WO2017068756A1 - ホットプレス部材およびその製造方法 - Google Patents

ホットプレス部材およびその製造方法 Download PDF

Info

Publication number
WO2017068756A1
WO2017068756A1 PCT/JP2016/004458 JP2016004458W WO2017068756A1 WO 2017068756 A1 WO2017068756 A1 WO 2017068756A1 JP 2016004458 W JP2016004458 W JP 2016004458W WO 2017068756 A1 WO2017068756 A1 WO 2017068756A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
hot
hot press
press member
plating layer
Prior art date
Application number
PCT/JP2016/004458
Other languages
English (en)
French (fr)
Inventor
功一 中川
金子 真次郎
横田 毅
瀬戸 一洋
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP16857079.4A priority Critical patent/EP3366797B1/en
Priority to CN201680061022.6A priority patent/CN108138289A/zh
Priority to KR1020187013032A priority patent/KR20180063303A/ko
Priority to MX2018004772A priority patent/MX2018004772A/es
Priority to US15/768,894 priority patent/US20190093191A1/en
Publication of WO2017068756A1 publication Critical patent/WO2017068756A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/208Deep-drawing by heating the blank or deep-drawing associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a member formed by hot-pressing a thin steel plate, that is, a hot-pressed member and a manufacturing method thereof.
  • the hot press method the steel sheet is heated to the austenite region, and then conveyed to the press machine.
  • the press machine the steel sheet is formed into a member having a desired shape and rapidly cooled.
  • the cooling process rapid cooling
  • the structure of the member undergoes phase transformation from the austenite phase to the martensite phase, thereby obtaining a high-strength member having a desired shape.
  • Patent Document 1 proposes a hot press-formed product obtained by forming a thin steel plate by a hot press forming method.
  • the hot press-molded product described in Patent Document 1 is in mass%, C: 0.15-0.35%, Si: 0.5-3%, Mn: 0.5-2%, P: 0.05% or less, S: 0.05% or less , Al: 0.01 to 0.1%, Cr: 0.01 to 1%, B: 0.0002 to 0.01%, Ti: (N content) x 4 to 0.1%, N: 0.001 to 0.01%, the balance being Fe and inevitable It has a component composition consisting of mechanical impurities and a ratio of martensite: 80 to 97%, retained austenite: 3 to 20%, and remaining structure: 5% or less. According to the technique described in Patent Document 1, it is described that a metal structure in which an appropriate amount of retained austenite is left can be obtained, and a hot-pressed part with higher ductility inherent in a molded product can be realized. Yes.
  • Patent Document 2 proposes a hot press member having excellent ductility.
  • the hot press member described in Patent Document 2 is in mass%, C: 0.20 to 0.40%, Si: 0.05 to 3.0%, Mn: 1.0 to 4.0%, P: 0.05% or less, S: 0.05% or less, Al : 0.005 to 0.1%, N: 0.01% or less, with the balance consisting of Fe and inevitable impurities, the area ratio of the ferrite phase occupying the entire structure is 5 to 55%, and the area ratio of the martensite phase is It is a hot-pressed member that has a microstructure of 45 to 95% and an average grain size of ferrite phase and martensite phase of 7 ⁇ m or less, high tensile strength TS: 1470 to 1750 MPa, and total elongation El: High ductility of 8% or more.
  • the hot press member is generally baked after the member is manufactured, and the yield stress YS is increased by the heat treatment during the baked coating.
  • the yield stress YS is increased by the heat treatment during the baked coating.
  • the techniques described in Patent Documents 1 and 2 do not consider such heat treatment curability.
  • the present invention has a high tensile strength TS: 1500 MPa or higher, a uniform elongation uEl: 6.0% or higher high ductility, and a yield stress YS of 150 MPa or higher when subjected to heat treatment (baking coating). It is an object of the present invention to provide a hot press member having all of the increased excellent heat treatment curability and an advantageous manufacturing method thereof.
  • excellent heat treatment curability means that when a hot pressed member is heat treated, the difference between the yield stress YS after heat treatment and the yield stress YS before heat treatment (hereinafter referred to as “ ⁇ YS”) is 150 MPa.
  • the present inventors have conducted extensive studies on various factors affecting the yield stress YS and the uniform elongation uEl in a hot press member having a high tensile strength TS: 1500 MPa or more, The following findings were obtained.
  • the steel sheet Before hot-pressing a steel sheet containing 3.5% or more of Mn, the steel sheet is preheated to a ferrite-austenite two-phase temperature range and at a predetermined temperature within the temperature range for 1 hour to 48 hours.
  • An appropriate amount of retained austenite can be generated by concentrating Mn in the austenite by performing the heat treatment to be held.
  • a hot press member having a dislocation density of 1.0 ⁇ 10 16 / m 2 or more can be obtained by subjecting the steel sheet thus obtained to a predetermined heating step and a hot press forming step.
  • the summary structure is as follows. (1) In mass%, C: 0.090% or more and less than 0.30%, Mn: 3.5% or more and less than 11.0%, Si: 0.01-2.5%, P: 0.05% or less, S: 0.05% or less, Al: 0.005-0.1%, N: including 0.01% or less, Component composition of the balance consisting of Fe and inevitable impurities, A structure containing a martensite phase having a volume ratio of 70.0% or more and a retained austenite phase having a volume ratio of 3.0% or more and 30.0% or less; Tensile strength TS: 1500MPa or more and uniform elongation uEl: 6.0% or more, And a dislocation density of 1.0 ⁇ 10 16 / m 2 or more.
  • the component composition further contains, by mass%, one group or two or more groups selected from the following groups A to E.
  • Group A Ni: 0.01% to 5.0%, Cu: 0.01% to 5.0%, Cr: 0.01% to 5.0%, Mo: 0.01% to 3.0% or more
  • Group D Sb: 0.002 to 0.03%
  • Group E B: 0.0005-0.05%
  • the component composition further comprises 1% by mass or one or more groups selected from the following groups A to E: .
  • Group C REM: 0.0005-0.01%, Ca: 0.0005-0.01 %, Mg: One or more selected from 0.0005 to 0.01%
  • the hot pressed member of the present invention has high tensile strength TS: 1500 MPa or higher, uniform elongation uEl: 6.0% or higher high ductility, and yield stress YS increases by 150 MPa or more when heat treated (baking coating). Combined with excellent heat treatment curability. Moreover, according to the manufacturing method of the hot press member of this invention, the above hot press members can be obtained advantageously.
  • Component composition The component composition of the hot press member according to one embodiment of the present invention will be described. Hereinafter, unless otherwise specified, “mass%” is simply referred to as “%”.
  • C 0.090% or more and less than 0.30% C is an element that increases the strength of steel.
  • the yield stress increases due to the dislocation fixation of the solid solution C in the heat treatment for the hot press member.
  • the C content is set to 0.090% or more.
  • the amount of solid solution strengthening due to C increases, and it becomes difficult to adjust the tensile strength TS of the hot press member to less than 2300 MPa.
  • Mn 3.5% or more and less than 11.0%
  • Mn is an element that increases the strength of steel and concentrates in austenite to improve the stability of austenite, and is the most important element in the present invention.
  • the Mn content is 3.5% or more.
  • the solid solution strengthening amount due to Mn becomes large, and it becomes difficult to adjust the tensile strength TS of the hot press member to less than 2300 MPa.
  • a member can be obtained.
  • C 0.090% or more and less than 0.12% and Mn: 4.5% or more and less than 6.5%
  • C It is preferable to be 0.12% or more and less than 0.18% and Mn: 3.5% or more and less than 5.5%.
  • C 0.090% or more and less than 0.12% and Mn: 6.5% or more and less than 8.5%, or C: 0.12% or more and 0.18 % And Mn: 5.5% or more and less than 7.5% are preferable.
  • Mn 5.5% or more and less than 7.5%
  • C 0.18% or more and less than 0.30% and Mn: 3.5% or more and less than 4.5%.
  • tensile strength TS 2000MPa or more and less than 2300MPa
  • Si 0.01-2.5%
  • Si is an element that increases the strength of steel by solid solution strengthening. In order to obtain such an effect, the Si content is set to 0.01% or more. On the other hand, when the Si content exceeds 2.5%, surface defects called red scales are remarkably generated during hot rolling, and the rolling load increases. Therefore, Si content shall be 0.01% or more and 2.5% or less.
  • the Si content is preferably 0.02% or more.
  • the Si content is preferably 1.5% or less.
  • P 0.05% or less
  • P is an element that is unavoidable in steel, segregates at grain boundaries, and has an adverse effect such as lowering the toughness of the member. Up to 0.05% is acceptable. Therefore, the P content is 0.05% or less, more preferably 0.02% or less. Further, excessive P removal treatment leads to an increase in refining costs, so the P content is preferably 0.0005% or more.
  • S 0.05% or less S is inevitably contained, and exists in the steel as sulfide inclusions, and lowers the ductility, toughness, and the like of the hot pressed member. For this reason, it is desirable to reduce S as much as possible, but 0.05% is acceptable. For these reasons, the S content is 0.05% or less, more preferably 0.005% or less. Moreover, since excessive de-S treatment causes an increase in refining costs, the S content is preferably 0.0005% or more.
  • Al 0.005-0.1%
  • Al is an element that acts as a deoxidizer, and in order to exhibit such an effect, the Al content is set to 0.005% or more.
  • Al content shall be 0.005% or more and 0.1% or less.
  • the Al content is preferably 0.02% or more.
  • the Al content is preferably 0.05% or less.
  • N 0.01% or less N is usually inevitably contained in steel, but when the N content exceeds 0.01%, a nitride such as AlN is formed during hot rolling or hot press heating, Blanking workability and hardenability of the steel sheet used as a raw material are reduced. For this reason, N content shall be 0.01% or less.
  • the N content is more preferably 0.0030% or more.
  • the N content is more preferably 0.0050% or less.
  • the N content is about 0.0025% or less.
  • the refining cost increases the N content is preferably set to 0.0025% or more.
  • composition may further include the following optional components.
  • Group B Ti: 0.005 to 3.0%, Nb: 0.005 to 3.0%, V: 0.005 to 3.0%, W: 0.005 to 3.0%, one or more selected from Ti, Nb, V, W All are elements that contribute to the increase in strength of steel by precipitation strengthening and contribute to the improvement of toughness by refining crystal grains, and one or more elements can be selected and contained as necessary.
  • TiTi has the effect of increasing the strength and toughness, forming nitrides in preference to B, and improving the hardenability by solid solution B.
  • the Ti content is set to 0.005% or more.
  • the content shall be 0.005% or more and 3.0% or less.
  • it is 0.01% or more.
  • it is 1.0% or less.
  • the Nb content is 0.005% or more.
  • the content shall be 0.005% or more and 3.0% or less.
  • it is 0.01% or more.
  • it is 0.05%.
  • V has the effect of improving hydrogen embrittlement resistance as a hydrogen trap site by being precipitated as precipitates and crystallized substances in addition to the effects of increasing strength and improving toughness.
  • the V content is set to 0.005% or more.
  • the content shall be 0.005% or more and 3.0% or less.
  • it is 0.01% or more.
  • it is 2.0% or less.
  • W has the effect of improving hydrogen embrittlement resistance in addition to the effects of increasing strength and improving toughness.
  • the W content is set to 0.005% or more.
  • the content shall be 0.005% or more and 3.0% or less.
  • it is 0.01% or more.
  • it is 2.0% or less.
  • Group C REM: 0.0005-0.01%, Ca: 0.0005-0.01%, Mg: One or more selected from 0.0005-0.01% REM, Ca, and Mg are all controlled by the form control of inclusions It is an element that improves ductility and hydrogen embrittlement resistance, and can be selected as necessary and can contain one or more. In order to obtain this effect, the content of each element is set to 0.0005% or more. On the other hand, from the viewpoint of not deteriorating hot workability, both the REM content and the Ca content are set to 0.01% or less. From the viewpoint of not reducing ductility due to the formation of coarse oxides and sulfides, the Mg content is 0.01% or less. A preferable content of each element is 0.0006 to 0.01%.
  • Sb 0.002-0.03%
  • Sb can be contained as necessary in order to suppress the formation of a decarburized layer in the steel sheet surface layer during heating and cooling of the steel sheet.
  • the Sb content is set to 0.002% or more.
  • the content shall be 0.002% or more and 0.03% or less, preferably 0.002% or more and 0.02% or less.
  • Group E: B: 0.0005-0.05% B contributes to improving the hardenability during hot pressing and toughness after hot pressing, and can be contained as necessary.
