WO2017057663A1 - 変性ポリビニルアセタール樹脂組成物 - Google Patents

変性ポリビニルアセタール樹脂組成物 Download PDF

Info

Publication number
WO2017057663A1
WO2017057663A1 PCT/JP2016/078985 JP2016078985W WO2017057663A1 WO 2017057663 A1 WO2017057663 A1 WO 2017057663A1 JP 2016078985 W JP2016078985 W JP 2016078985W WO 2017057663 A1 WO2017057663 A1 WO 2017057663A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinyl acetal
acetal resin
modified polyvinyl
group
resin composition
Prior art date
Application number
PCT/JP2016/078985
Other languages
English (en)
French (fr)
Inventor
貴之 前田
山内 健司
栞 立野
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020177030513A priority Critical patent/KR102531218B1/ko
Priority to CN201680018246.9A priority patent/CN107406652B/zh
Priority to MX2018002865A priority patent/MX2018002865A/es
Priority to US15/743,390 priority patent/US10711128B2/en
Priority to JP2016562035A priority patent/JP6144437B1/ja
Priority to EP16851832.2A priority patent/EP3357966B1/en
Publication of WO2017057663A1 publication Critical patent/WO2017057663A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/28Condensation with aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J129/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Adhesives based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Adhesives based on derivatives of such polymers
    • C09J129/02Homopolymers or copolymers of unsaturated alcohols
    • C09J129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J129/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Adhesives based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Adhesives based on derivatives of such polymers
    • C09J129/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/12Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F16/14Monomers containing only one unsaturated aliphatic radical
    • C08F16/28Monomers containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/38Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an acetal or ketal radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/06Oxidation

