WO2016078238A1 - 垂直配向液晶显示器及其制作方法 - Google Patents

垂直配向液晶显示器及其制作方法 Download PDF

Info

Publication number
WO2016078238A1
WO2016078238A1 PCT/CN2015/072470 CN2015072470W WO2016078238A1 WO 2016078238 A1 WO2016078238 A1 WO 2016078238A1 CN 2015072470 W CN2015072470 W CN 2015072470W WO 2016078238 A1 WO2016078238 A1 WO 2016078238A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
substrate
layer
polymerizable monomer
Prior art date
Application number
PCT/CN2015/072470
Other languages
English (en)
French (fr)
Inventor
钟新辉
李泳锐
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/423,696 priority Critical patent/US10113117B2/en
Publication of WO2016078238A1 publication Critical patent/WO2016078238A1/zh
Priority to US16/128,733 priority patent/US10914988B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3028Cyclohexane rings in which at least two rings are linked by a carbon chain containing carbon to carbon single bonds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K2019/2078Ph-COO-Ph-COO-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K2019/546Macromolecular compounds creating a polymeric network
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K2019/548Macromolecular compounds stabilizing the alignment; Polymer stabilized alignment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13345Network or three-dimensional gels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13712Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having negative dielectric anisotropy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13775Polymer-stabilized liquid crystal layers