  • the B content is set to 0.0005% or more.
  • the content is 0.0005% or more and 0.05% or less, preferably 0.0005% or more and 0.01% or less.
  • the balance other than the above components is composed of Fe and inevitable impurities.
  • O oxygen
  • Martensite phase 70.0% or more in volume ratio
  • TS tensile strength
  • Residual austenite phase 3.0 to 30.0% by volume
  • the retained austenite phase is the most important structure in the present invention that enhances uniform elongation by the TRIP effect (transformation-induced plasticity) during deformation.
  • a residual austenite phase of 3.0% or more by volume is contained.
  • the volume ratio of the retained austenite phase exceeds 30.0%, the hard martensite phase transformed after the TRIP effect is manifested increases, and the toughness decreases. Therefore, the volume ratio of the retained austenite phase is set to 3.0% or more and 30.0% or less.
  • the volume ratio of the retained austenite phase is preferably 5.0 or more.
  • the volume ratio of the retained austenite phase is preferably 20.0% or less.
  • a steel sheet containing an appropriate amount of Mn is used, the steel sheet is subjected to a predetermined heat treatment before hot pressing, and Mn is concentrated in austenite. Furthermore, it is important to optimize the heating process during hot pressing.
  • the balance other than the martensite phase and the retained austenite phase can accept a bainite phase, a ferrite phase, cementite, and pearlite in a total volume ratio of 10% or less (including 0%).
  • the volume ratio of each phase is determined as follows.
  • the volume ratio of retained austenite is obtained by the following method.
  • a test piece for X-ray diffraction is cut out from the hot-pressed member, subjected to mechanical polishing and chemical polishing so that the 1/4 thickness surface becomes the measurement surface, and then X-ray diffraction is performed.
  • CoK ⁇ rays are used as incident X-rays, and the integrated intensity of peaks of residual austenite ( ⁇ ) on the ⁇ 200 ⁇ plane, ⁇ 220 ⁇ plane, ⁇ 311 ⁇ plane, the ⁇ 200 ⁇ plane of ferrite ( ⁇ ), ⁇ 211 ⁇ Measure the integrated intensity of the peak of the surface.
  • the residual ⁇ volume ratio obtained from the integral intensity ratio is calculated for a total of six types of ⁇ ⁇ 211 ⁇ - ⁇ ⁇ 200 ⁇ , ⁇ ⁇ 211 ⁇ - ⁇ ⁇ 220 ⁇ , ⁇ ⁇ 200 ⁇ - ⁇ ⁇ 311 ⁇ , ⁇ ⁇ 211 ⁇ - ⁇ ⁇ 200 ⁇ , ⁇ ⁇ 211 ⁇ - ⁇ ⁇ 220 ⁇ ,
  • the residual ⁇ volume ratio obtained from the integral intensity ratio is calculated for a total of six types of ⁇ ⁇ 211 ⁇ - ⁇ ⁇ 311 ⁇ . These average values are defined as “volume ratio of residual austenite phase”.
  • the volume ratio of the remaining tissue is obtained by the following method.
  • a structure observation specimen is collected so that a plane parallel to the rolling direction and perpendicular to the rolling surface becomes the observation surface.
  • the observation surface is polished and corroded with 3 vol.% Nital solution to reveal the structure, and the structure at the position where the thickness becomes 1/4 is observed with a scanning electron microscope (magnification: 1500 times) and imaged.
  • the tissue identification and the tissue fraction are obtained by image analysis.
  • the phase that is observed as black on a relatively smooth surface is the ferrite phase
  • the phase that is observed as white in the form of a film or a lump at the grain boundary is cementite
  • the phase in which the ferrite phase and cementite are formed in layers is pearlite
  • the phase formed by carbides and the phase composed of bainitic ferrite without carbides in the grains are identified as the bainite phase.
  • the occupied area ratio of each phase in the structure photograph was obtained, the structure was regarded as being three-dimensionally homogeneous, and the area ratio was defined as the volume ratio.
  • the “volume ratio of the martensite phase” was a value obtained by subtracting the volume ratio of the remaining structure and the volume ratio of the retained austenite phase from 100%.
  • Dislocation density 1.0 ⁇ 10 16 / m 2 or more
  • the dislocation density of the hot-pressed member is the most important index in the present invention that affects ⁇ YS. It is considered that when heat treatment (baking coating) is performed on the hot press member, the solid solution C is fixed to the movable dislocation, and the yield stress YS is increased. In order to realize ⁇ YS: 150 MPa or more, the dislocation density of the hot press member needs to be 1.0 ⁇ 10 16 / m 2 or more. The upper limit of the dislocation density is substantially 5.0 ⁇ 10 16 / m 2 .
  • the dislocation density of the hot press member is preferably 1.2 ⁇ 10 16 / m 2 or more.
  • the dislocation density of the hot press member is preferably 4.5 ⁇ 10 16 / m 2 or less.
  • the dislocation density is determined by the following method.
  • a test piece for X-ray diffraction is cut out from the hot-pressed member, and after mechanical polishing and chemical polishing are performed so that the 1/4 thickness surface becomes the measurement surface, X-ray diffraction is performed.
  • the incident X-rays using a 1-wire CoK ⁇ , ⁇ ⁇ 110 ⁇ , ⁇ ⁇ 211 ⁇ , actually measuring the half-value width of the peak of alpha ⁇ 220 ⁇ .
  • standard specimens without strain (Si) and correcting the half-value width of the measured ⁇ ⁇ 110 ⁇ , ⁇ ⁇ 211 ⁇ , ⁇ ⁇ 220 ⁇ to the true half-value width the Williamson-Hall method was applied. Based on this, the strain ( ⁇ ) is obtained.
  • the hot-pressed member of the present embodiment has a tensile strength TS: 1500 MPa or higher, preferably less than 2300 MPa, uniform elongation uEl: 6.0% or higher, substantially 20% or lower, and ⁇ YS of 150 MPa or higher. In fact, it has a characteristic of 300 MPa or less.
  • the hot press member according to one embodiment of the present invention preferably has a plating layer.
  • the steel plate used as the material for the hot press member is a plated steel plate
  • the plating layer remains on the surface layer of the obtained hot press member.
  • scale generation is suppressed during heating in the hot press. Therefore, the hot press member can be used for use without removing the scale from the surface, and the productivity is improved.
  • the plating layer is preferably a Zn-based plating layer or an Al-based plating layer.
  • the Zn-based plating layer is superior to the Al-based plating layer. This is because the corrosion rate of the base iron can be reduced by the sacrificial anticorrosive action of zinc.
  • a zinc oxide film is formed at the initial stage of heating in the hot pressing step, and Zn can be prevented from evaporating in the subsequent processing of the hot pressing member.
  • examples of the Zn-based plating include general hot dip galvanizing (GI), alloyed hot dip galvanizing (GA), and Zn—Ni based plating.
  • GI general hot dip galvanizing
  • GA alloyed hot dip galvanizing
  • Zn—Ni based plating is preferable.
  • the Zn—Ni-based plated layer can prevent liquid metal embrittlement cracking in addition to remarkably suppressing scale formation during hot press heating. From the viewpoint of obtaining this effect, the Zn—Ni-based plating layer preferably contains 10 to 25% by mass of Ni. This effect is saturated even if Ni is contained in excess of 25%.
  • Al-based plating layer is Al-10 mass% Si plating.
  • the manufacturing method of the hot press member in one Embodiment of this invention is demonstrated. First, a slab having the above component composition is heated and hot-rolled to obtain a hot-rolled steel sheet. Thereafter, the hot-rolled steel sheet is subjected to a predetermined heat treatment (Mn concentration heat treatment) described later to obtain a first material steel sheet. Thereafter, the first material steel plate is optionally cold-rolled to obtain a cold-rolled steel plate, and subsequently, the cold-rolled steel plate is subjected to predetermined annealing to obtain a second material steel plate.
  • Mn concentration heat treatment Mn concentration heat treatment
  • a predetermined heating step and a hot press forming step are performed on the first material steel plate or the second material steel plate thus obtained to obtain a hot press member.
  • the process of obtaining a hot-rolled steel sheet is not particularly limited, and may be performed according to a regular method.
  • the molten steel having the above composition is melted in a converter or the like, and is preferably made into a slab by a continuous casting method.
  • an ingot casting method or a thin slab continuous casting method may be used.
  • the obtained slab is once cooled to room temperature and then charged into a heating furnace for reheating.
  • an energy saving process such as a process of charging a heating furnace with a hot piece without cooling the slab to a room temperature or a process of hot rolling immediately after the slab is kept warm can be applied.
  • the obtained slab is heated to a predetermined heating temperature and then hot-rolled to obtain a hot-rolled steel sheet.
  • the heating temperature include 1000 to 1300 ° C.
  • the heated slab is usually hot-rolled at a finish rolling entry temperature of 1100 ° C or less and a finish rolling exit temperature of 800 to 950 ° C, and cooled at an average cooling rate of 5 ° C / s or more. Then, it is wound in a coil shape at a winding temperature of 300 to 750 ° C. to obtain a hot rolled steel sheet.
  • ⁇ Mn enrichment heat treatment> Subsequently, the hot-rolled steel sheet is heated to a first temperature not lower than Ac1 point and not higher than Ac3 point, maintained at the first temperature for not less than 1 hour and not more than 48 hours, and then cooled to obtain a first material steel sheet.
  • This treatment concentrates Mn in austenite, achieves a uniform elongation uEl: 6.0% or more with an appropriate amount of retained austenite, and a dislocation density of 1.0 ⁇ 10 16 / m 2 or more ⁇ YS: This is the most important process for manufacturing hot-pressed members that achieve 150 MPa or higher.
  • Heating temperature Ac1 point or more and Ac3 point or less Hot rolled steel sheet is heated to the ferrite-austenite two-phase temperature range to concentrate Mn in the austenite.
  • austenite enriched with Mn the end temperature of martensite transformation is not higher than room temperature, and retained austenite is easily generated.
  • the heating temperature is less than the Ac1 point, austenite is not generated and Mn cannot be concentrated to austenite.
  • the heating temperature exceeds the Ac3 point, the austenite single phase temperature range is reached, and Mn concentration to austenite is not performed.
  • the dislocation density of the hot press member cannot be 1.0 ⁇ 10 16 / m 2 or more in both cases where the heating temperature is less than the Ac1 point and exceeds the Ac3 point. Therefore, the heating temperature is set to Ac1 point or more and Ac3 point or less.
  • the heating temperature is preferably (Ac1 point + 20 ° C.) or higher.
  • the heating temperature is preferably (Ac3 point ⁇ 20 ° C.) or less.
  • the Ac1 point (° C.) and Ac3 point (° C.) are values calculated using the following formula.
  • Ac1 point (°C) 751-16C + 11Si-28Mn-5.5Cu-16Ni + 13Cr + 3.4Mo
  • Ac3 point (°C) 910-203C 1/2 + 44.7Si-4Mn + 11Cr
  • C, Si, Mn, Ni, Cu, Cr, and Mo in the formula are the content (mass%) of each element, and when the above element is not contained, the content of the element is Calculate as zero.
  • Heating and holding time 1 hour to 48 hours or less Concentration of Mn to austenite proceeds as the heating and holding time elapses. If the heating and holding time is less than 1 hour, the concentration of Mn to austenite is insufficient, and the desired uniform elongation cannot be obtained. Also, if the heating and holding time is less than 1 hour, Mn concentration is insufficient, the Ms point in the hot press process does not decrease, and the dislocation density of the hot press member is 1.0 ⁇ 10 16 / m 2 or more I can't. On the other hand, when the heating and holding time exceeds 48 hours, pearlite is generated, and a desired uniform elongation cannot be obtained.
  • the dislocation density of the hot press member cannot be 1.0 ⁇ 10 16 / m 2 or more. Therefore, the heating and holding time is 1 hour or more and 48 hours or less. The heating and holding time is preferably 1.5 hours or longer. The heating and holding time is preferably 24 hours or less.
  • the Ms point (° C.) is a value calculated using the following formula.
  • Ms point (°C) 539-423C-30.4Mn-17.7Ni-12.1Cr-7.5Mo
  • C, Mn, Ni, Cr, and Mo in the formula are the contents (mass%) of each element, and when the element is not contained, the content of the element is calculated as zero. .
  • the cooling after the heating and holding is not particularly limited, and it is preferable that the cooling is appropriately performed (gradual cooling) or controlled cooling depending on the heating furnace to be used.
  • This Mn concentration heat treatment is preferably performed in a batch annealing furnace or a continuous annealing furnace.
  • the processing conditions in the batch annealing furnace are not particularly limited except the above-mentioned conditions.
