WO2017077773A1 - ベーンポンプ - Google Patents

ベーンポンプ Download PDF

Info

Publication number
WO2017077773A1
WO2017077773A1 PCT/JP2016/077586 JP2016077586W WO2017077773A1 WO 2017077773 A1 WO2017077773 A1 WO 2017077773A1 JP 2016077586 W JP2016077586 W JP 2016077586W WO 2017077773 A1 WO2017077773 A1 WO 2017077773A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
pressure chamber
suction port
pump
cam ring
Prior art date
Application number
PCT/JP2016/077586
Other languages
English (en)
French (fr)
Inventor
善也 中村
新司 矢加部
鈴木 一成
浩一朗 赤塚
博仁 渡辺
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Priority to CN201680064145.5A priority Critical patent/CN108350878A/zh
Priority to US15/767,791 priority patent/US20180306184A1/en
Priority to DE112016005023.2T priority patent/DE112016005023T5/de
Publication of WO2017077773A1 publication Critical patent/WO2017077773A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0854Vane tracking; control therefor by fluid means
    • F01C21/0863Vane tracking; control therefor by fluid means the fluid being the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/108Stators; Members defining the outer boundaries of the working chamber with an axial surface, e.g. side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3446Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators

Definitions

  • the present invention relates to a vane pump.
  • JP2014-74368A discloses a vane pump including a rotor that is rotationally driven, a plurality of vanes provided in the rotor, and a cam ring that houses the rotor.
  • the vane reciprocates with the rotation of the rotor, and the tip of the vane is in sliding contact with the inner peripheral cam surface of the cam ring.
  • a pair of side plates are provided on both sides of the rotor and the cam ring, and a pump chamber partitioned by a plurality of vanes is defined between the rotor and the cam ring by the pair of side plates.
  • the vane pump disclosed in JP2014-74368A further includes a pump cover arranged with one side plate between the cam ring and the cam ring.
  • a low pressure chamber is formed by the pump cover, and one side plate is provided with a suction port. The working fluid is sucked into the pump chamber from the low pressure chamber through the suction port.
  • the pump chamber rotates with the vane. Therefore, the working fluid in the low-pressure chamber is not easily filled in the front portion in the rotational direction of the pump chamber when sucked into the pump chamber. Therefore, as the rotation of the pump becomes faster, the working fluid does not easily reach the front part in the rotational direction of the pump chamber due to the retention of the working fluid. As a result, the working fluid is insufficient with respect to the volume of the pump chamber, and cavitation may occur. For these reasons, there is a need for a vane pump having better suction characteristics.
  • the present invention aims to improve the suction characteristics of the vane pump.
  • a vane pump includes a rotor that is rotationally driven, a plurality of vanes that are provided in the rotor so as to be capable of reciprocating in the radial direction of the rotor, and a plurality of vanes that are accommodated as the rotor rotates.
  • a cam ring having an inner circumferential cam surface with which the tip of the vane slides, a side member that abuts the end surface of the cam ring and defines a pump chamber partitioned by a plurality of vanes between the rotor and the cam ring; and the side member,
  • a suction port that guides the working fluid to the pump chamber, a cover member that is disposed with a side member sandwiched between the cam ring, and a low-pressure chamber that is formed in the cover member and has an opening that communicates with the suction port.
  • the suction port is disposed so as to be shifted forward in the rotational direction of the rotor with respect to the opening of the low pressure chamber.
  • FIG. 1 is a cross-sectional view of a vane pump according to an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 3 is a plan view of the rotor, the vane, and the cam ring as viewed from the pump cover side.
  • FIG. 4 is a cross-sectional view of the cam ring and the first and second side plates.
  • FIG. 5 is a plan view of the first side plate as viewed from the cam ring side.
  • FIG. 6 is a plan view of the second side plate as viewed from the cam ring side.
  • FIG. 7 is a plan view of the rotor, vane, cam ring, and second side plate as seen from the pump body side.
  • FIG. 1 is a cross-sectional view of a vane pump according to an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 3 is a plan view of the
  • FIG. 8 is a plan view of the rotor, the vane, the cam ring, and the second side plate as viewed from the pump body side, and the low pressure chamber is indicated by a two-dot chain line.
  • FIG. 9 is a cross-sectional view taken along line IX-IX in FIG.
  • FIG. 10 is a cross-sectional view of a vane pump according to another embodiment of the present invention, corresponding to FIG.
  • vane pump 100 according to an embodiment of the present invention will be described with reference to the drawings.
  • working oil used as the working fluid
  • other fluids such as working water may be used as the working fluid.
  • FIG. 1 and 2 are cross-sectional views of the vane pump 100.
  • FIG. 1 is a cross-sectional view taken along the line II in FIG. 2
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • the vane pump 100 is used as a hydraulic pressure supply source of a hydraulic device 1 (for example, a power steering device or a transmission) mounted on a vehicle.
  • a hydraulic device 1 for example, a power steering device or a transmission
  • the vane pump 100 includes a drive shaft 10, a rotor 20 connected to the drive shaft 10, a plurality of vanes 30 provided in the rotor 20, and a cam ring 40 that accommodates the rotor 20 and the vanes 30.
  • the drive shaft 10 is rotatably supported by the pump body 50 and the pump cover (cover member) 60.
  • the rotor 20 rotates as the drive shaft 10 rotates.
  • rotation center axis direction of the rotor 20 is also simply referred to as “axial direction”
  • radial direction of the rotor 20 is also simply referred to as “radial direction”
  • rotation direction of the rotor 20 is also simply referred to as “rotational direction”.
  • FIG. 3 is a plan view of the rotor 20, the vane 30, and the cam ring 40 as viewed from the pump cover 60 side.
  • a plurality of slits 22 having openings 21 on the outer peripheral surface are radially formed on the rotor 20 at predetermined intervals.
  • the opening 21 of the slit 22 is formed in a raised portion 23 that protrudes radially outward from the outer periphery of the rotor 20.
  • the protruding portions 23 are formed on the outer periphery of the rotor 20 by the number of the slits 22.
  • a back pressure chamber 24 is defined by the vane 30 in the slit 22.
  • the vanes 30 are slidably inserted into the slits 22 and reciprocate in the radial direction as the rotor 20 rotates.
  • the distal end portion 31 of the vane 30 faces the inner peripheral surface 40 a of the cam ring 40, and the proximal end portion 32 of the vane 30 faces the back pressure chamber 24.
  • ⁇ ⁇ Hydraulic oil is guided to the back pressure chamber 24.
  • the vane 30 is pressed in a direction protruding from the slit 22 by the pressure of the hydraulic oil in the back pressure chamber 24, and the tip portion 31 of the vane 30 is in contact with the inner peripheral surface 40 a of the cam ring 40.
  • the vane pump 100 further includes first and second side plates 70 and 80 as first and second side members disposed with the rotor 20 and the cam ring 40 sandwiched in the axial direction.
  • FIG. 4 is a cross-sectional view of the cam ring 40 and the first and second side plates 70 and 80.
  • a high pressure chamber 53, a passage 54, and a low pressure chamber 61, which will be described later, are indicated by a two-dot chain line.
  • the first and second side plates 70 and 80 have side surfaces 70 a and 80 a that contact the rotor 20 and the cam ring 40, respectively, and are partitioned by the vane 30 between the rotor 20 and the cam ring 40.
  • the pump chamber 41 is partitioned.