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a vertical alignment liquid crystal display and a method of fabricating the same.
  • Liquid Crystal Display has many advantages such as thin body, power saving, no radiation, etc., and has been widely used, such as mobile phones, personal digital assistants (PDAs), digital cameras, computer screens or laptop screens. Wait.
  • PDAs personal digital assistants
  • LCD Liquid Crystal Display
  • TFT-LCDs thin film transistor liquid crystal displays
  • TFT-LCDs can be divided into three categories, namely, twisted nematic/super twisted nematic (TN/STN) type, planar conversion (IPS) type, and Vertical alignment (VA) type.
  • TN/STN twisted nematic/super twisted nematic
  • IPS planar conversion
  • VA Vertical alignment
  • the VA type liquid crystal display has a very high contrast ratio compared with other types of liquid crystal displays, generally reaching 4000-8000, and has a very wide application in large-size display, such as television.
  • VA type liquid crystal display has extremely high contrast is because liquid crystal molecules are arranged perpendicular to the surface of the substrate in the uncharged dark state, no phase difference is generated, the light leakage is extremely low, the dark state brightness is small, and the dark state brightness is lower. , the higher the contrast.
  • FIG. 1 in order to enable liquid crystal molecules in a VA liquid crystal display to be aligned perpendicular to the surface of the substrate, vertical alignment processing of the liquid crystal molecules 300 is required.
  • the most common practice is to specify the inner surfaces of the upper substrate 100 and the lower substrate 200.
  • the region is coated with a vertical alignment agent, and the alignment agent generally contains a large amount of chemical solvent N-methylpyrrolidone (NMP) and a polymer material polyimide (PI), and then the substrate is at a high temperature (generally 200 degrees Celsius or higher).
  • NMP chemical solvent N-methylpyrrolidone
  • PI polymer material polyimide
  • multi-domain VA (MVA) is usually adopted, that is, one sub-pixel is divided into a plurality of regions, and the liquid crystal in each region is applied. The voltages are then undone in different directions, so that the effects seen in each direction tend to average.
  • MVA multi-domain VA
  • ITO Indium Tin Oxide
  • FIG. 2 is a top plan view of a side of a lower substrate 200 of an MVA type liquid crystal display, wherein 210 and 220 are scan lines and data lines, respectively.
  • Figure 3 is a schematic cross-sectional view of the MVA liquid crystal display
  • 700 is a passivation layer of silicon nitride (SiNx) material.
  • SiNx silicon nitride
  • the alignment agent contains a large amount of NMP solvent, the process of forming the alignment layer is a high energy consumption, extremely environmentally friendly, and easy to be applied to the human body.
  • auxiliary alignment agent dissolves directly in the liquid crystal without using other solvents, and is used together with the liquid crystal, eliminating the coating device of the original alignment agent and the high-temperature baking equipment, and is more clean, environmentally friendly and energy-saving because no additional solvent is needed.
  • the mechanism of action of the auxiliary alignment agent is that one end of the auxiliary alignment agent molecule 301 has a special affinity with the inorganic material on the surface of the substrate, such as silicon nitride constituting the passivation layer 700 and ITO constituting the pixel electrode 800, and can be adsorbed on the surface of the substrate to assist
  • the other end of the alignment agent molecule 301 has a strong force with the liquid crystal molecules 300, thereby guiding the liquid crystal molecules 300 to be aligned perpendicular to the surface of the substrate, eventually achieving the effect as shown in FIG.
  • the small molecule auxiliary alignment agent can achieve the effect of vertical alignment, the alignment ability and the anchoring energy of most small molecule alignment agents are weak, which may result in some in-plane uniformity and low long-term reliability.
  • the problem is that it is necessary to improve such a liquid crystal display that realizes vertical alignment without PI, and enhance the alignment force and anchoring energy of liquid crystal molecules.
  • the object of the present invention is to provide a vertical alignment liquid crystal display, which solves the problem that the alignment ability of the small molecule auxiliary alignment agent is weak, and the auxiliary alignment agent to the liquid crystal molecule is enhanced when the PI alignment layer is omitted and the auxiliary alignment agent is used for vertical alignment.
  • the alignment force and anchoring energy enhance the vertical alignment effect of the auxiliary alignment agent on the liquid crystal molecules.
  • the object of the present invention is to provide a method for fabricating a vertical alignment liquid crystal display, which can solve the problem of weak alignment ability of the small molecule auxiliary alignment agent, enhance the alignment force and anchoring energy of the auxiliary alignment agent to the liquid crystal molecules, and strengthen the auxiliary alignment agent. It has a vertical alignment effect on liquid crystal molecules and is more environmentally friendly and energy-saving.
  • the present invention provides a vertical alignment liquid crystal display including a first substrate, a second substrate disposed opposite the first substrate, a liquid crystal layer disposed between the first substrate and the second substrate, a first passivation layer and a first layer respectively disposed on the inner side of the first substrate and the second substrate a second passivation layer, and a common electrode layer and a pixel electrode layer respectively disposed on the first passivation layer and the second passivation layer;
  • the liquid crystal layer includes liquid crystal molecules, an auxiliary alignment agent, and a polymer network penetrating the entire liquid crystal layer; the auxiliary alignment agent causes liquid crystal molecules in the liquid crystal layer to be vertically aligned on a surface of the first substrate and the second substrate; The polymer network stabilizes the alignment of the liquid crystal molecules and enhances the vertical alignment effect of the auxiliary alignment agent on the liquid crystal molecules.
  • the liquid crystal molecules are negative liquid crystal molecules; the polymer network is obtained by polymerization of a polymerizable monomer by UV irradiation.
  • the weight percentage of the polymerizable monomer in the liquid crystal layer is from 0.5% to 8%.
  • the weight percentage of the polymerizable monomer in the liquid crystal layer is from 1% to 5%.
  • the polymerizable monomer includes at least one dipolymerizable group monomer and at least one polypolymerizable group compound; the weight percentage of the polypolymerizable group compound in the polymerizable monomer is 10% - 50 %.
  • the structural formula of the dimerizable group monomer is:
  • P1 and P2 are a polymeric group, which are the same or different and are selected from the group consisting of methacrylate, acrylate, epoxy, and vinyl.
  • N1 and n2 are integers of 0 to 5, which are the same or different.
  • A1 and A2 are six-membered ring structures, which are the same or different, have a substituent or do not contain a substituent, and have a benzene ring or a cyclohexane structure.
  • X is a linking group, a substituted or unsubstituted alkyl, ether or ester chain having 1 to 20 atoms in the main chain, or 1 to 5 directly linked or separated by an alkyl group, an ether or an ester group. a substituted or unsubstituted chain structure of a six-membered ring structure;
  • the structural formula of the polyradical group compound is:
  • Y is a core atom or a group, and a plurality of substituents are bonded to a substituted or unsubstituted carbon atom, a nitrogen atom, a phosphate group, a polycyclic group,
  • L is a linking group which contains a substituted or unsubstituted alkyl, ether or ester chain of 1 to 20 atoms in the main chain;
  • P is a polymeric group selected from one of methacrylate, acrylate, epoxy, and vinyl, and n is 3 or 4.
  • the invention also provides a method for manufacturing a vertical alignment liquid crystal display, comprising the following steps:
  • Step 1 Input the first substrate and the second substrate
  • the first substrate and the second substrate are respectively provided with a first passivation layer and a second passivation layer, and the first passivation layer and the second passivation layer are respectively provided with a common electrode layer and a pixel electrode layer;
  • Step 2 applying a plastic frame on the first substrate or the second substrate;
  • Step 3 filling a liquid crystal layer in a region enclosed by the plastic frame
  • the liquid crystal layer includes liquid crystal molecules, an auxiliary alignment agent, and a polymerizable monomer
  • the weight percentage of the polymerizable monomer in the liquid crystal layer is 0.5% to 8%;
  • Step 4 the first substrate and the second substrate are paired
  • Step 5 applying a voltage to the common electrode layer and the pixel electrode layer to cause a certain deflection of the liquid crystal molecules in the liquid crystal layer, and simultaneously irradiating the liquid crystal layer with UV;