  • the heating rate is 40 ° C./hr or more
  • the cooling rate after heating and holding is 40 ° C./hr or more. It is preferable from the viewpoint of thickening.
  • the processing conditions in the continuous annealing furnace are not particularly limited except as described above.
  • the hot-rolled steel sheet is 350 to 600 ° C. at an average cooling rate of 10 ° C./s or more. It is preferable from the viewpoint of manufacturability to cool to a cooling stop temperature in the above temperature range, and then continue to be retained in the temperature range for 10 to 300 seconds, and then cooled and wound.
  • the first material steel plate produced in this way can be used as a hot press steel plate.
  • the structure of the first material steel plate is characterized in that Mns / Mn ⁇ is 1.2 or more when the Mn concentration in the lath-like second phase is Mns and the Mn concentration in the lath-like ferrite is Mn ⁇ .
  • the “second phase” is a remaining structure (austenite, martensite, pearlite, bainite) other than ferrite.
  • Mns / Mn ⁇ is less than 1.2, it means that Mn concentration to austenite is insufficient, and sufficient uniform elongation and dislocation density cannot be obtained after the hot pressing step.
  • the first material steel plate may be cold-rolled to be a cold-rolled steel plate without subjecting the first material steel plate to a heating process and a hot press forming process described later.
  • the rolling reduction during cold rolling is preferably 30% or more, and more preferably 50% or more, in order to prevent abnormal grain growth during the subsequent annealing or heating process immediately before hot pressing.
  • the rolling reduction is preferably 85% or less.
  • a 2nd raw material steel plate is obtained by the annealing which heats and hold
  • the annealing temperature is a predetermined temperature between Ac1 point and Ac3 point. This is because the Mn concentration to austenite is further promoted in the annealing step.
  • the holding time at the predetermined temperature is not particularly limited, but is preferably 30 seconds or longer and 300 seconds or shorter. If it is 30 seconds or more, the effect of Mn concentration is sufficiently obtained, and if it is 300 seconds or less, productivity is not impaired.
  • the second material steel plate produced in this way can be used as a hot press steel plate.
  • the structure of the second material steel plate is that when the average grain size of ferrite is 10 ⁇ m or less, the average grain size of the second phase is 10 ⁇ m or less, the Mn concentration in the second phase is Mns, and the Mn concentration in the ferrite is Mn ⁇ , Mns / Mn ⁇ is 1.5 or more.
  • the “average diameter of ferrite” and “average diameter of second phase” were determined by the following methods. From the second material steel plate, a structure observation specimen is collected so that a surface parallel to the rolling direction and perpendicular to the rolling surface becomes the observation surface.
  • the observation surface is polished and corroded with 3 vol.% Nital solution to reveal the structure, and the structure at the position where the thickness becomes 1/4 is observed with a scanning electron microscope (magnification: 1500 times) and imaged. From the obtained tissue photograph, the tissue was identified based on the aforementioned criteria.
  • the average particle diameter of the ferrite and the second phase was determined by the line segment method described in JIS G 0551 (2005).
  • Mns / Mn ⁇ was determined by the following method. After collecting the specimen for tissue observation, the observation surface is polished and corroded with 3vol.% Nital solution to reveal the structure, and the tissue at the position where the thickness becomes 1/4 is changed to EPMA (Electron Probe Micro Analyzer). Mn was quantitatively analyzed for 30 particles of each of ferrite and second phase. Regarding the Mn quantitative analysis results, the average value of ferrite was Mn ⁇ , the average value of the second phase was Mns, and the average value Mns of the second phase was divided by the average value Mn ⁇ of ferrite was Mns / Mn ⁇ .
  • ⁇ Plating process> When a plating layer is not formed on the surface of the first material steel plate or the second material steel plate, it is necessary to perform a scale peeling treatment such as shot blasting on the hot press member after the hot pressing step. On the other hand, when a plating layer is formed on the surface of the first material steel plate or the second material steel plate, scale generation is suppressed during heating of the hot press, so that the scale peeling treatment after the hot press process is unnecessary, and productivity is reduced. Will improve.
  • the adhesion amount of the plating layer is preferably 10 to 90 g / m 2 per side, more preferably 30 to 70 g / m 2 . This is because if the adhesion amount is 10 g / m 2 or more, the effect of suppressing scale formation during heating is sufficiently obtained, and if the adhesion amount is 90 g / m 2 or less, productivity is not hindered.
  • the components of the plating layer are as described above.
  • a heating process is performed in which the first material steel plate or the second material steel plate is heated to a second temperature of Ac3 point or higher and 1000 ° C. or lower and held at the second temperature for 900 seconds or shorter.
  • Heating temperature Ac3 point or higher and 1000 ° C or lower If the heating temperature is lower than the Ac3 point, which is the austenite single phase region, austenitization becomes insufficient, and the desired martensite amount cannot be secured in the hot pressed member, and the desired tensile strength I can't get it. Further, the dislocation density of the hot press member cannot be 1.0 ⁇ 10 16 / m 2 or more, and ⁇ YS: 150 MPa or more cannot be realized. On the other hand, if the heating temperature exceeds 1000 ° C., the Mn concentrated in the austenite is made uniform, the desired amount of retained austenite cannot be secured, and the desired uniform elongation cannot be obtained.
  • the heating temperature is set to Ac3 point or higher and 1000 ° C or lower.
  • the heating temperature is preferably (Ac3 point + 30) ° C. or higher.
  • the heating temperature is preferably 950 ° C. or lower.
  • the heating rate to the heating temperature is not particularly limited, but is preferably 1 to 400 ° C./s, more preferably 10 to 150 ° C./s. If the rate of temperature increase is 1 ° C./s or more, productivity is not impaired, and if it is 400 ° C./s or less, temperature control does not become unstable.
  • Holding time 900 seconds or less (including 0 seconds)
  • the concentrated Mn diffuses around and becomes uniform. Therefore, if the holding time exceeds 900 seconds, a desired retained austenite amount cannot be ensured and a desired uniform elongation cannot be obtained. Further, due to the uniform Mn, the Ms point cannot be lowered, the dislocation density of the hot press member cannot be made 1.0 ⁇ 10 16 / m 2 or more, and ⁇ YS: 150 MPa or more cannot be realized. Therefore, the holding time is 900 seconds or less.
  • the holding time is 0 second, that is, heating may be terminated immediately after the second temperature is reached.
  • the heating method is not particularly limited, and any of general heating methods such as an electric furnace, a gas furnace, infrared heating, high-frequency heating, and direct current heating can be applied.
  • the atmosphere is not particularly limited, and any of atmospheric conditions, inert gas atmospheres, and the like can be applied.
  • Hot press molding process In the hot press forming step, the first material steel plate or the second material steel plate that has undergone the heating step is simultaneously subjected to press forming and quenching using a forming die to obtain a hot press member having a predetermined shape.
  • Hot press forming is a method in which a heated thin steel plate is press-formed with a die and rapidly cooled, and is also referred to as “hot forming”, “hot stamp”, “die quench”, and the like.
  • the molding start temperature in the press is not particularly limited, but is preferably Ms point or higher.
  • the molding start temperature is less than the Ms point ° C, the molding load increases and the load applied to the press increases.
  • the upper limit of the molding start temperature is the heating temperature in the immediately preceding heating step in the manufacturing process.
  • the cooling rate in the mold is not particularly limited, but from the viewpoint of productivity, the average cooling rate up to 200 ° C. is preferably 20 ° C./s or more, more preferably 40 ° C./s or more.
  • the time for taking out from the mold and the cooling rate after taking out there are no particular limitations on the time for taking out from the mold and the cooling rate after taking out.
  • a cooling method for example, the punch die is held at the bottom dead center for 1 to 60 seconds, and the hot press member is cooled using the die die and the punch die. Thereafter, the hot press member is taken out from the mold and cooled.
  • the cooling in the mold and after taking out from the mold can be combined with a cooling method using a refrigerant such as gas or liquid, thereby improving the productivity.
  • Molten steel having the composition shown in Tables 1 and 4 (the balance being Fe and inevitable impurities) was melted in a small vacuum melting furnace to obtain a slab.
  • the slab was heated to 1250 ° C. and further hot rolled including rough rolling and finish rolling to obtain a hot rolled steel sheet.
  • the finish rolling entry temperature was 1100 ° C
  • the finish rolling exit temperature was 850 ° C.
  • the cooling rate after the hot rolling was 15 ° C./s on average at 800 to 600 ° C., and the winding temperature was 650 ° C.
  • the obtained hot-rolled steel sheet is heated to the heating temperature T1 (first temperature) shown in Tables 2 and 5, held at the temperature for the time shown in Tables 2 and 5, and then cooled to obtain the first material steel sheet. It was.
  • the first material steel plate was pickled and cold-rolled at a reduction rate of 54% to obtain a cold-rolled steel plate (plate thickness: 1.6 mm).
  • the cold-rolled steel sheet was heated to the heating temperature T2 shown in Tables 2 and 5, held for the time shown in Tables 2 and 5, and then cooled at a cooling rate of 15 ° C / s, and the cooling was stopped at 500 ° C. This temperature was maintained for 150 seconds to obtain a second material steel plate.
  • the second material steel plate was plated.
  • “GI” is a hot-dip galvanized layer
  • “GA” is an alloyed hot-dip galvanized layer
  • “Zn-Ni” is a Zn-12 mass% Ni-plated layer
  • “Al-Si” is Al-10 mass. % Si plating layer, and the coating amount of each plating layer was 60 g / m 2 per side.
  • the hot-rolled steel plate (first material steel plate) or the cold-rolled steel plate (second material steel plate) thus obtained is subjected to a heating step and a hot press forming step under the conditions shown in Tables 3 and 6, and a hat is obtained.
  • a hot press member having a shape was obtained.
  • the hot pressing was performed using a punch die having a width of 70 mm and a shoulder radius R of 6 mm and a die die having a shoulder radius R of 7.6 mm and a forming depth of 30 mm.
  • the heating rate was 7.5 ° C./s on average from room temperature to 750 ° C.
  • the average heating rate from 750 ° C. to the heating temperature was 2.0 ° C./s.
  • the heating temperature was maintained.
  • the heating rate was 100 ° C./s on average from room temperature to heating temperature.
  • the molding start temperature was 750 ° C. Cooling is held at a bottom dead center for 15 s, and the combination of sandwiching with a die mold and a punch mold and air cooling on the die released from the sandwiching is 150 ° C or less. Until cooled.
  • the average cooling rate from the molding start temperature to 200 ° C was 100 ° C / s.
  • the obtained hot press member was subjected to a heat treatment (low temperature heat treatment) at 170 ° C. for 20 minutes. This corresponds to baking coating conditions in the manufacturing process of a normal automobile member.
  • the yield stress YS, tensile strength TS, total elongation tEl, and uniform elongation uEl were determined. The results are shown in Table 3 and Table 6.
  • volume ratio of the martensite phase, the volume ratio of the retained austenite phase, the volume ratio of the remaining structure, and the dislocation density in the obtained hot pressed member were measured by the above-described methods, and the results are shown in Table 3 and Table 6. .
  • the tensile strength TS 1500 MPa or more
  • the uniform elongation uEl 6.0% or more
  • ⁇ YS 150 MPa or more were realized.
  • the comparative example did not satisfy any of the characteristics.
  • the hot press member of the present invention can be suitably used as a structural member that requires a high impact energy absorption capability, such as an impact beam, a center pillar, and a bumper of an automobile.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

