WO2017047235A1 - 燃料電池、制御方法、及びコンピュータプログラム - Google Patents

燃料電池、制御方法、及びコンピュータプログラム Download PDF

Info

Publication number
WO2017047235A1
WO2017047235A1 PCT/JP2016/071813 JP2016071813W WO2017047235A1 WO 2017047235 A1 WO2017047235 A1 WO 2017047235A1 JP 2016071813 W JP2016071813 W JP 2016071813W WO 2017047235 A1 WO2017047235 A1 WO 2017047235A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat medium
power generation
generation unit
radiator
Prior art date
Application number
PCT/JP2016/071813
Other languages
English (en)
French (fr)
Inventor
篤樹 生駒
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Priority to EP16846108.5A priority Critical patent/EP3352273A4/en
Publication of WO2017047235A1 publication Critical patent/WO2017047235A1/ja
Priority to US15/914,454 priority patent/US20180198139A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04723Temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04768Pressure; Flow of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell comprising a power generation unit that reacts hydrogen and oxygen to generate power, and a cooling path that cools the power generation unit by circulating cooling water, a control method for controlling heat exchange of the fuel cell, and a computer with heat.
  • the present invention relates to a computer program for executing an exchange control process.
  • Examples of the battery for obtaining electromotive force by sending hydrogen to the negative electrode include a fuel cell and a nickel / hydrogen battery.
  • a fuel cell is a clean power generator with high power generation efficiency, and can be constructed without being affected by the magnitude of the load, so it can be used in digital home appliances such as personal computers and mobile phones, electric cars, railways, and mobile phones.
  • digital home appliances such as personal computers and mobile phones, electric cars, railways, and mobile phones.
  • Various uses such as base stations and power plants are being studied.
  • a membrane electrode assembly is formed by sandwiching a solid polymer electrolyte membrane between a negative electrode and an anode from both sides, and a pair of separators are arranged on both sides of the membrane electrode assembly to constitute a flat unit cell.
  • a stack in which a plurality of unit cells are stacked and packaged is provided. Hydrogen is supplied to the stack, the fuel gas containing hydrogen contacts the negative electrode of the stack, and the oxidizing gas containing oxygen such as air contacts the positive electrode, causing an electrochemical reaction at both electrodes and generating an electromotive force. .
  • the fuel cell since heat is generated in the stack during power generation, the fuel cell generally includes a cooling path for cooling the stack.
  • the cooling water in the cooling path is introduced into the cooling water communication path of the stack by a water pump, and the cooling water is passed through the cooling water communication path to cool the stack. Discharged from the stack.
  • the cooling water having this heat is heat-exchanged with the radiator and the radiator fan, and the cooled cooling water is returned to the stack by the water pump and circulated.
  • the number of rotations of the radiator fan is increased to introduce outside air into the casing to ventilate and cool the casing. It is configured to lower the temperature. Further, when the temperature of the cooling water is lower than a predetermined value, the cooling water is configured to switch the three-way switching valve so as to bypass the flow path to the radiator.
  • the cooling path is one path, it is necessary to use the same refrigerant, and different refrigerants may be used on the stack (heat generating part) side and the radiator (heat radiating part) side.
  • the stack is compatible only with pure water, only pure water can be used. Therefore, there is a problem that only SUS or the like with little metal ion elution can be used as a material for parts of a route such as a radiator.
  • metal ions are generated in the cooling path while power generation is continued, there is a problem that the conductivity of the cooling water is increased by the metal ions, the power generation efficiency of the stack is lowered, and the life is shortened. Impurities such as metal ions are mainly generated from the radiator. In order to remove such metal ions or the like, as described above, maintenance such as configuring the cooling path member of SUS or periodically replacing the refrigerant or the ion exchange resin is necessary.
  • the present invention has been made in view of such circumstances, and a fuel cell in which the amount of contamination in the cooling path is reduced, the conductivity of the heat medium is increased, and the power generation efficiency of the power generation unit is suppressed from being reduced, It is an object to provide a control method for controlling heat exchange of a fuel cell and a computer program for causing a computer to execute heat exchange control processing.
  • a fuel cell according to the present invention includes a power generation unit cooling path that cools a power generation unit that generates power by reacting hydrogen and oxygen by circulation of a first heat medium, and a radiator flow in which a second heat medium flows and circulates through the radiator Heat exchange between the first heat pump, the first circulation pump provided in the power generation unit cooling passage, the second circulation pump provided in the radiator passage, and the first heat medium and the second heat medium.
  • the heat exchanger which performs is provided.
  • the control method includes a power generation unit cooling path that cools a power generation unit that generates power by reacting hydrogen and oxygen by circulating a first heat medium using a first circulation pump, and a radiator that generates heat generated by the power generation unit.
  • a fuel cell comprising: a radiator passage that circulates a second heat medium conducted to the second heat medium by a second circulation pump; and a heat exchanger that exchanges heat between the first heat medium and the second heat medium.
  • a control method for controlling heat exchange wherein the temperature of the first heat medium on the inflow side of the power generation unit or the temperature of the first heat medium on the outflow side of the power generation unit is acquired, and the inflow side, or The output of the first circulation pump or the second circulation pump is controlled based on the temperature of the first heat medium on the outflow side.
  • a computer program includes a power generation unit cooling path that cools a power generation unit that generates power by reacting hydrogen and oxygen by circulating a first heat medium using a first circulation pump, and a radiator that generates heat generated by the power generation unit.
  • a fuel cell comprising: a radiator passage that circulates a second heat medium conducted to the second heat medium by a second circulation pump; and a heat exchanger that exchanges heat between the first heat medium and the second heat medium.
  • the temperature of the first heat medium on the inflow side of the power generation unit or the temperature of the first heat medium on the outflow side of the power generation unit is acquired, and the temperature on the inflow side or outflow side is acquired.
  • a process for controlling the output of the first circulation pump or the second circulation pump is executed based on the temperature of the first heat medium.
  • the heat generating section cooling path through which the first heat medium circulates the radiator flow path through which the second heat medium circulates, and heat that exchanges heat between the first heat medium and the second heat medium. Since the exchanger is provided, the cooling path is divided between the power generation unit side and the radiator side, and the configuration of each of the power generation unit cooling path and the radiator passage is simple and the length is shortened. Accordingly, the area of the contamination source such as piping is reduced, the amount of contamination of the first heat medium and the second heat medium is reduced, the conductivity of the heat medium is increased by metal ions and the like, and the decrease in power generation efficiency of the power generation unit is suppressed. The life of the power generation unit is prevented from being shortened.