  • the inner peripheral surface 40a of the cam ring 40 is formed in a substantially oval shape.
  • the inner peripheral surface 40a may be referred to as an “inner peripheral cam surface 40a”.
  • the vane 30 reciprocates with respect to the rotor 20 as the rotor 20 rotates, and the pump chamber 41 repeats expansion and contraction.
  • the pump chamber 41 expands, the hydraulic oil is sucked into the pump chamber 41, and when the pump chamber 41 contracts, the hydraulic oil is discharged from the pump chamber 41.
  • the vane 30 reciprocates twice while the rotor 20 makes one rotation, and the pump chamber 41 repeats expansion and contraction twice. That is, the vane pump 100 alternately has two expansion regions 42a and 42c in which the pump chamber 41 expands and two contraction regions 42b and 42d in which the pump chamber 41 contracts in the rotation direction.
  • the pump body 50 is formed with a housing recess 51 for housing the rotor 20, the cam ring 40 and the first side plate 70.
  • the first side plate 70 is disposed on the bottom surface 51 a of the housing recess 51.
  • An annular groove 52 is formed on the bottom surface 51 a of the housing recess 51.
  • the annular groove 52 and the first side plate 70 define a high pressure chamber 53 into which hydraulic oil discharged from the pump chamber 41 flows.
  • the high pressure chamber 53 is connected to the hydraulic device 1, and hydraulic oil discharged from the pump chamber 41 is supplied to the hydraulic device 1 through the high pressure chamber 53.
  • FIG. 5 is a plan view of the first side plate 70 viewed from the cam ring 40 side. As shown in FIGS. 4 and 5, the first side plate 70 is formed in an annular shape having a hole 71 at the center thereof. The drive shaft 10 (see FIG. 1) is inserted through the hole 71.
  • the first side plate 70 is provided with two discharge ports 72 that guide the hydraulic oil discharged from the pump chamber 41 to the high-pressure chamber 53.
  • the discharge port 72 is located in each contraction region 42b, 42d. Therefore, the hydraulic oil in the pump chamber 41 is discharged from the high-pressure chamber 53 through the discharge port 72 when the pump chamber 41 passes through the contraction regions 42b and 42d.
  • two back pressure passages 73 are formed in the first side plate 70 to guide the hydraulic oil from the high pressure chamber 53 to the back pressure chamber 24.
  • the back pressure passage 73 has an arc shape centered on the hole 71 and is located in the expansion regions 42a and 42c. Therefore, hydraulic oil is guided from the high pressure chamber 53 to the back pressure chamber 24 that passes through the expansion regions 42 a and 42 c. As a result, the vane 30 passing through the expansion regions 42a and 42c is pressed in a direction protruding from the slit 22 (see FIG. 3) by the pressure in the back pressure chamber 24.
  • the vane 30 is pressed in the direction protruding from the slit 22 by the pressure in the back pressure chamber 24 and the centrifugal force generated by the rotation of the rotor 20.
  • the housing recess 51 of the pump body 50 is formed larger than the cam ring 40, and a passage 54 is defined by the cam ring 40 and the pump body 50.
  • the passage 54 extends from the outer periphery of the second side plate 80 to the outer periphery of the first side plate 70.
  • the opening of the housing recess 51 is sealed by the pump cover 60.
  • the pump cover 60 is fastened to the pump body 50 by bolts (not shown).
  • a second side plate 80 is disposed between the pump cover 60 and the cam ring 40.
  • the pump cover 60 forms a low pressure chamber 61 connected to the tank 2.
  • the low pressure chamber 61 communicates with a low pressure passage 55 formed in the pump body 50.
  • the hydraulic oil in the tank 2 is supplied to the low pressure chamber 61 through the low pressure passage 55.
  • the low pressure chamber 61 has an opening 62 that communicates with the passage 54 and communicates with the suction port 81 provided in the second side plate 80.
  • the passage 54 communicates with a suction port 74 that guides hydraulic oil to the pump chamber 41. That is, the hydraulic oil in the low pressure chamber 61 is guided to the pump chamber 41 through the passage 54 and the suction port 74.
  • the suction port 74 is formed by a recess 75 formed on the side surface 70 a of the first side plate 70 and an end surface 40 b of the cam ring 40 facing the recess 75. Partitioned.
  • the suction port 74 may include a hole penetrating the first side plate 70.
  • FIG. 6 is a plan view of the second side plate 80 as viewed from the cam ring 40 side
  • FIG. 7 is a plan view of the rotor 20, the vane 30, the cam ring 40, and the second side plate 80 as viewed from the pump body 50 side. .
  • the second side plate 80 has two hollow portions 82 formed on the outer peripheral surface 80b.
  • the recess 82 communicates with the pump chamber 41 through an opening 83 a formed in the side surface 80 a of the second side plate 80. Further, the recess 82 communicates with the low pressure chamber 61 through an opening 83b formed in the side surface 80c of the second side plate 80 on the side opposite to the side surface 80a.
  • the hollow portion 82 is located in each of the expansion regions 42a and 42c. Therefore, when the pump chamber 41 passes through the expansion regions 42 a and 42 c, the working oil is guided from the low pressure chamber 61 to the pump chamber 41 through the recess 82.
  • the suction port 81 is partitioned by the recess 82 and the end surface 40c of the cam ring 40 facing the recess 82, and the flow of hydraulic oil from the low pressure chamber 61 is axially directed (from the second side plate 80 to the cam ring). The hydraulic oil is guided to the pump chamber 41 in the direction toward 40).
  • the suction port 81 is not limited to the form defined by the recessed part 82 and the end face 40c of the cam ring 40.
  • the suction port 81 may be formed by a hole penetrating the second side plate 80.
  • FIG. 8 is a plan view of the rotor 20, the vane 30, the cam ring 40, and the second side plate 80 as viewed from the pump body 50 side, and the low pressure chamber 61 is indicated by a two-dot chain line.
  • FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. In FIG. 9, the rotor 20 and the vane 30 are not shown.
  • the openings 83 a and 83 b of the suction port 81 are formed so that the width in the rotation direction is substantially equal to the opening 62 of the low-pressure chamber 61.
  • the openings 83 a and 83 b are located on the front side in the rotational direction with respect to the opening 62 of the low pressure chamber 61. That is, the suction port 81 is arranged so as to be shifted forward in the rotational direction with respect to the opening 62 of the low pressure chamber 61.
  • the positions of the suction port 81 and the opening 62 of the low pressure chamber 61 are determined by two dowel pins (not shown) provided in the pump cover 60 and two pin holes 84 (see FIG. 6) provided in the second side plate 80. Adapted.
  • each dowel pin extends in the axial direction from the contact surface 60 a of the pump cover 60 that contacts the second side plate 80.
  • the pin hole 84 penetrates the second side plate 80 in the axial direction.
  • the cam ring 40 has two pin holes 43 formed at positions corresponding to the pin holes 84 (see FIGS. 3, 7, and 8), and the first side plate 70 has the pin holes 43. 2 has two pin holes 76 formed at positions corresponding to (see FIG. 5).
  • the pin hole 43 penetrates the cam ring 40 in the axial direction
  • the pin hole 76 penetrates the first side plate 70 in the axial direction. That is, the pin holes 84, 43, 76 form through holes that pass from the second side plate 80 through the cam ring 40 to the first side plate 70.
  • the pin holes 84, 43, 76 are more than the conventional positions (the positions of the pin holes 84 such that the positions of the opening 62 of the low pressure chamber 61 and the suction port 81 coincide when the dowel pin is inserted into the pin hole 84). It is formed to be shifted forward in the rotational direction. Therefore, by inserting the dowel pins into the pin holes 84, 43, 76, the suction port 81 is disposed so as to be shifted forward in the rotational direction with respect to the opening 62 of the low pressure chamber 61.