Definitions

  • the present invention relates to a modified polyvinyl acetal resin composition that is excellent in storage stability, has high strength and excellent adhesiveness, and can suppress the occurrence of warping and peeling when used for bonding different materials.
  • Polyvinyl acetal resin is a resin synthesized from polyvinyl alcohol as a raw material, and has excellent toughness, adhesiveness, crosslinkability, and hygroscopicity by having an acetyl group, a hydroxyl group, and an acetal group in the side chain. Can do. Moreover, it becomes possible to change the resin physical properties by changing the ratio of the side chain groups. Utilizing such characteristics, it is used in a wide range of applications such as laminated glass interlayers for automobiles and ceramic green sheets.
  • Patent Documents 1 to 4 describe adhesives using epoxy resins, but these adhesives have insufficient resin strength and insufficient adhesion to metal materials. There was a problem.
  • the present invention is a modified polyvinyl acetal resin that has excellent storage stability, high strength and excellent adhesiveness, and can suppress the occurrence of warping and peeling when used for bonding different types of materials.
  • An object is to provide a composition.
  • the present invention is a modified polyvinyl acetal resin composition
  • a modified polyvinyl acetal resin composition comprising a modified polyvinyl acetal resin having a structural unit having an imine structure and an epoxy resin.
  • the present invention is described in detail below.
  • the modified polyvinyl acetal resin composition of the present invention contains a modified polyvinyl acetal resin having a structural unit having an imine structure.
  • a crosslinked structure can be formed with the epoxy resin when used in combination with the epoxy resin.
  • the crosslinked body obtained after crosslinking has moderate elasticity while having high mechanical strength.
  • warpage due to the difference in shrinkage rate of each material and peeling of the bonded portion can be suppressed.
  • the modified polyvinyl acetal resin has a structural unit having an imine structure.
  • the imine structure refers to a structure having a C ⁇ N bond.
  • the modified polyvinyl acetal resin preferably has an imine structure in the side chain.
  • the said imine structure may be directly couple
  • having the said imine structure in a side chain includes having the said imine structure in the graft chain of a modified polyvinyl acetal resin.
  • the structural unit shown to following formula (1) is mentioned, for example.
  • R 1 represents a single bond or an alkylene group
  • R 2 represents a group having an imine structure
  • R 1 when R 1 is an alkylene group, the preferred lower limit of the carbon number of the alkylene group is 1, and the preferred upper limit is 12. When the number of carbon atoms of the alkylene group exceeds 12, optimal strength may not be obtained. When R 1 is an alkylene group, the more preferable upper limit of the carbon number of the alkylene group is 5.
  • R 1 when R 1 is an alkylene group, examples of the alkylene group include methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, octamethylene group, decamethylene.
  • Linear alkylene group such as a group, branched alkylene group such as methylmethylene group, methylethylene group, 1-methylpentylene group, 1,4-dimethylbutylene group, cyclopropylene group, cyclobutylene group, cyclohexylene group, etc. And the like.
  • a linear alkyl group such as a methylene group, an ethylene group, an n-propylene group, and an n-butylene group is preferable, and a methylene group and an ethylene group are more preferable.
  • R 2 examples include functional groups represented by the following formula (2).
  • R 3 represents a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms
  • R 4 represents a hydrocarbon group having 1 to 18 carbon atoms.
  • hydrocarbon group examples include a saturated hydrocarbon group, an unsaturated hydrocarbon group, and an aromatic hydrocarbon group.
  • said hydrocarbon group may consist only of a saturated hydrocarbon group, an unsaturated hydrocarbon group, and an aromatic hydrocarbon group, and these may be used 2 or more types.
  • saturated hydrocarbon group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and a hexyl group.
  • a methyl group, an ethyl group, an n-propyl group, and an n-butyl group are preferable.
  • the aromatic hydrocarbon group include a phenyl group, a toluyl group, a xylyl group, a t-butylphenyl group, and a benzyl group.
  • R 1 is preferably a single bond
  • R 3 is a hydrogen atom, a methyl group or an ethyl group
  • R 4 is preferably a methyl group or an ethyl group.
  • the preferable lower limit of the content of the structural unit having an imine structure is 0.1 mol%, and the preferable upper limit is 20.0 mol%.
  • the content of the structural unit having the imine structure is 0.1 mol% or more, the viscosity stability over time is good.
  • Acetalization can fully be advanced as content of the structural unit which has the said imine structure is 20.0 mol% or less.
  • the minimum with more preferable content of the structural unit which has the said imine structure is 1.0 mol%, and a more preferable upper limit is 15.0 mol%.
  • the modified polyvinyl acetal resin further includes a structural unit having an amino group or an amide structure.
  • the modified polyvinyl acetal resin preferably has the amino group or amide structure in the side chain.
  • the amino group or amide structure may be directly bonded to carbon constituting the main chain of the modified polyvinyl acetal resin, or may be bonded via a linking group such as an alkylene group. Further, the amino group may be a primary amine or a secondary amine.
  • having the said amino group or amide structure in a side chain means having the said amino group or amide structure in the graft chain of a modified polyvinyl acetal resin.
  • the amino group is preferably —NH 2 .
  • the amide structure refers to a structure having —C ( ⁇ O) —NH—.
  • the structural unit which has the said amino group is a structure shown in following formula (3).
  • the structural unit which has the said amide group is a structure shown in following formula (4).
  • R 5 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • the hydrocarbon group include an alkyl group, an alkenyl group, a cycloalkyl group, and a cycloalkenyl group.
  • the minimum with preferable content of the structural unit which has the said amino group or amide structure is 0.1 mol%, and a preferable upper limit is 20 mol%.
  • a preferable upper limit is 20 mol%.
  • the content of the structural unit having the amino group or amide structure is 0.1 mol% or more, the additional characteristics can be made sufficient.
  • the content is 20 mol% or less, the solubility does not increase excessively, and the modified polyvinyl acetal resin powder can be easily taken out by the precipitation method.
  • the minimum with said more preferable content is 0.5 mol%, and a more preferable upper limit is 10 mol%.
  • content of the structural unit which has the said amino group or amide structure can be measured by NMR etc.
  • the preferable minimum of content which totaled the structural unit which has the said amino group or amide structure, and the structural unit which has an imine structure is 0.1 mol%, and a preferable upper limit is 20 mol%.
  • the minimum with said more preferable content is 0.5 mol%, and a more preferable upper limit is 10 mol%.
  • the content ratio between the structural unit having an imine structure and the structural unit having an amino group or an amide structure is: It is preferably 0.5 / 99.5 to 99.5 / 0.5.
  • the ratio is 0.5 / 99.5 or more, the viscosity stability with time can be sufficient, and when the ratio is 99.5 / 0.5 or less, the crosslinking performance is sufficiently exhibited. can do.
  • the more preferable lower limit of the ratio is 5/95, and the more preferable upper limit is 75/25.
  • the degree of acetalization of the modified polyvinyl acetal resin is not particularly limited, but a preferable lower limit is 60 mol% and a preferable upper limit is 90 mol%.
  • a preferable lower limit is 60 mol% or more
  • the modified polyvinyl acetal resin can be sufficiently precipitated in the synthesis step by the precipitation method.
  • the degree of acetalization is 90 mol% or less, the solubility in a solvent can be improved.
  • a more preferred lower limit is 65 mol%, and a more preferred upper limit is 85 mol%.
  • the degree of acetal of the modified polyvinyl acetal resin can be measured by NMR or the like.
  • the modified polyvinyl acetal resin preferably has a hydroxyl group content of 15 to 35 mol%, more preferably 17 to 25 mol%.
  • the amount of the hydroxyl group is 15 mol% or more, the toughness of the modified polyvinyl acetal resin can be sufficiently increased, and the strength of the resulting crosslinked product becomes good.
  • the amount of the hydroxyl group is 35 mol% or less, the polarity of the modified polyvinyl acetal resin does not become too high, and defects such as cracks in the resulting crosslinked product are suppressed, and the releasability is improved. be able to.
  • the amount of acetyl groups is not particularly limited, and the preferable lower limit is 0.0001 mol% and the preferable upper limit is 5 mol%.
  • the polymerization degree of the modified polyvinyl acetal resin is not particularly limited, a preferable lower limit is 200 and a preferable upper limit is 4500.
  • a modified polyvinyl acetal resin composition having a sufficient viscosity can be obtained, and when the degree of polymerization of the modified polyvinyl acetal resin is 4500 or less, With good solubility, the viscosity of the aqueous solution does not become too high, and acetalization can proceed sufficiently.
  • the viscosity when dissolved in an organic solvent does not become too high, and handling can be improved with good coating properties in applications where the solution is applied and used.
  • polyvinyl alcohol obtained by saponifying polyvinyl acetate obtained by copolymerizing the monomer having the imine structure and vinyl acetate is conventionally used.
  • the method of acetalizing by a well-known method is mentioned.
  • a method of acetalizing a modified polyvinyl alcohol having an imine structure obtained by post-modifying polyvinyl alcohol having a structural unit having an amino group or an amide structure by a conventionally known method may be used.
  • an imine structure may be introduced by post-modifying an unmodified polyvinyl acetal resin. That is, the modified polyvinyl acetal resin may be an acetalized product of polyvinyl alcohol having a structural unit having an amino group or an amide structure.
  • a method of obtaining a modified polyvinyl acetal resin having an imine structure by acetalizing polyvinyl alcohol having a structural unit having an amino group or an amide structure is preferable.
  • an imine structure can be obtained by adding an excessive amount of an aldehyde and an acid catalyst used for acetalization. For example, it is preferable to add 1.0% by weight or more of the acid catalyst.
  • the acetalization can be performed by a known method, and is preferably performed in an aqueous solvent, a mixed solvent of water and an organic solvent compatible with water, or an organic solvent.
  • an organic solvent compatible with the water for example, an alcohol-based organic solvent can be used.
  • organic solvent examples include alcohol organic solvents such as methanol, ethanol, n-propanol, isopropanol, n-butanol, and tert-butanol; aromatic organic solvents such as xylene, toluene, ethylbenzene, and methyl benzoate; Aliphatic ester solvents such as ethyl acetate, butyl acetate, methyl propionate, ethyl propionate, methyl butyrate, ethyl butyrate, methyl acetoacetate, ethyl acetoacetate; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methylcyclohexanone, benzophenone Ketone solvents such as acetophenone; lower paraffin solvents such as hexane, pentane, octane, cyclohexane, decane;
  • ethanol n-propanol, isopropanol, and tetrahydrofuran are particularly preferable from the viewpoints of solubility in the resin and ease of purification.
  • the acetalization is preferably performed in the presence of an acid catalyst.
  • the acid catalyst is not particularly limited, mineral acids such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, carboxylic acids such as formic acid, acetic acid, propionic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, paratoluenesulfone. Examples thereof include sulfonic acids such as acids.
  • These acid catalysts may be used alone or in combination of two or more compounds. Of these, hydrochloric acid, nitric acid and sulfuric acid are preferable, and hydrochloric acid is particularly preferable.
  • aldehyde used for the acetalization examples include aldehydes having a chain aliphatic group having 1 to 10 carbon atoms, a cyclic aliphatic group, or an aromatic group. Conventionally known aldehydes can be used as these aldehydes.
  • the aldehyde used in the acetalization reaction is not particularly limited.
  • aldehydes such as 2-ethylhexylaldehyde, n-heptylaldehyde, n-octaldehyde, n-nonylaldehyde, n-decylaldehyde, amylaldehyde, benzaldehyde, cinnamaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde 4-methylbenzaldehyde, p-hydroxybenzaldehyde, m-hydroxybenzaldehyde, phenylacetaldehyde, ⁇ -phenylpropionaldehyde, etc
  • Aromatic aldehydes and the like. These aldehydes may be used alone or in combination of two or more. Among the aldehydes, butyraldehyde, 2-ethylhexyl aldehyde, and n-nonyl aldehyde, which are excellent in acetalization reactivity, provide sufficient internal plastic effect to the resulting resin, and can give good flexibility as a result. And butyraldehyde is more preferable.
  • the addition amount of the aldehyde can be appropriately set according to the degree of acetalization of the target modified polyvinyl acetal resin. What is necessary is just to set suitably as the addition amount of the said aldehyde according to the acetalization degree of the target modified polyvinyl acetal resin. In particular, 60 to 95 mol%, preferably 70 to 90 mol%, relative to 100 mol% of polyvinyl alcohol is preferable because the acetalization reaction is efficiently performed and unreacted aldehyde is easily removed.
  • the content of the modified polyvinyl acetal resin is such that a preferred lower limit is 0.5% by weight and a preferred upper limit is 70.0% by weight.
  • a preferred lower limit is 0.5% by weight and a preferred upper limit is 70.0% by weight.
  • high toughness can be exhibited when used as an adhesive.
  • High adhesiveness can be exhibited as the said content is 70.0 weight% or less.
  • content of the said modified polyvinyl acetal resin a more preferable minimum is 1.0 weight% and a more preferable upper limit is 60.0 weight%.
  • the modified polyvinyl acetal resin composition of the present invention contains an epoxy resin. By containing the epoxy resin, it is possible to crosslink by applying energy by heating or the like, and high adhesiveness can be realized.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, fat And epoxy resin having a group. Of these, bisphenol A type epoxy resins and epoxy resins having an aliphatic group are preferred.
  • the epoxy resin having an aliphatic group is not particularly limited, and examples thereof include monoglycidyl ether, diglycidyl ether, and alicyclic epoxy resin.