引張強さTS:1500MPa以上の高強度と、均一伸びuEl:6.0%以上の高延性と、熱処理(焼付け塗装)を施した際に降伏応力YSが150MPa以上増加する優れた熱処理硬化性と全て兼ね備えるホットプレス部材を提供する。本発明のホットプレス部材は、所定の(特に0.090%以上0.30%未満の低C、かつ、3.5%以上11.0%未満の高Mn)成分組成と、体積率で70.0%以上のマルテンサイト相と、体積率で3.0%以上30.0%以下の残留オーステナイト相と、を含む組織とを有し、転位密度が1.0×1016/m2以上であることを特徴とする。

Description

ホットプレス部材およびその製造方法
 本発明は、薄鋼板をホットプレスにより成形してなる部材、すなわちホットプレス部材およびその製造方法に関する。
 近年、地球環境の保全という観点から、自動車の燃費向上が強く要望されている。そのため、自動車車体の軽量化が強く要求されている。そこで、自動車用部材を薄くしても安全性が損なわれないよう、該部材の素材となる鋼板の高強度化が求められている。しかし、一般的に、鋼板の強度が高くなるにつれて成形性が低下するため、高強度鋼板を素材とした部材の製造においては、成形が困難になったり、形状凍結性が悪化するなどの問題が生じていた。
 そこで、このような問題に対して、鋼板にホットプレス工法を適用して、高強度自動車用部材を製造する技術が実用化されている。ホットプレス工法では、鋼板はオーステナイト域に加熱された後、プレス機まで搬送され、プレス機内で、金型で所望形状の部材に成形されると同時に急冷される。この金型内での冷却過程(急冷)において、部材の組織はオーステナイト相からマルテンサイト相へと相変態し、これにより、所望形状の高強度部材が得られる。
 また、最近では、乗員の安全性を確保するという観点から、自動車用部材の耐衝撃特性の向上が要望されている。この要望を満たすためには、衝突時のエネルギーを吸収する能力(衝撃エネルギー吸収能)を高めるという観点から、自動車用部材の均一伸びを高くすることが効果的である。そのため、高強度でありながら、均一伸びに優れるホットプレス部材が強く要望されている。
 このような要望に対し、特許文献1には、熱間プレス成形法によって薄鋼板を成形した熱間プレス成形品が提案されている。特許文献1に記載された熱間プレス成形品は、質量%で、C:0.15~0.35%、Si:0.5~3%、Mn:0.5~2%、P:0.05%以下、S:0.05%以下、Al:0.01~0.1%、Cr:0.01~1%、B:0.0002~0.01%、Ti:(Nの含有量)×4~0.1%、N:0.001~0.01%を含み、残部がFeおよび不可避的不純物からなる成分組成と、面積率で、マルテンサイト:80~97%、残留オーステナイト:3~20%、残部組織:5%以下からなる組織と、を有する。特許文献1に記載された技術によれば、適正量の残留オーステナイトを残存させた金属組織を得ることができ、成形品に内在する延性をより高くした熱間プレス部品が実現できると記載されている。
 また、特許文献2には、延性に優れたホットプレス部材が提案されている。特許文献2に記載されたホットプレス部材は、質量%で、C:0.20~0.40%、Si:0.05~3.0%、Mn:1.0~4.0%、P:0.05%以下、S:0.05%以下、Al:0.005~0.1%、N:0.01%以下を含有し、残部がFeおよび不可避的不純物からなる組成と、組織全体に占めるフェライト相の面積率が5~55%で、マルテンサイト相の面積率が45~95%であり、かつフェライト相とマルテンサイト相の平均粒径が7μm以下であるミクロ組織と、を有するホットプレス部材であり、引張強さTS:1470~1750MPaの高強度と、全伸びEl:8%以上の高延性を有する。
特開2013-79441号公報 特開2010-65293号公報
 しかしながら、特許文献1,2に記載された技術では、Cによるマルテンサイト相の強化により引張強さTS:1500MPa以上の高強度化が達成されたが、衝撃エネルギー吸収能を高めるという観点において、均一伸びが不十分となるという問題があった。
 また、ホットプレス部材は、当該部材の作製後に焼付け塗装が施されるのが一般的であり、その焼付け塗装時の熱処理によって、降伏応力YSが増加する。ここで、耐衝撃特性を高めるためには、均一伸びのみならずYSが高いことも重要であるから、焼付け塗装時の熱処理によって、なるべく大きくYSが増加するような、熱処理硬化性に優れるホットプレス部材が求められている。しかしながら、特許文献1,2に記載された技術は、このような熱処理硬化性を何ら考慮していない。
 そこで本発明は、上記課題に鑑み、引張強さTS:1500MPa以上の高強度と、均一伸びuEl:6.0%以上の高延性と、熱処理(焼付け塗装)を施した際に降伏応力YSが150MPa以上増加する優れた熱処理硬化性とを全て兼ね備えるホットプレス部材と、その有利な製造方法とを提供することを目的とする。本明細書において、「熱処理硬化性に優れる」とは、ホットプレス部材を熱処理する際、熱処理後の降伏応力YSと熱処理前の降伏応力YSの差(以下、「ΔYS」と称する。)が150MPa以上である特性をさす。
 上記した目的を達成するため、本発明者らは、引張強さTS:1500MPa以上の高強度を有するホットプレス部材における、降伏応力YSと均一伸びuElに影響する各種要因について鋭意検討をした結果、以下の知見を得た。
 (A)均一伸びuElを6.0%以上と高くするためには、残留オーステナイトを適正量有する組織が必要である。そして、C:0.30質量%未満で、残留オーステナイトを適正量有する組織を得るには、3.5%以上のMnを含有させる必要がある。また、Mnは、強度増加にも寄与し、C:0.30%未満でも、さらなる高強度を確保できる。
 (B)ホットプレス部材の転位密度とΔYSとに相関がある。そして、ΔYS:150MPa以上を実現するためには、ホットプレス部材の転位密度が1.0×1016/m2以上である必要がある。
 (C)上記の3.5%以上のMnを含有する鋼板にホットプレスを施す前に、当該鋼板を予めフェライト-オーステナイト二相温度域に加熱し、該温度域内の所定温度で1時間以上48時間以下保持する熱処理を行って、オーステナイトにMnを濃化させることによって、残留オーステナイトを適正量生成させることができる。また、このようにして得た鋼板に、所定の加熱工程と、ホットプレス成形工程とを施すことによって、転位密度が1.0×1016/m2以上のホットプレス部材を得ることができる。
 本発明は、上記の知見によって完成されたものであり、その要旨構成は以下のとおりである。
 (1)質量%で、
 C:0.090%以上0.30%未満、
 Mn:3.5%以上11.0%未満、
 Si:0.01~2.5%、
 P:0.05%以下、
 S:0.05%以下、
 Al:0.005~0.1%、
 N:0.01%以下を含み、
 残部がFeおよび不可避的不純物からなる成分組成と、
 体積率で70.0%以上のマルテンサイト相と、体積率で3.0%以上30.0%以下の残留オーステナイト相と、を含む組織と、
 引張強さTS:1500MPa以上でかつ均一伸びuEl:6.0%以上である引張特性と、
を有し、転位密度が1.0×1016/m2以上であることを特徴とするホットプレス部材。
 (2)前記成分組成がさらに、質量%で、下記A~E群のうちから選ばれた1群または2群以上を含有する上記(1)に記載のホットプレス部材。
              記
 A群:Ni:0.01~5.0%、Cu:0.01~5.0%、Cr:0.01~5.0%、Mo:0.01~3.0%のうちから選ばれた1種または2種以上
 B群:Ti:0.005~3.0%、Nb:0.005~3.0%、V:0.005~3.0%、W:0.005~3.0%のうちから選ばれた1種または2種以上
 C群:REM:0.0005~0.01%、Ca:0.0005~0.01%、Mg:0.0005~0.01%のうちから選ばれた1種または2種以上
 D群:Sb:0.002~0.03%
 E群:B:0.0005~0.05%
 (3)表面にめっき層を有する上記(1)または(2)に記載のホットプレス部材。
 (4)前記めっき層が、Zn系めっき層またはAl系めっき層である上記(3)に記載のホットプレス部材。
 (5)前記Zn系めっき層が、Ni:10~25質量%を含む上記(4)に記載のホットプレス部材。
 (6)質量%で、
 C:0.090%以上0.30%未満、
 Mn:3.5%以上11.0%未満、
 Si:0.01~2.5%、
 P:0.05%以下、
 S:0.05%以下、
 Al:0.005~0.1%、
 N:0.01%以下を含み、
 残部がFeおよび不可避的不純物からなる成分組成を有するスラブを加熱し、熱間圧延して、熱延鋼板を得る工程と、
 前記熱延鋼板をAc1点以上Ac3点以下の第1温度に加熱し、該第1温度で1時間以上48時間以下保持し、その後冷却して、第1素材鋼板を得る工程と、
 前記第1素材鋼板をAc3点以上1000℃以下の第2温度に加熱し、この第2温度で900秒以下保持する加熱工程と、
 その後、前記第1素材鋼板に、成形用金型を用いてプレス成形および焼入れを同時に施して、ホットプレス部材を得るホットプレス成形工程と、
を有することを特徴とするホットプレス部材の製造方法。
 (7)前記加熱工程の前に、前記第1素材鋼板を冷間圧延して、冷延鋼板を得る工程と、
 前記冷延鋼板をAc1点以上Ac3点以下に加熱、保持し、その後冷却する焼鈍によって、第2素材鋼板を得る工程と、
をさらに有し、前記第1素材鋼板に替えて前記第2素材鋼板に対して、前記加熱工程および前記ホットプレス成形工程を行う、上記(6)に記載のホットプレス部材の製造方法。
 (8)前記成分組成がさらに、質量%で、下記A~E群のうちから選ばれた1群または2群以上を含有する上記(6)または(7)に記載のホットプレス部材の製造方法。
              記
 A群:Ni:0.01~5.0%、Cu:0.01~5.0%、Cr:0.01~5.0%、Mo:0.01~3.0%のうちから選ばれた1種または2種以上
 B群:Ti:0.005~3.0%、Nb:0.005~3.0%、V:0.005~3.0%、W:0.005~3.0%のうちから選ばれた1種または2種以上
 C群:REM:0.0005~0.01%、Ca:0.0005~0.01%、Mg:0.0005~0.01%のうちから選ばれた1種または2種以上
 D群:Sb:0.002~0.03%
 E群:B:0.0005~0.05%
 (9)前記加熱工程の前に、前記第1素材鋼板または前記第2素材鋼板の表面にめっき層を形成する工程をさらに有する上記(6)~(8)のいずれか一項に記載のホットプレス部材の製造方法。
 (10)前記めっき層が、Zn系めっき層またはAl系めっき層である上記(9)に記載のホットプレス部材の製造方法。
 (11)前記Zn系めっき層が、Ni:10~25質量%を含む上記(10)に記載のホットプレス部材の製造方法。
 (12)前記めっき層の付着量が、片面あたりで10~90g/m2である上記(9)~(11)のいずれか一項に記載のホットプレス部材の製造方法。
 本発明のホットプレス部材は、引張強さTS:1500MPa以上の高強度と、均一伸びuEl:6.0%以上の高延性と、熱処理(焼付け塗装)を施した際に降伏応力YSが150MPa以上増加する優れた熱処理硬化性と全て兼ね備える。また、本発明のホットプレス部材の製造方法によれば、上記のようなホットプレス部材を有利に得ることができる。
 (成分組成)
 本発明の一実施形態によるホットプレス部材の成分組成について説明する。以下、特に断わらないかぎり、「質量%」は単に「%」と記す。
 C:0.090%以上0.30%未満
 Cは、鋼の強度を増加させる元素である。また、ホットプレス部材に対する熱処理で、固溶Cの転位固着により降伏応力が高まる。このような効果を得て、引張強さTS:1500MPa以上を確保するためには、C含有量は0.090%以上とする。一方、C含有量が0.30%以上の場合、Cによる固溶強化量が大きくなるため、ホットプレス部材の引張強さTSを2300MPa未満に調整することが困難となる。
 Mn:3.5%以上11.0%未満
 Mnは、鋼の強度を増加させるとともに、オーステナイト中に濃化し、オーステナイトの安定性を向上させる元素であり、本発明で最も重要な元素である。このような効果を得て、引張強さTS:1500MPa以上と、均一伸びuEl:6.0%以上を確保するためには、Mn含有量は3.5%以上とする。一方、Mn含有量が11.0%以上の場合、Mnによる固溶強化量が大きくなり、ホットプレス部材の引張強さTSを2300MPa未満に調整することが困難となる。
 上記したC含有量とMn含有量の範囲内であれば、引張強さTS:1500MPa以上、好ましくは2300MPa未満の範囲内で、安定して均一伸びが6.0%以上となる引張特性を有するホットプレス部材を得ることができる。なお、さらに詳しくは、引張強さTS:1500MPa以上1700MPa未満の強度を確保するためには、C:0.090%以上0.12%未満でかつMn:4.5%以上6.5%未満とするか、あるいは、C:0.12%以上0.18%未満でかつMn:3.5%以上5.5%未満とすることが好ましい。また、引張強さTS:1700MPa以上1900MPa未満の強度を確保するためには、C:0.090%以上0.12%未満でかつMn:6.5%以上8.5%未満とするか、あるいは、C:0.12%以上0.18%未満でかつMn:5.5%以上7.5%未満とすることが好ましい。また、引張強さTS:1800MPa以上1980MPa未満の強度を確保するためには、C:0.18%以上0.30%未満でかつMn:3.5%以上4.5%未満とすることが好ましい。また、引張強さTS:2000MPa以上2300MPa未満の強度を確保するには、C:0.090%以上0.12%未満でかつMn:8.5%以上11.0%未満とするか、あるいは、C:0.12%以上0.18%未満でかつMn:7.5%以上11.0%未満とするか、あるいはC:0.18%以上0.30%未満でかつMn:4.5%以上6.5%未満とすることが好ましい。
 Si:0.01~2.5%
 Siは、固溶強化により、鋼の強度を増加させる元素であり、このような効果を得るためには、Si含有量は0.01%以上とする。一方、Si含有量が2.5%を超える場合、熱間圧延時に赤スケールと呼ばれる表面欠陥が著しく発生するとともに、圧延荷重が増大する。よって、Si含有量は0.01%以上2.5%以下とする。なお、Si含有量は、好ましくは0.02%以上である。Si含有量は、好ましくは1.5%以下である。
 P:0.05%以下
 Pは、鋼中では不可避的不純物として存在し、結晶粒界等に偏析して、部材の靭性を低下させるなどの悪影響を及ぼす元素であり、できるだけ低減することが望ましいが、0.05%までは許容できる。よって、P含有量は0.05%以下とし、より好ましくは0.02%以下とする。また、過度の脱P処理は精錬コストの高騰を招くため、P含有量は0.0005%以上とすることが望ましい。