  • the suction port 81 Since the suction port 81 is positioned in front of the opening 62 of the low pressure chamber 61 in the rotational direction, the suction port 81 directs the flow of hydraulic oil guided from the low pressure chamber 61 to the pump chamber 41 in the rotational direction. That is, the flow velocity vector (inflow angle) is directed in the pump rotation direction. Therefore, when the hydraulic oil from the low pressure chamber 61 is sucked into the pump chamber 41, it flows into the front portion in the rotational direction of the pump chamber 41. Therefore, the suction characteristics of the vane pump 100 are improved, and the working oil is distributed to the front part in the rotational direction of the pump chamber 41. Since a sufficient amount of hydraulic oil is guided to the pump chamber 41, a decrease in pressure in the pump chamber 41 can be prevented, and the occurrence of cavitation can be prevented.
  • a wall surface 63 is formed that crosses the rotation direction and guides the flow of hydraulic oil in the low-pressure chamber 61 toward the opening 62 in the axial direction.
  • the wall surface 63 is inclined with respect to the axial direction so as to guide the hydraulic oil flowing out from the opening 62 forward in the rotational direction.
  • the wall surface 63 is inclined with respect to the axial direction so that the opening portion 62 is positioned on the front side in the rotational direction with respect to the end portion 63a of the wall surface 63 opposite to the opening portion 62.
  • the wall surface 63 of the low pressure chamber 61 directs the flow of hydraulic oil flowing out from the opening 62 to the front in the rotational direction, the hydraulic oil from the low pressure chamber 61 is rotated in the rotational direction of the pump chamber 41 when sucked into the pump chamber 41. It is difficult to stay in the rear part. Therefore, the suction characteristics of the vane pump 100 are improved, and the occurrence of cavitation can be prevented.
  • the suction port 81 is disposed so as to be shifted forward in the rotational direction with respect to the virtual extension surface of the wall surface 63 of the low pressure chamber 61.
  • the openings 83 a and 83 b of the suction port 81 are located on the front side in the rotational direction with respect to the virtual extension surface of the wall surface 63 of the low pressure chamber 61.
  • the suction port 81 is positioned in front of the virtual extension surface of the wall surface 63 of the low pressure chamber 61 in the rotation direction, the flow of hydraulic oil in the low pressure chamber 61 is directed by the wall surface 63 of the low pressure chamber 61 and then the suction port 81 is hardly obstructed by the inner peripheral surface 81 (side surface of the recessed portion 82) 81a. Therefore, the hydraulic oil is more reliably filled in the rotation direction front portion of the pump chamber 41, and the suction characteristics of the vane pump 100 can be further improved.
  • the inner peripheral surface 81a of the suction port 81 is formed substantially parallel to the axial direction.
  • the inner peripheral surface 81a of the suction port 81 allows the flow of hydraulic oil forward in the rotational direction. It is desirable to be inclined with respect to the axial direction so that the Specifically, the inner peripheral surface 81a of the suction port 81 is inclined with respect to the axial direction so that the opening 83a of the suction port 81 is positioned on the front side in the rotational direction with respect to the opening 83b of the suction port 81.
  • the openings 83a and 83b of the suction port 81 are formed so that the width in the rotation direction is substantially equal to the opening 62 of the low-pressure chamber 61, but the openings 83a and 83b of the suction port 81 are in the rotation direction.
  • the width at may be larger than the opening 62.
  • the wall surface 63 of the low-pressure chamber 61 is not limited to a form that is inclined with respect to the axial direction, and the wall surface 63 may be formed to coincide with the axial direction.
  • the rotor 20 rotates as the drive shaft 10 rotates.
  • the vane 30 reciprocates with respect to the rotor 20, and the pump chamber 41 repeats expansion and contraction.
  • the hydraulic oil in the tank 2 is guided to the pump chamber 41 passing through the expansion regions 42 a and 42 c through the low pressure chamber 61, the passage 54 and the suction port 74, and through the low pressure chamber 61 and the suction port 81.
  • the flow of hydraulic fluid guided to the pump chamber 41 through the suction port 81 is directed forward in the rotational direction by the suction port 81. Therefore, the suction characteristics of the vane pump 100 are improved, and the occurrence of cavitation can be prevented.
  • the vane pump 100 accommodates the rotor 20 that is rotationally driven, the plurality of vanes 30 that are provided in the rotor 20 so as to be capable of reciprocating in the radial direction of the rotor 20, and the rotor 20.
  • a cam ring 40 having an inner circumferential cam surface 40a with which the tip portions 31 of the plurality of vanes 30 are in sliding contact with each other, and a pump chamber that is in contact with the end surface 40c of the cam ring 40 and partitioned by the plurality of vanes 30 between the rotor 20 and the cam ring 40
  • the second side plate 80 that divides 41 and the second side plate 80 are disposed between the cam ring 40 and the suction port 81 that leads the hydraulic oil to the pump chamber 41 and the cam ring 40.
  • Suction port 81 is arranged offset forward in the rotational direction of the rotor 20 relative to the opening 62 of the low pressure chamber 61.
  • the suction port 81 is arranged to be shifted forward in the rotational direction of the rotor 20 with respect to the opening 62 of the low pressure chamber 61, the hydraulic oil in the low pressure chamber 61 is transferred to the pump chamber 41 through the suction port 81. When sucked, it flows forward in the rotational direction of the rotor 20. Therefore, more hydraulic oil is filled in the front part of the pump chamber 41 in the rotation direction. Therefore, the suction characteristics of the vane pump 100 can be improved.
  • the low pressure chamber 61 has a wall surface 63 that guides hydraulic oil to the suction port 81, and the wall surface 63 allows the hydraulic oil from the low pressure chamber 61 to move forward in the rotation direction of the rotor 20. Tilt to lead.
  • the wall surface 63 of the low pressure chamber 61 guides the hydraulic oil from the low pressure chamber 61 to the front in the rotational direction of the rotor 20, so that the hydraulic oil is drawn into the pump chamber 41 through the suction port 81. It flows more reliably forward in the direction of rotation. Therefore, the hydraulic oil is more reliably filled in the front portion in the rotational direction of the pump chamber 41, and the suction characteristics of the vane pump 100 can be further improved.
  • the vane pump 100 is arranged such that the suction port 81 is shifted from the virtual extension surface of the wall surface 63 of the low pressure chamber 61 to the front side in the rotational direction of the rotor 20.
  • the suction port 81 is arranged so as to be shifted from the virtual extension surface of the wall surface 63 of the low-pressure chamber 61 to the front side in the rotational direction of the rotor 20, the flow of hydraulic oil in the low-pressure chamber 61 After being oriented by the wall surface 63, it is difficult to be blocked by the inner peripheral surface 81 a of the suction port 81. Therefore, the hydraulic oil is reliably filled in the front portion of the pump chamber 41 in the rotation direction, and the suction characteristics of the vane pump 100 can be further improved.
  • the vane pump 100 has an inner peripheral surface 81 a that is inclined so that the suction port 81 guides the hydraulic oil from the low pressure chamber 61 forward in the rotation direction of the rotor 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