  • FIG. 1 is a block diagram showing a fuel cell according to Embodiment 1.
  • FIG. It is a flowchart which shows the control process of the stack cooling path by CPU. It is a flowchart which shows the control process of the radiator flow path by CPU.
  • 6 is a block diagram showing a fuel cell according to Embodiment 2.
  • FIG. 1 is a block diagram showing a fuel cell 300 according to the first embodiment.
  • the fuel cell 300 is a fuel cell such as a polymer electrolyte fuel cell.
  • the fuel cell 300 includes a battery body 100 and a hydrogen supply unit 200.
  • the battery body 100 includes a stack 1, a hydrogen passage 2 (hydrogen supply passage 2a and hydrogen circulation passage 2b), an air passage 3, a stack cooling passage 4, a radiator passage 5, a cylinder heating passage 6, and a first heat exchange.
  • the hydrogen supply path 200 includes a plurality of MH (Metal Hydride) cylinders 20, an on-off valve 21, and a regulator 22.
  • the MH cylinder 20 is filled with a hydrogen storage alloy. All the MH cylinders 20 are connected to the on-off valve 21, and the on-off valve 21 is connected to a regulator 22. The supply pressure of hydrogen is adjusted by the regulator 22. The reaction when the hydrogen storage alloy in the MH cylinder 20 releases hydrogen is an endothermic reaction.
  • a membrane electrode assembly is formed by sandwiching a solid polymer electrolyte membrane between a negative electrode and an anode from both sides, and a pair of separators are arranged on both sides of the membrane electrode assembly to constitute a flat unit cell.
  • a plurality of unit cells are stacked and packaged.
  • a fuel gas containing hydrogen flowing in from the hydrogen supply unit 200 comes into contact with the negative electrode, and an oxidizing gas containing oxygen such as air flows into and comes into contact with the positive electrode from the air flow path 3 to cause an electrochemical reaction in both electrodes. Electromotive force is generated.
  • water is generated by the reaction between hydrogen ions that have permeated the solid polymer electrolyte membrane from the negative electrode side and oxygen in the oxidizing gas.
  • One end of the hydrogen supply path 2a is connected to the regulator 22, and the other end is connected to a portion of the hydrogen circulation path 2b near the negative electrode of the stack 1.
  • an on-off valve 23, an on-off valve 24, and a check valve 25 are provided in this order from the hydrogen supply unit 200 side.
  • a hydrogen circulation pump 26 is provided in the hydrogen circulation path 2b.
  • the hydrogen flowing through the flow path and discharged from the stack 1 flows through the hydrogen circulation path 2 b and is sent to the gas-liquid separator 27.
  • the gas-liquid separator 27 separates hydrogen and impurities-containing gas and water, and the separated hydrogen is sent from the gas-liquid separator 27 to the hydrogen circulation pump 26 and circulated.
  • the water separated by the gas-liquid separator 27 is discharged to the outside by opening a drain valve (not shown), and the gas containing impurities is discharged to the outside by opening the exhaust valve (not shown) at an appropriate timing. .
  • the air flow path 3 is provided with an air pump 30.
  • An opening / closing valve 31 is provided at the inflow side portion of the air flow path 3 to the stack 1, and an opening / closing valve 32 is provided at the outflow side portion from the stack 1.
  • the air sent from the air pump 30 flows through the air flow path 3, passes through the on-off valve 31, and is introduced into the positive electrode side portion of the stack 1. It is configured to flow through.
  • the air flowing through the flow path is discharged from the stack 1 and discharged to the outside through the on-off valve 32.
  • a cooling pump 40 In the stack cooling path 4, a cooling pump 40, an ion exchange resin 43, and a conductivity meter 44 are provided. Cooling water sent from the cooling pump 40 and flowing through the stack cooling path 4 flows through the ion exchange resin 43, and the conductivity is measured by the conductivity meter 44, and then introduced into the stack 1. After flowing through the flow path, the flow is discharged, passed through the first heat exchange unit 7 and the second heat exchange unit 8, and returned to the cooling pump 40. Temperature sensors 41 and 42 are respectively provided on the outflow side of the cooling water from the stack 1 and the inflow side of the stack 1 in the stack cooling path 4. The temperature sensors 41 and 42 detect temperatures T 1 ° C and T 2 ° C, respectively.
  • the ion exchange resin 43 adsorbs ions contained in the cooling water flowing through the stack cooling path 4.
  • the stack 1 that can use only pure water as the refrigerant
  • pure water cooling water
  • the heat medium first heat medium
  • the first heat exchange unit 7 includes a heat exchanger 70
  • the second heat exchange unit 8 includes a heat exchanger 80 and a heater 81.
  • a radiator pump 50 is provided in the radiator passage 5.
  • the heat-dissipating liquid sent out from the heat-dissipating pump 50 flows through the radiator 51 and further flows through the heat exchanger 70 of the first heat exchanging unit 7 and then returns to the heat-dissipating pump 50.
  • examples of the heat dissipation liquid (second heat medium) include an antifreeze liquid mainly composed of ethyne glycol. Water may be used as the heat radiating liquid. Since the antifreeze liquid contains various chemicals such as a rust preventive agent, components such as the radiator 51 of the radiator passage 5 are not easily rusted. Further, even when the aluminum radiator 51 is used, it is difficult to make a hole. And even if the outside air temperature is below freezing point, freezing does not occur in the radiator passage 5.
  • a fan 52 is provided in the vicinity of the radiator 51.
  • a heating pump 60 is provided in the cylinder heating path 6.
  • the heating liquid delivered from the heating pump 60 flows through the flow path in the hydrogen supply unit 200 to heat each MH cylinder 20, and then is discharged from the hydrogen supply unit 200 and flows through the second heat exchange unit 8. Thus, it is configured to return to the heating pump 60.
  • hydrogen is released from the hydrogen storage alloy in the MH cylinder 20.
  • the heating liquid include the antifreeze liquid.
  • the stack cooling path 4, the radiator flow path 5, the cylinder heating path 6, the first heat exchanging section 7, and the second heat exchanging section 8 are covered with a heat insulating material. Therefore, heat transfer with the outside can be limited and the amount of heat can be easily controlled.