 S:0.05%以下
 Sは、不可避的に含有され、鋼中では硫化物系介在物として存在し、ホットプレス部材の延性、靭性等を低下させる。このため、Sはできるだけ低減することが望ましいが、0.05%までは許容できる。このようなことから、S含有量は0.05%以下とし、より好ましくは0.005%以下とする。また、過度の脱S処理は精錬コストの高騰を招くため、S含有量は0.0005%以上とすることが望ましい。
 Al:0.005~0.1%
 Alは、脱酸剤として作用する元素であり、このような効果を発現させるためには、Al含有量は0.005%以上とする。一方、Al含有量が0.1%を超える場合、窒素と結合し多量の窒化物が生成し、素材とする鋼板のブランキング加工性や焼入れ性が低下する。このため、Al含有量は0.005%以上0.1%以下とする。なお、Al含有量は、好ましくは0.02%以上である。Al含有量は、好ましくは0.05%以下である。
 N:0.01%以下
 Nは、通常は、鋼中に不可避的に含有されるが、N含有量が0.01%を超える場合、熱間圧延やホットプレスの加熱時にAlN等の窒化物が形成し、素材とする鋼板のブランキング加工性や焼入れ性が低下する。このため、N含有量は0.01%以下とする。なお、N含有量は、より好ましくは0.0030%以上である。N含有量は、より好ましくは0.0050%以下である。また、とくに調整せず、不可避的に含有される場合には、N含有量は0.0025%未満程度である。また、精錬コストが増加するため、N含有量は0.0025%以上とすることが望ましい。
 また、上記した基本の組成に加えてさらに、以下の任意成分を含有する成分組成としてもよい。
 A群:Ni:0.01~5.0%、Cu:0.01~5.0%、Cr:0.01~5.0%、Mo:0.01~3.0%のうちから選ばれた1種または2種以上
 Ni、Cu、Cr、Moはいずれも、鋼の強度を増加させるとともに、焼入れ性向上に寄与する元素であり、必要に応じて1種または2種以上を選択して含有できる。このような効果を得るためには、各元素の含有量を0.01%以上とする。一方、材料コストを高騰させない観点から、Ni、Cu、Cr含有量は5.0%以下、Mo含有量は3.0%以下とする。各元素の好ましい含有量は、0.01%以上1.0%以下である。
 B群:Ti:0.005~3.0%、Nb:0.005~3.0%、V:0.005~3.0%、W:0.005~3.0%のうちから選ばれた1種または2種以上
 Ti、Nb、V、Wはいずれも、析出強化によって鋼の強度増加に寄与するとともに、結晶粒の微細化によって靭性向上にも寄与する元素であり、必要に応じて1種または2種以上を選択して含有できる。
 Tiは、強度増加、靭性向上の効果に加え、Bよりも優先して窒化物を形成し、固溶Bによる焼入れ性を向上させる効果を有する。このような効果を得るためには、Ti含有量は0.005%以上とする。一方、Ti含有量が3.0%を超える場合、熱間圧延時に圧延荷重が極端に増大し、また、ホットプレス部材の靭性が低下する。よって、Tiを含有する場合、その含有量は0.005%以上3.0%以下とする。好ましくは0.01%以上とする。好ましくは1.0%以下とする。
 Nbによって上記効果を得るためには、Nb含有量は0.005%以上とする。一方、Nb含有量が3.0%を超える場合は、炭窒化物量が増大し、延性や耐遅れ破壊性が低下する。よって、Nbを含有する場合、その含有量は0.005%以上3.0%以下とする。好ましくは0.01%以上とする。好ましくは0.05%とする。
 Vは、強度増加、靭性向上の効果に加え、析出物や晶出物として析出し、水素のトラップサイトとして耐水素脆性を向上させる効果を有する。このような効果を得るためには、V含有量は0.005%以上とする。一方、V含有量が3.0%を超える場合、炭窒化物量が顕著に増大し、延性が低下する。よって、Vを含有する場合、その含有量は0.005%以上3.0%以下とする。好ましくは0.01%以上とする。好ましくは2.0%以下とする。
 Wは、強度増加、靭性向上の効果に加え、耐水素脆性を向上させる効果を有する。このような効果を得るためには、W含有量は0.005%以上とする。一方、W含有量が3.0%を超える場合、延性が低下する。よって、Wを含有する場合、その含有量は0.005%以上3.0%以下とする。好ましくは0.01%以上とする。好ましくは2.0%以下とする。
 C群:REM:0.0005~0.01%、Ca:0.0005~0.01%、Mg:0.0005~0.01%のうちから選ばれた1種または2種以上
 REM、Ca、Mgは、いずれも介在物の形態制御によって、延性や耐水素脆性を向上させる元素であり、必要に応じて選択して1種または2種以上を含有できる。この効果を得るためには、各元素の含有量は0.0005%以上とする。一方、熱間加工性を低下させない観点から、REM含有量、Ca含有量はともに0.01%以下とする。また、粗大な酸化物や硫化物の生成により延性を低下させない観点から、Mg含有量は0.01%以下とする。各元素の好ましい含有量は、0.0006~0.01%である。
 D群:Sb:0.002~0.03%
 Sbは、鋼板の加熱、冷却に際し、鋼板表層における脱炭層の形成を抑制するため、必要に応じて含有できる。この効果を得るためには、Sb含有量は0.002%以上とする。一方、Sb含有量が0.03%を超える場合、圧延荷重の増大を招き、生産性を低下させる。このため、Sbを含有する場合、その含有量は0.002%以上0.03%以下とし、好ましくは0.002%以上0.02%以下とする。
 E群:B:0.0005~0.05%
 Bは、ホットプレス時の焼入れ性向上やホットプレス後の靭性向上に寄与するため、必要に応じて含有できる。この効果を得るためには、B含有量は0.0005%以上とする。一方、B含有量が0.05%を超える場合、熱間圧延時の圧延荷重の増加や、熱間圧延後にマルテンサイト相やベイナイト相が生じて鋼板の割れが生じる場合がある。よって、Bを含有する場合、その含有量は0.0005%以上0.05%以下とし、好ましくは0.0005%以上0.01%以下とする。
 上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物としては、O(酸素):0.0100%以下が許容できる。
 (組織)
 本発明の一実施形態によるホットプレス部材の組織について説明する。
 マルテンサイト相:体積率で70.0%以上
 引張強さTS:1500MPa以上を確保するためには、体積率で70.0%以上のマルテンサイト相を主相とする必要がある。なお、マルテンサイト相は、所望量の残留オーステナイト相を含有するために、多くても97%以下とすることが好ましい。
 残留オーステナイト相:体積率で3.0~30.0%
 残留オーステナイト相は、変形時のTRIP効果(変態誘起塑性)により均一伸びを高める、本発明で最も重要な組織である。本実施形態では、均一伸びuEl:6.0%以上を実現するために、体積率で3.0%以上の残留オーステナイト相を含有させる。一方、残留オーステナイト相の体積率が30.0%を超えると、TRIP効果を発現した後に変態した硬質なマルテンサイト相が多くなりすぎて、靭性が低下する。よって、残留オーステナイト相の体積率は、3.0%以上30.0%以下とする。残留オーステナイト相の体積率は、好ましくは5.0以上とする。残留オーステナイト相の体積率は、好ましくは20.0%以下とする。
 なお、上記適正量の残留オーステナイト相を生成するには、適量のMnを含有する鋼板を用いること、該鋼板にホットプレス前に所定の熱処理を施して、Mnをオーステナイト中に濃化させこと、さらにはホットプレス時の加熱工程を適正化することが重要となる。
 なお、マルテンサイト相と残留オーステナイト相以外の残部は、合計で体積率で10%以下(0%を含む)の、ベイナイト相、フェライト相、セメンタイト、パーライトが許容できる。
 なお、本発明において、各相の体積率の決定は、次のようにして行うものとする。
 まず、残留オーステナイトの体積率は、以下の方法で求める。ホットプレス部材から、X線回折用試験片を切り出し、肉厚1/4面が測定面となるように機械研磨、化学研磨を施したのち、X線回折を行う。入射X線にはCoKα線を使用し、残留オーステナイト(γ)の{200}面、{220}面、{311}面のピークの積分強度と、フェライト(α)の{200}面、{211}面のピークの積分強度を測定する。α{200}-γ{200}、α{200}-γ{220}、α{200}-γ{311}、α{211}-γ{200}、α{211}-γ{220}、α{211}-γ{311}の計6通りについて、積分強度比から求まる残留γ体積率をそれぞれ算出する。これらの平均値を「残留オーステナイト相の体積率」とする。
 次に、残部組織の体積率は、以下の方法で求める。ホットプレス部材から、圧延方向に平行で、かつ圧延面に垂直な面が観察面となるように、組織観察用試験片を採取する。観察面を研磨し、3vol.%ナイタール液で腐食して組織を現出し、板厚1/4となる位置の組織を走査型電子顕微鏡(倍率:1500倍)で観察し、撮像する。得られた組織写真から、画像解析により、組織の同定と、組織分率を求める。比較的平滑な面で黒く観察される相はフェライト相とし、結晶粒界にフィルム状または塊状に白く観察される相はセメンタイトとし、フェライト相とセメンタイトが層状に形成した相をパーライトとし、ラス間に炭化物が生成した相および粒内に炭化物を有しないベイニティックフェライトで構成される相をベイナイト相と同定する。組織写真中の各相の占有面積率を求め、組織が三次元的に均質であるとみなし、面積率を体積率とした。
 「マルテンサイト相の体積率」は、上記した残部組織の体積率と残留オーステナイト相の体積率を100%から差引いた値とした。
 (転位密度)
 転位密度:1.0×1016/m2以上
 ホットプレス部材の転位密度は、ΔYSに影響する本発明において最も重要な指標である。ホットプレス部材に熱処理(焼付け塗装)を施した際に、可動転位に固溶Cが固着して、降伏応力YSが上昇するものと考えられる。ΔYS:150MPa以上を実現するためには、ホットプレス部材の転位密度が1.0×1016/m2以上である必要がある。転位密度の上限は実質的に5.0×1016/m2である。ホットプレス部材の転位密度は、好ましくは1.2×1016/m2以上である。ホットプレス部材の転位密度は、好ましくは4.5×1016/m2以下である。
 本発明において、転位密度は以下の方法で求める。ホットプレス部材からX線回折用試験片を切り出し、肉厚1/4面が測定面となるように機械研磨、化学研磨を施したのち、X線回折を行う。入射X線にはCoKα1線を使用し、α{110}、α{211}、α{220}のピークの半値幅を実測する。ひずみのない標準試験片(Si)を使用し、実測したα{110}、α{211}、α{220}のピークの半値幅を真の半値幅へと補正したのち、Willaimson-Hall法に基づき、ひずみ(ε)を求める。転位密度(ρ)は、ひずみ(ε)とバーガースベクトル(b=0.286nm)を用いて、次式で求められる。
ρ=14.4×ε2/b2
 (特性)
 本実施形態のホットプレス部材は、引張強さTS:1500MPa以上、好ましくは2300MPa未満の高強度と、均一伸びuEl:6.0%以上、実質的には20%以下の高延性と、ΔYSが150MPa以上、実質的には300MPa以下の特性を有する。
 (めっき層)
 本発明の一実施形態によるホットプレス部材は、めっき層を有することが好ましい。
 ホットプレス部材の素材として使用する鋼板がめっき鋼板である場合には、得られたホットプレス部材の表層にめっき層が残存することになる。この場合、ホットプレスの加熱時にスケール生成が抑制される。そのため、表面のスケール剥離を行うことなくホットプレス部材を使用に供することができ、生産性が向上する。
 めっき層は、Zn系めっき層またはAl系めっき層とすることが好ましい。耐食性が必要とされる場合は、Al系めっき層よりもZn系めっき層が優れている。これは、亜鉛の犠牲防食作用により、地鉄の腐食速度を低下することができるためである。また、めっき鋼板をホットプレスする場合、ホットプレス工程における加熱初期に酸化亜鉛膜が形成され、その後のホットプレス部材の処理においてZnの蒸発を防止できる。
 なお、Zn系めっきとしては、一般的な溶融亜鉛めっき(GI)、合金化溶融亜鉛めっき(GA)、Zn-Ni系めっきなどが例示できるが、なかでも、Zn-Ni系めっきが好ましい。Zn-Ni系めっき層は、ホットプレス加熱時のスケール生成を顕著に抑制することに加えて、液体金属脆化割れをも防ぐことができる。この効果を得る観点から、Zn-Ni系めっき層は10~25質量%のNiを含むことが好ましい。Niが25%を超えて含有されても、この効果は飽和する。
 Al系めっき層としては、Al-10質量%Siめっきが例示できる。
 (製造方法)
 本発明の一実施形態におけるホットプレス部材の製造方法を説明する。まず、上記の成分組成を有するスラブを加熱し、熱間圧延して、熱延鋼板を得る。その後、この熱延鋼板に後述する所定の熱処理(Mn濃化熱処理)を施して、第1素材鋼板を得る。その後、任意に、前記第1素材鋼板を冷間圧延して、冷延鋼板を得て、引き続き、この冷延鋼板に所定の焼鈍を行って、第2素材鋼板を得る。
 このようにして得た第1素材鋼板または第2素材鋼板に対して、所定の加熱工程とホットプレス成形工程を行って、ホットプレス部材を得る。以下、各工程を詳細に説明する。
 <熱延鋼板を得る工程>
 熱延鋼板を得る工程は特に限定されず、定法に従えばよい。上記の成分組成を有する溶鋼を、転炉等で溶製し、マクロ偏析を防止するために連続鋳造法でスラブとすることが好ましい。なお、連続鋳造法に代えて、造塊法、あるいは薄スラブ連鋳法を用いてもよい。
 得られたスラブは、一旦、室温まで冷却されたのち、再加熱のため加熱炉に装入される。ただし、スラブを室温まで冷却することなく、温片のまま加熱炉に装入するプロセスや、スラブを短時間保熱した後、ただちに熱間圧延するプロセスなどの省エネルギープロセスも適用できる。
 得られたスラブは、所定の加熱温度に加熱されたのち、熱間圧延されて、熱延鋼板とされる。加熱温度としては、1000~1300℃が例示できる。加熱されたスラブは、通常、仕上げ圧延入側温度が1100℃以下で、仕上げ圧延出側温度が800~950℃の条件で熱間圧延され、平均冷却速度:5℃/s以上の条件で冷却され、300~750℃の巻取り温度でコイル状に巻き取られ、熱延鋼板とされる。
 <Mn濃化熱処理>
 続いて、熱延鋼板をAc1点以上Ac3点以下の第1温度に加熱し、該第1温度で1時間以上48時間以下保持し、その後冷却して、第1素材鋼板を得る。この処理は、オーステナイトにMnを濃化させるものであり、残留オーステナイトを適正量有して均一伸びuEl:6.0%以上を実現し、かつ、転位密度が1.0×1016/m2以上としてΔYS:150MPa以上を実現するホットプレス部材を製造するために最も重要なプロセスとなる。