ベーンポンプ100は、ロータ20と、複数のベーン30と、カムリング40と、第2サイドプレート80と、第2サイドプレート80に設けられ、ポンプ室41に作動油を導く吸込ポート81と、カムリング40との間に第2サイドプレート80を挟んで配置されるポンプカバー60と、ポンプカバー60に形成され、吸込ポート81に連通する開口部62を有する低圧室61と、を備え、吸込ポート81は、低圧室61の開口部62に対してロータ20の回転方向前方側にずれて配置される。

Description

ベーンポンプ
 本発明は、ベーンポンプに関する。
 JP2014-74368Aには、回転駆動されるロータと、ロータに設けられる複数のベーンと、ロータを収容するカムリングと、を備えるベーンポンプが開示される。ベーンはロータの回転に伴って往復動し、ベーンの先端部がカムリングの内周カム面に沿って摺接する。ロータ及びカムリングの両側には一対のサイドプレートが設けられ、一対のサイドプレートにより、ロータとカムリングとの間に複数のベーンにより仕切られるポンプ室が区画される。
 JP2014-74368Aに開示されるベーンポンプは、カムリングとの間で一方のサイドプレートを挟んで配置されるポンプカバーを更に備える。ポンプカバーにより低圧室が形成され、一方のサイドプレートには吸込ポートが設けられる。低圧室から吸込ポートを通じてポンプ室に作動流体が吸込まれる。
 ベーンポンプでは、ポンプ室はベーンとともに回転する。そのため、低圧室内の作動流体は、ポンプ室に吸込まれるときに、ポンプ室の回転方向前方部に満たされにくい。したがって、ポンプの回転が速くなるにつれて、作動流体の滞留により、ポンプ室の回転方向前方部へ作動流体が行き渡りにくくなる。その結果、ポンプ室の容積に対して作動流体が不足し、キャビテーションが生じるおそれがある。このような理由から、より良好な吸込特性を有するベーンポンプが求められている。
 本発明は、ベーンポンプの吸込特性を向上させることを目的とする。
 本発明のある態様によれば、ベーンポンプは、回転駆動されるロータと、ロータの径方向に往復動自在にロータに設けられる複数のベーンと、ロータを収容し、ロータの回転に伴って複数のベーンの先端が摺接する内周カム面を有するカムリングと、カムリングの端面に当接し、ロータとカムリングとの間に複数のベーンにより仕切られるポンプ室を区画するサイド部材と、サイド部材に設けられ、ポンプ室に作動流体を導く吸込ポートと、カムリングとの間にサイド部材を挟んで配置されるカバー部材と、カバー部材に形成され、吸込ポートに連通する開口部を有する低圧室と、を備え、吸込ポートは、低圧室の開口部に対してロータの回転方向前方側にずれて配置される。
図1は、本発明の実施形態に係るベーンポンプの断面図である。 図2は、図1のII-II線に沿う断面図である。 図3は、ロータ、ベーン及びカムリングをポンプカバー側から見た平面図である。 図4は、カムリング、第1及び第2サイドプレートの断面図である。 図5は、第1サイドプレートをカムリング側から見た平面図である。 図6は、第2サイドプレートをカムリング側から見た平面図である。 図7は、ロータ、ベーン、カムリング及び第2サイドプレートをポンプボディ側から見た平面図である。 図8は、ロータ、ベーン、カムリング及び第2サイドプレートをポンプボディ側から見た平面図であり、低圧室を2点鎖線で示す。 図9は、図8のIX-IX線に沿う断面図である。 図10は、本発明の他の実施形態に係るベーンポンプの断面図であり、図9に対応させて示す。
 以下、図面を参照して、本発明の実施形態に係るベーンポンプ100について説明する。ここでは、作動流体として作動油が用いられるベーンポンプ100について説明するが、作動水等の他の流体を作動流体として用いてもよい。
 図1及び図2はベーンポンプ100の断面図である。図1には図2のI-I線に沿う断面図が示され、図2には図1のII-II線に沿う断面図が示される。ベーンポンプ100は、車両に搭載される油圧機器1(例えば、パワーステアリング装置や変速機等)の油圧供給源として用いられる。
 ベーンポンプ100は、駆動シャフト10と、駆動シャフト10に連結されるロータ20と、ロータ20に設けられる複数のベーン30と、ロータ20及びベーン30を収容するカムリング40と、を備える。
 駆動シャフト10は、ポンプボディ50及びポンプカバー(カバー部材)60に回転自在に支持される。駆動シャフト10にエンジンまたは電動モータ(図示省略)の動力が伝わると、駆動シャフト10の回転駆動に伴ってロータ20が回転する。
 以下において、ロータ20の回転中心軸方向を単に「軸方向」とも称し、ロータ20の径方向を単に「径方向」とも称し、ロータ20の回転方向を単に「回転方向」とも称する。
 図3は、ロータ20、ベーン30及びカムリング40をポンプカバー60側から見た平面図である。図3に示すように、ロータ20には、外周面に開口部21を有するスリット22が所定間隔をおいて放射状に複数形成される。スリット22の開口部21は、ロータ20の外周から径方向外側に***した***部23に形成される。つまり、ロータ20の外周にはスリット22の数だけ***部23が形成される。スリット22内には、ベーン30によって背圧室24が区画される。
 ベーン30は、各スリット22に摺動自在に挿入され、ロータ20の回転に伴って径方向に往復動する。ベーン30の先端部31はカムリング40の内周面40aに対向し、ベーン30の基端部32は背圧室24に臨む。
 背圧室24には作動油が導かれる。ベーン30は、背圧室24内の作動油の圧力によってスリット22から突出する方向に押圧され、ベーン30の先端部31はカムリング40の内周面40aに接する。
 再び図1及び図2を参照する。ベーンポンプ100は、ロータ20及びカムリング40を軸方向に挟んで配置される第1及び第2サイド部材としての第1及び第2サイドプレート70,80を更に備える。
 図4は、カムリング40、第1及び第2サイドプレート70,80の断面図である。図4では、後述する高圧室53、通路54及び低圧室61が2点鎖線で示される。
 図4に示すように、第1及び第2サイドプレート70,80は、それぞれ、ロータ20及びカムリング40に当接する側面70a,80aを有し、ロータ20とカムリング40との間にベーン30により仕切られるポンプ室41を区画する。
 図3に示すように、カムリング40の内周面40aは、略長円形状に形成される。以下において、内周面40aを、「内周カム面40a」とも称することがある。
 カムリング40の内周カム面40aが略長円形状に形成されるので、ロータ20の回転に伴ってベーン30はロータ20に対して往復動し、ポンプ室41は膨張と収縮とを繰り返す。ポンプ室41が膨張するときには作動油がポンプ室41に吸込まれ、ポンプ室41が収縮するときには作動油がポンプ室41から吐出される。
 本実施形態では、ロータ20が1回転する間に、ベーン30は2往復しポンプ室41は膨張と収縮とを2回繰り返す。つまり、ベーンポンプ100は、ポンプ室41が膨張する2つの膨張領域42a,42cと、ポンプ室41が収縮する2つの収縮領域42b,42dと、を回転方向に交互に有する。