  • the polymerizable monomer undergoes polymerization to form a polymer network throughout the liquid crystal layer.
  • the weight percentage of the polymerizable monomer in the liquid crystal layer is 1% to 5%, and the liquid crystal molecules are negative liquid crystal molecules.
  • the polymerizable monomer includes at least one dipolymerizable group monomer and at least one polypolymerizable group compound; the weight percentage of the polypolymerizable group compound in the polymerizable monomer is 10% - 50 %.
  • the structural formula of the dimerizable group monomer is:
  • P1 and P2 are a polymeric group, which are the same or different and are selected from the group consisting of methacrylate, acrylate, epoxy, and vinyl.
  • N1 and n2 are integers of 0 to 5, which are the same or different.
  • A1 and A2 are six-membered ring structures, which are the same or different, have a substituent or do not contain a substituent, and have a benzene ring or a cyclohexane structure.
  • X is a linking group, a substituted or unsubstituted alkyl, ether or ester chain having 1 to 20 atoms in the main chain, or 1 to 5 directly linked or separated by an alkyl group, an ether or an ester group. a substituted or unsubstituted chain structure of a six-membered ring structure;
  • the structural formula of the polyradical group compound is:
  • Y is a core atom or a group, and a plurality of substituents are bonded to a substituted or unsubstituted carbon atom, a nitrogen atom, a phosphate group, a polycyclic group,
  • L is a linking group which contains a substituted or unsubstituted alkyl, ether or ester chain of 1 to 20 atoms in the main chain;
  • P is a polymeric group selected from one of methacrylate, acrylate, epoxy, and vinyl, and n is 3 or 4.
  • the invention also provides a method for manufacturing a vertical alignment liquid crystal display, comprising the following steps:
  • Step 1 Input the first substrate and the second substrate
  • the first substrate and the second substrate are respectively provided with a first passivation layer and a second passivation layer, and the first passivation layer and the second passivation layer are respectively provided with a common electrode layer and a pixel electrode layer;
  • Step 2 applying a plastic frame on the first substrate or the second substrate;
  • Step 3 filling a liquid crystal layer in a region enclosed by the plastic frame
  • the liquid crystal layer includes liquid crystal molecules, an auxiliary alignment agent, and a polymerizable monomer
  • the weight percentage of the polymerizable monomer in the liquid crystal layer is 0.5% to 8%;
  • Step 4 the first substrate and the second substrate are paired
  • Step 5 applying a voltage to the common electrode layer and the pixel electrode layer to cause a certain deflection of the liquid crystal molecules in the liquid crystal layer, and simultaneously irradiating the liquid crystal layer with UV;
  • the polymerizable monomer undergoes polymerization to form a polymer network penetrating the entire liquid crystal layer;
  • the weight percentage of the polymerizable monomer in the liquid crystal layer is 1% to 5%, and the liquid crystal molecules are negative liquid crystal molecules;
  • the polymerizable monomer comprises at least one dipolymerizable group monomer and at least one polypolymerizable group compound; the weight percentage of the polypolymerizable group compound in the polymerizable monomer is 10% -50%.
  • the invention provides a vertical alignment liquid crystal display, wherein the liquid crystal layer comprises liquid crystal molecules, an auxiliary alignment agent, and a polymer network penetrating the entire liquid crystal layer, and the vertical alignment of the liquid crystal molecules is realized by the auxiliary alignment agent. Because the polymer network has a large surface area and has a large contact area with the liquid crystal molecules, it can stabilize the alignment of the liquid crystal molecules, thereby solving the problem that the alignment ability of the small molecule auxiliary alignment agent is weak, and enhancing the auxiliary alignment agent pair.
  • the alignment force and anchoring energy of the liquid crystal molecules enhance the vertical alignment effect of the auxiliary alignment agent on the liquid crystal molecules; and the method for fabricating the vertical alignment liquid crystal display provided by the liquid crystal molecule, the auxiliary alignment agent and the polymerizable monomer a liquid crystal layer is formed, and then a voltage is applied to the liquid crystal layer.
  • a polymerizable monomer is polymerized by UV irradiation, a polymer network having a large surface area and penetrating the entire liquid crystal layer is formed.
  • the polymer network has a large surface area and has a large contact area with liquid crystal molecules.
  • FIG. 1 is a schematic cross-sectional view showing a conventional vertical alignment type liquid crystal display using an alignment layer
  • FIG. 2 is a top plan view showing a side of a lower substrate of an existing MVA type liquid crystal display using an alignment layer;
  • FIG. 3 is a schematic cross-sectional view showing a conventional MVA type liquid crystal display using an alignment layer
  • FIG. 4 is a schematic cross-sectional view showing a conventional vertical alignment type liquid crystal display using an auxiliary alignment agent
  • FIG. 5 is a schematic cross-sectional structural view of a vertical alignment liquid crystal display of the present invention.
  • FIG. 6 is a flow chart of a method for fabricating a vertical alignment liquid crystal display of the present invention.
  • step 1 is a schematic diagram of step 1 of a method for fabricating a vertical alignment liquid crystal display of the present invention.
  • step 3 is a schematic diagram of step 3 of a method for fabricating a vertical alignment liquid crystal display according to the present invention.
  • FIG. 9 and FIG. 10 are schematic diagrams showing the fifth step of the method for fabricating the vertical alignment liquid crystal display of the present invention.
  • the present invention firstly provides a vertical alignment liquid crystal display, comprising a first substrate 1 and a second substrate 2 disposed opposite to the first substrate 1 and disposed on the first substrate 1 and the second substrate 2 a liquid crystal layer 3 between the first passivation layer 11 and the second passivation layer 21 disposed on the inner sides of the first substrate 1 and the second substrate 2, and respectively disposed on the first passivation layer 11
  • the common electrode layer 12 and the pixel electrode layer 22 on the second passivation layer 21 comprising a first substrate 1 and a second substrate 2 disposed opposite to the first substrate 1 and disposed on the first substrate 1 and the second substrate 2 a liquid crystal layer 3 between the first passivation layer 11 and the second passivation layer 21 disposed on the inner sides of the first substrate 1 and the second substrate 2, and respectively disposed on the first passivation layer 11
  • the common electrode layer 12 and the pixel electrode layer 22 on the second passivation layer 21 comprising a first substrate 1 and a second substrate 2 disposed opposite to the first substrate 1 and disposed on the first substrate
  • the first substrate 1 includes, but is not limited to, a black matrix, a color filter, a photoresist spacer, and the like, and the first substrate 1 corresponds to a CF substrate of a conventional liquid crystal display.
  • the second substrate 2 includes However, it is not limited to a gate line, a data line, a thin film transistor, and is equivalent to a TFT substrate of a conventional liquid crystal display.
  • the material of the common electrode layer 12 and the pixel electrode layer 22 is ITO.
  • the materials of the first passivation layer 11 and the second passivation layer 21 are both silicon nitride.
  • the liquid crystal layer 3 includes, but is not limited to, liquid crystal molecules 30, an auxiliary alignment agent 31, and a polymer network 33 penetrating the entire liquid crystal layer 3. Further, the liquid crystal molecules 30 are negative liquid crystal molecules.
  • the vertical alignment liquid crystal display of the present invention does not use the PI alignment layer, but uses the auxiliary alignment agent 31 in the liquid crystal layer 3 to realize the vertical alignment of the liquid crystal molecules 30, so that the liquid crystal molecules 30 are vertically arranged on the surfaces of the first and second substrates 1, 2. It saves the consumption of PI materials, and the investment of PI spraying and baking related equipment, saves a lot of energy that needs to be consumed in the pre-baking and post-baking high-temperature process, and avoids solvent evaporation in the PI process. And the harm caused by the human body.
  • the polymer network 33 has a large surface area, which has a large contact area with the liquid crystal molecules 30, can stabilize the alignment of the liquid crystal molecules 30, and enhance the vertical alignment effect of the auxiliary alignment agent 31 on the liquid crystal molecules 30.
  • the polymer network 33 is produced by polymerization of a UV-sensitive polymerizable monomer by UV irradiation.