 加熱温度:Ac1点以上Ac3点以下
 熱延鋼板をフェライト-オーステナイト二相温度域に加熱し、オーステナイトにMnを濃化させる。Mnが濃化したオーステナイトでは、マルテンサイト変態終了温度が室温以下となり、残留オーステナイトが生成しやすくなる。加熱温度がAc1点未満では、オーステナイトが生成せず、Mnをオーステナイトへ濃化させることができない。一方、加熱温度がAc3点を超えると、オーステナイト単相温度域となり、オーステナイトへのMn濃化が行われない。また、加熱温度がAc1点未満の場合とAc3点を超える場合のいずれも、ホットプレス部材の転位密度を1.0×1016/m2以上とすることができない。よって、加熱温度はAc1点以上Ac3点以下とする。加熱温度は、好ましくは(Ac1点+20℃)以上とする。加熱温度は、好ましくは(Ac3点-20℃)以下とする。
 なお、Ac1点(℃)およびAc3点(℃)は、下記式を使用して算出した値を用いるものとする。
Ac1点(℃)=751-16C+11Si-28Mn-5.5Cu-16Ni+13Cr+3.4Mo
Ac3点(℃)=910-203C1/2+44.7Si-4Mn+11Cr
ここで、式中のC、Si、Mn、Ni、Cu、Cr、Moは、各元素の含有量(質量%)であり、上記元素が含有されていない場合には、当該元素の含有量を零として算出する。
 加熱保持時間:1時間以上48時間以下
 オーステナイトへのMnの濃化は、加熱保持時間の経過に伴い進行する。加熱保持時間が1時間未満では、Mnのオーステナイトへの濃化が不十分で、所望の均一伸びが得られない。また、加熱保持時間が1時間未満の場合、Mn濃化が不十分で、ホットプレス工程でのMs点が低下せず、ホットプレス部材の転位密度を1.0×1016/m2以上とすることができない。一方、加熱保持時間が48時間を超えると、パーライトが生成し、所望の均一伸びが得られない。また、ホットプレス部材の転位密度を1.0×1016/m2以上とすることができない。よって、加熱保持時間は1時間以上48時間以下とする。加熱保持時間は、好ましくは1.5時間以上とする。加熱保持時間は、好ましくは24時間以下とする。
 なお、Ms点(℃)は、下記式を使用して算出した値を用いるものとする。
Ms点(℃)=539-423C-30.4Mn-17.7Ni-12.1Cr-7.5Mo
ここで、式中のC、Mn、Ni、Cr、Moは、各元素の含有量(質量%)であり、上記元素が含有されていない場合には、当該元素の含有量を零として算出する。
 加熱保持後の冷却は、特に限定されず、使用する加熱炉等に応じて適宜、放冷(徐冷)、あるいは制御冷却とすることが好ましい。
 このMn濃化熱処理は、バッチ焼鈍炉や連続焼鈍炉で行うことが好ましい。バッチ焼鈍炉での処理条件は、上記した条件以外は特に限定されないが、例えば、加熱速度は40℃/hr以上とし、加熱保持後の冷却速度は、40℃/hr以上とすることが、Mn濃化の観点から好ましい。また、連続焼鈍炉での処理条件についても、上記した以外は特に限定されないが、例えば、上記した加熱保持を行ったのち、熱延鋼板を10℃/s以上の平均冷却速度で350~600℃の温度域の冷却停止温度まで冷却し、引続き、当該温度域で10~300秒滞留させ、その後、冷却し、巻き取る処理とすることが製造性の観点から好ましい。
 このようにして作製された第1素材鋼板は、ホットプレス用鋼板として使用することができる。第1素材鋼板の組織は、ラス状の第二相中のMn濃度をMns、ラス状のフェライト中のMn濃度をMnαとした時、Mns/Mnαが1.2以上であることを特徴とする。「第二相」とは、フェライト以外の残部組織(オーステナイト、マルテンサイト、パーライト、ベイナイト)である。Mns/Mnαが1.2未満であることは、オーステナイトへのMn濃化が不十分であることを意味し、ホットプレス工程後に十分な均一伸びおよび転位密度を得ることができない。
 <冷延鋼板を得る工程>
 その後、第1素材鋼板を後述の加熱工程およびホットプレス成形工程に供することなく、第1素材鋼板を冷間圧延して、冷延鋼板としてもよい。冷間圧延時の圧下率は、その後の焼鈍やホットプレス直前の加熱工程を行う際の異常粒成長を防止するために、30%以上とすることが好ましく、より好ましくは50%以上とする。また、圧延負荷が増し、生産性が低下するため、圧下率は85%以下にすることが好ましい。
 <焼鈍工程>
 その後、冷延鋼板をAc1点以上Ac3点以下に加熱、保持し、その後冷却する焼鈍によって、第2素材鋼板を得る。焼鈍温度はAc1点以上Ac3点以下の所定温度とすることが好ましい。これは、該焼鈍工程において、さらにオーステナイトへのMn濃化が促進されるためである。当該所定温度での保持時間は特に限定されないが、30秒以上300秒以下が好ましい。30秒以上とすれば、Mn濃化の効果が十分に得られ、300秒以下であれば生産性を損なうことがない。
 なお、各工程間に、酸洗をする工程、調質圧延をする工程を適宜はさんでもよいことは勿論である。
 このようにして作製された第2素材鋼板は、ホットプレス用鋼板として使用することができる。第2素材鋼板の組織は、フェライトの平均粒径が10μm以下、第二相の平均粒径が10μm以下であり、第二相中のMn濃度をMns、フェライト中のMn濃度をMnαとした時、Mns/Mnαが1.5以上であることを特徴とする。なお、「フェライトの平均粒径」および「第二相の平均粒径」は、以下の方法で求めた。第2素材鋼板から、圧延方向に平行で、かつ圧延面に垂直な面が観察面となるように、組織観察用試験片を採取する。観察面を研磨し、3vol.%ナイタール液で腐食して組織を現出し、板厚1/4となる位置の組織を走査型電子顕微鏡(倍率:1500倍)で観察し、撮像する。得られた組織写真から、既述の基準に基づき組織を同定した。フェライトおよび第二相の平均粒径は、JIS G 0551(2005)に記載の線分法で求めた。
 Mns/Mnαは、以下の方法で求めた。組織観察用試験片を採取後、観察面を研磨し、3vol.%ナイタール液で腐食して組織を現出し、板厚1/4となる位置の組織をEPMA(Electron Probe Micro Analyzer;電子プローブマイクロアナライザ)で観察し、フェライトおよび第二相のそれぞれ、30粒子についてMnの定量分析を行った。Mnの定量分析結果について、フェライトの平均値をMnα、第二相の平均値をMnsとし、第二相の平均値Mnsをフェライトの平均値Mnαで除した値をMns/Mnαとした。
 <めっき工程>
 第1素材鋼板または第2素材鋼板の表面にめっき層を形成しない場合、ホットプレス工程後に、ホットプレス部材にショットブラストなどのスケール剥離処理を行う必要がある。これに対し、第1素材鋼板または第2素材鋼板の表面にめっき層を形成する場合、ホットプレスの加熱時にスケール生成が抑制されるため、ホットプレス工程後のスケール剥離処理が不要となり、生産性が向上する。
 めっき層の付着量は、片面あたりで10~90g/m2とすることが好ましく、30~70g/m2とすることがより好ましい。付着量が10g/m2以上とすれば、加熱時のスケール生成を抑制する効果が十分に得られ、付着量が90g/m2以下であれば、生産性が阻害されないからである。めっき層の成分については既述のとおりである。
 <加熱工程>
 続いて、第1素材鋼板または第2素材鋼板をAc3点以上1000℃以下の第2温度に加熱し、この第2温度で900秒以下保持する加熱工程を行う。
 加熱温度:Ac3点以上1000℃以下
 加熱温度がオーステナイト単相域であるAc3点よりも低いと、オーステナイト化が不十分となり、ホットプレス部材に所望のマルテンサイト量を確保できず、所望の引張強さを得られない。また、ホットプレス部材の転位密度を1.0×1016/m2以上とすることができず、ΔYS:150MPa以上を実現できない。一方、加熱温度が1000℃を超えると、オーステナイトに濃化したMnが均一化され、所望の残留オーステナイト量を確保できず、所望の均一伸びが得られない。また、Mnの均一化により、Ms点を低下させることができなくなり、ホットプレス部材の転位密度を1.0×1016/m2以上とすることができず、ΔYS:150MPa以上を実現できない。よって、加熱温度はAc3点以上1000℃以下とする。加熱温度は、好ましくは、(Ac3点+30)℃以上とする。加熱温度は、好ましくは950℃以下とする。
 加熱温度(第2温度)への昇温速度は、特に限定されないが、1~400℃/sとすることが好ましく、10~150℃/sとすることがより好ましい。昇温速度が1℃/s以上であれば、生産性を損なわず、400℃/s以下であれば、温度制御が不安定となることがない。
 保持時間:900秒以下(0秒を含む)
 加熱温度(第2温度)での保持時間の経過に伴い、濃化されたMnが周囲に拡散し均一化される。そのため、保持時間が900秒を超えると、所望の残留オーステナイト量を確保できず、所望の均一伸びが得られない。また、Mnの均一化により、Ms点を低下させることができなくなり、ホットプレス部材の転位密度を1.0×1016/m2以上とすることができず、ΔYS:150MPa以上を実現できない。よって、保持時間は900秒以下とする。保持時間は0秒、すなわち、第2温度の到達後に、直ちに、加熱を終了してもよい。
 加熱方法は特に限定されず、一般的な加熱方法である、電気炉、ガス炉、赤外線加熱、高周波加熱、直接通電加熱等がいずれも適用できる。また、雰囲気についても特に限定されず、大気中や不活性ガス雰囲気中など、いずれも適用できる。
 <ホットプレス成形工程>
 ホットプレス成形工程では、加熱工程を経た第1素材鋼板または第2素材鋼板に、成形用金型を用いてプレス成形および焼入れを同時に施して、所定形状のホットプレス部材を得る。「ホットプレス成形」は、加熱された薄鋼板を金型でプレス成形すると同時に急冷する工法であり、「熱間成形」、「ホットスタンプ」、「ダイクエンチ」などとも称される。
 プレス機内での成形開始温度は、特に限定されないが、Ms点以上とすることが好ましい。成形開始温度がMs点℃未満の場合、成形荷重が増大し、プレス機にかかる負荷が増加する。なお、成形開始までの素材鋼板の搬送中は、一般的に空冷とする。そのため、成形開始温度の上限は、製造工程上、直前の前記加熱工程での加熱温度である。ガスや液体などの冷媒により冷却速度が速まる環境下で搬送される場合、保熱箱などの保温治具により冷却速度を低減することが好ましい。
 金型内での冷却速度は特に限定されないが、生産性の観点から、200℃までの平均冷却速度を好ましくは20℃/s以上、より好ましくは40℃/s以上とする。
 金型からの取出し時間と、取出し後の冷却速度については、特に限定されない。冷却方法としては、例えば、パンチ金型を下死点にて1~60秒間保持し、ダイ金型とパンチ金型を用いてホットプレス部材を冷却する。その後に、金型からホットプレス部材を取り出し、冷却する。金型内、また、金型から取り出し後の冷却は、ガスや液体などの冷媒による冷却方法を組み合わせることができ、それによって生産性を向上させることもできる。
 表1および表4に示す成分組成(残部はFeおよび不可避的不純物)を有する溶鋼を小型真空溶解炉で溶製し、スラブとした。スラブを1250℃に加熱し、さらに粗圧延および仕上げ圧延を含む熱間圧延をして、熱延鋼板を得た。仕上げ圧延入側温度は1100℃で、仕上げ圧延出側温度が850℃の条件とした。熱間圧延終了後の冷却速度は、800~600℃の平均で15℃/sとし、巻取り温度は650℃とした。
 得られた熱延鋼板を表2および表5の加熱温度T1(第1温度)に加熱し、当該温度で表2および表5に示す時間保持し、その後冷却して、第1素材鋼板を得た。一部の試験例では、第1素材鋼板を酸洗し、圧下率54%で冷間圧延して、冷延鋼板(板厚:1.6mm)とした。さらに、冷延鋼板を表2および表5の加熱温度T2に加熱し、表2および表5に示す時間保持し、その後、冷却速度15℃/sで冷却し、500℃で冷却を停止し、この温度で150s間保持し、第2素材鋼板を得た。
 冷間圧延を施さない試験例では第1素材鋼板について組織観察を行い、既述の方法でMns/Mnαを求めた。結果を表2および表5に示す。また、それ以外の試験例では第2素材鋼板について組織観察を行い、既述の方法で、フェライトの平均粒径、第二相の平均粒径、およびMns/Mnαを求めた。結果を表2および表5に示す。
 表2および表5に示すように、一部の試験例では、第2素材鋼板にめっき処理を施した。表2および表5中、「GI」は溶融亜鉛めっき層、「GA」は合金化溶融亜鉛めっき層、「Zn-Ni」はZn-12mass%Niめっき層、「Al-Si」はAl-10mass%Siめっき層であり、いずれもめっき層の付着量は片面あたりで60g/m2とした。
 このようにして得られた熱延鋼板(第1素材鋼板)または冷延鋼板(第2素材鋼板)に、表3および表6に示す条件で加熱工程と、ホットプレス成形工程を施して、ハット形状のホットプレス部材を得た。ホットプレスは、幅:70mm、肩半径R:6mmのパンチ金型と肩半径R:7.6 mmのダイ金型とを使用し、成形深さ:30mmで行った。
 なお、ホットプレス成形工程前の加熱工程は、電気加熱炉を用いて大気中で行った場合、加熱速度は室温から750℃までの平均で7.5℃/sであった。750℃から加熱温度までの加熱速度は平均で、2.0℃/sであった。加熱温度に到達後、保持を行う場合は、当該加熱温度で保持した。また、直接通電加熱装置を用いて大気中で行った場合、加熱速度は室温から加熱温度までの平均で100℃/sであった。成形開始温度は750℃であった。また、冷却は、パンチ金型を下死点にて15s間保持し、ダイ金型とパンチ金型を用いての挟み込みと、挟み込みから開放したダイ上での空冷との組合せで、150℃以下まで冷却した。成形開始温度から200℃までの平均冷却速度は100℃/sであった。
 得られたホットプレス部材に、170℃で20分間の熱処理(低温熱処理)を施した。これは、通常の自動車部材の製造工程における焼付け塗装条件に相当するものである。この低温熱処理の前後において、ハット天板部の位置からJIS 5号引張試験片(平行部:25mm幅、平行部長さ:60mm、GL=50mm)を採取し、JIS Z 2241に準拠して引張試験を実施し、降伏応力YS、引張強さTS、全伸びtEl、および均一伸びuElを求めた。結果を表3および表6に示す。
 また、得られたホットプレス部材におけるマルテンサイト相の体積率、残留オーステナイト相の体積率、残部組織の体積率、および転位密度を既述の方法で測定し、結果を表3および表6に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 本発明例はいずれも、引張強さTS:1500MPa以上と、均一伸びuEl:6.0%以上と、ΔYS:150MPa以上を実現できた。これに対し、比較例はいずれかの特性を満足しなかった。
 本発明のホットプレス部材は、自動車のインパクトビーム、センターピラー、バンパー等のような、高い衝突エネルギー吸収能を必要とする構造部材として好適に使用できる。
 