 図1及び図2に示すように、ポンプボディ50には、ロータ20、カムリング40及び第1サイドプレート70を収容する収容窪み部51が形成される。第1サイドプレート70が収容窪み部51の底面51aに配置される。
 収容窪み部51の底面51aには環状溝52が形成される。環状溝52と第1サイドプレート70とにより、ポンプ室41から吐出された作動油が流入する高圧室53が区画される。高圧室53は油圧機器1に接続され、ポンプ室41から吐出された作動油は高圧室53を通じて油圧機器1に供給される。
 図5は、第1サイドプレート70をカムリング40側から見た平面図である。図4及び図5に示すように、第1サイドプレート70は、その中心に孔71を有する環状に形成される。孔71には駆動シャフト10(図1参照)が挿通する。
 第1サイドプレート70には、ポンプ室41から吐出される作動油を高圧室53に導く2つの吐出ポート72が設けられる。吐出ポート72は、各収縮領域42b,42dに位置する。したがって、ポンプ室41内の作動油は、ポンプ室41が収縮領域42b,42dを通過する際に、吐出ポート72を通じて高圧室53吐出される。
 また、第1サイドプレート70には、高圧室53から背圧室24へ作動油を導く2つの背圧通路73が形成される。背圧通路73は、孔71を中心とする円弧形状を有し、膨張領域42a,42cに位置する。そのため、膨張領域42a,42cを通過する背圧室24には高圧室53から作動油が導かれる。その結果、膨張領域42a,42cを通過するベーン30は、背圧室24内の圧力によりスリット22(図3参照)から突出する方向に押圧される。
 このように、ベーン30は、背圧室24内の圧力と、ロータ20の回転により生じる遠心力と、によって、スリット22から突出する方向に押圧される。
 再び図1及び図2を参照する。ポンプボディ50の収容窪み部51はカムリング40と比較して大きく形成され、カムリング40とポンプボディ50とにより通路54が区画される。通路54は、第2サイドプレート80の外周から第1サイドプレート70の外周まで延在する。
 収容窪み部51の開口部はポンプカバー60により封止される。ポンプカバー60は、ボルト(図示省略)によってポンプボディ50に締結される。ポンプカバー60とカムリング40との間に第2サイドプレート80が配置される。
 ポンプカバー60は、タンク2に接続される低圧室61を形成する。低圧室61は、ポンプボディ50に形成される低圧通路55に連通する。タンク2内の作動油は、低圧通路55を通じて低圧室61に供給される。
 また、低圧室61は、通路54に連通するとともに、第2サイドプレート80に設けられる吸込ポート81に連通する開口部62を有する。通路54は、作動油をポンプ室41に導く吸込ポート74に連通する。つまり、低圧室61内の作動油は、通路54及び吸込ポート74を通じてポンプ室41に導かれる。
 本実施形態では、吸込ポート74は、図4及び図5に示すように、第1サイドプレート70の側面70aに形成される窪み部75と、窪み部75に臨むカムリング40の端面40bと、によって区画される。吸込ポート74は、例えば、第1サイドプレート70を貫通する孔からなっていてもよい。
 図6は第2サイドプレート80をカムリング40側から見た平面図であり、図7は、ロータ20、ベーン30、カムリング40及び第2サイドプレート80をポンプボディ50側から見た平面図である。
 図4、図6及び図7に示すように、第2サイドプレート80は、外周面80bに形成される2つの窪み部82を有する。窪み部82は、第2サイドプレート80の側面80aに形成される開口部83aを通じてポンプ室41に連通する。また、窪み部82は、第2サイドプレート80の、側面80aとは反対側の側面80cに形成される開口部83bを通じて低圧室61に連通する。
 窪み部82は、各膨張領域42a,42cに位置する。そのため、ポンプ室41が膨張領域42a,42cを通過する際に、窪み部82を通じて低圧室61からポンプ室41に作動油が導かれる。
 このように、吸込ポート81は、窪み部82と、窪み部82に臨むカムリング40の端面40cと、によって区画され、低圧室61からの作動油の流れを軸方向(第2サイドプレート80からカムリング40へ向かう方向)に向けて作動油をポンプ室41に導く。
 吸込ポート81は、窪み部82とカムリング40の端面40cとによって区画される形態に限られず、例えば、第2サイドプレート80を貫通する孔からなる形態であってもよい。
 図8は、ロータ20、ベーン30、カムリング40及び第2サイドプレート80をポンプボディ50側から見た平面図であり、低圧室61を2点鎖線で示す。図9は、図8のIX-IX線に沿う断面図である。図9において、ロータ20及びベーン30は図示が省略されている。
 図8及び図9に示すように、吸込ポート81の開口部83a,83bは、回転方向における幅が低圧室61の開口部62と略等しく形成される。また、開口部83a,83bは、低圧室61の開口部62に対して回転方向前方側に位置する。つまり、吸込ポート81は、低圧室61の開口部62に対して回転方向前方側にずれて配置される。
 吸込ポート81と低圧室61の開口部62との位置は、ポンプカバー60に設けられる2つのダウエルピン(図示省略)と第2サイドプレート80に設けられる2つのピン孔84(図6参照)とによって合わせられる。
 具体的には、各ダウエルピンは、第2サイドプレート80に接するポンプカバー60の接触面60aから軸方向に延在する。ピン孔84は、軸方向に第2サイドプレート80を貫通している。ダウエルピンを対応するピン孔84に挿入することによって、第2サイドプレート80に対するポンプカバー60の周方向位置が合わせられる。
 本実施形態では、カムリング40は、ピン孔84に対応する位置に形成された2つのピン孔43を有し(図3、図7及び図8参照)、第1サイドプレート70は、ピン孔43に対応する位置に形成された2つのピン孔76を有する(図5参照)。ピン孔43は軸方向にカムリング40を貫通しており、ピン孔76は軸方向に第1サイドプレート70を貫通している。つまり、ピン孔84,43,76は、第2サイドプレート80からカムリング40を通過して第1サイドプレート70まで貫通する貫通孔を形成している。ダウエルピンをピン孔84,43,76に挿入することにより、ポンプカバー60、第2サイドプレート80、カムリング40及び第1サイドプレート70の位置が合わせられる。
 ピン孔84,43,76は、従来の位置(ダウエルピンをピン孔84に挿入した場合に低圧室61の開口部62と吸込ポート81との位置が一致するようなピン孔84の位置)よりも回転方向前方側にずれて形成される。したがって、ダウエルピンをピン孔84,43,76に挿入することによって、吸込ポート81は、低圧室61の開口部62に対して回転方向前方側にずれて配置される。
 吸込ポート81が低圧室61の開口部62よりも回転方向前方に位置するため、吸込ポート81は、低圧室61からポンプ室41に導かれる作動油の流れを回転方向前方に向ける。つまり、流速ベクトル(流入角度)がポンプ回転方向に向けられる。そのため、低圧室61からの作動油は、ポンプ室41に吸込まれる際に、ポンプ室41の回転方向前方部に流れ込む。したがって、ベーンポンプ100の吸込特性が向上し、ポンプ室41の回転方向前方部にも作動油が行き渡る。十分な量の作動油がポンプ室41に導かれるので、ポンプ室41内の圧力の低下を防ぐことができ、キャビテーションの発生を防止することができる。