  • the weight percentage of the polymerizable monomer 32 in the liquid crystal layer 3 is 0.5% to 8%.
  • the weight percentage of the polymerizable monomer 32 in the liquid crystal layer 3 is 1% to 5%.
  • the polymerizable monomer is composed of two or more compounds including a methacrylate, an acrylate, an epoxy group, and a vinyl group, and includes at least one dimerizable group monomer and At least one polymeric group compound.
  • the weight percentage of the polyorganic group compound in the polymerizable monomer is from 10% to 50%.
  • the di-polymerizable group monomer contains two polymerizable groups, which may be methacrylate, acrylate, epoxy, or vinyl.
  • the polyradical group compound contains three or more polymerizable groups, and the polymerizable group may be a methacrylate, an acrylate, or an epoxy group. Since the polymerizable group compound contains a plurality of polymerizable groups, it can function as a crosslinking center in the polymerization reaction, and the polymer network 33 is easily formed.
  • the dimerizable group monomer has the following structural formula:
  • P1 and P2 are a polymeric group, and the two may be the same or different and are selected from the group consisting of methacrylate, acrylate, epoxy, and vinyl.
  • N1 and n2 are integers of 0 to 5, and the two may be the same or different.
  • A1 and A2 are six-membered ring structures, which may be the same or different, have a substituent or do not contain a substituent, It may be a benzene ring or a cyclohexane structure.
  • X is a linking group, and may have a substituted or unsubstituted alkyl, ether or ester chain of 1 to 20 atoms in the main chain, or may be directly connected by 1 to 5 or separated by an alkyl group, an ether or an ester group.
  • the specific structure of the dimerizable group monomer can be:
  • the polyradical group compound has the following structural formula:
  • Y is a core atom or a group, and a plurality of substituents may be bonded
  • L is a linking group
  • P is a polymeric group
  • n is 3 or 4.
  • Y may be a substituted or unsubstituted carbon atom, a nitrogen atom, a phosphate, a polycyclic group or the like;
  • L is a substituted or unsubstituted alkyl, ether or ester chain having 1 to 20 atoms in the main chain; and
  • P is selected from One of methacrylate, acrylate, epoxy, and vinyl.
  • the specific structure of the polyradical group compound can be:
  • the present invention further provides a method for fabricating a vertical alignment liquid crystal display, comprising the following steps:
  • Step 1 Input the first substrate 1 and the second substrate 2.
  • the first substrate 1 and the second substrate 2 are respectively provided with a first passivation layer 11 and a second passivation layer 21, the first passivation layer 11 and the second passivation layer 21, respectively.
  • the common electrode layer 12 and the pixel electrode layer 22 are respectively disposed on the upper surface.
  • the first substrate 1 includes, but is not limited to, a black matrix, a color filter, a photoresist spacer, and the like, and the first substrate 1 corresponds to a CF substrate of a conventional liquid crystal display.
  • the second substrate 2 includes, but is not limited to, a gate line, a data line, and a thin film transistor, which is equivalent to a TFT substrate of a conventional liquid crystal display.
  • the material of the common electrode layer 12 and the pixel electrode layer 22 is ITO.
  • the materials of the first passivation layer 11 and the second passivation layer 21 are both silicon nitride.
  • Step 2 Apply a plastic frame on the first substrate 1 or the second substrate 2.
  • Step 3 Fill the liquid crystal layer 3 in a region surrounded by the plastic frame.
  • the liquid crystal layer 3 includes, but is not limited to, liquid crystal molecules 30, an auxiliary alignment agent 31, and a polymerizable monomer 32.
  • the liquid crystal molecules 30 are negative liquid crystal molecules.
  • the weight percentage of the polymerizable monomer 32 in the liquid crystal layer 3 is 0.5% to 8%.
  • the weight percentage of the polymerizable monomer 32 in the liquid crystal layer 3 is 1% to 5%.
  • the polymerizable monomer is composed of two or more compounds including a methacrylate, an acrylate, an epoxy group, and a vinyl group, and includes at least one dimerizable group monomer and At least one polymeric group compound.
  • the weight percentage of the polyorganic group compound in the polymerizable monomer is from 10% to 50%.
  • the dimerizable group monomer contains two polymerizable groups, and the polymerizable group may be Methacrylate, acrylate, epoxy, or vinyl.
  • the polyradical group compound contains three or more polymerizable groups, and the polymerizable group may be a methacrylate, an acrylate, or an epoxy group. Since the polymerizable group compound contains a plurality of polymerizable groups, it can function as a crosslinking center in the polymerization reaction, and the polymer network 33 is easily formed.
  • the dimerizable group monomer has the following structural formula:
  • P1 and P2 are a polymeric group, and the two may be the same or different and are selected from the group consisting of methacrylate, acrylate, epoxy, and vinyl.
  • N1 and n2 are integers of 0 to 5, and the two may be the same or different.
  • A1 and A2 are six-membered ring structures, which may be the same or different, have a substituent or do not contain a substituent,
  • It may be a benzene ring or a cyclohexane structure.
  • X is a linking group, and may be a substituted or unsubstituted alkyl group or an ether having 1 to 20 atoms in the main chain.
  • An ester-based chain or a substituted or unsubstituted chain structure comprising from 1 to 5 six-membered ring structures directly linked or separated by an alkyl group, an ether or an ester group.
  • the specific structure of the dimerizable group monomer can be:
  • the polyradical group compound has the following structural formula:
  • Y is a core atom or a group, and a plurality of substituents may be bonded
  • L is a linking group
  • P is a polymeric group
  • n is 3 or 4.
  • Y may be a substituted or unsubstituted carbon atom, a nitrogen atom, a phosphate, a polycyclic group or the like;
  • L is a substituted or unsubstituted alkyl, ether or ester chain having 1 to 20 atoms in the main chain; and
  • P is selected from One of methacrylate, acrylate, epoxy, and vinyl.
  • the specific structure of the polyradical group compound can be:
  • Step 4 The first substrate 1 and the second substrate 2 are paired.
  • Step 5 As shown in FIG. 9, a voltage is applied to the common electrode layer 12 and the pixel electrode layer 22 to cause a certain deflection of the liquid crystal molecules 30 in the liquid crystal layer 3, while the liquid crystal layer 3 is irradiated with UV.
  • the polymerizable monomer 32 is polymerized to form a polymer network 33 penetrating the entire liquid crystal layer 3.
  • the polymer network 33 has a large surface area, which has a large contact area with the liquid crystal molecules 30, can stabilize the alignment of the liquid crystal molecules 30, and enhance the vertical alignment effect of the auxiliary alignment agent 31 on the liquid crystal molecules 30.
  • the method for manufacturing the vertical alignment liquid crystal display of the invention does not produce the PI alignment layer, saves the consumption of the PI material, and inputs the PI spraying and baking related equipment, and saves the high temperature process of the pre-baking and post-baking of the PI. Need to consume a lot of energy, and avoid solvent evaporation in the PI process Harm to the environment and the human body.
  • the vertical alignment liquid crystal display of the present invention has a liquid crystal layer comprising liquid crystal molecules, an auxiliary alignment agent, and a polymer network penetrating the entire liquid crystal layer, and the vertical alignment of the liquid crystal molecules is achieved by the auxiliary alignment agent, due to the polymer network. It has a large surface area and a large contact area with liquid crystal molecules, which can stabilize the alignment of liquid crystal molecules, thereby solving the problem of weak alignment ability of small molecule auxiliary alignment agent and enhancing the alignment force of auxiliary alignment agent to liquid crystal molecules.
  • the method for fabricating the vertical alignment liquid crystal display of the present invention by filling the liquid crystal layer composed of the liquid crystal molecules, the auxiliary alignment agent and the polymerizable monomer, and then the liquid crystal layer A polymer network having a large surface area and penetrating the entire liquid crystal layer is formed by applying a voltage while simultaneously irradiating the polymerizable monomer by UV irradiation.
  • the polymer network has a large surface area and has great contact with liquid crystal molecules.
  • the area can stabilize the alignment of liquid crystal molecules and can solve Weak small molecule auxiliary alignment agent for capacity with problems, to enhance the secondary alignment agent of the liquid crystal molecules of the force with the anchor can strengthen vertical alignment effect of the auxiliary alignment agent of the liquid crystal molecules, and the process is more environmental friendly.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Dispersion Chemistry (AREA)