Claims (12)

  1.  質量%で、
     C:0.090%以上0.30%未満、
     Mn:3.5%以上11.0%未満、
     Si:0.01~2.5%、
     P:0.05%以下、
     S:0.05%以下、
     Al:0.005~0.1%、
     N:0.01%以下を含み、
     残部がFeおよび不可避的不純物からなる成分組成と、
     体積率で70.0%以上のマルテンサイト相と、体積率で3.0%以上30.0%以下の残留オーステナイト相と、を含む組織と、
     引張強さTS:1500MPa以上でかつ均一伸びuEl:6.0%以上である引張特性と、
    を有し、転位密度が1.0×1016/m2以上であることを特徴とするホットプレス部材。
  2.  前記成分組成がさらに、質量%で、下記A~E群のうちから選ばれた1群または2群以上を含有する請求項1に記載のホットプレス部材。
                  記
     A群:Ni:0.01~5.0%、Cu:0.01~5.0%、Cr:0.01~5.0%、Mo:0.01~3.0%のうちから選ばれた1種または2種以上
     B群:Ti:0.005~3.0%、Nb:0.005~3.0%、V:0.005~3.0%、W:0.005~3.0%のうちから選ばれた1種または2種以上
     C群:REM:0.0005~0.01%、Ca:0.0005~0.01%、Mg:0.0005~0.01%のうちから選ばれた1種または2種以上
     D群:Sb:0.002~0.03%
     E群:B:0.0005~0.05%
  3.  表面にめっき層を有する請求項1または2に記載のホットプレス部材。
  4.  前記めっき層が、Zn系めっき層またはAl系めっき層である請求項3に記載のホットプレス部材。
  5.  前記Zn系めっき層が、Ni:10~25質量%を含む請求項4に記載のホットプレス部材。
  6.  質量%で、
     C:0.090%以上0.30%未満、
     Mn:3.5%以上11.0%未満、
     Si:0.01~2.5%、
     P:0.05%以下、
     S:0.05%以下、
     Al:0.005~0.1%、
     N:0.01%以下を含み、
     残部がFeおよび不可避的不純物からなる成分組成を有するスラブを加熱し、熱間圧延して、熱延鋼板を得る工程と、
     前記熱延鋼板をAc1点以上Ac3点以下の第1温度に加熱し、該第1温度で1時間以上48時間以下保持し、その後冷却して、第1素材鋼板を得る工程と、
     前記第1素材鋼板をAc3点以上1000℃以下の第2温度に加熱し、この第2温度で900秒以下保持する加熱工程と、
     その後、前記第1素材鋼板に、成形用金型を用いてプレス成形および焼入れを同時に施して、ホットプレス部材を得るホットプレス成形工程と、
    を有することを特徴とするホットプレス部材の製造方法。
  7.  前記加熱工程の前に、前記第1素材鋼板を冷間圧延して、冷延鋼板を得る工程と、
     前記冷延鋼板をAc1点以上Ac3点以下に加熱、保持し、その後冷却する焼鈍によって、第2素材鋼板を得る工程と、
    をさらに有し、前記第1素材鋼板に替えて前記第2素材鋼板に対して、前記加熱工程および前記ホットプレス成形工程を行う、請求項6に記載のホットプレス部材の製造方法。
  8.  前記成分組成がさらに、質量%で、下記A~E群のうちから選ばれた1群または2群以上を含有する請求項6または7に記載のホットプレス部材の製造方法。
                  記
     A群:Ni:0.01~5.0%、Cu:0.01~5.0%、Cr:0.01~5.0%、Mo:0.01~3.0%のうちから選ばれた1種または2種以上
     B群:Ti:0.005~3.0%、Nb:0.005~3.0%、V:0.005~3.0%、W:0.005~3.0%のうちから選ばれた1種または2種以上
     C群:REM:0.0005~0.01%、Ca:0.0005~0.01%、Mg:0.0005~0.01%のうちから選ばれた1種または2種以上
     D群:Sb:0.002~0.03%
     E群:B:0.0005~0.05%
  9.  前記加熱工程の前に、前記第1素材鋼板または前記第2素材鋼板の表面にめっき層を形成する工程をさらに有する請求項6~8のいずれか一項に記載のホットプレス部材の製造方法。
  10.  前記めっき層が、Zn系めっき層またはAl系めっき層である請求項9に記載のホットプレス部材の製造方法。
  11.  前記Zn系めっき層が、Ni:10~25質量%を含む請求項10に記載のホットプレス部材の製造方法。
  12.  前記めっき層の付着量が、片面あたりで10~90g/m2である請求項9~11のいずれか一項に記載のホットプレス部材の製造方法。
     