 低圧室61には、回転方向と交差し低圧室61内の作動油の流れを軸方向に向けて開口部62に案内する壁面63が形成される。壁面63は、開口部62から流出する作動油を回転方向前方に導くように軸方向に対し傾斜する。具体的には、開口部62が壁面63の開口部62とは反対側の端部63aに対して回転方向前方側に位置するように、壁面63は軸方向に対して傾斜する。
 低圧室61の壁面63が開口部62から流出する作動油の流れを回転方向前方に向けるので、低圧室61からの作動油は、ポンプ室41に吸込まれる際に、ポンプ室41の回転方向後方部に滞留し難い。したがって、ベーンポンプ100の吸込特性が向上し、キャビテーションの発生を防止することができる。
 さらに、吸込ポート81は、低圧室61の壁面63の仮想延長面に対して回転方向前方側にずれて配置される。具体的には、吸込ポート81の開口部83a,83bが、低圧室61の壁面63の仮想延長面に対して回転方向前方側に位置する。
 吸込ポート81が低圧室61の壁面63の仮想延長面よりも回転方向前方に位置するため、低圧室61内の作動油の流れは、低圧室61の壁面63により方向付けられた後、吸込ポート81の内周面(窪み部82の側面)81aにより阻害され難い。したがって、ポンプ室41の回転方向前方部に作動油がより確実に満たされ、ベーンポンプ100の吸込特性をより向上させることができる。
 本実施形態では、吸込ポート81の内周面81aは、軸方向に略平行に形成されるが、図10に示すように、吸込ポート81の内周面81aは作動油の流れを回転方向前方に向けるように軸方向に対して傾斜して形成されることが望ましい。具体的には、吸込ポート81の開口部83aが、吸込ポート81の開口部83bに対して回転方向前方側に位置するように、吸込ポート81の内周面81aは軸方向に対して傾斜する。
 吸込ポート81の内周面81aを軸方向に対して傾斜させることにより、低圧室61からポンプ室41に導かれる作動油の流れが回転方向前方に向けられる。そのため、低圧室61からの作動油は、ポンプ室41に吸込まれる際に、ポンプ室41の回転方向前方部により多く満たされる。したがって、ベーンポンプ100の吸込特性が向上し、キャビテーションの発生を防止することができる。
 また、本実施形態では、吸込ポート81の開口部83a,83bは、回転方向における幅が低圧室61の開口部62と略等しく形成されるが、吸込ポート81の開口部83a,83bは回転方向における幅が開口部62よりも大きくてもよい。
 低圧室61の壁面63は、軸方向に対し傾斜して形成される形態に限られず、壁面63は軸方向と一致するように形成されてもよい。
 次に、ベーンポンプ100の動作を、図1乃至図3を参照して説明する。
 駆動シャフト10にエンジンまたは電動モータ(図示省略)の動力が伝わると、駆動シャフト10の回転駆動に伴ってロータ20が回転する。ロータ20の回転に伴ってベーン30はロータ20に対して往復動し、ポンプ室41が膨張と収縮とを繰り返す。
 膨張領域42a,42cを通過するポンプ室41には、タンク2内の作動油が、低圧室61、通路54及び吸込ポート74を通じて、並びに低圧室61及び吸込ポート81を通じて導かれる。
 吸込ポート81を通じてポンプ室41に導かれる作動油の流れは、吸込ポート81により回転方向前方に向けられる。そのため、ベーンポンプ100の吸込特性が向上し、キャビテーションの発生を防止することができる。
 ポンプ室41が収縮領域42b,42dを通過するときには、ポンプ室41内の作動油は高圧室53に吐出され、油圧機器1へ導かれる。キャビテーションの発生が防止されるので、より高圧でより大流量の作動油を油圧機器1へ供給することができる。
 以下、本発明の実施形態の構成、作用、及び効果をまとめて説明する。
 本実施形態では、ベーンポンプ100は、回転駆動されるロータ20と、ロータ20の径方向に往復動自在にロータ20に設けられる複数のベーン30と、ロータ20を収容し、ロータ20の回転に伴って複数のベーン30の先端部31が摺接する内周カム面40aを有するカムリング40と、カムリング40の端面40cに当接し、ロータ20とカムリング40との間に複数のベーン30により仕切られるポンプ室41を区画する第2サイドプレート80と、第2サイドプレート80に設けられ、ポンプ室41に作動油を導く吸込ポート81と、カムリング40との間に第2サイドプレート80を挟んで配置されるポンプカバー60と、ポンプカバー60に形成され、吸込ポート81に連通する開口部62を有する低圧室61と、を備え、吸込ポート81は、低圧室61の開口部62に対してロータ20の回転方向前方側にずれて配置される。
 この構成では、吸込ポート81が低圧室61の開口部62に対してロータ20の回転方向前方側にずれて配置されるため、低圧室61内の作動油は、吸込ポート81を通じてポンプ室41に吸込まれる際に、ロータ20の回転方向前方へ流れる。そのため、作動油はポンプ室41の回転方向前方部により多く満たされる。したがって、ベーンポンプ100の吸込特性を向上させることができる。
 また、本実施形態では、ベーンポンプ100は、低圧室61が、作動油を吸込ポート81に案内する壁面63を有し、壁面63は、低圧室61からの作動油をロータ20の回転方向前方に導くように傾斜する。
 この構成では、低圧室61の壁面63が低圧室61からの作動油をロータ20の回転方向前方に導くので、作動油は、吸込ポート81を通じてポンプ室41に吸込まれる際に、ロータ20の回転方向前方へより確実に流れる。したがって、ポンプ室41の回転方向前方部に作動油がより確実に多く満たされ、ベーンポンプ100の吸込特性をより向上させることができる。
 また、本実施形態では、ベーンポンプ100は、吸込ポート81が、低圧室61の壁面63の仮想延長面よりもロータ20の回転方向前方側にずれて配置される。
 この構成では、吸込ポート81が低圧室61の壁面63の仮想延長面よりもロータ20の回転方向前方側にずれて配置されるため、低圧室61内の作動油の流れは、低圧室61の壁面63により方向付けられた後、吸込ポート81の内周面81aにより阻害され難い。したがって、ポンプ室41の回転方向前方部に作動油が確実に満たされ、ベーンポンプ100の吸込特性をより向上させることができる。
 また、本実施形態では、ベーンポンプ100は、吸込ポート81が、低圧室61からの作動油をロータ20の回転方向前方に導くように傾斜する内周面81aを有する。
 この構成では、吸込ポート81の内周面81aが低圧室61からの作動油をロータ20の回転方向前方に導くので、作動油は、吸込ポート81を通じてポンプ室41に吸込まれる際に、ロータ20の回転方向前方へより確実に流れる。したがって、ポンプ室41の回転方向前方部に作動油が確実に満たされ、ベーンポンプ100の吸込特性をより向上させることができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2015年11月2日に日本国特許庁に出願された特願2015-215973に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (4)