Abstract

一种垂直配向液晶显示器及其制作方法。该垂直配向液晶显示器包括第一基板(1)、第二基板(2)、设于第一基板(1)与第二基板(2)之间的液晶层(3)、分别设于第一(1)、第二基板(2)内侧的第一、第二钝化层(11、21)、及分别设于第一、第二钝化层(11、21)上的公共电极层(12)与像素电极层(22);所述液晶层(3)包括液晶分子(30)、辅助配向剂(31)、及贯穿于整个液晶层(3)的聚合物网络(33);所述辅助配向剂(31)使液晶层(3)中的液晶分子(30)在第一与第二基板(1、2)的表面垂直排列;所述聚合物网络(33)稳定液晶分子(30)配向,加强辅助配向剂(31)对液晶分子(30)的垂直配向效果。

Description

垂直配向液晶显示器及其制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种垂直配向液晶显示器及其制作方法。
背景技术
液晶显示器(Liquid Crystal Display,LCD)具有机身薄、省电、无辐射等众多优点,得到了广泛的应用,如:移动电话、个人数字助理(PDA)、数字相机、计算机屏幕或笔记本电脑屏幕等。
就目前主流市场上的薄膜晶体管液晶显示器(TFT-LCD)而言,可分为三大类,分别是扭曲向列/超扭曲向列(TN/STN)型、平面转换(IPS)型、及垂直配向(VA)型。其中VA型液晶显示器相对其它种类的液晶显示器具有极高的对比度,一般可达到4000-8000,在大尺寸显示,如电视等方面具有非常广的应用。
VA型液晶显示器之所以具有极高对比度是因为在不加电的暗态时,液晶分子垂直于基板表面排列,不产生任何相位差,漏光极低,暗态亮度很小,暗态亮度越低,则对比度越高。如图1所示,为了使VA型液晶显示器中的液晶分子能够垂直于基板表面排列,需要对液晶分子300进行垂直配向处理,现行最为普遍的做法是在上基板100与下基板200内表面特定区域涂布垂直配向剂,配向剂一般包含大量的化学溶剂N-甲基吡咯烷酮(NMP)以及高分子材料聚酰亚胺(Polyimide,PI)等成分,然后将基板在高温下(一般200摄氏度以上)进行长时间烘烤,使配向剂中溶剂被烤干,从而在玻璃基板表面形成PI配向层310。
为了使VA型液晶显示器获得更好的广视角特性,通常会采取多区域VA技术(multi-domain VA,MVA),即将一个亚像素划分成多个区域,并使每个区域中的液晶在施加电压后倒伏向不同的方向,从而使各个方向看到的效果趋于平均。实现MVA技术的方法有多种,请参阅图2与图3,其中一种方法是在一侧的氧化铟锡(Indium Tin Oxide,ITO)像素电极800上形成“米字型”狭缝图案,由于特殊的ITO像素电极图形,其产生的倾斜电场可以诱导不同区域中的液晶分子300倒向不同的方向。图2所示为一种MVA型液晶显示器下基板200一侧的平面俯视示意图,其中210与220分别为扫描线与数据线。图3所示为该MVA型液晶显示器的剖面示意 图,其中700为氮化硅(SiNx)材质的钝化层。该MVA型液晶显示器具有制程简单,对比度高,开口率高,响应时间快等优势。
然而,为了实现VA配向,需要在基板表面涂布垂直配向剂,进行高温烘烤制程,由于配向剂中含有大量NMP溶剂,所以形成配向层的制程是一个高能耗、极其不环保、易对人体造成危害的过程;此外,由于配向层均匀性、缺涂、不粘以及异物等问题,还会对产品良率造成损失,导致资源浪费与产品成本提高。
出于以上诸多因素考虑,需开发出不需要PI配向层的VA型液晶显示器。如图4所示,通过改变液晶配方,在液晶中加入一类辅助配向剂的物质,使液晶分子300在没有配向层的情况下即可在液晶显示装置的基板表面垂直排列。该类辅助配向剂无需其它溶剂溶解,直接溶解于液晶之中,与液晶一起使用,省去原本配向剂的涂布设备与高温烘烤设备,因无需额外溶剂,所以更加干净、环保、节能。辅助配向剂的作用机理是,辅助配向剂分子301一端与基板表面无机材料,如构成钝化层700的氮化硅及构成像素电极800的ITO等具有特别的亲和力,能够吸附在基板表面,辅助配向剂分子301另外一端与液晶分子300有极强的作用力,由此引导液晶分子300垂直于基板表面排列,最终达到如图4所示的效果。
然而虽然小分子辅助配向剂可以实现垂直配向的效果,但大部分小分子配向剂的配向能力、产生的锚定能较弱,由此会导致一些如面内均匀性不佳、长期可靠性低的问题,因此需要对无PI实现垂直配向的此类液晶显示器进行改进,增强对液晶分子的配向力与锚定能。
发明内容
本发明的目的在于提供一种垂直配向液晶显示器,在省去PI配向层利用辅助配向剂实现垂直配向的情况下,解决小分子辅助配向剂配向能力较弱的问题,增强辅助配向剂对液晶分子的配向力与锚定能,加强辅助配向剂对液晶分子的垂直配向效果。
本发明的目的还在于提供一种垂直配向液晶显示器的制作方法,能够解决小分子辅助配向剂配向能力较弱的问题,增强辅助配向剂对液晶分子的配向力与锚定能,加强辅助配向剂对液晶分子的垂直配向效果,且更加环保、节能。
为实现上述目的,本发明提供一种垂直配向液晶显示器,包括第一基板、与所述第一基板相对设置的第二基板、设于所述第一基板与第二基板之间的液晶层、分别设于所述第一基板与第二基板内侧的第一钝化层与第 二钝化层、及分别设于所述第一钝化层与第二钝化层上的公共电极层与像素电极层;
所述液晶层包括液晶分子、辅助配向剂、及贯穿于整个液晶层的聚合物网络;所述辅助配向剂使液晶层中的液晶分子在第一基板与第二基板的表面垂直排列;所述聚合物网络稳定液晶分子配向,加强所述辅助配向剂对液晶分子的垂直配向效果。
所述液晶分子为负型液晶分子;所述聚合物网络由可聚合单体经UV照射发生聚合反应制得。
所述可聚合单体在液晶层中的重量百分比为0.5%~8%。
所述可聚合单体在液晶层中的重量百分比为1%~5%。
所述可聚合单体包括至少一种双可聚合基团单体和至少一种多聚合基团化合物;所述多聚合基团化合物在所述可聚合单体中的重量百分比为10%-50%。
所述双可聚合基团单体的结构通式为:
Figure PCTCN2015072470-appb-000001
其中P1,P2为聚合基团,两者相同或不同,选自甲基丙烯酸酯、丙烯酸酯、环氧基、乙烯基中的一种,
n1与n2为0~5的整数,两者相同或不同,
A1与A2为六元环结构,两者相同或不同,含取代基或不含取代基,为苯环或环己烷结构,
X为连接基团,为主链包含1~20个原子的取代或未取代的烷基、醚、酯基链,或为包含1~5个直接相连或由烷基、醚、酯基间隔的六元环结构的取代或未取代链结构;
所述多聚合基团化合物的结构通式为:
Figure PCTCN2015072470-appb-000002
其中Y为核心原子或基团,连接多个取代基,为取代或未取代碳原子、氮原子、磷酸根、多元环基团,
L为连接基团,其为主链包含1~20个原子的取代或未取代的烷基、醚、酯基链;
P为聚合基团,选自甲基丙烯酸酯、丙烯酸酯、环氧基、乙烯基中的一种,n为3或4。
本发明还提供一种垂直配向液晶显示器的制作方法,包括如下步骤:
步骤1、投入第一基板与第二基板;
所述第一基板与第二基板内侧分别设有第一钝化层与第二钝化层、所述第一钝化层与第二钝化层上分别设有公共电极层与像素电极层;
步骤2、在所述第一基板或第二基板上涂布胶框;
步骤3、在所述胶框围成的区域内填充液晶层;
所述液晶层包括液晶分子、辅助配向剂及可聚合单体;
所述可聚合单体在液晶层中的重量百分比为0.5%~8%;
步骤4、将第一基板与第二基板进行对组;
步骤5、对所述公共电极层与像素电极层施加电压,使所述液晶层中的液晶分子产生一定的偏转,同时采用UV照射所述液晶层;
所述可聚合单体发生聚合反应,形成贯穿于整个液晶层的聚合物网络。
所述可聚合单体在液晶层中的重量百分比为1%~5%,所述液晶分子为负型液晶分子。
所述可聚合单体包括至少一种双可聚合基团单体和至少一种多聚合基团化合物;所述多聚合基团化合物在所述可聚合单体中的重量百分比为10%-50%。
所述双可聚合基团单体的结构通式为:
其中P1,P2为聚合基团,两者相同或不同,选自甲基丙烯酸酯、丙烯酸酯、环氧基、乙烯基中的一种,
n1与n2为0~5的整数,两者相同或不同,
A1与A2为六元环结构,两者相同或不同,含取代基或不含取代基,为苯环或环己烷结构,
X为连接基团,为主链包含1~20个原子的取代或未取代的烷基、醚、酯基链,或为包含1~5个直接相连或由烷基、醚、酯基间隔的六元环结构的取代或未取代链结构;
所述多聚合基团化合物的结构通式为:
Figure PCTCN2015072470-appb-000004
其中Y为核心原子或基团,连接多个取代基,为取代或未取代碳原子、氮原子、磷酸根、多元环基团,
L为连接基团,其为主链包含1~20个原子的取代或未取代的烷基、醚、酯基链;
P为聚合基团,选自甲基丙烯酸酯、丙烯酸酯、环氧基、乙烯基中的一种,n为3或4。
本发明还提供一种垂直配向液晶显示器的制作方法,包括如下步骤:
步骤1、投入第一基板与第二基板;
所述第一基板与第二基板内侧分别设有第一钝化层与第二钝化层、所述第一钝化层与第二钝化层上分别设有公共电极层与像素电极层;
步骤2、在所述第一基板或第二基板上涂布胶框;
步骤3、在所述胶框围成的区域内填充液晶层;
所述液晶层包括液晶分子、辅助配向剂及可聚合单体;
所述可聚合单体在液晶层中的重量百分比为0.5%~8%;
步骤4、将第一基板与第二基板进行对组;
步骤5、对所述公共电极层与像素电极层施加电压,使所述液晶层中的液晶分子产生一定的偏转,同时采用UV照射所述液晶层;
所述可聚合单体发生聚合反应,形成贯穿于整个液晶层的聚合物网络;
其中,所述可聚合单体在液晶层中的重量百分比为1%~5%,所述液晶分子为负型液晶分子;
其中,所述可聚合单体包括至少一种双可聚合基团单体和至少一种多聚合基团化合物;所述多聚合基团化合物在所述可聚合单体中的重量百分比为10%-50%。
本发明的有益效果:本发明提供的一种垂直配向液晶显示器,其液晶层包括液晶分子、辅助配向剂、及贯穿于整个液晶层的聚合物网络,通过辅助配向剂实现对液晶分子的垂直配向,由于聚合物网络具有巨大的表面积,与液晶分子具有极大的接触面积,可起到稳定液晶分子配向的作用,从而能够解决小分子辅助配向剂配向能力较弱的问题,增强辅助配向剂对液晶分子的配向力与锚定能,加强辅助配向剂对液晶分子的垂直配向效果;本发明提供的一种垂直配向液晶显示器的制作方法,通过填充由液晶分子、辅助配向剂及可聚合单体组成的液晶层,再对液晶层施加电压,同 时经UV照射使可聚合单体发生聚合反应的方式,形成具有巨大表面积并贯穿于整个液晶层的聚合物网络,该聚合物网络具有巨大的表面积,与液晶分子具有极大的接触面积,可起到稳定液晶分子配向的作用,能够解决小分子辅助配向剂配向能力较弱的问题,增强辅助配向剂对液晶分子的配向力与锚定能,加强辅助配向剂对液晶分子的垂直配向效果,且该方法更加环保、节能。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为一种现有的使用配向层的垂直配向型液晶显示器的剖面示意图;
