で1H遅延するため、ゲートクロックCPVのタイミングを合わせるため4ラインカウンタの後段に1H遅延回路(図3参照)が設けられる。ゲートセレクタ45の出力タイミングと、出力セレクタ430の出力タイミングとは同一に設定される。これによりソースドライバ20の出力タイミングと、ゲートセレクト信号Gselの出力タイミングとが同一になり、所定のラインの画素にソース電圧が供給される。図3に示す、4ラインカウンタと、ゲートセレクタ45と、遅延回路とは、制御信号生成部44(図2参照)に含まれる。
 液晶表示装置100は、上記構成を備えることにより、入力画像データDataに対応する入力画像に基づいて、メモリ41に記憶された複数の入力画像データDataの読み出し順と、複数のゲート線12の走査順とを決定して画像表示を行なう。
 上記構成では、カラム反転駆動を例に挙げたが、液晶表示装置100はこれに限定されず、ドット反転駆動により表示動作を行ってもよい。ドット反転駆動の場合(図14(b))、D/V変換部421は、入力画像データData(図4(a)参照)を、図14(a)に示す電圧レベルに変換する。その他の動作は、上述した液晶表示装置100の動作と同一である。また、上記構成では、前段ラインとの画素毎の電圧レベルの差の総和を比較しているが、液晶表示装置100はこれに限定されず、前段ラインとの画素毎の電力差の総和を比較してもよい。この場合、例えば前段ラインとの画素毎の電圧レベルの差の2乗の総和を求めて比較すればよい。
 複数のゲート線12の走査順を決定する方法は、上記の方法に限定されない。例えば、Nライン単位で、隣り合う2つのライン間における同一のデータ線11に接続される画素同士の電圧レベルの差の総和を算出し、走査順の全組み合わせのうち、総和が最小となる走査順を決定してもよい。図15は、この方法を実現するためのタイミングコントローラ40の具体的な構成を示すブロック図である。図3に示したブロック図とは、電圧総和算出部431と走査順決定部432が異なり、その他の構成は同一である。電圧総和算出部431は、隣り合う2つのライン間における同一のデータ線11に接続される画素同士の電圧レベルの差の総和を算出するとともに、走査順の全組み合わせの電圧レベルの差の総和を算出する。走査順決定部432は、電圧総和算出部431の算出結果に基づいてゲート線12の走査順を決定する。
 図16には、4ライン単位の場合の2ライン間の電圧レベル差の算出例を示している。図17には、4ライン単位の場合の走査順の全組み合わせと、それぞれの走査順における電圧レベル差の総和の算出例を示している。図16、図17の例によれば、第1の走査順は、電圧レベル差の総和が最小(A+D+E+H=1363)となる組み合わせ、すなわちLine1→Line3→Line2→Line4の順になる。また、第2の走査順は、図9に示したように、第1ラインの前段の仮想ライン(Line0)に対応する画素データの変換後の電圧レベルを512/0に設定(第2の方法)した上で、図16、図17の例と同様にして決定される。液晶表示装置100は、このようにして決定した第1の走査順と第2の走査順とを、複数フレーム毎に入れ替えてゲート線12を走査する。
 さらに、複数のゲート線12の走査順を決定する方法は、以下の方法であってもよい。例えばNライン単位で、各ラインの電圧レベルの総和値(入力画像データDataのデジタルデータ値又は階調)の低い順(もしくは高い順)に走査するように走査順を決定してもよい。具体的には、Nライン単位で構成されるブロックのうち、奇数ブロックを電圧レベルの低い順(第1の走査順)に走査し、偶数ブロックを電圧レベルの高い順(第2の走査順)に走査する。そして、複数フレーム毎に、第1の走査順と第2の走査順とを入れ替える。
 上記方法では、メモリ41は、フレームメモリで構成されてもよい。この場合、タイミングコントローラ40は、フレーム単位で走査順を決定する。例えば、タイミングコントローラ40は、第1フレーム~第4フレームでは、第1の方法により決定した第1の走査順(例えば4つのフレームにおいて電圧レベル(又は階調)の低いフレーム順)で走査し、第5フレーム~第8フレームでは、第2の方法により決定した第2の走査順(例えば4つのフレームにおいて電圧レベル(又は階調)の高いフレーム順)で走査する。この場合、入力画像データDataの階調は、1垂直走査期間に入力される画像信号(入力画像データData)(1フレーム分)に対応する各画素の階調の総和をいう。
 以上、本発明の一実施形態について説明したが、本発明は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で上記各実施形態から当業者が適宜変更した形態も本発明の技術的範囲に含まれることは言うまでもない。

Claims (7)