  • the control unit 9 includes a CPU (Central Processing Unit) 90 that controls the operation of each component of the control unit 9, and a ROM 91 and a RAM 92 are connected to the CPU 90 via a bus.
  • CPU Central Processing Unit
  • the ROM 91 is a non-volatile memory such as an EEPROM (Electrically Erasable Programmable ROM), and stores an operation program 91a of the fuel cell 300 and a heat exchange control program 91b according to the present embodiment.
  • the heat exchange program 91b is a portable medium recorded as a computer-readable CD (Compact Disc) -ROM, DVD (Digital Versatile Disc) -ROM, BD (Blu-ray (registered trademark) Disc), hard disk. It is recorded on a recording medium such as a drive or a solid state drive, and the CPU 91 may read the heat exchange program 91b from the recording medium and store it in the ROM 91.
  • the heat exchange program 91b according to the present invention may be acquired from an external computer (not shown) connected to the communication network and stored in the ROM 91.
  • the RAM 92 is a memory such as DRAM (Dynamic RAM), SRAM (Static RAM), and the like, and is executed by the operation program 91a, the heat exchange program 91b, and the CPU 90 that are read from the ROM 90 when the CPU 91 executes the arithmetic processing. Temporarily store various data generated.
  • the control unit 9 is connected to each component of the battery main body 100 and the on-off valve 21 of the hydrogen supply unit 200, and the control unit 9 controls the operation of each component and the on-off valve 21.
  • the hydrogen detection sensor 10 outputs a detection signal to the control unit 9 when detecting a hydrogen leak.
  • the reaction occurring in the stack 1 is an exothermic reaction, and the stack 1 is cooled by the cooling water flowing through the stack cooling path 4.
  • the heat of the cooling water discharged from the stack 1 is conducted to the heat radiating liquid in the heat exchanger 70, the heat radiating liquid releases heat in the radiator 51, and the heat is released to the outside of the battery body 100 by the fan 52.
  • the heat-dissipating liquid cooled in the radiator 51 is sent to the first heat exchange unit 7.
  • the heat of the cooling water flowing through the first heat exchange unit 7 and introduced into the second heat exchange unit 8 is conducted to the heating liquid in the second heat exchange unit 8, and the heating liquid is supplied with hydrogen.
  • Each MH cylinder 20 of the unit 200 is heated to release hydrogen from the hydrogen storage alloy.
  • the cooling water cooled by the second heat exchange unit 8 returns to the cooling pump 40 and is sent to the stack 1.
  • the temperature of the cooling water in the stack cooling path 4 becomes the environmental temperature, but the heating liquid is heated by the heater 81 of the second heat exchanging unit 8 so that the MH cylinder 20 is kept at a predetermined temperature. Can be held in.
  • the MH cylinder 20 may be heated by blowing air having heat generated in the stack 1 to the hydrogen supply unit 200.
  • the fuel cell 300 according to the first embodiment configured as described above is used, and the cooling water temperature T 1 detected by the temperature sensor 41 on the outflow side of the stack 1 or the inflow of the stack 1
  • the cooling water temperature T 2 detected by the temperature sensor 42 on the side is acquired, and based on these temperatures, the output of the cooling pump 40 or the heat radiation pump 50 is controlled to control the heat exchange. Control the heat dissipation to.
  • the CPU 90 of the control unit 9 reads a heat exchange control program from the ROM 91 and executes a heat exchange control process. Hereinafter, the heat exchange control process will be described.
  • FIG. 2 is a flowchart showing the control process of the stack cooling path 4 by the CPU 90.
  • the CPU 90 turns on the cooling pump 40 (S1).
  • the CPU 90 determines whether hydrogen leakage is detected by the hydrogen detection sensor 10 (S2).
  • S2 YES
  • the cooling pump 40 is turned off (S3), the supply of hydrogen from the hydrogen supply unit 200 is stopped, and the stack cooling path 4 is controlled. finish.
  • the CPU 90 determines that no hydrogen leak has been detected (S2: NO), is the difference (T 1 -T 2 ) between the temperatures T 1 ° C and T 2 ° C acquired from the temperature sensors 41 and 42 equal to or less than 15 ° C? It is determined whether or not (S4).
  • S4 determines that the difference is not less than 15 ° C.
  • the instruction voltage to the cooling pump 40 is increased, the flow rate of the cooling water sent from the cooling pump 40 is increased (S5), and the process is stepped. Proceed to S7.
  • the temperature of the stack 1 is reduced by increasing the flow rate of the cooling water.
  • the CPU 90 determines that the difference is 15 ° C. or less (S4: YES), it lowers the instruction voltage to the cooling pump 40 and decreases the flow rate of the cooling water sent from the cooling pump 40 (S6). This can prevent the cooling water from being overcooled.
  • the CPU 90 determines whether or not to turn off the cooling pump 40 (S7). An example of a case where it is determined that the cooling pump 40 is turned off corresponds to a case where an instruction to stop power generation is received from an operator.
  • FIG. 3 is a flowchart showing a control process of the radiator passage 5 by the CPU 90.
  • the CPU 90 turns on the fan 52 (S11).
  • the rotation speed of the fan 52 is the minimum rotation speed required for ventilation.
  • the CPU90 the temperature T 1 ° C. obtained from the temperature sensor 41 and determines whether it is T 1 ⁇ 50 °C (S12) .
  • the CPU 90 determines whether or not hydrogen leakage is detected by the hydrogen detection sensor 10 (S14). When the CPU 90 determines that hydrogen leakage has been detected (S14: YES), the heat dissipation pump 50 is turned off (S15), the supply of hydrogen from the hydrogen supply unit 200 is stopped, and the radiator flow path 5 is controlled. Exit. At this time, the rotation of the fan 52 continues.
  • the CPU 90 determines whether or not the temperature T 1 ° C. acquired from the temperature sensor 41 is T 1 ⁇ 65 ° C. (S16). When determining that T 1 ⁇ 65 ° C. is not satisfied (S16: NO), the CPU 90 increases the instruction voltage to the heat dissipation pump 50 and increases the flow rate of the heat dissipation liquid sent from the heat dissipation pump 50 (S17). Thereby, the amount of heat radiation increases, the cooling water is further cooled, and the stack 1 is further cooled.