图2为一种现有的使用配向层的MVA型液晶显示器的下基板一侧的平面俯视示意图;
图3为一种现有的使用配向层的MVA型液晶显示器的剖面示意图;
图4为一种现有的使用辅助配向剂的垂直配向型液晶显示器的剖面示意图;
图5为本发明垂直配向液晶显示器的剖面结构示意图;
图6为本发明垂直配向液晶显示器的制作方法的流程图;
图7为本发明垂直配向液晶显示器的制作方法的步骤1的示意图;
图8为本发明垂直配向液晶显示器的制作方法的步骤3的示意图;
图9、图10为本发明垂直配向液晶显示器的制作方法的步骤5的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段极其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图5,本发明首先提供一种垂直配向液晶显示器,包括第一基板1、与所述第一基板1相对设置的第二基板2、设于所述第一基板1与第二基板2之间的液晶层3、分别设于所述第一基板1与第二基板2内侧的第一钝化层11与第二钝化层21、及分别设于所述第一钝化层11与第二钝化层21上的公共电极层12与像素电极层22。
所述第一基板1上包含但不限于黑色矩阵、彩色滤光片、光阻间隔物等,第一基板1相当于传统液晶显示器的CF基板。所述第二基板2上包含 但不限于栅极线、数据线、薄膜晶体管,相当于传统液晶显示器的TFT基板。所述公共电极层12与所述像素电极层22的材料均为ITO。所述第一钝化层11与第二钝化层21的材料均为氮化硅。
所述液晶层3包括但不限于液晶分子30、辅助配向剂31、及贯穿于整个液晶层3的聚合物网络33。进一步的,所述液晶分子30为负型液晶分子。本发明垂直配向液晶显示器不使用PI配向层,而是采用液晶层3中的辅助配向剂31实现液晶分子30的垂直配向,使液晶分子30在第一与第二基板1、2的表面垂直排列,省去了PI材料的消耗,及PI喷涂、烘烤相关设备等的投入,节省了PI前烘烤与后烘烤高温制程中需要消耗的大量能量,并避免了PI制程中溶剂挥发对环境及人体造成的危害。
所述聚合物网络33具有巨大的表面积,其与液晶分子30具有极大的接触面积,能够稳定液晶分子30配向,加强所述辅助配向剂31对液晶分子30的垂直配向效果。
所述聚合物网络33由对UV光敏感的可聚合单体经UV照射发生聚合反应制得。所述可聚合单体32在液晶层3中的重量百分比为0.5%~8%,优选的,所述可聚合单体32在液晶层3中的重量百分比为1%~5%。具体的,所述可聚合单体由两种或多种包含甲基丙烯酸酯、丙烯酸酯、环氧基、及乙烯基基团的化合物组成,其包括至少一种双可聚合基团单体和至少一种多聚合基团化合物。所述多聚合基团化合物在所述可聚合单体中的重量百分比为10%-50%。
所述双可聚合基团单体含有两个可聚合基团,所述可聚合基团可以是甲基丙烯酸酯、丙烯酸酯、环氧基、或乙烯基。所述多聚合基团化合物含有三个或三个以上可聚合基团,所述可聚合基团可以是甲基丙烯酸酯、丙烯酸酯、或环氧基。由于所述多聚合基团化合物包含多个可聚合基团,可在聚合反应中起到交联中心的作用,容易形成聚合物网络33。
具体地,所述双可聚合基团单体具有如下结构通式:
Figure PCTCN2015072470-appb-000005
其中P1,P2为聚合基团,两者可相同或不同,选自甲基丙烯酸酯、丙烯酸酯、环氧基、乙烯基中的一种。
n1与n2为0~5的整数,两者可相同或不同。
A1与A2为六元环结构,两者可相同或不同,含取代基或不含取代基, 可为苯环或环己烷结构。
X为连接基团,可为主链包含1~20个原子的取代或未取代的烷基、醚、酯基链,或为包含1~5个直接相连或由烷基、醚、酯基间隔的六元环结构的取代或未取代链结构。
例如,所述双可聚合基团单体的具体结构可为:
Figure PCTCN2015072470-appb-000006
,或者为
Figure PCTCN2015072470-appb-000007
所述多聚合基团化合物具有如下结构通式:
Figure PCTCN2015072470-appb-000008
其中Y为核心原子或基团,可连接多个取代基,L为连接基团,P为聚合基团,n为3或4。
Y可为取代或未取代碳原子、氮原子、磷酸根、多元环基团等;L为主链包含1~20个原子的取代或未取代的烷基、醚、酯基链;P选自甲基丙烯酸酯、丙烯酸酯、环氧基、乙烯基中的一种。
例如,所述多聚合基团化合物的具体结构可为:
Figure PCTCN2015072470-appb-000009
或者为:
Figure PCTCN2015072470-appb-000010
或者为:
Figure PCTCN2015072470-appb-000011
或者为:
Figure PCTCN2015072470-appb-000012
或者为:
Figure PCTCN2015072470-appb-000013
请同时参阅图6至图10,本发明还提供一种垂直配向液晶显示器的制作方法,包括如下步骤:
步骤1、投入第一基板1与第二基板2。
如图7所示,所述第一基板1与第二基板2内侧分别设有第一钝化层11与第二钝化层21、所述第一钝化层11与第二钝化层21上分别设有公共电极层12与像素电极层22。
所述第一基板1上包含但不限于黑色矩阵、彩色滤光片、光阻间隔物等,第一基板1相当于传统液晶显示器的CF基板。所述第二基板2上包含但不限于栅极线、数据线、薄膜晶体管,相当于传统液晶显示器的TFT基板。所述公共电极层12与所述像素电极层22的材料均为ITO。所述第一钝化层11与第二钝化层21的材料均为氮化硅。
步骤2、在所述第一基板1或第二基板2上涂布胶框。
步骤3、在所述胶框围成的区域内填充液晶层3。
如图8所示,所述液晶层3包括但不限于液晶分子30、辅助配向剂31及可聚合单体32。所述液晶分子30为负型液晶分子。
所述可聚合单体32在液晶层3中的重量百分比为0.5%~8%,优选的,所述可聚合单体32在液晶层3中的重量百分比为1%~5%。具体的,所述可聚合单体由两种或多种包含甲基丙烯酸酯、丙烯酸酯、环氧基、及乙烯基基团的化合物组成,其中包括至少一种双可聚合基团单体和至少一种多聚合基团化合物。所述多聚合基团化合物在所述可聚合单体中的重量百分比为10%-50%。
所述双可聚合基团单体含有两个可聚合基团,所述可聚合基团可以是 甲基丙烯酸酯、丙烯酸酯、环氧基、或乙烯基。所述多聚合基团化合物含有三个或三个以上可聚合基团,所述可聚合基团可以是甲基丙烯酸酯、丙烯酸酯、或环氧基。由于所述多聚合基团化合物包含多个可聚合基团,可在聚合反应中起到交联中心的作用,容易形成聚合物网络33。
具体地,所述双可聚合基团单体具有如下结构通式:
Figure PCTCN2015072470-appb-000014
其中P1,P2为聚合基团,两者可相同或不同,选自甲基丙烯酸酯、丙烯酸酯、环氧基、乙烯基中的一种。
n1与n2为0~5的整数,两者可相同或不同。
A1与A2为六元环结构,两者可相同或不同,含取代基或不含取代基,
可为苯环或环己烷结构。
X为连接基团,可为主链包含1~20个原子的取代或未取代的烷基、醚、
酯基链,或为包含1~5个直接相连或由烷基、醚、酯基间隔的六元环结构的取代或未取代链结构。
例如,所述双可聚合基团单体的具体结构可为:
Figure PCTCN2015072470-appb-000015
,或者为
Figure PCTCN2015072470-appb-000016
所述多聚合基团化合物具有如下结构通式:
Figure PCTCN2015072470-appb-000017
其中Y为核心原子或基团,可连接多个取代基,L为连接基团,P为聚合基团,n为3或4。
Y可为取代或未取代碳原子、氮原子、磷酸根、多元环基团等;L为主链包含1~20个原子的取代或未取代的烷基、醚、酯基链;P选自甲基丙烯酸酯、丙烯酸酯、环氧基、乙烯基中的一种。
例如,所述多聚合基团化合物的具体结构可为:
Figure PCTCN2015072470-appb-000018
或者为:
Figure PCTCN2015072470-appb-000019
或者为:
Figure PCTCN2015072470-appb-000020
或者为:
Figure PCTCN2015072470-appb-000021
或者为:
Figure PCTCN2015072470-appb-000022
步骤4、将第一基板1与第二基板2进行对组。
步骤5、如图9所示,对所述公共电极层12与像素电极层22施加电压,使所述液晶层3中的液晶分子30产生一定的偏转,同时采用UV照射所述液晶层3。
如图10所示,所述可聚合单体32发生聚合反应,形成贯穿于整个液晶层3的聚合物网络33。所述聚合物网络33具有巨大的表面积,其与液晶分子30具有极大的接触面积,能够稳定液晶分子30配向,加强所述辅助配向剂31对液晶分子30的垂直配向效果。
另外,本发明垂直配向液晶显示器的制作方法,不制作PI配向层,省去了PI材料的消耗,及PI喷涂、烘烤相关设备等的投入,节省了PI前烘烤与后烘烤高温制程中需要消耗的大量能量,并避免了PI制程中溶剂挥发 对环境及人体造成的危害。
综上所述,本发明垂直配向液晶显示器,其液晶层包括液晶分子、辅助配向剂、及贯穿于整个液晶层的聚合物网络,通过辅助配向剂实现对液晶分子的垂直配向,由于聚合物网络具有巨大的表面积,与液晶分子具有极大的接触面积,可起到稳定液晶分子配向的作用,从而能够解决小分子辅助配向剂配向能力较弱的问题,增强辅助配向剂对液晶分子的配向力与锚定能,加强辅助配向剂对液晶分子的垂直配向效果;本发明垂直配向液晶显示器的制作方法,通过填充由液晶分子、辅助配向剂及可聚合单体组成的液晶层,再对液晶层施加电压,同时经UV照射使可聚合单体发生聚合反应的方式,形成具有巨大表面积并贯穿于整个液晶层的聚合物网络,该聚合物网络具有巨大的表面积,与液晶分子具有极大的接触面积,可起到稳定液晶分子配向的作用,能够解决小分子辅助配向剂配向能力较弱的问题,增强辅助配向剂对液晶分子的配向力与锚定能,加强辅助配向剂对液晶分子的垂直配向效果,且该方法更加环保、节能。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (12)

  1. 一种垂直配向液晶显示器,包括第一基板、与所述第一基板相对设置的第二基板、设于所述第一基板与第二基板之间的液晶层、分别设于所述第一基板与第二基板内侧的第一钝化层与第二钝化层、及分别设于所述第一钝化层与第二钝化层上的公共电极层与像素电极层;
    所述液晶层包括液晶分子、辅助配向剂、及贯穿于整个液晶层的聚合物网络;所述辅助配向剂使液晶层中的液晶分子在第一基板与第二基板的表面垂直排列;所述聚合物网络稳定液晶分子配向,加强所述辅助配向剂对液晶分子的垂直配向效果。
  2. 如权利要求1所述的垂直配向液晶显示器,其中,所述液晶分子为负型液晶分子;所述聚合物网络由可聚合单体经UV照射发生聚合反应制得。
  3. 如权利要求2所述的垂直配向液晶显示器,其中,所述可聚合单体在液晶层中的重量百分比为0.5%~8%。
  4. 如权利要求3所述的垂直配向液晶显示器,其中,所述可聚合单体在液晶层中的重量百分比为1%~5%。
  5. 如权利要求2所述的垂直配向液晶显示器,其中,所述可聚合单体包括至少一种双可聚合基团单体和至少一种多聚合基团化合物;所述多聚合基团化合物在所述可聚合单体中的重量百分比为10%-50%。
  6. 如权利要求5所述的垂直配向液晶显示器,其中,所述双可聚合基团单体的结构通式为:
    Figure PCTCN2015072470-appb-100001
    其中P1,P2为聚合基团,两者相同或不同,选自甲基丙烯酸酯、丙烯酸酯、环氧基、乙烯基中的一种,
    n1与n2为0~5的整数,两者相同或不同,
    A1与A2为六元环结构,两者相同或不同,含取代基或不含取代基,为苯环或环己烷结构,
    X为连接基团,为主链包含1~20个原子的取代或未取代的烷基、醚、酯基链,或为包含1~5个直接相连或由烷基、醚、酯基间隔的六元环结构 的取代或未取代链结构;
    所述多聚合基团化合物的结构通式为:
    Figure PCTCN2015072470-appb-100002
    其中Y为核心原子或基团,连接多个取代基,为取代或未取代碳原子、氮原子、磷酸根、多元环基团,
    L为连接基团,其为主链包含1~20个原子的取代或未取代的烷基、醚、酯基链;
    P为聚合基团,选自甲基丙烯酸酯、丙烯酸酯、环氧基、乙烯基中的一种,
    n为3或4。
  7. 一种垂直配向液晶显示器的制作方法,包括如下步骤:
    步骤1、投入第一基板与第二基板;
    所述第一基板与第二基板内侧分别设有第一钝化层与第二钝化层、所述第一钝化层与第二钝化层上分别设有公共电极层与像素电极层;
    步骤2、在所述第一基板或第二基板上涂布胶框;
    步骤3、在所述胶框围成的区域内填充液晶层;
    所述液晶层包括液晶分子、辅助配向剂及可聚合单体;
    所述可聚合单体在液晶层中的重量百分比为0.5%~8%;
    步骤4、将第一基板与第二基板进行对组;
    步骤5、对所述公共电极层与像素电极层施加电压,使所述液晶层中的液晶分子产生一定的偏转,同时采用UV照射所述液晶层;
    所述可聚合单体发生聚合反应,形成贯穿于整个液晶层的聚合物网络。
  8. 如权利要求7所述的垂直配向液晶显示器的制作方法,其中,所述可聚合单体在液晶层中的重量百分比为1%~5%,所述液晶分子为负型液晶分子。
  9. 如权利要求7所述的垂直配向液晶显示器的制作方法,其中,所述可聚合单体包括至少一种双可聚合基团单体和至少一种多聚合基团化合物;所述多聚合基团化合物在所述可聚合单体中的重量百分比为10%-50%。
  10. 如权利要求9所述的垂直配向液晶显示器的制作方法,其中,所述双可聚合基团单体的结构通式为:
    Figure PCTCN2015072470-appb-100003
    其中P1,P2为聚合基团,两者相同或不同,选自甲基丙烯酸酯、丙烯酸酯、环氧基、乙烯基中的一种,
    n1与n2为0~5的整数,两者相同或不同,
    A1与A2为六元环结构,两者相同或不同,含取代基或不含取代基,为苯环或环己烷结构,
    X为连接基团,为主链包含1~20个原子的取代或未取代的烷基、醚、酯基链,或为包含1~5个直接相连或由烷基、醚、酯基间隔的六元环结构的取代或未取代链结构;
    所述多聚合基团化合物的结构通式为:
    Figure PCTCN2015072470-appb-100004
    其中Y为核心原子或基团,连接多个取代基,为取代或未取代碳原子、氮原子、磷酸根、多元环基团,
    L为连接基团,其为主链包含1~20个原子的取代或未取代的烷基、醚、酯基链;
    P为聚合基团,选自甲基丙烯酸酯、丙烯酸酯、环氧基、乙烯基中的一种,n为3或4。
  11. 一种垂直配向液晶显示器的制作方法,包括如下步骤:
    步骤1、投入第一基板与第二基板;
    所述第一基板与第二基板内侧分别设有第一钝化层与第二钝化层、所述第一钝化层与第二钝化层上分别设有公共电极层与像素电极层;
    步骤2、在所述第一基板或第二基板上涂布胶框;
    步骤3、在所述胶框围成的区域内填充液晶层;
    所述液晶层包括液晶分子、辅助配向剂及可聚合单体;
    所述可聚合单体在液晶层中的重量百分比为0.5%~8%;
    步骤4、将第一基板与第二基板进行对组;
    步骤5、对所述公共电极层与像素电极层施加电压,使所述液晶层中的液晶分子产生一定的偏转,同时采用UV照射所述液晶层;
    所述可聚合单体发生聚合反应,形成贯穿于整个液晶层的聚合物网络;
    其中,所述可聚合单体在液晶层中的重量百分比为1%~5%,所述液晶分子为负型液晶分子;
    其中,所述可聚合单体包括至少一种双可聚合基团单体和至少一种多聚合基团化合物;所述多聚合基团化合物在所述可聚合单体中的重量百分比为10%-50%。
  12. 如权利要求11所述的垂直配向液晶显示器的制作方法,其中,所述双可聚合基团单体的结构通式为:
    Figure PCTCN2015072470-appb-100005
    其中P1,P2为聚合基团,两者相同或不同,选自甲基丙烯酸酯、丙烯酸酯、环氧基、乙烯基中的一种,
    n1与n2为0~5的整数,两者相同或不同,
    A1与A2为六元环结构,两者相同或不同,含取代基或不含取代基,为苯环或环己烷结构,
    X为连接基团,为主链包含1~20个原子的取代或未取代的烷基、醚、酯基链,或为包含1~5个直接相连或由烷基、醚、酯基间隔的六元环结构的取代或未取代链结构;
    所述多聚合基团化合物的结构通式为:
    Figure PCTCN2015072470-appb-100006
    其中Y为核心原子或基团,连接多个取代基,为取代或未取代碳原子、氮原子、磷酸根、多元环基团,
    L为连接基团,其为主链包含1~20个原子的取代或未取代的烷基、醚、酯基链;
    P为聚合基团,选自甲基丙烯酸酯、丙烯酸酯、环氧基、乙烯基中的一种,n为3或4。
PCT/CN2015/072470 2014-11-21 2015-02-08 垂直配向液晶显示器及其制作方法 WO2016078238A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/423,696 US10113117B2 (en) 2014-11-21 2015-02-08 Vertical alignment liquid crystal display and manufacture method thereof
US16/128,733 US10914988B2 (en) 2014-11-21 2018-09-12 Vertical alignment liquid crystal display and manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410677133.2 2014-11-21
CN201410677133.2A CN104597661B (zh) 2014-11-21 2014-11-21 垂直配向液晶显示器及其制作方法