  • examples of the monoglycidyl ether include butyl glycidyl ether, phenyl glycidyl ether, lauryl glycidyl ether, secondary butylphenol monoglycidyl ether, and cresyl glycidyl ether.
  • the diglycidyl ether is not particularly limited, and examples thereof include 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, polytetramethylene glycol diglycidyl ether, and propylene glycol diglycidyl ether. Of these, neopentyl glycol diglycidyl ether and propylene glycol diglycidyl ether are preferable.
  • the alicyclic epoxy resin include alicyclic epoxy resins having a 4- to 7-membered cyclic aliphatic group. Specific examples include 1,2: 8,9 diepoxy limonene, 4-vinyl.
  • These epoxy resins may be used independently and 2 or more types may be used together. Moreover, these epoxy resins can be used by dissolving in an organic solvent such as water or alcohol if necessary.
  • the preferable lower limit of the epoxy resin content is 0.5% by weight, and the preferable upper limit is 99.5% by weight.
  • Adhesiveness can be improved more as content of the said epoxy resin is 0.5 weight% or more.
  • a toughness can be improved as the said content is 99.5 weight% or less.
  • content of the said epoxy resin a more preferable minimum is 1.0 weight% and a more preferable upper limit is 90.0 weight%.
  • the content of the modified polyvinyl acetal resin with respect to 100 parts by weight of the epoxy resin is preferably 0.5 parts by weight and preferably 100 parts by weight.
  • the toughness can be made sufficient.
  • Adhesiveness can be made sufficient as content of the said modified polyvinyl acetal resin is 100 weight part or less.
  • a more preferable lower limit is 1.0 part by weight, and a more preferable upper limit is 80 parts by weight.
  • the modified polyvinyl acetal resin composition of the present invention may further contain a crosslinking agent in addition to the modified polyvinyl acetal resin and the epoxy resin.
  • the crosslinking agent include halohydrin compounds such as epichlorohydrin and epibromohydrin; halogen compounds such as 1,2-dichloroethane and 1,3-dichloropropane; isocyanate compounds such as hexamethylene diisocyanate; N, N′— Bisacrylamide compounds such as methylenebisacrylamide and N, N′-ethylenebisacrylamide; urea compounds such as urea and thiourea; guanidine compounds such as guanidine and diguanide; dicarboxylic acid compounds such as oxalic acid and adipic acid; acrylic acid and methacrylic acid Unsaturated carboxylic acid compounds such as acids; methyl acrylate, methyl methacrylate, 2-ethylhexyl acrylate, isobutyl acryl
  • Unsaturated carboxylic acid ester compounds glyoxal, glutaraldehyde, malonaldehyde, succinaldehyde, adipic aldehyde, phthalaldehyde, isophthalaldehyde, aldehyde compounds comprising dialdehydes such as terephthalaldehyde and the like. These may be used alone or in combination of two or more. If necessary, these crosslinking agents can be used by dissolving in an organic solvent such as water or alcohol.
  • the modified polyvinyl acetal resin composition of the present invention may further contain a curing agent, a curing accelerator, and an organic solvent.
  • a curing agent include dicyandiamide, imidazole compound, aromatic amine compound, phenol novolac resin, cresol novolac resin, and the like. Of these, dicyandiamide is preferable.
  • the curing accelerator include imidazole compounds, phosphorus compounds, amine compounds, and organometallic compounds. Of these, imidazole compounds are preferred.
  • the content of the curing agent in the modified polyvinyl acetal resin composition of the present invention is preferably 0.5 parts by weight with respect to 100 parts by weight of the epoxy resin, more preferably 1.0 part by weight, and a preferred upper limit with respect to 100 parts by weight. Is 30.0 parts by weight, and a more preferable upper limit is 20 parts by weight.
  • the content of the curing accelerator in the modified polyvinyl acetal resin composition of the present invention is preferably 0 parts by weight, more preferably 0.5 parts by weight, and a preferred upper limit with respect to 100 parts by weight of the epoxy resin. 30 parts by weight, and a more preferable upper limit is 20 parts by weight.
  • organic solvent examples include ketones such as acetone, methyl ethyl ketone, dipropyl ketone, and diisobutyl ketone, alcohols such as methanol, ethanol, isopropanol, and butanol, aromatic hydrocarbons such as toluene and xylene, methyl propionate, Ethyl propionate, butyl propionate, methyl butanoate, ethyl butanoate, butyl butanoate, methyl pentanoate, ethyl pentanoate, butyl pentanoate, methyl hexanoate, ethyl hexanoate, butyl hexanoate, 2-ethylhexyl acetate, butyric acid Esters such as 2-ethylhexyl, methyl cellosolve, ethyl cellosolve, butyl cellosolve, terpineol, dihydr
  • the content of the organic solvent in the modified polyvinyl acetal resin composition of the present invention is preferably 0.5 parts by weight with respect to 100 parts by weight of the epoxy resin, more preferably 1.0 part by weight, and a preferred upper limit with respect to 100 parts by weight. Is 50.0 parts by weight, and a more preferable upper limit is 45.0 parts by weight.
  • the modified polyvinyl acetal resin composition of the present invention may contain additives such as a plasticizer and a dispersant as long as the effects of the present invention are not impaired.
  • Examples of the method for crosslinking the modified polyvinyl acetal resin composition of the present invention include a method by heating.
  • the heating temperature is not particularly limited, but is preferably 50 to 170 ° C.
  • the heating temperature is 50 ° C. or more, crosslinking can be sufficiently advanced to improve the strength.
  • the heating temperature is 170 ° C. or lower, the modified polyvinyl acetal resin is not thermally deteriorated and sufficient characteristics can be exhibited.
  • a more preferable lower limit of the heating temperature is 60 ° C., and a more preferable upper limit is 150 ° C.
  • the heating time is not particularly limited, but the preferred lower limit is 5 minutes and the preferred upper limit is 10 hours.
  • the heating time is 5 minutes or more, the crosslinking is sufficiently advanced, and sufficient strength can be obtained. Further, when the heating time is 10 hours or less, the modified polyvinyl acetal resin is not thermally deteriorated, and sufficient characteristics can be exhibited.
  • the modified polyvinyl acetal resin composition of the present invention can be suitably used for applications in which ordinary polyvinyl acetal resins are used.
  • ceramic molded bodies, metal pastes, heat-developable photosensitive materials, paints, inks, reflections A coating solution for producing a sheet or the like can be obtained.
  • it can be used for adhesives for film adhesives for displays, interlayer adhesives for ceramic laminates, structural adhesives for automobiles, buildings, and the like.
  • the modified polyvinyl acetal having an imine structure used in the modified polyvinyl acetal resin composition of the present invention is excellent in self-crosslinking property, a molded article having high strength can be produced.
  • a modified polyvinyl acetal resin composition having excellent storage stability, high strength and excellent adhesiveness, and capable of suppressing the occurrence of warping and peeling even when used for bonding different materials. Can provide.
  • Example 1 240 g of polyvinyl alcohol containing a polymerization degree of 600, a saponification degree of 99.7 mol% and 1.7 mol% of a structural unit having an amino group (—NH 2 ) represented by the above formula (3) was added to 1800 g of pure water, The solution was stirred at a temperature of about 2 hours for dissolution. The solution was cooled to 40 ° C., 170 g of hydrochloric acid having a concentration of 35% by weight and 275 g of n-butyraldehyde were added to the solution, and the liquid temperature was kept at 40 ° C. to conduct an acetalization reaction to precipitate the reaction product. It was. Thereafter, the liquid temperature was kept at 40 ° C.
  • modified polyvinyl acetal resin powder was dissolved in DMSO-d 6 (dimethyl sulfoxide), and analyzed using 13 C-NMR (nuclear magnetic resonance spectrum). As a result, it had an amino group represented by the above formula (3).
  • Table 1 shows the degree of butyralization, the amount of acetyl groups, and the amount of hydroxyl groups measured using 13 C-NMR.
  • a polyvinyl acetal resin solution was prepared by dissolving 10 g of the obtained modified polyvinyl acetal resin in 90 g of a solvent in which toluene and ethanol were mixed at a weight ratio of 1: 1.
  • 90 g of neopentyl glycol diglycidyl ether (epoxy equivalent 108, molecular weight 216) was added to the obtained polyvinyl acetal resin solution, and a resin composition was prepared by mixing the polyvinyl acetal resin and the epoxy resin in a weight ratio of 10:90.
  • the obtained resin composition was coated on a release-treated polyethylene terephthalate (PET) film so that the film thickness after drying was 20 ⁇ m, and dried at 125 ° C. to prepare a resin sheet.
  • PET polyethylene terephthalate
  • Example 2 Polyvinyl alcohol was changed to 240 g of polyvinyl alcohol containing a polymerization degree of 600, a saponification degree of 99.7 mol%, and a structural unit having an amino group represented by the above formula (3) of 16.0 mol%, and addition of n-butyraldehyde A modified polyvinyl acetal resin was obtained in the same manner as in Example 1 except that the amount was 224 g.
  • the obtained modified polyvinyl acetal resin was dissolved in DMSO-d 6 (dimethyl sulfoxide), and analyzed using 13 C-NMR (nuclear magnetic resonance spectrum). As a result, it had an amino group represented by the above formula (3).
  • Structural unit (content: 0.2 mol%) and a structural unit having an imine structure represented by the above formula (5) (content: 15.8 mol%, R 3 is a hydrogen atom, R 4 is n-butyl) It was confirmed to have a group).
  • Table 1 shows the degree of butyralization, the amount of acetyl groups, and the amount of hydroxyl groups measured using 13 C-NMR.
  • Example 3 Polyvinyl alcohol was changed to 240 g of polyvinyl alcohol having a polymerization degree of 600, a saponification degree of 99.7 mol%, and 0.5 mol% of a structural unit having an amino group represented by the above formula (3), and addition of n-butyraldehyde A modified polyvinyl acetal resin was obtained in the same manner as in Example 1 except that the amount was 280 g.
  • the obtained modified polyvinyl acetal resin was dissolved in DMSO-d 6 (dimethyl sulfoxide), and analyzed using 13 C-NMR (nuclear magnetic resonance spectrum). As a result, it had an amino group represented by the above formula (3).
  • Structural unit (content: 0.0 mol%) and structural unit having an imine structure represented by the above formula (5) (content: 0.5 mol%, R 3 is a hydrogen atom, R 4 is n-butyl) It was confirmed to have a group).
  • Table 1 shows the degree of butyralization, the amount of acetyl groups, and the amount of hydroxyl groups measured using 13 C-NMR.
  • Example 4 Polyvinyl acetal resin in the same manner as in Example 1 except that 90 g of bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, jER 828, epoxy equivalent 190, molecular weight 380) was used instead of 90 g of neopentyl glycol diglycidyl ether. A solution, a resin composition, and a resin sheet were prepared.
  • Example 5 A polyvinyl acetal resin solution, a resin composition, and a resin sheet were obtained in the same manner as in Example 2 except that 90 g of bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, jER 828) was used instead of 90 g of neopentyl glycol diglycidyl ether. Was made.
  • Example 6 A polyvinyl acetal resin solution, a resin composition, and a resin sheet were obtained in the same manner as in Example 3 except that 90 g of bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, jER 828) was used instead of 90 g of neopentyl glycol diglycidyl ether. Was made.
  • Example 7 A polyvinyl acetal resin solution and a resin composition were used in the same manner as in Example 1 except that the modified polyvinyl acetal resin obtained in Example 1 was used and an epoxy resin, a curing agent and a curing accelerator were added as shown in Table 1. And the resin sheet was produced. In addition, the following were used as an epoxy resin.
  • Bisphenol F type epoxy resin Mitsubishi Chemical Corporation, jER 807, epoxy equivalent 170
  • Polypropylene glycol diglycidyl ether manufactured by Nagase ChemteX Corporation, EX-920, epoxy equivalent 176)
  • Example 10 A polyvinyl acetal resin solution, a resin composition, and a resin sheet were obtained in the same manner as in Example 2 except that 90 g of bisphenol F-type epoxy resin (manufactured by Mitsubishi Chemical Corporation, jER 807) was used instead of 90 g of neopentyl glycol diglycidyl ether. Was made.
  • Example 11 A polyvinyl acetal resin solution, a resin composition, and a resin sheet were obtained in the same manner as in Example 3 except that 90 g of bisphenol F type epoxy resin (manufactured by Mitsubishi Chemical Corporation, jER 807) was used instead of 90 g of neopentyl glycol diglycidyl ether. Was made.
  • Example 1 A polyvinyl acetal resin was obtained in the same manner as in Example 1 except that polyvinyl alcohol was changed to polyvinyl alcohol having a polymerization degree of 600 and a saponification degree of 99.5 mol%.
  • the obtained polyvinyl acetal resin was dissolved in DMSO-d 6 (dimethyl sulfoxide) and analyzed using 13 C-NMR (nuclear magnetic resonance spectrum). As a result, structural units having an amino group and an imine structure were obtained. It could not be confirmed that the structural unit had.
  • Table 1 shows the degree of butyralization, the amount of acetyl groups, and the amount of hydroxyl groups measured using 13 C-NMR.
  • a polyvinyl acetal resin solution was prepared by dissolving 30 g of the obtained polyvinyl acetal resin in 70 g of a solvent in which toluene and ethanol were mixed at a weight ratio of 1: 1.
  • the same procedure as in Example 1 was conducted except that 70 g of neopentyl glycol diglycidyl ether was added to the obtained polyvinyl acetal resin solution, and a resin composition was prepared by mixing the polyvinyl acetal resin and the epoxy resin at a weight ratio of 30:70.
  • a resin composition and a resin sheet were prepared.
  • Shear adhesive strength The obtained polyvinyl acetal resin composition is applied to various metal substrates, and the polyvinyl acetal resin composition is cured by heating at 160 ° C. for 60 minutes, according to a method in accordance with JIS K 6850.
  • the shear adhesive strength was measured under the conditions of a measurement temperature of 20 to 30 ° C. and a tensile speed of 5 mm / min.
  • As the metal substrate aluminum, stainless steel (SUS304), or SPCC steel plate was used.
  • the shear adhesive force is high, it can be said that it is difficult to peel off even when an external force is applied, and the adhesive force is excellent.
  • a modified polyvinyl acetal resin composition having excellent storage stability, high strength and excellent adhesiveness, and capable of suppressing the occurrence of warping and peeling when used for bonding different materials. Can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Epoxy Resins (AREA)