  • the CPU 90 determines whether or not the change amount ⁇ T 1 of the temperature T 1 acquired from the temperature sensor 41 for 10 seconds is ⁇ T 1 ⁇ 0 (S18).
  • the change amount [Delta] T 1 of T 1 may be set to be determined every 20 seconds. If the CPU 90 determines that ⁇ T 1 ⁇ 0 is not satisfied (S18: NO), the rotational speed of the fan 52 is decreased to reduce the air volume (S20), and the process returns to step S14. Since T 1 is lowered, the heat radiation amount is lowered by reducing the air volume of the fan 52.
  • the CPU 90 determines that ⁇ T 1 ⁇ 0 (S18: YES), it increases the rotational speed of the fan 52 to increase the air volume (S19), and returns the process to step S18. Since T 1 is increased, the heat radiation amount is increased by increasing the air volume of the fan 52.
  • step S16 When the CPU 90 determines in step S16 that T 1 ⁇ 65 ° C. (S16: YES), the CPU 90 decreases the instruction voltage to the heat dissipation pump 50 and decreases the flow rate of the heat dissipation liquid sent from the heat dissipation pump 50 (S21).
  • the CPU 90 determines whether or not the instruction voltage to the heat dissipation pump 50 is the minimum (S22). If the CPU 90 determines that the command voltage to the heat dissipation pump 50 is not the minimum (S22: NO), the process returns to step S14. When the CPU 90 determines that the instruction voltage to the heat dissipation pump 50 is the minimum (S22: YES), the CPU90 turns off the heat dissipation pump 50 (S23). By repeatedly reducing the amount of heat release, the command voltage converges to the minimum value, and the drive of the heat release pump 50 is stopped.
  • the CPU 90 determines whether or not to turn off the entire system of the fuel cell 300 (S24).
  • S24 An example of a case where it is determined to turn off the entire system corresponds to a case where an instruction to stop power generation is received from an operator. If the CPU 90 does not determine that the entire system of the fuel cell 300 is to be turned off (S24: NO), the process of the radiator flow path 5 is returned to step S12. If the CPU 90 determines that the entire system of the fuel cell 300 is to be turned off (S24: YES), the process ends. 2 and 3, the temperature threshold value is not limited to the above-described value.
  • the cooling path is divided into the stack 1 side and the radiator 51 side, and the configuration of each of the stack cooling path 4 and the radiator flow path 5 is simple and the length is short. Accordingly, the area of the contamination source such as piping is reduced, the amount of contamination of the first heat medium and the second heat medium is reduced, the conductivity is increased by metal ions or the like, and the reduction in power generation efficiency of the stack 1 is suppressed. It is suppressed that the lifetime of the is shortened. Then, by dividing the cooling path into two paths, pure water can be used when the antifreeze liquid cannot be used as the first heat medium on the stack 1 side, and the antifreeze liquid can be used as the second heat medium on the radiator 51 side.
  • the antifreeze liquid contains various chemicals such as a rust preventive agent, the parts of the radiator passage 5 are not easily rusted, and the generation of metal ions is suppressed. Therefore, it is not necessary to use SUS or the like with little metal ion elution as the material of the path components such as the radiator 51 of the radiator passage 5, and aluminum can be used, thereby reducing the cost.
  • the amount of heat release can be controlled by controlling only the flow rate of the radiator flow path 5 (heat dissipating part side) without depending on the flow rate of the stack cooling path 4 (heat generating part side).
  • the fan 52 can have both functions of releasing heat from the radiator 51 and ventilating the casing of the battery main body 100.
  • the amount of heat moving in the first heat exchange unit 7 can be controlled.
  • the circulation amount of the radiator flow path 5 increases, the amount of heat taken away by the first heat exchange unit 7 increases. Therefore, the outputs of the two pumps can be appropriately combined and the amount of heat can be controlled finely.
  • the temperature difference of the cooling water on the entrance side and the exit side of the stack 1 can be managed, the temperature of the stack 1 can be stabilized by reducing the heat radiation amount even in a low temperature environment.
  • the amount of heat taken away by the first heat exchange unit 7 is limited, and the cooling water is prevented from being overcooled.
  • FIG. FIG. 4 is a block diagram showing a fuel cell according to the second embodiment.
  • the fuel cell 301 according to the second embodiment has the same configuration as that of the fuel cell 300 according to the first embodiment, except that the battery body 100 does not include the ion exchange resin 43.
  • the cooling path is divided into the stack cooling path 4 and the radiator flow path 5, and impurities such as metal ions generated from the radiator 51 do not flow through the stack cooling path 4. . Therefore, the ion exchange resin can be omitted in the stack cooling path 4. As a result, the cost of the fuel cell 301 itself can be reduced.
  • the fuel cell according to the present invention includes a power generation unit cooling path that cools the power generation unit that generates power by reacting hydrogen and oxygen by circulation of the first heat medium, and the second heat medium flows through the radiator.
  • the cooling path is divided between the power generation unit side and the radiator side, and the configuration of each of the power generation unit cooling path and the radiator passage is simple and the length is short. Accordingly, the area of the contamination source such as the piping is reduced, the amount of contamination of the first heat medium and the second heat medium is reduced, the conductivity is increased by metal ions and the like, and the decrease in the power generation efficiency of the power generation unit is suppressed. It is suppressed that the lifetime of the is shortened. And by dividing the cooling path into two paths, when the antifreeze liquid cannot be used as the first heat medium on the power generation unit side, pure water can be used, and as the second heat medium on the radiator side, the antifreeze liquid can be used.
  • the present invention it is possible to control the heat radiation amount only by controlling the flow rate of the radiator flow path without depending on the flow rate on the power generation unit cooling path side. Therefore, the heat radiation amount can be controlled by controlling the flow rate of the radiator flow path while ensuring the minimum necessary ventilation amount (of the casing) of the fuel cell. Therefore, the fan of the housing and the radiator fan can be shared.
  • the fuel cell according to the present invention is characterized in that the second heat medium is an antifreeze.
  • the second heat medium is an antifreeze liquid
  • the antifreeze liquid contains various chemicals such as a rust preventive agent. Further, when an aluminum radiator is used, it is difficult to make a hole. And even if outside temperature is below freezing point, it does not freeze in a radiator passage.
  • the fuel cell according to the present invention includes a fan for cooling and ventilating the radiator and diluting and releasing hydrogen when hydrogen leaks.