Publications (1)

Publication Number Publication Date
WO2016078238A1 true WO2016078238A1 (zh) 2016-05-26

Family

ID=53123550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072470 WO2016078238A1 (zh) 2014-11-21 2015-02-08 垂直配向液晶显示器及其制作方法

Country Status (3)

Country Link
US (2) US10113117B2 (zh)
CN (1) CN104597661B (zh)
WO (1) WO2016078238A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021531515A (ja) * 2018-09-21 2021-11-18 クーパーヴィジョン インターナショナル リミテッド 可撓性の調整可能屈折力の液晶セル及びレンズ
US11860470B2 (en) 2017-08-11 2024-01-02 Coopervision International Limited Flexible liquid crystal cells and lenses

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104845644B (zh) * 2015-05-27 2017-03-15 深圳市华星光电技术有限公司 一种液晶介质组合物
US20180142155A1 (en) * 2015-06-19 2018-05-24 Dic Corporation Liquid crystal display device and method for manufacturing same
CN104932158B (zh) * 2015-06-25 2018-11-23 深圳市华星光电技术有限公司 像素电极及液晶显示面板
CN104880872A (zh) * 2015-06-25 2015-09-02 深圳市华星光电技术有限公司 像素电极及液晶显示面板
WO2017026478A1 (ja) * 2015-08-11 2017-02-16 Dic株式会社 液晶表示素子
CN105936830A (zh) * 2016-04-22 2016-09-14 深圳市华星光电技术有限公司 液晶材料、液晶显示面板的制作方法及液晶显示面板
CN105785658B (zh) * 2016-05-13 2018-03-30 深圳市华星光电技术有限公司 液晶面板结构及制作方法
CN105974675B (zh) * 2016-07-13 2019-02-19 深圳市华星光电技术有限公司 柔性显示面板及其制作方法
KR20180072921A (ko) * 2016-12-21 2018-07-02 삼성디스플레이 주식회사 액정 표시 장치 및 이에 포함되는 액정 조성물
JP2018106162A (ja) * 2016-12-26 2018-07-05 Dic株式会社 液晶表示素子及び重合性液晶組成物
CN108048114A (zh) * 2017-12-28 2018-05-18 深圳市华星光电技术有限公司 自取向液晶辅助剂、自取向液晶混合物及其应用
CN108192643B (zh) * 2018-01-30 2020-07-28 深圳市华星光电技术有限公司 自取向材料、自取向液晶材料、液晶面板及其制作方法
TWI640609B (zh) * 2018-05-07 2018-11-11 達興材料股份有限公司 Liquid crystal composition and liquid crystal display device
TW201947018A (zh) * 2018-05-07 2019-12-16 達興材料股份有限公司 液晶組成物及液晶顯示裝置
CN112639591A (zh) * 2018-06-29 2021-04-09 瑞尔D斯帕克有限责任公司 隐私显示的稳定化
CN109752885A (zh) * 2019-03-26 2019-05-14 深圳市华星光电技术有限公司 光配向装置及光配向方法
TW202102883A (zh) 2019-07-02 2021-01-16 美商瑞爾D斯帕克有限責任公司 定向顯示設備
CN110568645B (zh) * 2019-08-07 2021-07-06 Tcl华星光电技术有限公司 显示面板及显示装置
TW202204818A (zh) 2020-07-29 2022-02-01 美商瑞爾D斯帕克有限責任公司 光瞳照明裝置
US11892717B2 (en) 2021-09-30 2024-02-06 Reald Spark, Llc Marks for privacy display
WO2023154217A1 (en) 2022-02-09 2023-08-17 Reald Spark, Llc Observer-tracked privacy display
US11892718B2 (en) 2022-04-07 2024-02-06 Reald Spark, Llc Directional display apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070072275A (ko) * 2005-12-31 2007-07-04 엘지.필립스 엘시디 주식회사 수직배향모드 액정표시소자 및 그 제조방법
CN101320153A (zh) * 2008-07-08 2008-12-10 友达光电股份有限公司 液晶显示面板及其液晶材料
CN101359144A (zh) * 2008-09-12 2009-02-04 友达光电股份有限公司 垂直配向型液晶显示面板及其液晶材料
CN101968589A (zh) * 2010-10-20 2011-02-09 华映视讯(吴江)有限公司 液晶配向制程
US20130128201A1 (en) * 2010-07-30 2013-05-23 Sharp Kabushiki Kaisha Liquid crystal display device and method for producing same
JP2013140195A (ja) * 2011-12-28 2013-07-18 Stanley Electric Co Ltd 液晶分子配向基板、液晶表示素子、およびそれらの製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646695B (zh) * 2007-03-30 2012-07-18 Dic株式会社 高分子稳定化液晶组合物、液晶显示元件、液晶显示元件的制造方法
KR101448007B1 (ko) * 2008-04-01 2014-10-08 삼성디스플레이 주식회사 액정 표시 장치의 제조 방법
KR101499238B1 (ko) * 2008-08-07 2015-03-05 삼성디스플레이 주식회사 액정 표시 장치
KR20110106082A (ko) * 2010-03-22 2011-09-28 삼성모바일디스플레이주식회사 액정 표시 장치 및 그 제조방법
JP6193226B2 (ja) * 2011-07-07 2017-09-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 液晶媒体
TWI443429B (zh) * 2011-09-28 2014-07-01 Au Optronics Corp 製作液晶顯示面板之方法
CN102316121B (zh) * 2011-10-19 2013-11-20 武汉烽火网络有限责任公司 支持动态扩展帧头的过滤匹配预处理方法及装置
US8603287B2 (en) * 2011-11-11 2013-12-10 Shenzhen China Star Optoelectronics Technology Co., Ltd. Method for manufacturing alignment films of liquid crystal display panel
US20130299741A1 (en) * 2012-05-09 2013-11-14 Shenzhen China Star Optoelectronics Technology Co. Ltd. Liquid crystal medium composition
US20140009377A1 (en) * 2012-07-09 2014-01-09 Chimei Innolux Corporation Liquid crystal display apparatus with private mode
CN103631045A (zh) * 2012-08-28 2014-03-12 北京京东方光电科技有限公司 一种液晶显示面板及其制作方法
CN103728777A (zh) * 2012-10-12 2014-04-16 群康科技(深圳)有限公司 液晶显示面板及其装置
CN103969889A (zh) * 2013-01-28 2014-08-06 胜华科技股份有限公司 形成液晶配向膜的方法、显示板的制造方法以及显示板
KR102046444B1 (ko) * 2013-07-01 2019-11-20 삼성디스플레이 주식회사 액정 표시 장치
KR20170062593A (ko) * 2015-11-27 2017-06-08 삼성디스플레이 주식회사 액정 조성물 및 이를 포함하는 액정표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070072275A (ko) * 2005-12-31 2007-07-04 엘지.필립스 엘시디 주식회사 수직배향모드 액정표시소자 및 그 제조방법
CN101320153A (zh) * 2008-07-08 2008-12-10 友达光电股份有限公司 液晶显示面板及其液晶材料
CN101359144A (zh) * 2008-09-12 2009-02-04 友达光电股份有限公司 垂直配向型液晶显示面板及其液晶材料
US20130128201A1 (en) * 2010-07-30 2013-05-23 Sharp Kabushiki Kaisha Liquid crystal display device and method for producing same
CN101968589A (zh) * 2010-10-20 2011-02-09 华映视讯(吴江)有限公司 液晶配向制程
JP2013140195A (ja) * 2011-12-28 2013-07-18 Stanley Electric Co Ltd 液晶分子配向基板、液晶表示素子、およびそれらの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11860470B2 (en) 2017-08-11 2024-01-02 Coopervision International Limited Flexible liquid crystal cells and lenses
JP2021531515A (ja) * 2018-09-21 2021-11-18 クーパーヴィジョン インターナショナル リミテッド 可撓性の調整可能屈折力の液晶セル及びレンズ
JP7002699B2 (ja) 2018-09-21 2022-02-10 クーパーヴィジョン インターナショナル リミテッド 可撓性の調整可能屈折力の液晶セル及びレンズ
US11520181B2 (en) 2018-09-21 2022-12-06 Coopervision International Limited Flexible, adjustable lens power liquid crystal cells and lenses

Also Published As

Publication number Publication date
US20190023988A1 (en) 2019-01-24
US20160145492A1 (en) 2016-05-26
CN104597661A (zh) 2015-05-06
CN104597661B (zh) 2017-06-27
US10914988B2 (en) 2021-02-09
US10113117B2 (en) 2018-10-30

Similar Documents

Publication Publication Date Title
WO2016078238A1 (zh) 垂直配向液晶显示器及其制作方法
US20180031883A1 (en) Methods of fabricating coa type liquid crystal display panels and coa type liquid crystal display panels
US10048540B2 (en) Conductive alignment layer, manufacture method of the conductive alignment layer, display substrate comprising the conductive alignment layer, and display device
CN106292030A (zh) 一种显示面板、其制作方法及显示装置
WO2018028019A1 (zh) 一种液晶介质混合物及液晶显示面板
WO2016078239A1 (zh) 垂直配向型液晶显示器
KR101413943B1 (ko) 호메오트로픽 배향 액정 디스플레이 및 그 제조방법
WO2016149974A1 (zh) 高穿透率va型液晶显示面板及其制作方法
CN109143690B (zh) 液晶显示面板及其制作方法
US20230375871A1 (en) Manufacturing method of liquid crystal display panel and liquid crystal display panel
WO2018094865A1 (zh) 液晶面板及其液晶配向方法、液晶显示器
US9904100B2 (en) Method of manufacturing a liquid crystal display device with antistatic polarizing layer
US20140063387A1 (en) Blue Phase Liquid Crystal Display Panel, Blue Phase Liquid Crystal Display Device And Driving Method Thereof
WO2017012161A1 (zh) 多重稳态液晶显示面板
US9588393B2 (en) Liquid crystal panel and method of manufacturing the same, display device
US9581869B2 (en) In-plane switching mode liquid crystal display device and fabrication method thereof
WO2014034517A1 (ja) 液晶表示装置及びその製造方法
WO2022257159A1 (zh) 液晶显示面板及显示装置
GB2556285A (en) Photomask for optical alignment and optical alignment method
KR20160127856A (ko) 프린지 필드 스위칭 액정 표시장치 및 그 제조방법
US20180039139A1 (en) Liquid crystal display panel structure and manufacturing method thereof
US10437111B2 (en) Pixel electrode and array substrate
CN104635373A (zh) 液晶显示面板及液晶显示装置
US10613391B2 (en) Method for preparing liquid crystal alignment layer, liquid crystal alignment layer, and display device
US10429695B2 (en) Alignment method of FFS liquid crystal display panel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14423696

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15861492

Country of ref document: EP

Kind code of ref document: A1