PCT/JP2016/004458 2015-10-19 2016-10-03 ホットプレス部材およびその製造方法 WO2017068756A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16857079.4A EP3366797B1 (en) 2015-10-19 2016-10-03 Method for producing a hot press member
CN201680061022.6A CN108138289A (zh) 2015-10-19 2016-10-03 热冲压构件及其制造方法
KR1020187013032A KR20180063303A (ko) 2015-10-19 2016-10-03 핫 프레스 부재 및 그의 제조 방법
MX2018004772A MX2018004772A (es) 2015-10-19 2016-10-03 Miembro prensado en caliente y metodo de fabricacion del mismo.
US15/768,894 US20190093191A1 (en) 2015-10-19 2016-10-03 Hot pressed member and method of manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015205751A JP6222198B2 (ja) 2015-10-19 2015-10-19 ホットプレス部材およびその製造方法
JP2015-205751 2015-10-19

Publications (1)

Publication Number Publication Date
WO2017068756A1 true WO2017068756A1 (ja) 2017-04-27

Family

ID=58556946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004458 WO2017068756A1 (ja) 2015-10-19 2016-10-03 ホットプレス部材およびその製造方法

Country Status (7)

Country Link
US (1) US20190093191A1 (ja)
EP (1) EP3366797B1 (ja)
JP (1) JP6222198B2 (ja)
KR (1) KR20180063303A (ja)
CN (1) CN108138289A (ja)
MX (1) MX2018004772A (ja)
WO (1) WO2017068756A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018220430A1 (en) * 2017-06-02 2018-12-06 Arcelormittal Steel sheet for manufacturing press hardened parts, press hardened part having a combination of high strength and crash ductility, and manufacturing methods thereof
CN110997962A (zh) * 2017-08-08 2020-04-10 Posco公司 具有优异的强度和延伸率的热轧钢板及其制造方法
EP3712286B1 (en) 2017-11-13 2021-10-20 JFE Steel Corporation Hot-pressed steel sheet member and method for producing same
EP3680359B1 (en) 2017-11-13 2022-01-05 JFE Steel Corporation Hot-pressed steel sheet member and method for producing same
EP3589770B1 (en) 2017-03-01 2022-04-06 Ak Steel Properties, Inc. Press hardened steel with extremely high strength

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6443375B2 (ja) * 2016-03-29 2018-12-26 Jfeスチール株式会社 ホットプレス部材およびその製造方法
JP6260676B2 (ja) 2016-03-29 2018-01-17 Jfeスチール株式会社 ホットプレス用鋼板およびその製造方法、ならびにホットプレス部材およびその製造方法
EP3438316B1 (en) * 2016-03-29 2022-03-09 JFE Steel Corporation Steel sheet for hot pressing and production method therefor, and hot press member and production method therefor
CN106244918B (zh) * 2016-07-27 2018-04-27 宝山钢铁股份有限公司 一种1500MPa级高强塑积汽车用钢及其制造方法
CA3045170A1 (en) 2016-11-25 2018-05-31 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing quenched molding, method for manufacturing hot press steel material, and hot press steel material
CN109112359A (zh) * 2017-06-26 2019-01-01 鞍钢股份有限公司 一种锌基镀层钢板及其制造方法、热成型方法和部件
CN109112453A (zh) * 2017-06-26 2019-01-01 鞍钢股份有限公司 一种锌铝镁镀层钢板及其制造方法、热成型方法和部件
CN109112360A (zh) * 2017-06-26 2019-01-01 鞍钢股份有限公司 一种锌铝基镀层钢板及其制造方法、热成型方法和部件
CN114369768A (zh) * 2017-11-02 2022-04-19 重庆哈工易成形钢铁科技有限公司 热冲压成形用钢材、热冲压成形工艺及成形构件
TW202010852A (zh) * 2018-06-29 2020-03-16 日商日本製鐵股份有限公司 高強度鋼板及其製造方法
CN108950160A (zh) * 2018-08-25 2018-12-07 马鞍山钢铁股份有限公司 一种基于csp流程的锌基镀层热成形钢及其制备方法
CN109972061A (zh) * 2019-04-26 2019-07-05 北京科技大学 热冲压成形用抗氧化超高强钢板及其低温热成形工艺
WO2020241762A1 (ja) * 2019-05-31 2020-12-03 日本製鉄株式会社 ホットスタンプ用鋼板
KR102603495B1 (ko) * 2019-05-31 2023-11-20 닛폰세이테츠 가부시키가이샤 핫 스탬프 성형체
WO2021145445A1 (ja) * 2020-01-16 2021-07-22 日本製鉄株式会社 ホットスタンプ成形体
CN111996446B (zh) * 2020-08-03 2021-10-22 鞍钢股份有限公司 一种基于界面控制的高延伸冷轧镀锌钢带及其生产方法
CN117940598A (zh) * 2021-08-31 2024-04-26 安赛乐米塔尔公司 热轧钢板及其制造方法
EP4396388A1 (en) * 2021-08-31 2024-07-10 ArcelorMittal Hot rolled and steel sheet and a method of manufacturing thereof
CN115961130A (zh) * 2021-10-11 2023-04-14 清华大学 一种高强高塑中锰钢及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217125A (ja) * 1985-07-15 1987-01-26 Nippon Steel Corp 高強度高延性鋼材の製造方法
JP2004211147A (ja) * 2002-12-27 2004-07-29 Kobe Steel Ltd 熱間プレス成形性に優れた亜鉛めっき鋼板および該鋼板を用いた熱間プレス成形部材の製法並びに高強度かつめっき外観に優れた熱間プレス成形部材
JP2008144233A (ja) * 2006-12-11 2008-06-26 Kobe Steel Ltd 焼付硬化用高強度鋼板およびその製造方法
WO2013038637A1 (ja) * 2011-09-16 2013-03-21 Jfeスチール株式会社 加工性に優れた高強度鋼板およびその製造方法
WO2013047821A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 焼付硬化性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP2015503023A (ja) * 2011-11-07 2015-01-29 ポスコ 温間プレス成形用鋼板、温間プレス成形部材、及びこれらの製造方法
WO2015182596A1 (ja) * 2014-05-29 2015-12-03 新日鐵住金株式会社 熱処理鋼材及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5347393B2 (ja) 2008-09-12 2013-11-20 Jfeスチール株式会社 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP5884151B2 (ja) * 2010-11-25 2016-03-15 Jfeスチール株式会社 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法
CN105908226B (zh) * 2011-06-07 2018-07-17 杰富意钢铁株式会社 热压用钢板
CN103620075B (zh) 2011-06-10 2016-02-17 株式会社神户制钢所 热压成形品、其制造方法和热压成形用薄钢板
US20140083574A1 (en) * 2011-06-30 2014-03-27 Hyundai Hysco Co.,Ltd. Heat-hardened steel with excellent crashworthiness and method for manufacturing heat-hardenable parts using same
US9617614B2 (en) * 2011-10-24 2017-04-11 Jfe Steel Corporation Method for manufacturing high strength steel sheet having excellent formability
JP5585623B2 (ja) * 2012-07-23 2014-09-10 新日鐵住金株式会社 熱間成形鋼板部材およびその製造方法
US10384254B2 (en) * 2013-07-02 2019-08-20 Jfe Steel Corporation Method of manufacturing hot-pressed member
CA2935308C (en) * 2014-01-06 2018-09-25 Nippon Steel & Sumitomo Metal Corporation Hot-formed member and manufacturing method of same
US10392677B2 (en) * 2014-10-24 2019-08-27 Jfe Steel Corporation High-strength hot-pressed part and method for manufacturing the same
CN104846274B (zh) * 2015-02-16 2017-07-28 重庆哈工易成形钢铁科技有限公司 热冲压成形用钢板、热冲压成形工艺及热冲压成形构件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217125A (ja) * 1985-07-15 1987-01-26 Nippon Steel Corp 高強度高延性鋼材の製造方法
JP2004211147A (ja) * 2002-12-27 2004-07-29 Kobe Steel Ltd 熱間プレス成形性に優れた亜鉛めっき鋼板および該鋼板を用いた熱間プレス成形部材の製法並びに高強度かつめっき外観に優れた熱間プレス成形部材
JP2008144233A (ja) * 2006-12-11 2008-06-26 Kobe Steel Ltd 焼付硬化用高強度鋼板およびその製造方法
WO2013038637A1 (ja) * 2011-09-16 2013-03-21 Jfeスチール株式会社 加工性に優れた高強度鋼板およびその製造方法
WO2013047821A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 焼付硬化性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP2015503023A (ja) * 2011-11-07 2015-01-29 ポスコ 温間プレス成形用鋼板、温間プレス成形部材、及びこれらの製造方法
WO2015182596A1 (ja) * 2014-05-29 2015-12-03 新日鐵住金株式会社 熱処理鋼材及びその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3589770B1 (en) 2017-03-01 2022-04-06 Ak Steel Properties, Inc. Press hardened steel with extremely high strength
WO2018220430A1 (en) * 2017-06-02 2018-12-06 Arcelormittal Steel sheet for manufacturing press hardened parts, press hardened part having a combination of high strength and crash ductility, and manufacturing methods thereof
WO2018220598A1 (en) * 2017-06-02 2018-12-06 Arcelormittal Steel sheet for manufacturing press hardened parts, press hardened part having a combination of high strength and crash ductility, and manufacturing methods thereof
EP3631022A1 (en) * 2017-06-02 2020-04-08 ArcelorMittal Steel sheet for manufacturing press hardened parts, press hardened part having a combination of high strength and crash ductility, and manufacturing methods thereof
US11629388B2 (en) 2017-06-02 2023-04-18 Arcelormittal Steel sheet for manufacturing press hardened parts, press hardened part having a combination of high strength and crash ductility, and manufacturing methods thereof
CN110997962A (zh) * 2017-08-08 2020-04-10 Posco公司 具有优异的强度和延伸率的热轧钢板及其制造方法
US11186892B2 (en) 2017-08-08 2021-11-30 Posco Hot rolled steel sheet having excellent strength and elongation
EP3712286B1 (en) 2017-11-13 2021-10-20 JFE Steel Corporation Hot-pressed steel sheet member and method for producing same
EP3680359B1 (en) 2017-11-13 2022-01-05 JFE Steel Corporation Hot-pressed steel sheet member and method for producing same

Also Published As

Publication number Publication date
KR20180063303A (ko) 2018-06-11
EP3366797A4 (en) 2018-08-29
JP2017078188A (ja) 2017-04-27
EP3366797B1 (en) 2019-12-18
MX2018004772A (es) 2018-05-30
CN108138289A (zh) 2018-06-08
EP3366797A1 (en) 2018-08-29
US20190093191A1 (en) 2019-03-28
JP6222198B2 (ja) 2017-11-01

Similar Documents

Publication Publication Date Title
JP6222198B2 (ja) ホットプレス部材およびその製造方法
JP6428970B1 (ja) ホットプレス部材およびその製造方法
JP6004138B2 (ja) 高強度ホットプレス部材およびその製造方法
JP6168118B2 (ja) ホットプレス部材およびその製造方法
JP6260676B2 (ja) ホットプレス用鋼板およびその製造方法、ならびにホットプレス部材およびその製造方法
US10550446B2 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same
US10711333B2 (en) High-strength steel sheet and method for manufacturing same
US20180127846A9 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same
US11293075B2 (en) Hot-press forming part and method of manufacturing same
JP6508176B2 (ja) ホットプレス部材およびその製造方法
WO2016103534A1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
US20190276907A1 (en) Steel sheet, coated steel sheet, and methods for manufacturing same
JP6443375B2 (ja) ホットプレス部材およびその製造方法
JP6589928B2 (ja) ホットプレス部材およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857079

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/004772

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187013032

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016857079

Country of ref document: EP