  1.  第1方向に延在する複数のデータ線と、
     第2方向に延在する複数のゲート線と、
     前記複数のデータ線にデータ信号を供給するソースドライバと、
     前記複数のゲート線にゲート信号を供給するゲートドライバと、
     前記複数のゲート線の走査順を決定するとともに、前記走査順に基づいて前記ソースドライバに画像データを出力するタイミングコントローラと、を含み、
     前記タイミングコントローラは、
     外部から入力された入力画像データに対応する入力画像に基づいて前記複数のゲート線の走査順を決定するとともに、複数フレーム毎に、互いに前記走査順が異なる第1の走査順と第2の走査順とを切り替える、
     ことを特徴とする表示装置。
  2.  前記第1の走査順は、前記入力画像データの階調が低い順であり、
     前記第2の走査順は、前記入力画像データの階調が高い順である、
     ことを特徴とする請求項1に記載の表示装置。
  3.  前記タイミングコントローラは、Nライン単位(Nは2以上の整数)で前記走査順を決定し、
     前記入力画像データにおける、前段ラインに対応する第1ラインデータと、前記Nラインに含まれる複数ラインに対応する複数の第2ラインデータとにおいて、
     前記タイミングコントローラは、前記第1ラインデータと前記各第2ラインデータのそれぞれとにおける、同一の前記データ線に対応する画素同士の電圧レベルの差に基づいて前記走査順を決定する、
     ことを特徴とする請求項1に記載の表示装置。
  4.  前記第1の走査順を決定する場合において、各フレームの最初のNラインのうち1番目に走査するラインを決定する際の前記第1ラインデータには、各画素の電圧レベルが中間調の電圧レベルに設定された第1仮想ラインデータを用い、
     前記第2の走査順を決定する場合において、各フレームの最初のNラインのうち1番目に走査するラインを決定する際の前記第1ラインデータには、各画素の電圧レベルを低階調又は高階調の電圧レベルに設定された第2仮想ラインデータを用いる、
     ことを特徴とする請求項3に記載の表示装置。
  5.  前記タイミングコントローラは、前記複数ラインのうち前記電圧レベルの差の総和が最小となるラインを、次に走査するラインに決定する、
     ことを特徴とする請求項3に記載の表示装置。
  6.  前記タイミングコントローラは、前記入力画像データを1ライン毎に記憶する複数のラインメモリを含み、
     前記タイミングコントローラは、前記走査順に従って前記複数のラインメモリから順に前記入力画像データを読み出して、前記ソースドライバに出力する、
     ことを特徴とする請求項1に記載の表示装置。
  7.  第1方向に延在する複数のデータ線と、
     第2方向に延在する複数のゲート線と、
     前記複数のデータ線にデータ信号を供給するソースドライバと、
     前記複数のゲート線にゲート信号を供給するゲートドライバと、
     前記複数のゲート線の走査順を決定するとともに、前記走査順に基づいて前記ソースドライバに画像データを出力するタイミングコントローラと、
     を含む表示装置の駆動方法であって、
     外部から入力された入力画像データに対応する入力画像に基づいて前記複数のゲート線の走査順を決定するとともに、複数フレーム毎に、互いに前記走査順が異なる第1の走査順と第2の走査順とを切り替えて、前記複数のゲート線を走査する、
     ことを特徴とする表示装置の駆動方法。
PCT/JP2015/005780 2015-11-18 2015-11-18 表示装置及びその駆動方法 WO2017085753A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/005780 WO2017085753A1 (ja) 2015-11-18 2015-11-18 表示装置及びその駆動方法
US15/983,447 US10621937B2 (en) 2015-11-18 2018-05-18 Liquid crystal display device and method of driving the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/005780 WO2017085753A1 (ja) 2015-11-18 2015-11-18 表示装置及びその駆動方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/983,447 Continuation US10621937B2 (en) 2015-11-18 2018-05-18 Liquid crystal display device and method of driving the same

Publications (1)

Publication Number Publication Date
WO2017085753A1 true WO2017085753A1 (ja) 2017-05-26

Family

ID=58718515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005780 WO2017085753A1 (ja) 2015-11-18 2015-11-18 表示装置及びその駆動方法

Country Status (2)

Country Link
US (1) US10621937B2 (ja)
WO (1) WO2017085753A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113948025A (zh) * 2020-07-15 2022-01-18 瀚宇彩晶股份有限公司 显示面板的驱动方法
US11386834B2 (en) * 2020-12-15 2022-07-12 Texas Instruments Incorporated Light-emitting diode (LED) display driver with programmable scan line sequence