  • one fan can have three functions, and the cost can be reduced.
  • the fuel cell according to the present invention is characterized in that the fan rotates when power is generated by the power generation unit.
  • the fuel cell according to the present invention includes a hydrogen sensor that detects hydrogen leakage, and when the hydrogen sensor detects hydrogen leakage, the fan continues to rotate, and the first circulation pump and the second circulation The pump is stopped.
  • the entire fuel cell system is stopped to stop supplying hydrogen, and the leaked hydrogen can be diluted and exhausted to the outside.
  • the fuel cell according to the present invention includes a first temperature detector that detects the temperature of the first heat medium on the inflow side of the power generation unit, and a first temperature detector that detects the temperature of the first heat medium on the outflow side of the power generation unit. 2 temperature detectors, and configured to control the output of the first circulation pump or the second circulation pump based on the temperature detected by the first temperature detector or the second temperature detector. It is characterized by being.
  • the amount of heat transferred by the heat exchanger can be controlled by controlling the outputs of the two circulation pumps, that is, the amount of circulation based on the temperature. As the amount of circulation in the radiator passage increases, the amount of heat taken away by the heat exchanger increases. Therefore, the outputs of the two pumps can be appropriately combined to control the amount of heat finely.
  • the cooling water when the temperature of the cooling water is less than a predetermined value, the cooling water is configured to bypass the flow path to the radiator. In this case, the closed loop and the radiator flow path Although there was a time lag due to the three-way switching valve, there is no time lag in the present invention. And since the temperature difference of the cooling water of the entrance side and exit side of a power generation part can be managed, the temperature of a power generation part can be stabilized also in a low temperature environment.
  • the fuel cell according to the present invention is configured to decrease the output of the second circulation pump when the temperature of the first heat medium detected by the second temperature detector is equal to or lower than a predetermined value. It is characterized by that.
  • the amount of heat taken away by the heat exchanger is limited, and the cooling water is prevented from being overcooled.
  • the fuel cell according to the present invention is characterized in that the power generation section cooling path, the heat exchanger, and the radiator passage are covered with a heat insulating material.
  • the control method includes a power generation unit cooling path that cools a power generation unit that generates power by reacting hydrogen and oxygen by circulating a first heat medium using a first circulation pump, and a radiator that generates heat generated by the power generation unit.
  • a fuel cell comprising: a radiator passage that circulates a second heat medium conducted to the second heat medium by a second circulation pump; and a heat exchanger that exchanges heat between the first heat medium and the second heat medium.
  • a control method for controlling heat exchange wherein the temperature of the first heat medium on the inflow side of the power generation unit or the temperature of the first heat medium on the outflow side of the power generation unit is acquired, and the inflow side, or The output of the first circulation pump or the second circulation pump is controlled based on the temperature of the first heat medium on the outflow side.
  • the amount of heat transferred by the heat exchanger can be controlled by controlling the outputs of the two circulation pumps, that is, the amount of circulation based on the temperature. As the amount of circulation in the radiator passage increases, the amount of heat taken away by the heat exchanger increases. Therefore, the outputs of the two pumps can be appropriately combined to control the amount of heat finely. Unlike the fuel cell of Patent Document 1, there is no time lag due to switching between the closed loop and the radiator flow path. And since the temperature difference of the cooling water of the entrance side and exit side of a power generation part can be managed, the temperature of a power generation part can be stabilized also in a low temperature environment.
  • a computer program includes a power generation unit cooling path that cools a power generation unit that generates power by reacting hydrogen and oxygen by circulating a first heat medium using a first circulation pump, and a radiator that generates heat generated by the power generation unit.
  • a fuel cell comprising: a radiator passage that circulates a second heat medium conducted to the second heat medium by a second circulation pump; and a heat exchanger that exchanges heat between the first heat medium and the second heat medium.
  • the temperature of the first heat medium on the inflow side of the power generation unit or the temperature of the first heat medium on the outflow side of the power generation unit is acquired, and the temperature on the inflow side or outflow side is acquired.
  • a process for controlling the output of the first circulation pump or the second circulation pump is executed based on the temperature of the first heat medium.
  • the amount of heat transferred by the heat exchanger can be controlled by controlling the outputs of the two circulation pumps, that is, the amount of circulation based on the temperature. As the amount of circulation in the radiator passage increases, the amount of heat taken away by the heat exchanger increases. Therefore, the outputs of the two pumps can be appropriately combined to control the amount of heat finely. Unlike the fuel cell of Patent Document 1, there is no time lag due to switching between the closed loop and the radiator flow path. And since the temperature difference of the cooling water of the entrance side and exit side of a power generation part can be managed, the temperature of a power generation part can be stabilized also in a low temperature environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

冷却路の汚染量が少なく、熱媒体の導電率が上がって発電部の発電効率が低下することが抑制されるとともに、放熱量を制御することができ、換気用とラジエータ用のファンとを共通化できる燃料電池、燃料電池の熱交換を制御する制御方法、及びコンピュータに熱交換の制御処理を実行させるためのコンピュータプログラムを提供する。 燃料電池(300)は、水素及び酸素を反応させて発電するスタック(1)を第1熱媒体の循環により冷却するスタック冷却路(4)と、第2熱媒体がラジエータ(51)を通流して循環するラジエータ通流路(5)と、スタック冷却路(4)に設けられた冷却ポンプ(40)と、ラジエータ通流路(5)に設けられた放熱ポンプ(50)と、第1熱媒体と第2熱媒体との間で熱交換を行う熱交換器(70)とを備える。

Description

燃料電池、制御方法、及びコンピュータプログラム
 本発明は、水素及び酸素を反応させて発電する発電部と、発電部を冷却水の循環により冷却する冷却路とを備える燃料電池、燃料電池の熱交換を制御する制御方法、及びコンピュータに熱交換の制御処理を実行させるためのコンピュータプログラムに関する。
 負極に水素を送って起電力を得る電池として、燃料電池、ニッケル・水素電池等が挙げられる。
 燃料電池は発電効率が高く、クリーンな発電装置であり、負荷の大小に影響されず、コジェネレーションシステムを構築できるため、パーソナルコンピュータ,携帯電話機等のデジタル家電製品、電気自動車、鉄道、携帯電話の基地局、発電所等の種々の用途が検討されている。
 燃料電池は、固体高分子電解質膜を負極と陽極とで両側から挟んで膜電極接合体を形成し、この膜電極接合体の両側に一対のセパレータを配置して平板状の単位セルを構成し、この単位セルを複数積層してパッケージ化したスタックを備える。スタックに水素を供給し、スタックの負極に水素を含む燃料ガスが接触し、正極に空気等の酸素を含む酸化ガスが接触することにより両電極で電気化学反応が生じて、起電力が発生する。
 発電時にスタックにおいて熱が発生するため、燃料電池は一般的にスタックを冷却する冷却路を備える。
 例えば特許文献1に開示されているように、冷却路の冷却水は水ポンプによりスタックの冷却水連通路に導入され、冷却水連通路を通流してスタックを冷却し、加熱された冷却水はスタックから排出される。この熱を有する冷却水はラジエータ及びラジエータファンと熱交換され、冷却された冷却水は水ポンプによりスタックに戻されて循環される。
 特許文献1の燃料電池においては、燃料電池の筐体内の温度が所定値以上である場合、ラジエータファンの回転数を上げて筐体内に外気を導入して換気するとともに冷却することにより、筐体内の温度を下げるように構成されている。また、冷却水の温度が所定値未満である場合、冷却水がラジエータへの流路をバイパスすべく三方切換弁を切り換えるように構成されている。
特開2003-168461号公報
 特許文献1の燃料電池の場合、冷却路が1つの経路であるため、同じ冷媒を使用する必要があり、スタック(発熱部)側とラジエータ(放熱部)側とで異なる冷媒を使用することができず、スタックが純水にのみ対応している場合、純水しか使用できないので、ラジエータ等の経路の部品の材料として、金属イオンの溶出が少ないSUS等しか使用できないという問題があった。発電を継続するうちに冷却路内で金属イオンが発生した場合、金属イオンにより冷却水の導電率が上がり、スタックの発電効率が低下し、寿命が短くなるという問題がある。金属イオン等の不純物は、主にラジエータから発生する。このような金属イオン等を除去するためには、上述したように、冷却路の部材をSUS等から構成する、又は定期的に冷媒若しくはイオン交換樹脂を交換する等のメンテナンスが必要であった。
 本発明は、斯かる事情に鑑みてなされたものであり、冷却路の汚染量が少なくなり、熱媒体の導電率が上がって発電部の発電効率が低下することが抑制された燃料電池、該燃料電池の熱交換を制御する制御方法、及びコンピュータに熱交換の制御処理を実行させるためのコンピュータプログラムを提供することを目的とする。
 本発明に係る燃料電池は、水素及び酸素を反応させて発電する発電部を第1熱媒体の循環により冷却する発電部冷却路と、第2熱媒体がラジエータを通流して循環するラジエータ通流路と、前記発電部冷却路に設けられた第1循環ポンプと、前記ラジエータ通流路に設けられた第2循環ポンプと、前記第1熱媒体と前記第2熱媒体との間で熱交換を行う熱交換器とを備えることを特徴とする。
 本発明に係る制御方法は、水素及び酸素を反応させて発電する発電部を第1循環ポンプにより第1熱媒体を循環させて冷却する発電部冷却路と、前記発電部により生じた熱をラジエータに伝導する第2熱媒体を第2循環ポンプにより循環させるラジエータ通流路と、前記第1熱媒体と前記第2熱媒体との間で熱交換を行う熱交換器とを備える燃料電池の前記熱交換を制御する制御方法であって、前記発電部の流入側における前記第1熱媒体の温度、又は前記発電部の流出側における前記第1熱媒体の温度を取得し、前記流入側、又は流出側における第1熱媒体の温度に基づき、前記第1循環ポンプ、又は第2循環ポンプの出力を制御することを特徴とする。
 本発明に係るコンピュータプログラムは、水素及び酸素を反応させて発電する発電部を第1循環ポンプにより第1熱媒体を循環させて冷却する発電部冷却路と、前記発電部により生じた熱をラジエータに伝導する第2熱媒体を第2循環ポンプにより循環させるラジエータ通流路と、前記第1熱媒体と前記第2熱媒体との間で熱交換を行う熱交換器とを備える燃料電池の前記熱交換を制御するコンピュータに、前記発電部の流入側における前記第1熱媒体の温度、又は前記発電部の流出側における前記第1熱媒体の温度を取得し、前記流入側、又は流出側における第1熱媒体の温度に基づき、前記第1循環ポンプ、又は第2循環ポンプの出力を制御する処理を実行させることを特徴とする。
 本発明によれば、第1熱媒体が循環する発電部冷却路と、第2熱媒体が循環するラジエータ通流路と、第1熱媒体と第2熱媒体との間で熱交換を行う熱交換器とを備えるので、冷却路が発電部側とラジエータ側とで分かれており、発電部冷却路及びラジエータ通流路夫々の構成がシンプルであり、長さが短くなる。従って、配管等の汚染源の面積が小さくなり、第1熱媒体及び第2熱媒体の汚染量が少なくなり、金属イオン等により熱媒体の導電率が上がって発電部の発電効率の低下が抑制され、発電部の寿命が短くなることが抑制されている。
実施の形態1に係る燃料電池を示すブロック図である。 CPUによるスタック冷却路の制御処理を示すフローチャートである。 CPUによるラジエータ通流路の制御処理を示すフローチャートである。 実施の形態2に係る燃料電池を示すブロック図である。
 以下、本発明をその実施の形態を示す図面に基づいて詳述する。
実施の形態1.
 図1は実施の形態1に係る燃料電池300を示すブロック図である。
 燃料電池300は例えば固体高分子形燃料電池(polymer electrolyte fuel cell)等の燃料電池である。
 燃料電池300は、電池本体100と水素供給部200とを備える。
 電池本体100は、スタック1、水素通流路2(水素供給路2a及び水素循環路2b)、空気流路3、スタック冷却路4、ラジエータ通流路5、ボンベ加熱路6、第1熱交換部7、第2熱交換部8、制御部9、水素検知センサ10、気液分離器27、水素循環ポンプ26、エアポンプ30、冷却ポンプ40、放熱ポンプ50、ラジエータ51、ファン52、及び加熱ポンプ60を備える。
 水素供給路200は、複数のMH(Metal Hydride)ボンベ20と、開閉弁21と、レギュレータ22とを備える。MHボンベ20は水素吸蔵合金を充填してなる。開閉弁21には全てのMHボンベ20が接続されており、開閉弁21はレギュレータ22に接続されている。レギュレータ22により水素の供給圧力が調整される。MHボンベ20内の水素吸蔵合金が水素を放出する際の反応は吸熱反応である。
 スタック1は、固体高分子電解質膜を負極と陽極とで両側から挟んで膜電極接合体を形成し、この膜電極接合体の両側に一対のセパレータを配置して平板状の単位セルを構成し、この単位セルを複数積層してパッケージ化したものである。
 負極に、水素供給部200から流入した水素を含む燃料ガスが接触し、正極に空気等の酸素を含む酸化ガスが空気流路3から流入して接触することにより両電極で電気化学反応が生じ、起電力が発生する。この電気化学反応においては、負極側から固体高分子電解質膜を透過してきた水素イオンと酸化ガス中の酸素との反応により水が生じる。
 水素供給路2aの一端部はレギュレータ22に、他端部は水素循環路2bのスタック1の負極寄りの部分に接続されている。水素供給路2aには、水素供給部200側から順に、開閉弁23、開閉弁24、逆止弁25が設けられている。
 水素循環路2bには水素循環ポンプ26が設けられている。開閉弁23、開閉弁24を開いたとき、水素はレギュレータ22から開閉弁23、開閉弁24、及び逆止弁25を通って水素供給路2aを通流し、水素循環ポンプ26により、水素循環路2bを通流して、スタック1の負極側部分へ送出され、該部分内の通流路を通流されるように構成されている。該通流路内を通流し、スタック1から排出された水素は水素循環路2bを通流し、気液分離器27へ送られる。気液分離器27において、水素及び不純物を含むガスと水とに分離され、分離された水素は気液分離器27から水素循環ポンプ26へ送られて、循環する。気液分離器27で分離された水は、排水弁(不図示)を開いて外部へ排出され、不純物を含むガスは適宜のタイミングで、排気弁(不図示)を開いて外部へ排出される。
 空気流路3にはエアポンプ30が設けられている。そして、空気流路3のスタック1への流入側部分には開閉弁31が、スタック1からの流出側部分には開閉弁32が設けられている。開閉弁31、開閉弁32を開いたとき、エアポンプ30から送出された空気は空気流路3を通流して開閉弁31を通り、スタック1の正極側部分へ導入され、該部分の通流路を通流されるように構成されている。該通流路内を通流した空気は、スタック1から排出され、開閉弁32を通って外部へ排出される。
 スタック冷却路4には、冷却ポンプ40、イオン交換樹脂43、及び導電率計44が設けられている。冷却ポンプ40から送出され、スタック冷却路4を通流する冷却水はイオン交換樹脂43内を通流し、導電率計44により導電率を測定された後、スタック1へ導入され、スタック1内の通流路を通流した後、排出されて、第1熱交換部7及び第2熱交換部8を通流し、冷却ポンプ40へ戻るように構成されている。スタック冷却路4の、冷却水のスタック1からの流出側、及びスタック1への流入側には、温度センサ41,42が夫々設けられている。温度センサ41,42は夫々温度T℃、T℃を検出する。イオン交換樹脂43はスタック冷却路4を通流する冷却水に含まれるイオンを吸着する。イオン量が多くなった場合、冷却水の導電率が高くなり、スタック1の発電効率が低下するので、イオン交換樹脂43により金属イオン等を吸着する必要がある。
 冷媒として純水のみ用いることができるスタック1を使用する場合は、スタック冷却路4の熱媒体(第1熱媒体)として純水(冷却水)を使用する。スタック1の冷媒として例えばエチングリコールを主成分とする不凍液を用いることができる場合、第1熱媒体は該不凍液となる。
 第1熱交換部7は熱交換器70を備え、第2熱交換部8は、熱交換器80及びヒータ81を備える。
 ラジエータ通流路5には、放熱ポンプ50が設けられている。放熱ポンプ50から送出された放熱液は、ラジエータ51を通流し、さらに第1熱交換部7の熱交換器70を通流した後、放熱ポンプ50へ戻るように構成されている。ここで、放熱液(第2熱媒体)として、例えばエチングリコールを主成分とする不凍液が挙げられる。放熱液として水を用いることにしてもよい。不凍液は防錆剤等の薬剤を種々含むため、ラジエータ通流路5のラジエータ51等の部品が錆びにくい。また、アルミニウム製のラジエータ51を用いた場合においても穴が開き難い。そして、外気温が氷点下であってもラジエータ通流路5内で凍結が生じない。
 ラジエータ51に近接してファン52が設けられている。
 ボンベ加熱路6には、加熱ポンプ60が設けられている。加熱ポンプ60から送出された加熱液は、水素供給部200内の通流路を通流して各MHボンベ20を加熱した後、水素供給部200から排出され、第2熱交換部8を通流して、加熱ポンプ60へ戻るように構成されている。加熱により、MHボンベ20内の水素吸蔵合金から水素が放出される。加熱液として、前記不凍液が挙げられる。
 スタック冷却路4、ラジエータ通流路5、ボンベ加熱路6、第1熱交換部7、及び第2熱交換部8は断熱材により覆われている。
 従って、外部との熱移動を制限でき、熱量を制御しやすい。
 制御部9は、制御部9の各構成部の動作を制御するCPU(Central Processing Unit)90を備え、CPU90には、バスを介して、ROM91、及びRAM92が接続されている。
 ROM91は、EEPROM(Electrically Erasable Programmable ROM)等の不揮発性メモリであり、燃料電池300の運転プログラム91aと、本実施の形態に係る熱交換制御プログラム91bを記憶している。
 また、熱交換プログラム91bは、コンピュータ読み取り可能に記録された可搬式メディアであるCD(Compact Disc)-ROM、DVD(Digital Versatile Disc)-ROM、BD(Blu-ray(登録商標) Disc)、ハードディスクドライブ又はソリッドステートドライブ等の記録媒体に記録されており、CPU91が記録媒体から、熱交換プログラム91bを読み出し、ROM91に記憶させてもよい。