Abstract

本発明は、貯蔵安定性に優れ、高い強度及び優れた接着性を有し、異種材料の接着に用いた際の反りや剥がれの発生を抑制することができる変性ポリビニルアセタール樹脂組成物を提供することを目的とする。 本発明は、イミン構造を有する構成単位を有する変性ポリビニルアセタール樹脂とエポキシ樹脂とを含有する変性ポリビニルアセタール樹脂組成物である。

Description

変性ポリビニルアセタール樹脂組成物
本発明は、貯蔵安定性に優れ、高い強度及び優れた接着性を有し、異種材料の接着に用いた際の反りや剥がれの発生を抑制することができる変性ポリビニルアセタール樹脂組成物に関する。
ポリビニルアセタール樹脂は、ポリビニルアルコールを原料として合成される樹脂であり、側鎖にアセチル基と水酸基、そしてアセタール基を有することによって、優れた強靭性、接着性、架橋性、吸湿性を発現することができる。また、側鎖基の比率を変化させることによって樹脂物性を変化させることが可能となる。このような特性を利用して自動車用合わせガラス中間膜やセラミックグリーンシート等幅広い用途に使用されている。
現在、ポリビニルアセタール樹脂の側鎖に、アセチル基、水酸基、アセタール基以外の官能基を導入することによって、樹脂物性の向上を図ることや、新たな機能発現を目指す試みが進められている。
しかしながら、ポリビニルアセタール樹脂は、金属材料との接着力が充分ではないという問題があった。また、硬化時の加熱処理を行った際に、金属材料との収縮率の差により、反りや剥離等が生じる原因となっていた。
また、特許文献1~4には、エポキシ樹脂を用いた接着剤が記載されているが、これらの接着剤は、樹脂の強度が不充分であり、金属材料との接着力が不充分となったりするという問題があった。
特表2008-531817号公報 特表2002-517595号公報 特開2015-108077号公報 特開平6-212138号公報
本発明は、上記現状に鑑み、貯蔵安定性に優れ、高い強度及び優れた接着性を有し、異種材料の接着に用いた際の反りや剥がれの発生を抑制することができる変性ポリビニルアセタール樹脂組成物を提供することを目的とする。
本発明は、イミン構造を有する構成単位を有する変性ポリビニルアセタール樹脂とエポキシ樹脂とを含有する変性ポリビニルアセタール樹脂組成物である。
以下に本発明を詳述する。
本発明者らは、鋭意検討の結果、イミン構造を有する構成単位を有する変性ポリビニルアセタール樹脂を、エポキシ樹脂と併用した場合、優れた架橋性を発現することができ、充分な強度を有する架橋体が得られることを見出した。また、異種材料の接着に用いた際に、収縮率を低くして、反りや剥がれを抑制することができることを見出し、本発明を完成させるに至った。
本発明の変性ポリビニルアセタール樹脂組成物は、イミン構造を有する構成単位を有する変性ポリビニルアセタール樹脂を含有する。
このような変性ポリビニルアセタール樹脂を含有することで、エポキシ樹脂と併用した場合に、エポキシ樹脂との間で架橋構造を形成することができる。このため、架橋後に得られる架橋体は、高い機械的強度を有しつつ、適度な弾性を有するものとなる。更に、硬化収縮を緩やかにして、異種材料の接着に用いた際、それぞれの材料の収縮率の差に起因する反りや、接着部分の剥離を抑制することができる。
上記変性ポリビニルアセタール樹脂は、イミン構造を有する構成単位を有する。
本発明において、上記イミン構造とは、C=N結合を有する構造をいう。
上記変性ポリビニルアセタール樹脂は、イミン構造を側鎖に有することが好ましい。また、上記イミン構造は、変性ポリビニルアセタール樹脂の主鎖を構成する炭素に直接結合してもよく、アルキレン基等の連結基を介して結合していてもよい。
なお、上記イミン構造を側鎖に有するとは、上記イミン構造を変性ポリビニルアセタール樹脂のグラフト鎖に有することを含む。
上記イミン構造を有する構成単位としては、例えば、下記式(1)に示す構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000001
式(1)中、Rは、単結合、又は、アルキレン基を表し、Rは、イミン構造を有する基を表す。
上記式(1)中、Rがアルキレン基である場合、該アルキレン基の炭素数の好ましい下限は1、好ましい上限は12である。上記アルキレン基の炭素数が12を超えると、最適な強度が得られないことがある。上記Rがアルキレン基である場合、上記アルキレン基の炭素数のより好ましい上限は5である。
上記式(1)中、Rがアルキレン基である場合、該アルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基等の直鎖状アルキレン基、メチルメチレン基、メチルエチレン基、1-メチルペンチレン基、1,4-ジメチルブチレン基等の分岐状アルキレン基、シクロプロピレン基、シクロブチレン基、シクロヘキシレン基等の環状アルキレン基等が挙げられる。なかでも、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基等の直鎖状アルキル基が好ましく、メチレン基、エチレン基がより好ましい。
上記Rとしては、下記式(2)に示す官能基が挙げられる。
Figure JPOXMLDOC01-appb-C000002
式(2)中、Rは水素原子又は炭素数1~18の炭化水素基を表し、Rは炭素数1~18の炭化水素基を表す。
上記炭化水素基としては、飽和炭化水素基、不飽和炭化水素基、芳香族系炭化水素基等が挙げられる。なお、上記炭化水素基は、飽和炭化水素基、不飽和炭化水素基、芳香族系炭化水素基のみからなるものであってもよく、これらが2種以上用いられたものであってもよい。
上記飽和炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、へキシル基、へプチル基、2-エチルヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基等が挙げられる。なかでも、メチル基、エチル基、n-プロピル基、n-ブチル基が好ましい。
上記芳香族系炭化水素基としては、例えば、フェニル基、トルイル基、キシリル基、t-ブチルフェニル基、ベンジル基等が挙げられる。
上記変性ポリビニルアセタール樹脂において、上記イミン構造を有する構成単位中、Rが単結合、Rが水素原子、メチル基又はエチル基、Rがメチル基又はエチル基であることが好ましい。
上記変性ポリビニルアセタール樹脂は、イミン構造を有する構成単位の含有量の好ましい下限が0.1モル%、好ましい上限が20.0モル%である。
上記イミン構造を有する構成単位の含有量が0.1モル%以上であると、経時粘度安定性が良好なものとなる。上記イミン構造を有する構成単位の含有量が20.0モル%以下であると、アセタール化を充分に進行させることができる。上記イミン構造を有する構成単位の含有量のより好ましい下限は1.0モル%、より好ましい上限は15.0モル%である。
上記変性ポリビニルアセタール樹脂は、更に、アミノ基又はアミド構造を有する構成単位を含むことが好ましい。上記アミノ基又はアミド構造を有する構成単位を有することで、上記エポキシ樹脂との架橋構造の形成が更に容易となる。
上記変性ポリビニルアセタール樹脂は、上記アミノ基又はアミド構造を側鎖に有することが好ましい。また、上記アミノ基又はアミド構造は、変性ポリビニルアセタール樹脂の主鎖を構成する炭素に直接結合してもよく、アルキレン基等の連結基を介して結合していてもよい。更に、上記アミノ基は第一級アミンでもよく、第二級アミンでもよい。
なお、上記アミノ基又はアミド構造を側鎖に有するとは、上記アミノ基又はアミド構造を変性ポリビニルアセタール樹脂のグラフト鎖に有することを意味する。
特に、上記アミノ基は、-NHであることが好ましい。
なお、本発明において、アミド構造とは、-C(=O)-NH-を有する構造をいう。
なかでも、上記アミノ基を有する構成単位は、下記式(3)に示す構造であることが好ましい。
また、上記アミド基を有する構成単位は、下記式(4)に示す構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
式(4)中、Rは水素原子又は炭素数1~10の炭化水素基を表す。
なお、上記炭化水素基としては、アルキル基、アルケニル基、シクロアルキル基、シクロアルケニル基が挙げられる。
上記アミノ基又はアミド構造を有する構成単位の含有量の好ましい下限は0.1モル%、好ましい上限は20モル%である。
上記アミノ基又はアミド構造を有する構成単位の含有量が0.1モル%以上であると、付加特性を充分なものとすることができる。上記含有量が20モル%以下であると、溶解性が上がりすぎることがなく、沈殿法による変性ポリビニルアセタール樹脂粉末の取り出しが容易となる。上記含有量のより好ましい下限は0.5モル%、より好ましい上限は10モル%である。なお、上記アミノ基又はアミド構造を有する構成単位の含有量はNMR等で測定可能である。
また、上記アミノ基又はアミド構造を有する構成単位と、イミン構造を有する構成単位とを合計した含有量の好ましい下限は0.1モル%、好ましい上限は20モル%である。上記含有量のより好ましい下限は0.5モル%、より好ましい上限は10モル%である。
上記変性ポリビニルアセタール樹脂において、イミン構造を有する構成単位と、アミノ基又はアミド構造を有する構成単位との含有量の比率(イミン構造を有する構成単位/アミノ基又はアミド構造を有する構成単位)は、0.5/99.5~99.5/0.5であることが好ましい。上記比率が0.5/99.5以上であると、経時粘度安定性を充分なものとすることができ、上記比率が99.5/0.5以下であると、架橋性能を充分に発揮することができる。上記比率のより好ましい下限は5/95、より好ましい上限は75/25である。
上記変性ポリビニルアセタール樹脂のアセタール化度は特に限定されないが、好ましい下限が60モル%、好ましい上限は90モル%である。アセタール化度が60モル%以上であると、沈殿法による合成工程において変性ポリビニルアセタール樹脂を充分に析出させることができる。また、アセタール化度が90モル%以下であると、溶剤への溶解性を良好なものとすることができる。より好ましい下限が65モル%、より好ましい上限が85モル%である。上記変性ポリビニルアセタール樹脂のアセタール度はNMR等で測定可能である。
上記変性ポリビニルアセタール樹脂は、水酸基量が15~35モル%であることが好ましく、17~25モル%であることがより好ましい。上記水酸基量が15モル%以上であると、変性ポリビニルアセタール樹脂の強靱性を充分に高めることができ、得られる架橋体の強度が良好なものとなる。また、上記水酸基量が35モル%以下であると、変性ポリビニルアセタール樹脂の極性が高くなりすぎることがなく、得られる架橋体のひび割れ等の不具合を抑制して、剥離性を良好なものとすることができる。
上記変性ポリビニルアセタール樹脂は、アセチル基量は特に限定されず、好ましい下限が0.0001モル%、好ましい上限が5モル%である。
上記変性ポリビニルアセタール樹脂の重合度は特に限定されないが、好ましい下限が200、好ましい上限が4500である。上記変性ポリビニルアセタール樹脂の重合度が200以上であると、充分な粘度を有する変性ポリビニルアセタール樹脂組成物を得ることができ、上記変性ポリビニルアセタール樹脂の重合度が4500以下であると、水への溶解性を良好なものとして、水溶液の粘度が高くなり過ぎることがなく、アセタール化を充分に進行させることができる。また、有機溶剤に溶解した際の粘度が高くなり過ぎることがなく、溶液を塗工して使用する用途で塗工性を良好なものとしてハンドリングを向上することができる。
上記変性ポリビニルアセタール樹脂を作製する方法としては、例えば、上記イミン構造を有する単量体と、酢酸ビニルとを共重合させることによって得られたポリ酢酸ビニルをケン化し得られたポリビニルアルコールを、従来公知の方法によりアセタール化する方法が挙げられる。また、アミノ基又はアミド構造を有する構成単位を有するポリビニルアルコールを、従来公知の方法によりアセタール化することでイミン構造を導入する方法を用いてもよい。アミノ基又はアミド構造を有する構成単位を有するポリビニルアルコールを後変性して得られたイミン構造を有する変性ポリビニルアルコールを、従来公知の方法によりアセタール化する方法を用いてもよい。
更に、未変性のポリビニルアセタール樹脂を後変性させることでイミン構造を導入してもよい。
すなわち、上記変性ポリビニルアセタール樹脂は、アミノ基又はアミド構造を有する構成単位を有するポリビニルアルコールのアセタール化物であってもよい。
これらのなかでは、アミノ基又はアミド構造を有する構成単位を有するポリビニルアルコールをアセタール化してなることでイミン構造を有する変性ポリビニルアセタール樹脂を得る方法が好ましい。特に、このような方法を用いる場合、アセタール化に使用するアルデヒド、酸触媒の量を過剰に添加することでイミン構造を得ることが出来る。
例えば、酸触媒を全体の1.0重量%以上添加することが好ましい。
なお、このような方法を用いる場合において、アミノ基又はアミド構造を有する構成単位、イミン構造を有する構成単位を確認する方法としては、例えば、FT-IRを用いて、アミノ基のスペクトル(1600cm-1付近)を確認する方法や、13C-NMRを用いてイミン構造のスペクトル(160~170ppm)を確認する方法等が挙げられる。
上記アセタール化は、公知の方法を用いることが出来、水溶媒中、水と水との相溶性のある有機溶媒との混合溶媒中、あるいは有機溶媒中で行うことが好ましい。
上記水との相溶性のある有機溶媒としては、例えば、アルコール系有機溶剤を用いることが出来る。
上記有機溶媒としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、tert-ブタノール等のアルコール系有機溶剤;キシレン、トルエン、エチルベンゼン、安息香酸メチル等の芳香族有機溶剤;酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、アセト酢酸メチル、アセト酢酸エチル等の脂肪族エステル系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ベンゾフェノン、アセトフェノン等のケトン系溶剤;ヘキサン、ペンタン、オクタン、シクロヘキサン、デカン等の低級パラフィン系溶剤;ジエチルエーテル、テトラヒドロフラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールジエチルエーテル等のエーテル系溶剤;N,N-ジメチルホルムアミド、N,N-ジメチルテセトアミド、N-メチルピロリドン、アセトアニリド等のアミド系溶剤、アンモニア、トリメチルアミン、トリエチルアミン、n-ブチルアミン、ジn-ブチルアミン、トリn-ブチルアミン、アニリン、N-メチルアニリン、N,N-ジメチルアニリン、ピリジン等のアミン系溶剤等が挙げられる。これらは、単体で用いることもできるし、2種以上の溶媒を混合で用いることもできる。これらのなかでも、樹脂に対する溶解性および、精製時の簡易性の観点から、エタノール、n-プロパノール、イソプロパノール、テトラヒドロフランが特に好ましい。
上記アセタール化は、酸触媒の存在下において行うことが好ましい。
上記酸触媒は特に限定されず、硫酸、塩酸、硝酸、リン酸等の鉱酸や、ギ酸、酢酸、プロピオン酸等のカルボン酸や、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸等のスルホン酸が挙げられる。これらの酸触媒は、単独で用いられてもよく、2種以上の化合物を併用してもよい。なかでも、塩酸、硝酸、硫酸が好ましく、塩酸が特に好ましい。
上記アセタール化に用いられるアルデヒドとしては、炭素数1~10の鎖状脂肪族基、環状脂肪族基又は芳香族基を有するアルデヒドが挙げられる。これらのアルデヒドとしては、従来公知のアルデヒドを使用できる。上記アセタール化反応に用いられるアルデヒドは、特に限定されるものではなく、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、n-ヘキシルアルデヒド、2-エチルブチルアルデヒド、2-エチルヘキシルアルデヒド、n-ヘプチルアルデヒド、n-オクテルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド、アミルアルデヒド、等の脂肪族アルデヒド、ベンズアルデヒド、シンナムアルデヒド、2-メチルベンズアルデヒド、3-メチルベンズアルデヒド、4-メチルベンズアルデヒド、p-ヒドロキシベンズアルデヒド、m-ヒドロキシベンズアルデヒド、フェニルアセトアルデヒド、β-フェニルプロピオンアルデヒド等の芳香族アルデヒド等が挙げられる。これらのアルデヒドは、1種を単独で使用してもよく、2種以上を併用してもよい。アルデヒドとしては、なかでも、アセタール化反応性に優れ、生成する樹脂に充分な内部可塑効果をもたらし、結果として良好な柔軟性を付与することができるブチルアルデヒド、2-エチルヘキシルアルデヒド、n-ノニルアルデヒドが好ましく、ブチルアルデヒドがより好ましい。
上記アルデヒドの添加量としては、目的とする変性ポリビニルアセタール樹脂のアセタール化度にあわせて適宜設定する事が出来る。上記アルデヒドの添加量としては、目的とする変性ポリビニルアセタール樹脂のアセタール化度にあわせて適宜設定すればよい。特に、ポリビニルアルコール100モル%に対して、60~95モル%、好ましくは70~90モル%とすると、アセタール化反応が効率よく行われ、未反応のアルデヒドも除去しやすいため好ましい。
本発明の変性ポリビニルアセタール樹脂組成物において、上記変性ポリビニルアセタール樹脂の含有量は、好ましい下限が0.5重量%、好ましい上限が70.0重量%である。
上記変性ポリビニルアセタール樹脂の含有量が0.5重量%以上であると、接着剤をして用いた際に高い強靭性を発揮することができる。上記含有量が70.0重量%以下であると、高い接着性を発揮することができる。
上記変性ポリビニルアセタール樹脂の含有量は、より好ましい下限が1.0重量%、より好ましい上限が60.0重量%である。
本発明の変性ポリビニルアセタール樹脂組成物は、エポキシ樹脂を含有する。
上記エポキシ樹脂を含有することで、加熱等によりエネルギーを印加することで架橋させることが可能となり、高い接着性を実現することができる。
上記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、脂肪族基を有するエポキシ樹脂等が挙げられる。なかでも、ビスフェノールA型エポキシ樹脂、脂肪族基を有するエポキシ樹脂が好ましい。
上記脂肪族基を有するエポキシ樹脂は特に限定されず、例えば、モノグリシジルエーテル、ジグリシジルエーテル、脂環式エポキシ樹脂等が挙げられる。
上記モノグリシジルエーテルとしては、例えば、ブチルグリシジルエーテル、フェニルグリシジルエーテル、ラウリルグリシジルエーテル、セカンダリブチルフェノールモノグリシジルエーテル、クレジルグリシジルエーテル等が挙げられる。
上記ジグリシジルエーテルは特に限定されず、例えば、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル等が挙げられる。なかでも、ネオペンチルグリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテルが好ましい。
上記脂環式エポキシ樹脂としては、4~7員環の環状脂肪族基を有する脂環式エポキシ樹脂が挙げられ、具体的には例えば、1,2:8,9ジエポキシリモネン、4-ビニルシクロヘキセンモノオキサイド、ビニルシクロヘキセンジオキサイド、メチル化ビニルシクロヘキセンジオキサイド、(3,4-エポキシシクロヘキシル)メチル-3,4-エポキシシクロヘキシルカルボキシレート、ビス-(3,4-エポキシシクロヘキシル)アジペート、ビス-(3,4-エポキシシクロヘキシルメチレン)アジペート、ビス-(2,3-エポキシシクロペンチル)エーテル、(2,3-エポキシ-6-メチルシクロヘキシルメチル)アジペート、ジシクロペンタジエンジオキサイド等が挙げられる。
これらのエポキシ樹脂は、単独で用いられてもよく、2種以上が併用されてもよい。また、これらのエポキシ樹脂は、必要であれば、水やアルコール等の有機溶媒に溶かして使用することもできる。
本発明の変性ポリビニルアセタール樹脂組成物において、上記エポキシ樹脂の含有量は、好ましい下限が0.5重量%、好ましい上限が99.5重量%である。
上記エポキシ樹脂の含有量が0.5重量%以上であると、接着性をより向上させることができる。上記含有量が99.5重量%以下であると、強靭性を向上させることができる。
上記エポキシ樹脂の含有量は、より好ましい下限が1.0重量%、より好ましい上限が90.0重量%である。
本発明の変性ポリビニルアセタール樹脂組成物において、エポキシ樹脂100重量部に対する上記変性ポリビニルアセタール樹脂の含有量は、好ましい下限が0.5重量部、好ましい上限が100重量部である。
上記変性ポリビニルアセタール樹脂の含有量が0.5重量部以上であると、強靭性を充分なものとすることができる。上記変性ポリビニルアセタール樹脂の含有量が100重量部以下であると、接着性を充分なものとすることができる。
上記変性ポリビニルアセタール樹脂の含有量は、より好ましい下限が1.0重量部、より好ましい上限が80重量部である。
本発明の変性ポリビニルアセタール樹脂組成物は、更に、上記変性ポリビニルアセタール樹脂、上記エポキシ樹脂の他に架橋剤を含んでもよい。
上記架橋剤としては、エピクロロヒドリン、エピブロモヒドリン等のハロヒドリン化合物;1,2-ジクロロエタン、1,3-ジクロロプロパン等のハロゲン化合物;ヘキサメチレンジイソシアネート等のイソシアネート化合物;N,N’-メチレンビスアクリルアミド、N,N’-エチレンビスアクリルアミド等のビスアクリルアミド化合物;尿素、チオ尿素等の尿素化合物;グアニジン、ジグアニド等のグアニジン化合物;シュウ酸、アジピン酸等のジカルボン酸化合物;アクリル酸、メタクリル酸等の不飽和カルボン酸化合物;アクリル酸メチル、メタクリル酸メチル、アクリル酸-2-エチルヘキシル、アクリル酸イソブチル、アクリル酸ブチル、メタクリル酸-2-エチルヘキシル、メタクリル酸イソブチル、メタクリル酸ブチル等の不飽和カルボン酸エステル化合物;グリオキサール、グルタルアルデヒド、マロンアルデヒド、スクシンアルデヒド、アジピンアルデヒド、フタルアルデヒド、イソフタルアルデヒド、テレフタルアルデヒド等のジアルデヒド類を含むアルデヒド化合物等が挙げられる。これらは単独でも、あるいは2種以上を組み合わせて使用することもできる。これら架橋剤は、必要であれば、水やアルコールなどの有機溶媒に溶かして使用することもできる。
本発明の変性ポリビニルアセタール樹脂組成物は、更に、硬化剤、硬化促進剤、有機溶剤を含んでもよい。
上記硬化剤としては、例えば、ジシアンジアミド、イミダゾール化合物、芳香族アミン化合物、フェノールノボラック樹脂、クレゾールノボラック樹脂等が挙げられる。なかでも、ジシアンジアミドが好ましい。
硬化促進剤としては、例えば、イミダゾール化合物、リン化合物、アミン化合物及び有機金属化合物等が挙げられる。なかでも、イミダゾール化合物が好ましい。
本発明の変性ポリビニルアセタール樹脂組成物中の上記硬化剤の含有量は、上記エポキシ樹脂100重量部に対して、好ましい下限が0.5重量部、より好ましい下限が1.0重量部、好ましい上限が30.0重量部、より好ましい上限が20重量部である。
本発明の変性ポリビニルアセタール樹脂組成物中の上記硬化促進剤の含有量は、上記エポキシ樹脂100重量部に対して、好ましい下限が0重量部、より好ましい下限が0.5重量部、好ましい上限が30重量部、より好ましい上限が20重量部である。
上記有機溶剤としては、例えば、アセトン、メチルエチルケトン、ジプロピルケトン、ジイソブチルケトン等のケトン類、メタノール、エタノール、イソプロパノール、ブタノール等のアルコール類、トルエン、キシレン等の芳香族炭化水素類、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、ブタン酸メチル、ブタン酸エチル、ブタン酸ブチル、ペンタン酸メチル、ペンタン酸エチル、ペンタン酸ブチル、ヘキサン酸メチル、ヘキサン酸エチル、ヘキサン酸ブチル、酢酸2-エチルヘキシル、酪酸2-エチルヘキシル等のエステル類、メチルセルソルブ、エチルセルソルブ、ブチルセルソルブ、テルピネオール、ジヒドロテルピネオール、ブチルセルソルブアセテート、ブチルカルビトールアセテート、テルピネオールアセテート、ジヒドロテルピネオールアセテート等が挙げられる。
本発明の変性ポリビニルアセタール樹脂組成物中の上記有機溶剤の含有量は、上記エポキシ樹脂100重量部に対して、好ましい下限が0.5重量部、より好ましい下限が1.0重量部、好ましい上限が50.0重量部、より好ましい上限が45.0重量部である。
本発明の変性ポリビニルアセタール系樹脂組成物は、本発明の効果を損なわない範囲で、可塑剤、分散剤等の添加剤を含有してもよい。
本発明の変性ポリビニルアセタール樹脂組成物を架橋させる方法は、加熱による方法が挙げられる。加熱により熱硬化させる場合、加熱温度は特に限定されないが、50~170℃であることが好ましい。加熱温度が50℃以上であると、架橋を充分に進行させて強度を良好なものとすることができる。また、加熱温度が170℃以下であると、上記変性ポリビニルアセタール樹脂の熱劣化が起こることがなく、充分な特性を発揮することができる。上記加熱温度のより好ましい下限は60℃、より好ましい上限は150℃である。
また、加熱時間も特に限定されないが、好ましい下限は5分間、好ましい上限は10時間である。加熱時間が5分間以上であると架橋を充分に進行させて、充分な強度を得ることができる。また、加熱時間が10時間以下であると上記変性ポリビニルアセタール樹脂の熱劣化が起こることがなく、充分な特性を発揮することができる。
本発明の変性ポリビニルアセタール樹脂組成物は、通常のポリビニルアセタール樹脂が使用されている用途に好適に用いることができ、例えば、セラミック成形体、金属ペースト、熱現像性感光材料、塗料、インキ、反射シート等を製造するための塗工溶液を得ることができる。また、ディスプレイ向けフィルム用接着剤、セラミック積層体の層間接着剤、自動車、建築物等の構造接着剤等の接着剤に使用することができる。
更に、本発明の変性ポリビニルアセタール樹脂組成物に使用されるイミン構造を有する変性ポリビニルアセタールは、自己架橋性に優れるため、高い強度を有する成形体を製造することが出来る。
本発明によれば、貯蔵安定性に優れ、高い強度及び優れた接着性を有し、異種材料の接着に用いた際にも反りや剥がれの発生を抑制することができる変性ポリビニルアセタール樹脂組成物を提供できる。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
(実施例1)
重合度600、鹸化度99.7モル%、上記式(3)に示すアミノ基(-NH)を有する構成単位を1.7モル%含有するポリビニルアルコール240gを純水1800gに加え、90℃の温度で約2時間攪拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸170gとn-ブチルアルデヒド275gとを添加し、液温を40℃に保持してアセタール化反応を行い、反応生成物を析出させた。
その後、液温を40℃のまま3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、変性ポリビニルアセタール樹脂の粉末を得た。
得られた変性ポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いて分析したところ、上記式(3)に示すアミノ基を有する構成単位(含有量:0.2モル%)、及び、下記式(5)に示すイミン構造を有する構成単位(含有量:1.5モル%、Rは水素原子、Rはn-ブチル基を表す)を有することが確認できた。
なお、13C-NMRを用いて測定したブチラール化度、アセチル基量、水酸基量を表1に示す。
Figure JPOXMLDOC01-appb-C000005
得られた変性ポリビニルアセタール樹脂10gを、トルエンとエタノールを重量比1:1で混合した溶媒90gに溶解させたポリビニルアセタール樹脂溶液を作製した。
得られたポリビニルアセタール樹脂溶液にネオペンチルグリコールジグリシジルエーテル(エポキシ当量108、分子量216)90gを添加し、ポリビニルアセタール樹脂とエポキシ樹脂とを重量比10:90で混合した樹脂組成物を作製した。
得られた樹脂組成物を離型処理されたポリエチレンテレフタレート(PET)フィルム上に、乾燥後の膜厚が20μmとなるように塗工し、125℃で乾燥することで樹脂シートを作製した。
(実施例2)
ポリビニルアルコールを、重合度600、鹸化度99.7モル%、上記式(3)に示すアミノ基を有する構成単位を16.0モル%含有するポリビニルアルコール240gに変更し、n-ブチルアルデヒドの添加量を224gとした以外は、実施例1と同様の方法により変性ポリビニルアセタール樹脂を得た。
得られた変性ポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いて分析したところ、上記式(3)に示すアミノ基を有する構成単位(含有量:0.2モル%)、及び、上記式(5)に示すイミン構造を有する構成単位(含有量:15.8モル%、Rは水素原子、Rはn-ブチル基を表す)を有することが確認できた。
なお、13C-NMRを用いて測定したブチラール化度、アセチル基量、水酸基量を表1に示す。
得られた変性ポリビニルアセタール樹脂を用いて、実施例1と同様にしてポリビニルアセタール樹脂溶液、樹脂組成物及び樹脂シートを作製した。
(実施例3)
ポリビニルアルコールを、重合度600、鹸化度99.7モル%、上記式(3)に示すアミノ基を有する構成単位を0.5モル%含有するポリビニルアルコール240gに変更し、n-ブチルアルデヒドの添加量を280gとした以外は、実施例1と同様の方法により変性ポリビニルアセタール樹脂を得た。
得られた変性ポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いて分析したところ、上記式(3)に示すアミノ基を有する構成単位(含有量:0.0モル%)、及び、上記式(5)に示すイミン構造を有する構成単位(含有量:0.5モル%、Rは水素原子、Rはn-ブチル基を表す)を有することが確認できた。
なお、13C-NMRを用いて測定したブチラール化度、アセチル基量、水酸基量を表1に示す。
得られた変性ポリビニルアセタール樹脂を用いて、実施例1と同様にしてポリビニルアセタール樹脂溶液、樹脂組成物及び樹脂シートを作製した。
(実施例4)
ネオペンチルグリコールジグリシジルエーテル90gに代えて、ビスフェノールA型エポキシ樹脂(三菱化学社製、jER 828、エポキシ当量190、分子量380)90gを用いた以外は、実施例1と同様にして、ポリビニルアセタール樹脂溶液、樹脂組成物及び樹脂シートを作製した。
(実施例5)
ネオペンチルグリコールジグリシジルエーテル90gに代えて、ビスフェノールA型エポキシ樹脂(三菱化学社製、jER 828)90gを用いた以外は、実施例2と同様にしてポリビニルアセタール樹脂溶液、樹脂組成物及び樹脂シートを作製した。
(実施例6)
ネオペンチルグリコールジグリシジルエーテル90gに代えて、ビスフェノールA型エポキシ樹脂(三菱化学社製、jER 828)90gを用いた以外は、実施例3と同様にしてポリビニルアセタール樹脂溶液、樹脂組成物及び樹脂シートを作製した。
(実施例7~9)
実施例1で得られた変性ポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にして、ポリビニルアセタール樹脂溶液、樹脂組成物及び樹脂シートを作製した。
なお、エポキシ樹脂としては以下のものを用いた。
ビスフェノールF型エポキシ樹脂(三菱化学社製、jER 807、エポキシ当量170)
ポリプロピレングリコールジグリシジルエーテル(ナガセケムテックス社製、EX-920、エポキシ当量176)
(実施例10)
ネオペンチルグリコールジグリシジルエーテル90gに代えて、ビスフェノールF型エポキシ樹脂(三菱化学社製、jER 807)90gを用いた以外は、実施例2と同様にしてポリビニルアセタール樹脂溶液、樹脂組成物及び樹脂シートを作製した。
(実施例11)
ネオペンチルグリコールジグリシジルエーテル90gに代えて、ビスフェノールF型エポキシ樹脂(三菱化学社製、jER 807)90gを用いた以外は、実施例3と同様にしてポリビニルアセタール樹脂溶液、樹脂組成物及び樹脂シートを作製した。
(比較例1)
ポリビニルアルコールを、重合度600、鹸化度99.5モル%のポリビニルアルコールに変更した以外は、実施例1と同様の方法によりポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いて分析したところ、アミノ基を有する構成単位、及び、イミン構造を有する構成単位を有することが確認できなかった。
なお、13C-NMRを用いて測定したブチラール化度、アセチル基量、水酸基量を表1に示す。
得られたポリビニルアセタール樹脂30gを、トルエンとエタノールを重量比1:1で混合した溶媒70gに溶解させたポリビニルアセタール樹脂溶液を作製した。
得られたポリビニルアセタール樹脂溶液にネオペンチルグリコールジグリシジルエーテル70gを添加し、ポリビニルアセタール樹脂とエポキシ樹脂とを重量比30:70で混合した樹脂組成物を作製した以外は、実施例1と同様にして樹脂組成物及び樹脂シートを作製した。
(比較例2~3)
比較例1で得られたポリビニルアセタール樹脂を用い、表1に示す通りにエポキシ樹脂、硬化剤、硬化促進剤を添加した以外は実施例1と同様にしてポリビニルアセタール樹脂溶液、樹脂組成物及び樹脂シートを作製した。
<評価>
実施例及び比較例で得られたポリビニルアセタール樹脂組成物、樹脂シートについて以下の評価を行った。結果を表2に示した。
(1)ゲル分率
樹脂シートのサンプル約0.1g(w1)に、トルエンとエタノールを重量比1:1で混合した溶媒40gを加え、24時間撹拌させることによって、再溶解させ、あらかじめ質量を測定した200メッシュのステンレス金網(w2)で固液分離を行う。その後ステンレス金網を取り出し、100℃、1時間真空乾燥して質量(w3)を測定し,以下の計算式でゲル分率を算出した。
ゲル分率(%)={(w3-w2)/w1}×100
得られたゲル分率について、以下の基準で評価した。
なお、ゲル分率が高い場合、硬化性に優れているといえる。
◎:80%以上
○:40%以上、80%未満
△:10%以上、40%未満
×:10%未満
(2)貯蔵安定性
トルエンとエタノールを重量比1:1で混合した溶媒90gに樹脂組成物10gを加え溶解し、溶液サンプルを作製する。得られた溶液サンプルについて、B型粘度計を用いて、溶液サンプル作製直後と一か月後の粘度を測定し、溶液粘度の変化率を確認し、以下の基準で評価した。
◎:10%未満
○:10%以上、20%未満
△:20%以上、30%未満
×:30%以上
(3)基材密着力
得られたポリビニルアセタール樹脂組成物を各種金属基材に塗工し、160℃で60分間加熱することによりポリビニルアセタール樹脂組成物を硬化させ、JIS K 5400に準じて、碁盤目試験を行って、試験後に残った碁盤目の個数を数え、基材密着力を評価した。
金属基材としては、アルミニウム、ステンレス鋼(SUS304)、SPCC鋼板を用いた。
なお、基材密着力が高い場合、硬化時に反りや剥離が生じにくいといえる。
(4)引張弾性率、伸度、降伏点応力
得られた樹脂シートをPETフィルムから剥離し、剥離したシートについて、JIS K 7113に準拠した方法により、AUTOGRAPH(島津製作所社製、AGS-J)を用いて引張速度20mm/分の条件にて引張弾性率(MPa)、伸度(%)、降伏点応力(MPa)を測定した。
(5)せん断接着力
得られたポリビニルアセタール樹脂組成物を各種金属基材に塗工し、160℃で60分間加熱することによりポリビニルアセタール樹脂組成物を硬化させ、JIS K 6850に準拠した方法により、測定温度20~30℃、引張速度5mm/minの条件でせん断接着力を測定した。
金属基材としては、アルミニウム、ステンレス鋼(SUS304)、SPCC鋼板を用いた。
なお、せん断接着力が高い場合、外力がかかった際にも剥がれにくく、接着力に優れているといえる。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
本発明によれば、貯蔵安定性に優れ、高い強度及び優れた接着性を有し、異種材料の接着に用いた際の反りや剥がれの発生を抑制することができる変性ポリビニルアセタール樹脂組成物を提供できる。

Claims (6)

  1. イミン構造を有する構成単位を有する変性ポリビニルアセタール樹脂とエポキシ樹脂とを含有することを特徴とする変性ポリビニルアセタール樹脂組成物。
  2. 変性ポリビニルアセタール樹脂は、更に、アミノ基又はアミド構造を有する構成単位を有することを特徴とする請求項1記載の変性ポリビニルアセタール樹脂組成物。
  3. 変性ポリビニルアセタール樹脂は、アミノ基若しくはアミド構造、及び/又は、イミン構造を側鎖に有することを特徴とする請求項1又は2記載の変性ポリビニルアセタール樹脂組成物。
  4. 変性ポリビニルアセタール樹脂における、イミン構造を有する構成単位と、アミノ基又はアミド構造を有する構成単位とを合計した含有量が0.1~20モル%であることを特徴とする請求項1、2又は3記載の変性ポリビニルアセタール樹脂組成物。
  5. 変性ポリビニルアセタール樹脂は、アセタール化度が60~90モル%であることを特徴とする請求項1、2、3又は4記載の変性ポリビニルアセタール樹脂組成物。
  6. 変性ポリビニルアセタール樹脂は、アミノ基又はアミド構造を有する構成単位を有するポリビニルアルコールのアセタール化物であることを特徴とする請求項1、2、3、4又は5記載の変性ポリビニルアセタール樹脂組成物。
PCT/JP2016/078985 2015-09-30 2016-09-30 変性ポリビニルアセタール樹脂組成物 WO2017057663A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020177030513A KR102531218B1 (ko) 2015-09-30 2016-09-30 변성 폴리비닐아세탈 수지 조성물
CN201680018246.9A CN107406652B (zh) 2015-09-30 2016-09-30 改性聚乙烯醇缩醛树脂组合物
MX2018002865A MX2018002865A (es) 2015-09-30 2016-09-30 Composicion de resina de acetal polivinilo modificada.
US15/743,390 US10711128B2 (en) 2015-09-30 2016-09-30 Modified polyvinyl acetal resin composition
JP2016562035A JP6144437B1 (ja) 2015-09-30 2016-09-30 変性ポリビニルアセタール樹脂組成物
EP16851832.2A EP3357966B1 (en) 2015-09-30 2016-09-30 Modified polyvinyl acetal resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-194998 2015-09-30
JP2015194998 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057663A1 true WO2017057663A1 (ja) 2017-04-06

Family

ID=58423574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078985 WO2017057663A1 (ja) 2015-09-30 2016-09-30 変性ポリビニルアセタール樹脂組成物

Country Status (7)