  1.  ベーンポンプであって、
     回転駆動されるロータと、
     前記ロータの径方向に往復動自在に前記ロータに設けられる複数のベーンと、
     前記ロータを収容し、前記ロータの回転に伴って前記複数のベーンの先端が摺接する内周カム面を有するカムリングと、
     前記カムリングの端面に当接し、前記ロータと前記カムリングとの間に前記複数のベーンにより仕切られるポンプ室を区画するサイド部材と、
     前記サイド部材に設けられ、前記ポンプ室に作動流体を導く吸込ポートと、
     前記カムリングとの間に前記サイド部材を挟んで配置されるカバー部材と、
     前記カバー部材に形成され、前記吸込ポートに連通する開口部を有する低圧室と、を備え、
     前記吸込ポートは、前記低圧室の前記開口部に対して前記ロータの回転方向前方側にずれて配置される、ベーンポンプ。
  2.  請求項1に記載のベーンポンプであって、
     前記低圧室は、作動流体を前記吸込ポートに案内する壁面を有し、
     前記壁面は、前記低圧室からの作動流体を前記ロータの回転方向前方に導くように傾斜する、ベーンポンプ。
  3.  請求項2に記載のベーンポンプであって、
     前記吸込ポートは、前記低圧室の前記壁面の仮想延長面よりも前記ロータの回転方向前方側にずれて配置される、ベーンポンプ。
  4.  請求項1に記載のベーンポンプであって、
     前記吸込ポートは、前記低圧室からの作動流体を前記ロータの回転方向前方に導くように傾斜する内周面を有する、ベーンポンプ。
PCT/JP2016/077586 2015-11-02 2016-09-16 ベーンポンプ WO2017077773A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680064145.5A CN108350878A (zh) 2015-11-02 2016-09-16 叶片泵
US15/767,791 US20180306184A1 (en) 2015-11-02 2016-09-16 Vane pump
DE112016005023.2T DE112016005023T5 (de) 2015-11-02 2016-09-16 Flügelzellenpumpe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015215973A JP6220837B2 (ja) 2015-11-02 2015-11-02 ベーンポンプ
JP2015-215973 2015-11-02