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002244623A (ja) * 2001-02-16 2002-08-30 Matsushita Electric Ind Co Ltd 液晶表示装置の駆動方式および駆動回路
JP2011033889A (ja) * 2009-08-03 2011-02-17 Hitachi Displays Ltd 液晶表示装置
JP2013109198A (ja) * 2011-11-22 2013-06-06 Mitsubishi Electric Corp 発光表示装置のマルチスキャン駆動方式
WO2013118323A1 (ja) * 2012-02-10 2013-08-15 シャープ株式会社 表示装置および表示方法
WO2014010313A1 (ja) * 2012-07-09 2014-01-16 シャープ株式会社 表示装置および表示方法
US20150116303A1 (en) * 2013-10-30 2015-04-30 Samsung Display Co., Ltd. Display device and driving method thereof
WO2015104777A1 (ja) * 2014-01-09 2015-07-16 株式会社Joled 表示装置および表示方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309104A (ja) * 2004-07-30 2006-11-09 Sanyo Electric Co Ltd アクティブマトリクス駆動型表示装置
JP2010033038A (ja) * 2008-06-30 2010-02-12 Nec Electronics Corp 表示パネル駆動方法及び表示装置
JP2011018020A (ja) * 2009-06-12 2011-01-27 Renesas Electronics Corp 表示パネルの駆動方法、ゲートドライバ及び表示装置
KR102035755B1 (ko) * 2013-04-30 2019-11-08 엘지디스플레이 주식회사 저속 구동용 표시장치와 그 구동방법
KR102112108B1 (ko) * 2013-09-12 2020-05-19 삼성디스플레이 주식회사 표시 장치
CN104200786A (zh) * 2014-07-31 2014-12-10 京东方科技集团股份有限公司 一种阵列基板及其驱动方法、显示面板、显示装置
KR102275709B1 (ko) * 2015-03-13 2021-07-09 삼성전자주식회사 게이트 드라이버, 디스플레이 구동 회로 및 디스플레이 장치
JP2016200635A (ja) * 2015-04-07 2016-12-01 株式会社ジャパンディスプレイ 液晶表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002244623A (ja) * 2001-02-16 2002-08-30 Matsushita Electric Ind Co Ltd 液晶表示装置の駆動方式および駆動回路
JP2011033889A (ja) * 2009-08-03 2011-02-17 Hitachi Displays Ltd 液晶表示装置
JP2013109198A (ja) * 2011-11-22 2013-06-06 Mitsubishi Electric Corp 発光表示装置のマルチスキャン駆動方式
WO2013118323A1 (ja) * 2012-02-10 2013-08-15 シャープ株式会社 表示装置および表示方法
WO2014010313A1 (ja) * 2012-07-09 2014-01-16 シャープ株式会社 表示装置および表示方法
US20150116303A1 (en) * 2013-10-30 2015-04-30 Samsung Display Co., Ltd. Display device and driving method thereof
WO2015104777A1 (ja) * 2014-01-09 2015-07-16 株式会社Joled 表示装置および表示方法

Also Published As

Publication number Publication date
US10621937B2 (en) 2020-04-14
US20180268770A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
JP4419369B2 (ja) 液晶表示装置及びその駆動方法
JP4140779B2 (ja) 液晶パネルの駆動装置及びその駆動方法
TWI395176B (zh) 用於交替驅動矩陣排列之像素之矩陣定址方法以及用於交替驅動矩陣排列之像素之矩陣定址電路
US8922603B2 (en) Multi-primary color display device
JP5085268B2 (ja) 液晶表示装置とその駆動方法
JP4501525B2 (ja) 表示装置及びその駆動制御方法
TWI409737B (zh) 顯示裝置及其驅動方法
US20100315402A1 (en) Display panel driving method, gate driver, and display apparatus
JP5341191B2 (ja) 表示装置および表示装置の駆動方法
JP2007094404A (ja) 液晶表示装置及びその駆動方法
JP2006119581A (ja) アクティブマトリクス型液晶表示装置およびその駆動方法
JP2004264476A (ja) 表示装置およびその駆動方法
JP2006293371A (ja) 表示装置のゲート駆動部と駆動装置、及びこれを有する表示装置
JP4721396B2 (ja) 液晶表示装置及びその駆動方法
KR101773611B1 (ko) 액정표시장치와 그 구동방법
JP2005141169A (ja) 液晶表示装置及びその駆動方法
JP2006267525A (ja) 表示装置用駆動装置および表示装置用駆動方法
JP2011048057A (ja) 液晶表示装置
US20080150865A1 (en) Lcd and drive method thereof
US10621937B2 (en) Liquid crystal display device and method of driving the same
JP2009020197A (ja) 表示装置ならびにその駆動回路および駆動方法
CN109658893B (zh) 显示面板的驱动方法、驱动装置及显示设备
JP2009063881A (ja) 液晶表示装置およびその駆動方法
JP3846612B2 (ja) 液晶表示装置
JP2009134055A (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP