WO2017084150A1 - 图案化电极的制作方法、液晶显示面板及其制作方法 - Google Patents

图案化电极的制作方法、液晶显示面板及其制作方法 Download PDF

Info

Publication number
WO2017084150A1
WO2017084150A1 PCT/CN2015/098508 CN2015098508W WO2017084150A1 WO 2017084150 A1 WO2017084150 A1 WO 2017084150A1 CN 2015098508 W CN2015098508 W CN 2015098508W WO 2017084150 A1 WO2017084150 A1 WO 2017084150A1
Authority
WO
WIPO (PCT)
Prior art keywords
pedot
graphene
pss
electrode
liquid crystal
Prior art date
Application number
PCT/CN2015/098508
Other languages
English (en)
French (fr)
Inventor
李泳锐
王海军
胡韬
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/914,644 priority Critical patent/US20180039122A1/en
Publication of WO2017084150A1 publication Critical patent/WO2017084150A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/16Materials and properties conductive
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/01Function characteristic transmissive
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a method for fabricating a patterned electrode, a liquid crystal display panel, and a method of fabricating the same.
  • Liquid crystal display is one of the most widely used flat panel displays.
  • the liquid crystal display panel is a core component of liquid crystal displays.
  • the liquid crystal display panel usually comprises a color filter substrate (CF), a thin film transistor array substrate (Thin Film Transistor Array Substrate, TFT Array Substrate), and a liquid crystal layer (Liquid Crystal Layer) disposed between the two substrates. Composition.
  • a pixel electrode and a common electrode are respectively disposed on the array substrate and the color filter substrate.
  • liquid crystal based operating modes are classified into: phase change (PC), twisted nematic (TN), super twisted nematic (STN), and vertical alignment (Vertical). Alignment, VA), In Plane Switching (IPS), and the like.
  • PC phase change
  • TN twisted nematic
  • STN super twisted nematic
  • VA vertical alignment
  • VA In Plane Switching
  • the VA type liquid crystal display has a high contrast ratio and has a wide range of applications in large-sized panels.
  • the VA type liquid crystal panel adopts liquid crystal having vertical rotation characteristics, the difference in birefringence of the liquid crystal molecules is large, resulting in a serious color shift of the entire panel.
  • the prior art generally adopts Multi-domain Vertical Alignment (MVA) technology to solve the above color shift problem, that is, a sub-pixel region is divided into a plurality of regions, and liquid crystals in each region have different inverted voltages.
  • MVA Multi-domain Vertical Alignment
  • One of the methods is to divide the pixel electrode on one side into a plurality of regions, and the pixel electrodes in each region are formed with patterns of pixel electrode branches and slits extending in different directions.
  • the common electrode on the other side is a planar electrode with uniform thickness and continuous uninterrupted. Due to the special pixel electrode pattern, the oblique electric field generated can induce liquid crystal molecules in different regions to reverse in different directions.
  • the material for forming the pixel electrode and the common electrode is usually Indium tin oxide (ITO), wherein the patterned pixel electrode is usually fabricated by chemical vapor deposition on the substrate (Chemical). Vapor Deposition, CVD) or physical vapor deposition (Physical Vapor) Deposition, PVD) and other equipment sputter an ITO film, then apply a layer of photoresist on the ITO, and then use a special shape of the mask to expose the photoresist, then develop the photoresist, and then The ITO film is etched to form the same pattern as the photoresist, and finally the photoresist is stripped. This forms an ITO electrode having a special pattern.
  • ITO Indium tin oxide
  • the ITO film is mainly made of PVD, CVD, etc. Although these technologies are mature, the production cost is relatively high. At the same time, the metal indium in ITO is a rare metal, and the application of ITO in the industry is limited as the continuous consumption and price continue to rise. In addition, when the ITO special pattern electrode is fabricated, since the resolution requirement is high, a positive photoresist coating is required, and the positive photoresist has a high price, which leads to an increase in the manufacturing process cost.
  • An object of the present invention is to provide a method for fabricating a patterned electrode, which can simplify the fabrication process of the patterned electrode and reduce the manufacturing cost of the patterned electrode.
  • Another object of the present invention is to provide a method for fabricating a liquid crystal display panel, which can simplify the manufacturing process of the patterned electrode in the liquid crystal display panel, reduce the manufacturing cost of the electrode and the liquid crystal display panel, and improve the competitiveness of the product.
  • Another object of the present invention is to provide a liquid crystal display panel capable of reducing the cost of the liquid crystal display panel and improving product competitiveness.
  • the present invention provides a method of fabricating a patterned electrode, comprising the steps of:
  • Step 1 providing a graphene aqueous solution and a PEDOT:PSS solution, mixing the graphene aqueous solution and the PEDOT:PSS solution according to a certain ratio to obtain a graphene/PEDOT:PSS mixed solution;
  • Step 2 providing a photoresist, mixing and stirring the graphene/PEDOT:PSS mixed solution and the photoresist according to a certain ratio to prepare a graphene/PEDOT:PSS photoresist having conductivity;
  • Step 3 Providing a substrate, coating the graphene/PEDOT:PSS photoresist prepared in the step 2 on the substrate, and then coating the graphene/PEDOT on the substrate with a mask of a predetermined shape: The PSS photoresist is exposed, and then developed with a developing solution, and baked to obtain a patterned electrode.
  • the mass percentage of graphene in the graphene aqueous solution is 1 wt% to 99 wt%
  • the mass percentage of PEDOT:PSS in the PEDOT:PSS solution is 1 wt% to 99 wt%
  • the graphene aqueous solution and The PEDOT:PSS solution was mixed at a mass ratio of 1:5-1:100.
  • the graphene/PEDOT:PSS mixed solution and the photoresist are in accordance with 1:1-1:
  • the mass ratio of 50 is mixed;
  • the photoresist includes a sensitizer, a resin, and a solvent, wherein the mass ratio of the sensitizer, the resin, and the solvent is 5:20:75.
  • the graphene/PEDOT:PSS photoresist is coated by a slit coating, spin coating, or spray coating process;
  • the developer is a potassium hydroxide solution, and the hydrogen in the potassium hydroxide solution
  • the mass percentage of potassium oxide was 0.04 wt%;
  • the baking temperature was 230 ° C, and the baking time was 10 min.
  • the invention also provides a method for manufacturing a liquid crystal display panel, comprising the following steps:
  • Step 1 providing a graphene aqueous solution and a PEDOT:PSS solution, mixing the graphene aqueous solution and the PEDOT:PSS solution according to a certain ratio to obtain a graphene/PEDOT:PSS mixed solution;
  • Step 2 providing a photoresist, mixing and stirring the graphene/PEDOT:PSS mixed solution and the photoresist according to a certain ratio to prepare a graphene/PEDOT:PSS photoresist having conductivity;
  • Step 3 providing a color film substrate, coating the graphene/PEDOT:PSS mixed solution prepared in step 1 on the color film substrate, and baking to form a first electrode on the color filter substrate, wherein the first electrode An electrode is a uniform surface electrode having a uniform thickness and continuous uninterrupted, and a first liquid crystal alignment layer is formed on the first electrode;
  • Step 4 providing an array substrate, coating the graphene/PEDOT:PSS photoresist prepared in step 2 on the array substrate, and then coating the graphene on the array substrate by using a mask of a predetermined shape.
  • /PEDOT: PSS photoresist is exposed, followed by development with a developing solution, baking to obtain a patterned second electrode, and a second liquid crystal alignment layer is formed on the second electrode;
  • Step 5 the color film substrate and the array substrate are assembled, and the first liquid crystal alignment layer and the second liquid crystal alignment layer are oppositely disposed, and are poured between the first liquid crystal alignment layer and the second liquid crystal alignment layer.
  • the liquid crystal forms a liquid crystal layer to produce a liquid crystal display panel.
  • the mass percentage of graphene in the graphene aqueous solution is 1 wt% to 99 wt%
  • the mass percentage of PEDOT:PSS in the PEDOT:PSS solution is 1 wt% to 99 wt%
  • the graphene aqueous solution and The PEDOT:PSS solution was mixed at a mass ratio of 1:5-1:100.
  • the graphene/PEDOT:PSS mixed solution and the photoresist are mixed at a mass ratio of 1:1 to 1:50;
  • the photoresist includes a sensitizer, a resin, and a solvent, wherein The mass ratio of the sensitizer, the resin, and the solvent is 5:20:75.
  • the graphene/PEDOT:PSS mixed solution is applied by spin coating, and the spin coating process is: firstly spin coating at 500 rpm for 10 s, then spin coating at 800 rpm for 20 s; baking The temperature was 120 ° C and the baking time was 10 min.
  • the graphene/PEDOT:PSS photoresist is coated by a slit coating, spin coating, or spray coating process;
  • the developer is a potassium hydroxide solution, and the hydrogen in the potassium hydroxide solution
  • the mass percentage of potassium oxide was 0.04 wt%; the baking temperature was 230 ° C, and the baking time was 10 min.
  • the present invention further provides a liquid crystal display panel comprising: a color filter substrate; an array substrate disposed opposite to the color filter substrate; and a first electrode disposed on a side of the color filter substrate adjacent to the array substrate; a first liquid crystal alignment layer on the first electrode, a second electrode disposed on the array substrate, a second liquid crystal alignment layer disposed on the second electrode, and a first liquid crystal alignment layer a liquid crystal layer between the layers;
  • the second electrode is a patterned electrode, and the first electrode is a full-surface electrode with uniform thickness and continuous uninterrupted;
  • the material of the first electrode is a mixture of graphene and PEDOT:PSS;
  • the material of the second electrode is a mixture of graphene, PEDOT:PSS, and photoresist.
  • the present invention provides a method of fabricating a patterned electrode by mixing graphene, PEDOT: PSS, and a photoresist to form graphene/PEDOT:PSS light having conductivity
  • the engraved adhesive is used to fabricate the patterned electrode using the conductive graphene/PEDOT:PSS photoresist.
  • the cost of the graphene and PEDOT:PSS materials is greatly reduced, and Conductive graphene and /PEDOT:PSS photoresists can be directly patterned, eliminating the need for a positive photoresist coating process compared to the prior art, reducing process time and production costs.
  • the present invention further provides a method for fabricating a liquid crystal display panel, which uses a graphene/PEDOT:PSS mixed solution to prepare a first electrode of a whole surface, and is prepared by using graphene/PEDOT:PSS photoresist with conductivity.
  • the patterned second electrode can reduce production cost, improve production efficiency, and achieve multi-domain vertical alignment.
  • the invention also provides a liquid crystal display panel, which can realize multi-domain vertical alignment, reduce the cost of the liquid crystal display panel, and improve product competitiveness.
  • FIG. 1 is a flow chart of a method of fabricating a patterned electrode of the present invention
  • FIG. 2 is a flow chart of a method of fabricating a liquid crystal display panel of the present invention
  • FIG. 3 is a schematic structural view of a liquid crystal display panel of the present invention.
  • the present invention first provides a method for fabricating a patterned electrode, comprising the following steps:
  • Step 1 Providing a graphene aqueous solution and a PEDOT:PSS (poly(3,4-ethylenedioxythiophene)) solution, and mixing the graphene aqueous solution with the PEDOT:PSS solution according to a certain ratio to obtain graphene/PEDOT: PSS mixed solution.
  • PEDOT:PSS poly(3,4-ethylenedioxythiophene)
  • the mass percentage of graphene in the aqueous graphene solution is from 1% by weight to 99% by weight, preferably 50% by weight.
  • the mass percentage of PEDOT:PSS in the PEDOT:PSS solution is from 1% by weight to 99% by weight, preferably 50% by weight.
  • the aqueous graphene solution and the PEDOT:PSS solution are mixed at a mass ratio of 1:5-1:100; preferably, the aqueous graphene solution and the PEDOT:PSS solution are mixed at a mass ratio of 1:10.
  • the graphene aqueous solution is mixed with a PEDOT:PSS solution by ultrasonic vibration, and the ultrasonic vibration has an ultrasonic power of 300 W and an ultrasonic time of 10 min.
  • the invention adopts graphene and PEDOT:PSS to fabricate electrodes. Compared with the ITO materials used in the prior art, graphene and PEDOT:PSS materials have lower cost, and thus the fabrication cost of the electrodes can be reduced.
  • Step 2 Providing a photoresist, mixing and stirring the graphene/PEDOT:PSS mixed solution and the photoresist in a certain ratio to prepare a graphene/PEDOT:PSS photoresist having conductivity.
  • the graphene/PEDOT:PSS mixed solution and the photoresist are mixed at a mass ratio of 1:1 to 1:50; preferably, the graphene/PEDOT:PSS mixed solution in the step 2 is used.
  • the photoresist was mixed with a mass ratio of 2:3.
  • the photoresist includes a sensitizer, a resin, and a solvent, wherein the mass ratio of the sensitizer, the resin, and the solvent is 5:20:75, and the photoresist can be selected as a positive photoresist.
  • Various types of photoresists such as negative photoresist.
  • Step 3 Providing a substrate, coating the graphene/PEDOT:PSS photoresist prepared in the step 2 on the substrate, and then coating the graphene/PEDOT on the substrate with a mask of a predetermined shape: The PSS photoresist is exposed, and then developed with a developing solution, and baked to obtain a patterned electrode.
  • the graphene/PEDOT:PSS photoresist is coated by a slit coating, a spin coating, or a spray coating process; the developing solution is hydrogen hydroxide.
  • Potassium (KOH) The solution, the mass percentage of potassium hydroxide in the potassium hydroxide solution was 0.04 wt%; the baking temperature was 230 ° C, and the baking time was 10 min.
  • the patterning process can be directly performed by the conductive graphene/PEDOT:PSS photoresist, which can reduce the process time and production cost compared to the prior art, which eliminates a positive photoresist coating process.
  • the patterned electrode is a pixel electrode used in the MVA technology, and the pixel electrode is divided into a plurality of regions, and pixel electrodes in each region are formed with pixel electrode branches and slits extending in different directions.
  • the present invention in combination with the method for preparing a patterned electrode, the present invention further provides a method for fabricating a liquid crystal display panel, comprising the following steps:
  • Step 1 Providing a graphene aqueous solution and a PEDOT:PSS solution, and mixing the graphene aqueous solution with the PEDOT:PSS solution according to a certain ratio to obtain a graphene/PEDOT:PSS mixed solution.
  • the mass percentage of graphene in the aqueous graphene solution is from 1% by weight to 99% by weight, preferably 50% by weight.
  • the mass percentage of PEDOT:PSS in the PEDOT:PSS solution is from 1% by weight to 99% by weight, preferably 50% by weight.
  • the aqueous graphene solution and the PEDOT:PSS solution are mixed at a mass ratio of 1:5-1:100; preferably, the aqueous graphene solution and the PEDOT:PSS solution are mixed at a mass ratio of 1:10.
  • the graphene aqueous solution is mixed with a PEDOT:PSS solution by ultrasonic vibration, and the ultrasonic vibration has an ultrasonic power of 300 W and an ultrasonic time of 10 min.
  • the present invention uses graphene and PEDOT:PSS to fabricate electrodes. Compared with the ITO materials used in the prior art, graphene and PEDOT:PSS materials have lower cost.
  • Step 2 Providing a photoresist, mixing and stirring the graphene/PEDOT:PSS mixed solution and the photoresist in a certain ratio to prepare a graphene/PEDOT:PSS photoresist having conductivity.
  • the graphene/PEDOT:PSS mixed solution and the photoresist are mixed at a mass ratio of 1:1 to 1:50; preferably, the graphene/PEDOT:PSS mixed solution
  • the photoresist was mixed with a mass ratio of 2:3.
  • the photoresist includes a sensitizer, a resin, and a solvent, wherein the mass ratio of the sensitizer, the resin, and the solvent is 5:20:75, and the photoresist can be selected as a positive photoresist.
  • Various types of photoresists such as negative photoresist.
  • Step 3 providing a color filter substrate 1, coating the graphene/PEDOT:PSS mixed solution prepared in step 1 on the color filter substrate 1, and baking to form a first electrode 2 on the color filter substrate 1.
  • the first electrode 2 is a uniform electrode having a uniform thickness and continuous uninterrupted, at the first electrode
  • the first liquid crystal alignment layer 5 is formed on 2.
  • the graphene/PEDOT:PSS mixed solution is applied by spin coating, and the spin coating process is: firstly spin coating at 500 rpm for 10 s, then spin coating at 800 rpm for 20 s.
  • the baking temperature was 120 ° C and the baking time was 10 min.
  • the first electrode 2 is a common electrode of a liquid crystal display panel.
  • the specific structure of the color filter substrate adopts the prior art, and expansion description will not be made here.
  • Step 4 providing an array substrate 3, coating the graphene/PEDOT:PSS photoresist prepared in the step 2 on the array substrate 3, and applying the pair of masks of a predetermined shape to the array substrate 3
  • the graphene/PEDOT:PSS photoresist is exposed, followed by development with a developing solution, baking to obtain a patterned second electrode 4, and a second liquid crystal alignment layer 6 is formed on the second electrode 4.
  • the graphene/PEDOT:PSS photoresist is coated by a slit coating, a spin coating, or a spray coating process; the developing solution is hydrogen
  • the potassium oxide solution, the mass percentage of potassium hydroxide in the potassium hydroxide solution was 0.04 wt%; the baking temperature was 230 ° C, and the baking time was 10 min.
  • the second electrode 4 is a patterned pixel electrode, and the pixel electrode is divided into a plurality of regions, and the pixel electrodes in each region are formed with patterns of pixel electrode branches and slits extending in different directions, for example, “ The pixel electrode of the m-shaped pattern.
  • the specific structure of the array substrate adopts the prior art, and no expansion description is made here.
  • Step 5 assembling the color filter substrate 1 and the array substrate 3 such that the first liquid crystal alignment layer 5 and the second liquid crystal alignment layer 6 are oppositely disposed, and the first liquid crystal alignment layer 5 and the second liquid crystal alignment Liquid crystal is poured between the layers 6 to form a liquid crystal layer 7, and a liquid crystal display panel is obtained.
  • the method for fabricating the above liquid crystal display panel uses a graphene/PEDOT:PSS mixed solution to form a planar first electrode, and a conductive second graphene/PEDOT:PSS photoresist is used to prepare a patterned second electrode.
  • a graphene/PEDOT:PSS mixed solution to form a planar first electrode
  • a conductive second graphene/PEDOT:PSS photoresist is used to prepare a patterned second electrode.
  • the present invention further provides a liquid crystal display panel comprising: a color filter substrate 1 , an array substrate 3 disposed opposite to the color filter substrate 1 , and a color filter substrate 1 disposed adjacent to the array substrate 3 .
  • a first electrode 2 on one side, a first liquid crystal alignment layer 5 disposed on the first electrode 2, a second electrode 4 disposed on the array substrate 3, and a second electrode 4 disposed on the second electrode 4.
  • the second electrode 4 is a patterned electrode, and the first electrode 2 is a full-surface electrode with uniform thickness and continuous uninterrupted;
  • the material of the first electrode 2 is a mixture of graphene and PEDOT:PSS;
  • the material of the second electrode 4 is a mixture of graphene, PEDOT: PSS, and photoresist.
  • the second electrode 4 is coated with graphene on the array substrate, A mixture of PEDOT:PSS and photoresist is prepared by exposure, development, and baking processes.
  • the second electrode 4 is a patterned pixel electrode, and the pixel electrode is divided into a plurality of regions, and the pixel electrodes in each region are formed with patterns of pixel electrode branches and slits extending in different directions, for example, “ The pixel electrode of the m-shaped pattern.
  • the specific structures of the array substrate and the color filter substrate are both prior art and will not be described here.
  • the present invention provides a method for fabricating a patterned electrode by combining graphene, PEDOT: PSS, and photoresist to form a graphene/PEDOT:PSS lithography having electrical conductivity.
  • Glue and then using conductive graphene/PEDOT:PSS photoresist to make patterned electrodes, the cost of graphene and PEDOT:PSS materials is greatly reduced compared to the ITO materials used in the prior art, and The ability of graphene/PEDOT:PSS photoresist can be directly patterned, eliminating the need for a positive photoresist coating process compared to the prior art, reducing process time and production costs.
  • the present invention further provides a method for fabricating a liquid crystal display panel, which uses a graphene/PEDOT:PSS mixed solution to prepare a first electrode of a whole surface, and is prepared by using graphene/PEDOT:PSS photoresist with conductivity.
  • the patterned second electrode can reduce production cost, improve production efficiency, and achieve multi-domain vertical alignment.
  • the invention also provides a liquid crystal display panel, which can realize multi-domain vertical alignment, reduce the cost of the liquid crystal display panel, and improve product competitiveness.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种图案化电极的制作方法、液晶显示面板及其制作方法。图案化电极的制作方法包括如下步骤:步骤1、将石墨烯水溶液与PEDOT:PSS溶液按照一定比例进行混合,制得石墨烯/PEDOT:PSS混合溶液;步骤2、将石墨烯/PEDOT:PSS混合溶液与光刻胶按照一定比例进行混合、搅拌后,制成具有导电能力的石墨烯/PEDOT:PSS光刻胶;步骤3、提供一基板,于基板上涂敷步骤2中制得的石墨烯/PEDOT:PSS光刻胶,曝光、显影、烘烤即可制得图案化电极,与传统的ITO电极的制作方法相比,能够简化图案化电极的制作工艺,降低图案化电极的制作成本。

Description

图案化电极的制作方法、液晶显示面板及其制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种图案化电极的制作方法、液晶显示面板及其制作方法。
背景技术
液晶显示器(Liquid Crystal Display,LCD)是目前最广泛使用的平板显示器之一,液晶显示面板是液晶显示器的核心组成部分。液晶显示面板通常是由一彩色滤光片基板(Color Filter,CF)、一薄膜晶体管阵列基板(Thin Film Transistor Array Substrate,TFT Array Substrate)以及一配置于两基板间的液晶层(Liquid Crystal Layer)所构成。一般阵列基板、彩色滤光片基板上分别设置像素电极、公共电极。当电压被施加到像素电极与公共电极便会在液晶层中产生电场,该电场决定了液晶分子的取向,从而调整入射到液晶层的光的偏振,使液晶面板显示图像。
在液晶显示器中,基于液晶的运作模式的分类有:相变(phase change,PC)、扭转向列(twisted nematic,TN)、超扭转向列(super twisted nematic,STN)、垂直配向型(Vertical Alignment,VA)、横向电场切换型(In plane Switching,IPS)等。其中VA型液晶显示器具有较高的对比度,在大尺寸面板具有较为广泛的应用。但由于VA型液晶面板采用的是具有垂直转动特性的液晶,这种液晶分子双折射率的差异很大,导致整个面板的色偏较为严重。
现有技术通常采用多畴垂直配向(Multi-domain Vertical Alignment,MVA)技术来解决上述色偏问题,即将一个子像素区划分为多个区域,每个区域内液晶在电压作用下具有不同的倒向,从而降低色偏的影响,提高视觉感受。实现MVA技术的方法有多种,其中一种方法是将一侧的像素电极划分为多个区域,各个区域内的像素电极均形成有向不同方向延伸的像素电极分支与狭缝间隔的图案,另一侧的公共电极为厚度均匀、连续不间断的平面电极,由于特殊的像素电极图案,其产生的倾斜电场可以诱导不同区域中的液晶分子倒向不同的方向。上述实现MVA技术的方法中,像素电极与公共电极的制作材料通常为氧化铟锡(Indium tin oxide,ITO),其中,图案化的像素电极制作过程通常为先在基板上利用化学气相沉积(Chemical Vapor Deposition,CVD)或者物理气相沉积(Physical Vapor  Deposition,PVD)等设备溅射一层ITO薄膜,然后在ITO上涂覆一层光刻胶,再利用特殊形状的掩模版,对光刻胶进行曝光,接着对光刻胶进行显影,然后再对ITO薄膜进行蚀刻形成与光刻胶相同的图案,最后将光刻胶进行剥离。这样就形成了具有特殊图案的ITO电极。
现有技术中,制作ITO薄膜主要为PVD、CVD等技术,虽然这些技术较成熟,但制作成本也相对较高。同时ITO中金属铟属于稀有金属,随着不断的消耗与价格持续走高,导致ITO在工业上的应用受到限制。此外,制作ITO特殊图案电极时,由于分辨率要求较高,还需要正型光阻涂敷,正型光阻价格较高,导致制作工艺成本升高。
发明内容
本发明的目的在于提供一种图案化电极的制作方法,能够简化图案化电极的制作工艺,降低图案化电极的制作成本。
本发明的目的还在于提供一种液晶显示面板的制作方法,能够简化液晶显示面板中图案化电极的制作工艺,降低电极和液晶显示面板的制作成本,提升产品竞争力。
本发明的目的还在于提供一种液晶显示面板,能够降低液晶显示面板的成本,提升产品竞争力。
为实现上述目的,本发明提供了一种图案化电极的制作方法,包括如下步骤:
步骤1、提供石墨烯水溶液与PEDOT:PSS溶液,将石墨烯水溶液与PEDOT:PSS溶液按照一定比例进行混合,制得石墨烯/PEDOT:PSS混合溶液;
步骤2、提供光刻胶,将石墨烯/PEDOT:PSS混合溶液与光刻胶按照一定比例进行混合、搅拌后,制成具有导电能力的石墨烯/PEDOT:PSS光刻胶;
步骤3、提供一基板,于所述基板上涂敷步骤2中制得的石墨烯/PEDOT:PSS光刻胶,再利用预定形状的掩膜板对涂敷于基板上的石墨烯/PEDOT:PSS光刻胶进行曝光,随后利用显影液进行显影,烘烤即可制得图案化电极。
所述步骤1中,所述石墨烯水溶液中石墨烯的质量百分比为1wt%-99wt%,所述PEDOT:PSS溶液中PEDOT:PSS的质量百分比为1wt%-99wt%;所述石墨烯水溶液与PEDOT:PSS溶液按照1:5-1:100的质量比进行混合。
所述步骤2中,所述石墨烯/PEDOT:PSS混合溶液与光刻胶按照1:1-1: 50的质量比进行混合;所述光刻胶包括感光剂、树脂、及溶剂,其中,所述感光剂、树脂、及溶剂的质量比为5:20:75。
所述步骤3中,采用狭缝涂布、旋涂、或喷涂工艺涂覆所述石墨烯/PEDOT:PSS光刻胶;所述显影液为氢氧化钾溶液,所述氢氧化钾溶液中氢氧化钾的质量百分比为0.04wt%;烘烤温度为230℃,烘烤时间为10min。
本发明还提供一种液晶显示面板的制作方法,包括如下步骤:
步骤1、提供石墨烯水溶液与PEDOT:PSS溶液,将石墨烯水溶液与PEDOT:PSS溶液按照一定比例进行混合,制得石墨烯/PEDOT:PSS混合溶液;
步骤2、提供光刻胶,将石墨烯/PEDOT:PSS混合溶液与光刻胶按照一定比例进行混合、搅拌后,制成具有导电能力的石墨烯/PEDOT:PSS光刻胶;
步骤3、提供一彩膜基板,于所述彩膜基板上涂敷步骤1中制得的石墨烯/PEDOT:PSS混合溶液,烘烤后形成位于彩膜基板上的第一电极,所述第一电极为厚度均匀、连续不间断的整面电极,在所述第一电极上制作第一液晶配向层;
步骤4、提供一阵列基板,于所述阵列基板上涂敷步骤2中制得的石墨烯/PEDOT:PSS光刻胶,再利用预定形状的掩膜板对涂敷于阵列基板上的石墨烯/PEDOT:PSS光刻胶进行曝光,随后利用显影液进行显影,烘烤即可制得图案化的第二电极,在所述第二电极上制作第二液晶配向层;
步骤5、组立所述彩膜基板与阵列基板,使所述第一液晶配向层与第二液晶配向层相对设置,并在所述第一液晶配向层与第二液晶配向层之间灌入液晶,形成液晶层,制得液晶显示面板。
所述步骤1中,所述石墨烯水溶液中石墨烯的质量百分比为1wt%-99wt%,所述PEDOT:PSS溶液中PEDOT:PSS的质量百分比为1wt%-99wt%;所述石墨烯水溶液与PEDOT:PSS溶液按照1:5-1:100的质量比进行混合。
所述步骤2中,所述石墨烯/PEDOT:PSS混合溶液与光刻胶按照1:1-1:50的质量比进行混合;所述光刻胶包括感光剂、树脂、及溶剂,其中,所述感光剂、树脂、及溶剂的质量比为5:20:75。
所述步骤3中,采用旋涂法涂覆所述石墨烯/PEDOT:PSS混合溶液,旋涂过程为:首先在500rpm的转速下旋涂10s,然后在800rpm的转速下旋涂20s;烘烤温度为120℃,烘烤时间为10min。
所述步骤4中,采用狭缝涂布、旋涂、或喷涂工艺涂覆所述石墨烯/PEDOT:PSS光刻胶;所述显影液为氢氧化钾溶液,所述氢氧化钾溶液中氢 氧化钾的质量百分比为0.04wt%;烘烤温度为230℃,烘烤时间为10min。
本发明还提供一种液晶显示面板,包括:彩膜基板、与所述彩膜基板相对设置的阵列基板、设于所述彩膜基板靠近所述阵列基板一侧的第一电极、设于所述第一电极上的第一液晶配向层、设于所述阵列基板上的第二电极、设于所述第二电极上的第二液晶配向层、及夹设于第一与第二液晶配向层之间的液晶层;
所述第二电极为图案化的电极,所述第一电极为厚度均匀、连续不间断的整面电极;
所述第一电极的材料为石墨烯与PEDOT:PSS的混合物;
所述第二电极的材料为石墨烯、PEDOT:PSS、及光刻胶的混合物。
本发明的有益效果:本发明提供了一种图案化电极的制作方法,该方法将石墨烯、PEDOT:PSS、及光刻胶混合到一起,制成具有导电能力的石墨烯/PEDOT:PSS光刻胶,再使用具有导电能力的石墨烯/PEDOT:PSS光刻胶制作图案化的电极,相比于现有技术采用的ITO材料,石墨烯及PEDOT:PSS材料的成本大幅下降,此外通过具有导电能力的石墨烯与/PEDOT:PSS光刻胶可直接进行图案化制程,相比现有技术省去一道正型光刻胶涂敷过程,降低制程时间和生产成本。进一步的,本发明还提供一种液晶显示面板的制作方法,该方法采用石墨烯/PEDOT:PSS混合溶液制作整面的第一电极,采用具有导电能力的石墨烯/PEDOT:PSS光刻胶制备图案化的第二电极,能够降低生产成本,提升生产效率,实现多畴垂直配向。本发明还提供一种液晶显示面板,该液晶显示面板能够实现多畴垂直配向,降低液晶显示面板的成本,提升产品竞争力。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为本发明的图案化电极的制作方法的流程图;
图2为本发明的液晶显示面板的制作方法的流程图;
图3为本发明的液晶显示面板的结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明首先提供一种图案化电极的制作方法,包括如下步骤:
步骤1、提供石墨烯水溶液与PEDOT:PSS(聚(3,4-亚乙二氧基噻吩))溶液,将石墨烯水溶液与PEDOT:PSS溶液按照一定比例进行混合,制得石墨烯/PEDOT:PSS混合溶液。
具体的,所述石墨烯水溶液中石墨烯的质量百分比为1wt%-99wt%,优选为50wt%。
具体的,所述PEDOT:PSS溶液中PEDOT:PSS的质量百分比为1wt%-99wt%,优选为50wt%。
具体的,所述石墨烯水溶液与PEDOT:PSS溶液按照1:5-1:100的质量比进行混合;优选的,所述石墨烯水溶液与PEDOT:PSS溶液按照1:10的质量比进行混合。
具体的,采用超声震荡对所述石墨烯水溶液与PEDOT:PSS溶液进行混合,所述超声振荡的超声功率为300W,超声时间为10min。
本发明采用石墨烯与PEDOT:PSS来制作电极,相比于现有技术采用的ITO材料,石墨烯及PEDOT:PSS材料成本较低,进而可以降低电极的制作成本。
步骤2、提供光刻胶,将石墨烯/PEDOT:PSS混合溶液与光刻胶按照一定比例混合、搅拌后,制成具有导电能力的石墨烯/PEDOT:PSS光刻胶。
具体的,所述步骤2中石墨烯/PEDOT:PSS混合溶液与光刻胶按照1:1-1:50的质量比进行混合;优选的,所述步骤2中石墨烯/PEDOT:PSS混合溶液与光刻胶按照2:3的质量比进行混合。
具体的,所述光刻胶包括感光剂、树脂、及溶剂,其中,所述感光剂、树脂、及溶剂的质量比为5:20:75,所述光刻胶可选择正型光刻胶、负型光刻胶等各种类型的光刻胶。
步骤3、提供一基板,于所述基板上涂敷步骤2中制得的石墨烯/PEDOT:PSS光刻胶,再利用预定形状的掩膜板对涂敷于基板上的石墨烯/PEDOT:PSS光刻胶进行曝光,随后利用显影液进行显影,烘烤即可制得图案化电极。
具体的,所述步骤3中采用狭缝涂布(slit)、旋涂(Spin)、或喷涂(Spray)工艺涂覆所述石墨烯/PEDOT:PSS光刻胶;所述显影液为氢氧化钾(KOH) 溶液,所述氢氧化钾溶液中氢氧化钾的质量百分比为0.04wt%;烘烤温度为230℃,烘烤时间为10min。通过该具有导电能力的石墨烯/PEDOT:PSS光刻胶可直接进行图案化制程,相比现有技术省去一道正型光刻胶涂敷过程,能够降低制程时间和生产成本。
需要说明的是,所述图案化电极为用于MVA技术的像素电极,所述像素电极被划分为多个区域,各个区域内的像素电极均形成有向不同方向延伸的像素电极分支与狭缝间隔的图案,例如“米”字型图案的像素电极。
请参阅图2及图3,结合上述图案化电极的制备方法,本发明还提供一种液晶显示面板的制作方法,包括如下步骤:
步骤1、提供石墨烯水溶液与PEDOT:PSS溶液,将石墨烯水溶液与PEDOT:PSS溶液按照一定比例进行混合,制得石墨烯/PEDOT:PSS混合溶液。
具体的,所述石墨烯水溶液中石墨烯的质量百分比为1wt%-99wt%,优选为50wt%。
具体的,所述PEDOT:PSS溶液中PEDOT:PSS的质量百分比为1wt%-99wt%,优选为50wt%。
具体的,所述石墨烯水溶液与PEDOT:PSS溶液按照1:5-1:100的质量比进行混合;优选的,所述石墨烯水溶液与PEDOT:PSS溶液按照1:10的质量比进行混合。
具体的,采用超声震荡对所述石墨烯水溶液与PEDOT:PSS溶液进行混合,所述超声振荡的超声功率为300W,超声时间为10min。
本发明采用石墨烯与PEDOT:PSS来制作电极,相比于现有技术采用的ITO材料,石墨烯及PEDOT:PSS材料成本较低。
步骤2、提供光刻胶,将石墨烯/PEDOT:PSS混合溶液与光刻胶按照一定比例混合、搅拌后,制成具有导电能力的石墨烯/PEDOT:PSS光刻胶。
具体的,所述步骤2中,所述石墨烯/PEDOT:PSS混合溶液与光刻胶按照1:1-1:50的质量比进行混合;优选的,所述石墨烯/PEDOT:PSS混合溶液与光刻胶按照2:3的质量比进行混合。
具体的,所述光刻胶包括感光剂、树脂、及溶剂,其中,所述感光剂、树脂、及溶剂的质量比为5:20:75,所述光刻胶可选择正型光刻胶、负型光刻胶等各种类型的光刻胶。
步骤3、提供一彩膜基板1,于所述彩膜基板1上涂敷步骤1中制得的石墨烯/PEDOT:PSS混合溶液,烘烤后形成位于彩膜基板1上的第一电极2,所述第一电极2为厚度均匀、连续不间断的整面电极,在所述第一电极 2上制作第一液晶配向层5。
具体的,所述步骤3中,采用旋涂法涂敷所述石墨烯/PEDOT:PSS混合溶液,旋涂过程为:首先在500rpm的转速下旋涂10s,然后在800rpm的转速下旋涂20s;烘烤温度为120℃,烘烤时间为10min。所述第一电极2为液晶显示面板的公共电极。所述彩膜基板的具体结构采用现有技术,此处不进行展开描述。
步骤4、提供一阵列基板3,于所述阵列基板3上涂敷步骤2中制得的石墨烯/PEDOT:PSS光刻胶,再利用预定形状的掩膜板对涂敷于阵列基板3上的石墨烯/PEDOT:PSS光刻胶进行曝光,随后利用显影液进行显影,烘烤即可制得图案化的第二电极4,在所述第二电极4上制作第二液晶配向层6。
具体的,所述步骤4中,采用狭缝涂布(slit)、旋涂(Spin)、或喷涂(Spray)工艺涂覆所述石墨烯/PEDOT:PSS光刻胶;所述显影液为氢氧化钾溶液,所述氢氧化钾溶液中氢氧化钾的质量百分比为0.04wt%;烘烤温度为230℃,烘烤时间为10min。所述第二电极4为图案化的像素电极,所述像素电极被划分为多个区域,各个区域内的像素电极均形成有向不同方向延伸的像素电极分支与狭缝间隔的图案,例如“米”字型图案的像素电极。所述阵列基板的具体结构采用现有技术,此处不进行展开描述。
步骤5、组立所述彩膜基板1与阵列基板3,使所述第一液晶配向层5与第二液晶配向层6相对设置,并在所述第一液晶配向层5与第二液晶配向层6之间灌入液晶,形成液晶层7,制得液晶显示面板。
特别的,上述液晶显示面板的制作方法采用石墨烯/PEDOT:PSS混合溶液制作平面型的第一电极,采用具有导电能力的石墨烯/PEDOT:PSS光刻胶制备图案化的第二电极,相比于现有技术,在实现多畴垂直配向的同时,还能够简化生产工艺,降低生产成本,提升生产效率。
请参阅图3,本发明还提供一种液晶显示面板,包括:彩膜基板1、与所述彩膜基板1相对设置的阵列基板3、设于所述彩膜基板1靠近所述阵列基板3一侧的第一电极2、设于所述第一电极2上的第一液晶配向层5、设于所述阵列基板3上的第二电极4、设于所述第二电极4上的第二液晶配向层6、及夹设于第一与第二液晶配向层5、6之间的液晶层7;
所述第二电极4为图案化的电极,所述第一电极2为厚度均匀、连续不间断的整面电极;
所述第一电极2的材料为石墨烯与PEDOT:PSS的混合物;
所述第二电极4的材料为石墨烯、PEDOT:PSS、及光刻胶的混合物。
特别的,所述第二电极4通过在阵列基板上涂覆由石墨烯、 PEDOT:PSS、及光刻胶组成的混合物,再经过曝光、显影、及烘烤制程制得。所述第二电极4为图案化的像素电极,所述像素电极被划分为多个区域,各个区域内的像素电极均形成有向不同方向延伸的像素电极分支与狭缝间隔的图案,例如“米”字型图案的像素电极。所述阵列基板及彩膜基板的具体结构均采用现有技术,此处不进行展开描述。
综上所述,本发明提供了一种图案化电极的制作方法,该方法将石墨烯、PEDOT:PSS、及光刻胶混合到一起,制成具有导电能力的石墨烯/PEDOT:PSS光刻胶,再使用具有导电能力的石墨烯/PEDOT:PSS光刻胶制作图案化的电极,相比于现有技术采用的ITO材料,石墨烯及PEDOT:PSS材料的成本大幅下降,此外通过具有导电能力的石墨烯/PEDOT:PSS光刻胶可直接进行图案化制程,相比现有技术省去一道正型光刻胶涂敷过程,降低制程时间和生产成本。进一步的,本发明还提供一种液晶显示面板的制作方法,该方法采用石墨烯/PEDOT:PSS混合溶液制作整面的第一电极,采用具有导电能力的石墨烯/PEDOT:PSS光刻胶制备图案化的第二电极,能够降低生产成本,提升生产效率,实现多畴垂直配向。本发明还提供一种液晶显示面板,该液晶显示面板能够实现多畴垂直配向,降低液晶显示面板的成本,提升产品竞争力。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (10)

  1. 一种图案化电极的制作方法,包括如下步骤:
    步骤1、提供石墨烯水溶液与PEDOT:PSS溶液,将石墨烯水溶液与PEDOT:PSS溶液按照一定比例进行混合,制得石墨烯/PEDOT:PSS混合溶液;
    步骤2、提供光刻胶,将石墨烯/PEDOT:PSS混合溶液与光刻胶按照一定比例进行混合、搅拌后,制成具有导电能力的石墨烯/PEDOT:PSS光刻胶;
    步骤3、提供一基板,于所述基板上涂敷步骤2中制得的石墨烯/PEDOT:PSS光刻胶,再利用预定形状的掩膜板对涂敷于基板上的石墨烯/PEDOT:PSS光刻胶进行曝光,随后利用显影液进行显影,烘烤即可制得图案化电极。
  2. 如权利要求1所述的图案化电极的制作方法,其中,所述步骤1中,所述石墨烯水溶液中石墨烯的质量百分比为1wt%-99wt%,所述PEDOT:PSS溶液中PEDOT:PSS的质量百分比为1wt%-99wt%;所述石墨烯水溶液与PEDOT:PSS溶液按照1:5-1:100的质量比进行混合。
  3. 如权利要求2所述的图案化电极的制作方法,其中,所述步骤2中,所述石墨烯/PEDOT:PSS混合溶液与光刻胶按照1:1-1:50的质量比进行混合;所述光刻胶包括感光剂、树脂、及溶剂,其中,所述感光剂、树脂、及溶剂的质量比为5:20:75。
  4. 如权利要求1所述的图案化电极的制作方法,其中,所述步骤3中,采用狭缝涂布工艺涂覆所述石墨烯/PEDOT:PSS光刻胶;所述显影液为氢氧化钾溶液,所述氢氧化钾溶液中氢氧化钾的质量百分比为0.04wt%;烘烤温度为230℃,烘烤时间为10min。
  5. 一种液晶显示面板的制作方法,包括如下步骤:
    步骤1、提供石墨烯水溶液与PEDOT:PSS溶液,将石墨烯水溶液与PEDOT:PSS溶液按照一定比例进行混合,制得石墨烯/PEDOT:PSS混合溶液;
    步骤2、提供光刻胶,将石墨烯/PEDOT:PSS混合溶液与光刻胶按照一定比例进行混合、搅拌后,制成具有导电能力的石墨烯/PEDOT:PSS光刻胶;
    步骤3、提供一彩膜基板,于所述彩膜基板上涂敷步骤1中制得的石墨烯/PEDOT:PSS混合溶液,烘烤后形成位于彩膜基板上的第一电极,所述第一电极为厚度均匀、连续不间断的整面电极,在所述第一电极上制作第一 液晶配向层;
    步骤4、提供一阵列基板,于所述阵列基板上涂敷步骤2中制得的石墨烯/PEDOT:PSS光刻胶,再利用预定形状的掩膜板对涂敷于阵列基板上的石墨烯/PEDOT:PSS光刻胶进行曝光,随后利用显影液进行显影,烘烤即可制得图案化的第二电极,在所述第二电极上制作第二液晶配向层;
    步骤5、组立所述彩膜基板与阵列基板,使所述第一液晶配向层与第二液晶配向层相对设置,并在所述第一液晶配向层与第二液晶配向层之间灌入液晶,形成液晶层,制得液晶显示面板。
  6. 如权利要求5所述的液晶显示面板的制作方法,其中,所述步骤1中,所述石墨烯水溶液中石墨烯的质量百分比为1wt%-99wt%,所述PEDOT:PSS溶液中PEDOT:PSS的质量百分比为1wt%-99wt%;所述石墨烯水溶液与PEDOT:PSS溶液按照1:5-1:100的质量比进行混合。
  7. 如权利要求6所述的液晶显示面板的制作方法,其中,所述步骤2中,所述石墨烯/PEDOT:PSS混合溶液与光刻胶按照1:1-1:50的质量比进行混合;所述光刻胶包括感光剂、树脂、及溶剂,其中,所述感光剂、树脂、及溶剂的质量比为5:20:75。
  8. 如权利要求5所述的液晶显示面板的制作方法,其中,所述步骤3中,采用旋涂法涂覆所述石墨烯/PEDOT:PSS混合溶液,旋涂过程为:首先在500rpm的转速下旋涂10s,然后在800rpm的转速下旋涂20s;烘烤温度为120℃,烘烤时间为10min。
  9. 如权利要求5所述的液晶显示面板的制作方法,其中,所述步骤4中,采用狭缝涂布、旋涂、或喷涂工艺涂覆所述石墨烯/PEDOT:PSS光刻胶;所述显影液为氢氧化钾溶液,所述氢氧化钾溶液中氢氧化钾的质量百分比为0.04wt%;烘烤温度为230℃,烘烤时间为10min。
  10. 一种液晶显示面板,包括:彩膜基板、与所述彩膜基板相对设置的阵列基板、设于所述彩膜基板靠近所述阵列基板一侧的第一电极、设于所述第一电极上的第一液晶配向层、设于所述阵列基板上的第二电极、设于所述第二电极上的第二液晶配向层、及夹设于第一与第二液晶配向层之间的液晶层;
    所述第二电极为图案化的电极,所述第一电极为厚度均匀、连续不间断的整面电极;
    所述第一电极的材料为石墨烯与PEDOT:PSS的混合物;
    所述第二电极的材料为石墨烯、PEDOT:PSS、及光刻胶的混合物。
PCT/CN2015/098508 2015-11-20 2015-12-23 图案化电极的制作方法、液晶显示面板及其制作方法 WO2017084150A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/914,644 US20180039122A1 (en) 2015-11-20 2015-12-23 Method for manufacturing patterned electrode and liquid crystal display panel and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510818445.5A CN105259715A (zh) 2015-11-20 2015-11-20 图案化电极的制作方法、液晶显示面板及其制作方法
CN201510818445.5 2015-11-20

Publications (1)

Publication Number Publication Date
WO2017084150A1 true WO2017084150A1 (zh) 2017-05-26

Family

ID=55099465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098508 WO2017084150A1 (zh) 2015-11-20 2015-12-23 图案化电极的制作方法、液晶显示面板及其制作方法

Country Status (3)

Country Link
US (1) US20180039122A1 (zh)
CN (1) CN105259715A (zh)
WO (1) WO2017084150A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105527757B (zh) * 2016-02-01 2018-03-06 深圳市华星光电技术有限公司 液晶显示面板的制作方法
CN105974683B (zh) * 2016-07-13 2019-09-24 深圳市华星光电技术有限公司 液晶显示面板及其制作方法
CN106299123B (zh) * 2016-10-11 2019-03-15 北京科技大学 一种图案化有机电极pedot:pss的方法
CN106784393B (zh) * 2016-11-17 2019-06-04 昆山工研院新型平板显示技术中心有限公司 一种导电纳米线层,其图形化方法及应用
CN108628025A (zh) * 2017-03-20 2018-10-09 京东方科技集团股份有限公司 彩膜基板及其制造方法、显示装置
CN108181749B (zh) * 2017-12-29 2020-08-28 深圳市华星光电技术有限公司 制造液晶显示面板的方法
CN108873532B (zh) * 2018-06-07 2021-03-02 Tcl华星光电技术有限公司 立体电极的制备方法
US11106064B2 (en) * 2018-06-15 2021-08-31 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Tuning the polar anchoring strength by doping graphene flakes and resulting accelerated electro-optic switching in liquid crystal devices
CN108878370A (zh) * 2018-06-27 2018-11-23 深圳市华星光电技术有限公司 一种透明导电电极及其制备方法、显示装置
WO2022269851A1 (ja) * 2021-06-24 2022-12-29 シャープディスプレイテクノロジー株式会社 表示装置、表示装置の製造方法、および水溶液
CN114772584A (zh) * 2022-03-23 2022-07-22 重庆大学 一种图案化立式石墨烯及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102804064A (zh) * 2009-06-09 2012-11-28 富士胶片株式会社 导电性组合物、透明导电膜、显示元件和集成太阳能电池
CN102834472A (zh) * 2010-02-05 2012-12-19 凯博瑞奥斯技术公司 光敏墨组合物和透明导体以及它们的使用方法
CN104292984A (zh) * 2013-07-16 2015-01-21 安炬科技股份有限公司 石墨烯油墨及石墨烯线路的制作方法
CN104575698A (zh) * 2013-10-09 2015-04-29 精磁科技股份有限公司 透明导电膜结构
WO2015067339A1 (en) * 2013-11-08 2015-05-14 Merck Patent Gmbh Method for structuring a transparent conductive matrix comprising silver nano materials
CN105073912A (zh) * 2013-03-25 2015-11-18 电子部品研究院 光敏涂料组合物、使用光敏涂料组合物的涂料导电膜以及形成涂料导电膜的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102804064A (zh) * 2009-06-09 2012-11-28 富士胶片株式会社 导电性组合物、透明导电膜、显示元件和集成太阳能电池
CN102834472A (zh) * 2010-02-05 2012-12-19 凯博瑞奥斯技术公司 光敏墨组合物和透明导体以及它们的使用方法
CN105073912A (zh) * 2013-03-25 2015-11-18 电子部品研究院 光敏涂料组合物、使用光敏涂料组合物的涂料导电膜以及形成涂料导电膜的方法
CN104292984A (zh) * 2013-07-16 2015-01-21 安炬科技股份有限公司 石墨烯油墨及石墨烯线路的制作方法
CN104575698A (zh) * 2013-10-09 2015-04-29 精磁科技股份有限公司 透明导电膜结构
WO2015067339A1 (en) * 2013-11-08 2015-05-14 Merck Patent Gmbh Method for structuring a transparent conductive matrix comprising silver nano materials

Also Published As

Publication number Publication date
US20180039122A1 (en) 2018-02-08
CN105259715A (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2017084150A1 (zh) 图案化电极的制作方法、液晶显示面板及其制作方法
US7799392B2 (en) Color filter substrate and fabricating method thereof
WO2016078238A1 (zh) 垂直配向液晶显示器及其制作方法
CN202563217U (zh) 一种液晶面板以及显示装置
US9575368B2 (en) Liquid crystal display panel and method for manufacturing the same
US20160026017A1 (en) Cell-assembled motherboard and fabrication method thereof, and liquid crystal display panel and fabrication method thereof
CN101339336B (zh) 液晶显示器及其制造方法
US20160341991A1 (en) Vertical alignment liquid crystal display
WO2013078921A1 (zh) 薄膜晶体管液晶显示器的亚像素结构及液晶显示器
CN104698687A (zh) 高穿透率va型液晶显示面板及其制作方法
CN109143690A (zh) 液晶显示面板及其制作方法
JP2011197149A (ja) 液晶表示装置
WO2013097515A1 (zh) 阵列基板、液晶显示装置及取向摩擦方法
CN103412444B (zh) 一种阵列基板及其制作方法和显示面板
KR100824060B1 (ko) 4개의 단자 전극을 갖는 쌍안정 키랄 스플레이 네마틱 액정표시 장치
CN104570514A (zh) 电极结构及液晶显示面板
CN102681277B (zh) 阵列基板及其制造方法和液晶显示面板
CN104062818A (zh) 一种液晶显示装置及其制造方法
US9588393B2 (en) Liquid crystal panel and method of manufacturing the same, display device
CN105446019A (zh) 一种显示面板制作方法及液晶显示器
CN101738797A (zh) 宽视角液晶显示器阵列基板及其制造方法
CN107085330B (zh) Psva像素结构
CN103033985A (zh) 一种液晶显示装置及其制备方法
CN105977263A (zh) 阵列基板及其制备方法、显示面板和显示装置
CN103984160A (zh) 阵列基板及其制造方法和液晶显示器件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14914644

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908646

Country of ref document: EP

Kind code of ref document: A1