Country Link
US (1) US10711128B2 (ja)
EP (1) EP3357966B1 (ja)
JP (1) JP6144437B1 (ja)
KR (1) KR102531218B1 (ja)
CN (1) CN107406652B (ja)
MX (1) MX2018002865A (ja)
WO (1) WO2017057663A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128652A (ja) * 2016-01-19 2017-07-27 積水化学工業株式会社 異種材料間接着用接着剤、車両構造材接着用接着剤及び建築物構造材接着用接着剤
JP2018203929A (ja) * 2017-06-07 2018-12-27 積水化学工業株式会社 硬化性樹脂組成物
US20200399576A1 (en) * 2017-12-27 2020-12-24 Sekisui Chemical Co., Ltd. Scaffolding material for cell cultures and cell culture method using same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202005433SA (en) * 2017-12-27 2020-07-29 Sekisui Chemical Co Ltd Scaffolding material for stem cell cultures and stem cell culture method using same
EP3858916A4 (en) * 2018-09-26 2022-06-22 Sekisui Chemical Co., Ltd. EPOXY RESIN COMPOSITION
JP6894571B1 (ja) * 2020-03-27 2021-06-30 積水化学工業株式会社 スラリー組成物
CN114805862B (zh) * 2022-05-18 2023-02-17 广东工业大学 基于改性pva衍生物水凝胶材料的一种可回收的临时角膜假体或隐形眼镜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328356A (ja) * 1999-05-20 2000-11-28 Nitivy:Kk 変性ポリビニルアルコール系繊維及びそれを用いた微生物固定化用担体
JP2011502749A (ja) * 2007-10-29 2011-01-27 コーニング インコーポレイテッド 高分子複合膜構造
CN102633944A (zh) * 2012-03-31 2012-08-15 陕西科技大学 一种含疏水链段的耐盐缓释型高吸水树脂的制备方法
JP2013072027A (ja) * 2011-09-28 2013-04-22 Sekisui Chem Co Ltd 硬化剤組成物、絶縁接着層用樹脂組成物及び硬化剤組成物の製造方法
CN103205224A (zh) * 2012-08-30 2013-07-17 湖北航天化学技术研究所 一种丙烯酸酯乳液复膜胶及其制备方法和应用
WO2014157520A1 (ja) * 2013-03-28 2014-10-02 リンテック株式会社 保護膜形成用複合シート、保護膜付きチップ、及び保護膜付きチップの製造方法
JP2015199932A (ja) * 2014-03-31 2015-11-12 積水化学工業株式会社 変性ポリビニルアセタール樹脂

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935344A (en) * 1970-10-15 1976-01-27 Owens-Corning Fiberglas Corporation Sizing composition and glass fibers treated therewith
GB1374464A (en) * 1971-09-21 1974-11-20 Lord Corp Diene-modified polymers and method of making same
JPS6030331B2 (ja) 1979-04-16 1985-07-16 積水化学工業株式会社 熱硬化性樹脂組成物
JPS592474B2 (ja) * 1979-12-19 1984-01-18 電気化学工業株式会社 接着剤組成物
US5086111A (en) * 1990-05-17 1992-02-04 Air Products And Chemicals, Inc. Amine functional polymers containing acetal groups
JPH0658507B2 (ja) * 1991-03-13 1994-08-03 工業技術院長 光学素子
JPH04320476A (ja) 1991-04-18 1992-11-11 Sekisui Chem Co Ltd 接着剤組成物
US5232553A (en) * 1992-01-24 1993-08-03 Air Products And Chemicals, Inc. Fines retention in papermaking with amine functional polymers
US5385990A (en) 1992-11-02 1995-01-31 Lord Corporation Structural adhesive composition having high temperature resistance
JP3052735B2 (ja) 1994-06-10 2000-06-19 株式会社スリーボンド ねじ部材の緩み止め用接着剤組成物
JPH11199846A (ja) 1998-01-06 1999-07-27 Bridgestone Corp 接着剤組成物
JPH11209423A (ja) * 1998-01-19 1999-08-03 Kuraray Co Ltd エポキシ基含有ビニルアルコール系重合体
BR9911157A (pt) 1998-06-12 2001-03-27 Lord Corp Formulações de adesivo
JP2000239350A (ja) * 1999-02-25 2000-09-05 Kuraray Co Ltd エポキシ樹脂エマルジョンの製造方法
JP2000273146A (ja) * 1999-03-29 2000-10-03 Kuraray Co Ltd エポキシ樹脂エマルジョン組成物
JP2000290538A (ja) * 1999-04-02 2000-10-17 Kuraray Co Ltd 水性コーティング剤
JP2000290626A (ja) * 1999-04-02 2000-10-17 Kuraray Co Ltd エポキシ樹脂エマルジョン系接着剤
US6555617B1 (en) 1999-07-29 2003-04-29 Mitsubishi Chemical Corporation Composition of cyclic anhydride modified polyvinyl acetal and curable resin and laminated products
JP2001098165A (ja) 1999-07-29 2001-04-10 Mitsubishi Chemicals Corp 硬化性樹脂組成物
JP2001254058A (ja) 2000-01-06 2001-09-18 Sumitomo Bakelite Co Ltd 異方導電性接着剤
JP2002119852A (ja) * 2000-07-04 2002-04-23 Mitsubishi Chemicals Corp 建材用アルデヒド系化合物吸収剤およびこれを基材に配合又は塗布した建材
CN1315225C (zh) * 2001-09-21 2007-05-09 积水化学工业株式会社 改性聚乙烯醇缩醛树脂
EP1695990A1 (en) 2005-02-28 2006-08-30 Dow Global Technologies Inc. Two-component epoxy adhesive composition
EP2360207B1 (en) * 2008-11-13 2013-10-09 Sekisui Chemical Co., Ltd. Polyvinyl acetal resin composition
CN102325852B (zh) * 2009-02-20 2014-03-26 Lg化学株式会社 改性聚乙烯醇树脂以及包含该树脂的粘合剂、偏光片和显示器件
CN102153936A (zh) 2011-04-18 2011-08-17 中国人民武装警察部队学院 多组分酚醛树脂防火涂料组合物
EP2902439A4 (en) * 2012-09-28 2016-06-15 Sekisui Chemical Co Ltd RESIN COMPOSITION ON POLYVINYL ACETAL BASE
CN105324345B (zh) 2013-09-30 2017-11-21 积水化学工业株式会社 夹层玻璃用中间膜及夹层玻璃
JP6061837B2 (ja) 2013-12-05 2017-01-18 アイシン化工株式会社 構造用接着剤組成物
JPWO2015125689A1 (ja) * 2014-02-18 2017-03-30 株式会社クラレ ポリビニルアセタール溶液からなる接着性改良剤
CN104319420B (zh) 2014-10-28 2017-01-25 北京科技大学 基于聚乙烯醇缩醛的凝胶聚合物电解质的制备方法及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328356A (ja) * 1999-05-20 2000-11-28 Nitivy:Kk 変性ポリビニルアルコール系繊維及びそれを用いた微生物固定化用担体
JP2011502749A (ja) * 2007-10-29 2011-01-27 コーニング インコーポレイテッド 高分子複合膜構造
JP2013072027A (ja) * 2011-09-28 2013-04-22 Sekisui Chem Co Ltd 硬化剤組成物、絶縁接着層用樹脂組成物及び硬化剤組成物の製造方法
CN102633944A (zh) * 2012-03-31 2012-08-15 陕西科技大学 一种含疏水链段的耐盐缓释型高吸水树脂的制备方法
CN103205224A (zh) * 2012-08-30 2013-07-17 湖北航天化学技术研究所 一种丙烯酸酯乳液复膜胶及其制备方法和应用
WO2014157520A1 (ja) * 2013-03-28 2014-10-02 リンテック株式会社 保護膜形成用複合シート、保護膜付きチップ、及び保護膜付きチップの製造方法
JP2015199932A (ja) * 2014-03-31 2015-11-12 積水化学工業株式会社 変性ポリビニルアセタール樹脂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3357966A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128652A (ja) * 2016-01-19 2017-07-27 積水化学工業株式会社 異種材料間接着用接着剤、車両構造材接着用接着剤及び建築物構造材接着用接着剤
JP2018203929A (ja) * 2017-06-07 2018-12-27 積水化学工業株式会社 硬化性樹脂組成物
US20200399576A1 (en) * 2017-12-27 2020-12-24 Sekisui Chemical Co., Ltd. Scaffolding material for cell cultures and cell culture method using same

Also Published As

Publication number Publication date
US20180194935A1 (en) 2018-07-12
EP3357966A4 (en) 2019-05-08
KR102531218B1 (ko) 2023-05-10
JP6144437B1 (ja) 2017-06-07
CN107406652A (zh) 2017-11-28
KR20180059726A (ko) 2018-06-05
CN107406652B (zh) 2021-04-27
US10711128B2 (en) 2020-07-14
MX2018002865A (es) 2018-06-18
EP3357966A1 (en) 2018-08-08
JPWO2017057663A1 (ja) 2017-10-05
EP3357966B1 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
JP6144437B1 (ja) 変性ポリビニルアセタール樹脂組成物
JP6714061B2 (ja) 変性ポリビニルアセタール樹脂
JP6835523B2 (ja) エポキシ樹脂系接着剤組成物
JP6420917B2 (ja) エポキシ接着剤組成物
JP7291075B2 (ja) エポキシ樹脂組成物
JP6871042B2 (ja) 変性ポリビニルアセタール樹脂組成物
JP7431579B2 (ja) エポキシ接着剤組成物
JP7044486B2 (ja) 硬化性樹脂組成物
JP6936052B2 (ja) 硬化性樹脂組成物
JP7402048B2 (ja) エポキシ樹脂組成物
JP2021036060A (ja) エポキシ樹脂系接着剤組成物
JP2017137389A (ja) エポキシ系接着剤組成物
JP2021155722A (ja) 接着剤組成物及び微小領域固定用接着剤

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016562035

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851832

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177030513

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/002865

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016851832

Country of ref document: EP