Publications (1)

Publication Number Publication Date
WO2017077773A1 true WO2017077773A1 (ja) 2017-05-11

Family

ID=58661810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077586 WO2017077773A1 (ja) 2015-11-02 2016-09-16 ベーンポンプ

Country Status (5)

Country Link
US (1) US20180306184A1 (ja)
JP (1) JP6220837B2 (ja)
CN (1) CN108350878A (ja)
DE (1) DE112016005023T5 (ja)
WO (1) WO2017077773A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7317477B2 (ja) * 2018-09-25 2023-07-31 愛三工業株式会社 ポンプ及びその車両搭載方法
JP2020200776A (ja) * 2019-06-06 2020-12-17 トーヨーエイテック株式会社 平衡型ベーンポンプ
DE102019218034B4 (de) * 2019-11-22 2021-07-29 Hanon Systems Efp Deutschland Gmbh Mehrflutige Flügelzellenpumpe
CN113530753B (zh) * 2021-05-13 2023-04-14 西安隆源电器有限公司 一种液压马达

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0573278U (ja) * 1992-03-03 1993-10-08 光洋精工株式会社 ベーンポンプ
JP2008303724A (ja) * 2007-06-05 2008-12-18 Kayaba Ind Co Ltd ベーンポンプ
US20090257901A1 (en) * 2008-04-12 2009-10-15 Delphi Technologies, Inc. Power steering pump having intake channels with enhanced flow characteristics and/or a pressure balancing fluid communication channel

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2766700A (en) * 1950-10-19 1956-10-16 Vickers Inc Power transmission
US3762843A (en) * 1970-07-09 1973-10-02 Yuken Kogyo Co Ltd Van type rotary hydraulic transducer
JPS59180088A (ja) * 1983-03-29 1984-10-12 Jidosha Kiki Co Ltd ベ−ンポンプ
US20070092392A1 (en) * 2005-10-20 2007-04-26 Aisin Seiki Kabushiki Kaisha Internal gear pump
JP2007162554A (ja) * 2005-12-13 2007-06-28 Kayaba Ind Co Ltd ベーンポンプ
JP5764453B2 (ja) * 2011-10-03 2015-08-19 カヤバ工業株式会社 ベーンポンプ
JP6071121B2 (ja) * 2012-03-19 2017-02-01 Kyb株式会社 可変容量型ベーンポンプ
JP6043139B2 (ja) * 2012-09-28 2016-12-14 Kyb株式会社 可変容量型ベーンポンプ
JP6052975B2 (ja) 2012-10-04 2016-12-27 Kyb株式会社 ベーンポンプ
JP2015215973A (ja) 2014-05-08 2015-12-03 市光工業株式会社 光源用組立体及び該組立体を搭載した車両用灯具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0573278U (ja) * 1992-03-03 1993-10-08 光洋精工株式会社 ベーンポンプ
JP2008303724A (ja) * 2007-06-05 2008-12-18 Kayaba Ind Co Ltd ベーンポンプ
US20090257901A1 (en) * 2008-04-12 2009-10-15 Delphi Technologies, Inc. Power steering pump having intake channels with enhanced flow characteristics and/or a pressure balancing fluid communication channel

Also Published As

Publication number Publication date
US20180306184A1 (en) 2018-10-25
DE112016005023T5 (de) 2018-07-26
JP6220837B2 (ja) 2017-10-25
JP2017089396A (ja) 2017-05-25
CN108350878A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
WO2017077773A1 (ja) ベーンポンプ
JP5345093B2 (ja) ベーンポンプ
JP6707340B2 (ja) ベーンポンプ装置
JP2011012575A (ja) ベーンポンプ
JP6608673B2 (ja) ベーンポンプ装置
JP6071121B2 (ja) 可変容量型ベーンポンプ
JP6670119B2 (ja) ベーンポンプ
JP6770370B2 (ja) ベーンポンプ
JP6615579B2 (ja) ベーンポンプ装置
WO2018043434A1 (ja) ベーンポンプ
WO2018043433A1 (ja) ベーンポンプ
JP2017110569A (ja) ベーンポンプ装置
JP5204739B2 (ja) ベーンポンプ
KR20160065425A (ko) 2중 노치가 형성된 베인 펌프
JP6615580B2 (ja) ベーンポンプ装置、油圧装置
WO2017047363A1 (ja) ベーンポンプ
JP2018035777A (ja) ベーンポンプ
JP2009052525A (ja) ベーンポンプ
JP6609163B2 (ja) ベーンポンプ
JP7029369B2 (ja) ベーンポンプ
US11959482B2 (en) Vane pump
WO2019216173A1 (ja) ベーンポンプ
JP2017115840A (ja) ベーンポンプ装置
JP2020041465A (ja) ベーンポンプ
JP2017115843A (ja) ベーンポンプ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861842

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15767791

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016005023

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861842

Country of ref document: EP

Kind code of ref document: A1