 さらに、通信網に接続されている図示しない外部コンピュータから本発明に係る熱交換プログラム91bを取得し、ROM91に記憶させることにしてもよい。
 RAM92は、DRAM(Dynamic RAM)、SRAM(Static RAM)等のメモリであり、CPU91の演算処理を実行する際にROM90から読み出された運転プログラム91a、熱交換プログラム91b、及びCPU90の演算処理によって生ずる各種データを一時記憶する。
 制御部9は電池本体100の各構成部、及び水素供給部200の開閉弁21に接続されており、制御部9は各構成部及び開閉弁21の動作を制御する。
 水素検知センサ10は、水素漏れを検知した場合に、検知信号を制御部9へ出力する。
 スタック1で生じる反応は発熱反応であり、スタック1はスタック冷却路4内を通流する冷却水により冷却される。スタック1から排出された冷却水の熱は、熱交換器70において放熱液に伝導され、放熱液はラジエータ51において熱を放出し、熱はファン52により電池本体100の外部へ放出される。ラジエータ51において冷却された放熱液は第1熱交換部7へ送られる。
 スタック冷却路4において、第1熱交換部7を通流し、第2熱交換部8へ導入された冷却水の熱は、第2熱交換部8において加熱液へ伝導され、加熱液は水素供給部200の各MHボンベ20を加熱し、水素吸蔵合金から水素を放出させる。
 第2熱交換部8で冷却された冷却水は冷却ポンプ40へ戻り、スタック1へ送られる。
 そして、発電を行っていない場合、スタック冷却路4の冷却水の温度は環境温度となるが、第2熱交換部8のヒータ81により加熱液を加温することにより、MHボンベ20を所定温度に保持することができる。
 なお、ボンベ加熱路6を有さずに、スタック1で生じた熱を有する空気を水素供給部200へ送風して、MHボンベ20を加温することにしてもよい。
 本実施の形態においては、以上のように構成された実施の形態1に係る燃料電池300を用い、スタック1の流出側の温度センサ41が検出した冷却水の温度T、又はスタック1の流入側の温度センサ42が検出した冷却水の温度Tを取得し、これらの温度に基づき、冷却ポンプ40、又は放熱ポンプ50の出力を制御して熱交換を制御し、スタック1の冷却及び外部への放熱を制御する。
 制御部9のCPU90はROM91から熱交換制御プログラムを読み出して、熱交換の制御処理を実行する。
 以下、熱交換の制御処理について説明する。
 図2は、CPU90によるスタック冷却路4の制御処理を示すフローチャートである。
 まず、CPU90は、冷却ポンプ40をオンにする(S1)。
 CPU90は、水素検知センサ10により水素漏れを検知したか否かを判定する(S2)。
 CPU90は、水素漏れを検知したと判定した場合(S2:YES)、冷却ポンプ40をオフにし(S3)、水素供給部200からの水素の供給を停止して、スタック冷却路4の制御処理を終了する。
 CPU90は水素漏れを検知しなかったと判定した場合(S2:NO)、温度センサ41,42から取得した温度T℃、T℃の差(T-T)が15℃以下であるか否かを判定する(S4)。
 CPU90は前記差が15℃以下でないと判定した場合(S4:NO)、冷却ポンプ40への指示電圧を上げ、冷却ポンプ40から送出される冷却水の流量を増加させ(S5)、処理をステップS7へ進める。冷却水の流量の増加により、スタック1の温度低下が図られる。
 CPU90は前記差が15℃以下であると判定した場合(S4:YES)、冷却ポンプ40への指示電圧を下げ、冷却ポンプ40から送出される冷却水の流量を減少させる(S6)。これにより冷却水を冷やし過ぎないようにすることができる。
 CPU90は、冷却ポンプ40をオフにするか否かを判定する(S7)。冷却ポンプ40をオフにすると判定する場合の一例として、作業者から発電の停止の指示を受け付けた場合等が該当する。
 CPU90は冷却ポンプ40をオフにすると判定した場合(S7:YES)、冷却路4の制御処理を終了する。
 CPU90は冷却ポンプ40をオフにしないと判定した場合(S7:NO)、処理をステップS2へ戻す。
 図3は、CPU90によるラジエータ通流路5の制御処理を示すフローチャートである。
 まず、CPU90は、ファン52をオンにする(S11)。ここで、ファン52の回転数は、換気のために必要な最低回転数である。
 CPU90は、温度センサ41から取得した温度T℃がT≧50℃であるか否かを判定する(S12)。
 CPU90はT≧50℃でないと判定した場合(S12:NO)、判定の処理を繰り返す。
 CPU90はT≧50℃であると判定した場合(S12:YES)、放熱ポンプ50をオンにする(S13)。
 CPU90は、水素検知センサ10により水素漏れを検知したか否かを判定する(S14)。
 CPU90は、水素漏れを検知したと判定した場合(S14:YES)、放熱ポンプ50をオフにし(S15)、水素供給部200からの水素の供給を停止して、ラジエータ通流路5の制御処理を終了する。このとき、ファン52の回転は続行する。
 CPU90は水素漏れを検知しなかったと判定した場合(S14:NO)、温度センサ41から取得した温度T℃が、T≦65℃であるか否かを判定する(S16)。
 CPU90はT≦65℃でないと判定した場合(S16:NO)、放熱ポンプ50への指示電圧を上げ、放熱ポンプ50から送出される放熱液の流量を増加させる(S17)。これにより、放熱量が増加し、冷却水がより冷却されて、スタック1の冷却がより図られる。
 CPU90は、10秒間に温度センサ41から取得した温度Tの変化量ΔTが、ΔT≧0であるか否かを判定する(S18)。なお、Tの変化量ΔTは20秒毎に求めることにしてもよい。
 CPU90はΔT≧0でないと判定した場合(S18:NO)、ファン52の回転数を下げて風量を減少させ(S20)、処理をステップS14へ戻す。Tが下がっているので、ファン52の風量を減少させることにより放熱量を下げる。
 CPU90はΔT≧0であると判定した場合(S18:YES)、ファン52の回転数を上げて風量を増加させ(S19)、処理をステップS18へ戻す。Tが上がっているので、ファン52の風量を増加させることにより放熱量を上げる。
 CPU90はステップS16においてT≦65℃であると判定した場合(S16:YES)、放熱ポンプ50への指示電圧を下げ、放熱ポンプ50から送出される放熱液の流量を減少させる(S21)。
 CPU90は、放熱ポンプ50への指示電圧が最小であるか否かを判定する(S22)。
 CPU90は放熱ポンプ50への指示電圧が最小でないと判定した場合(S22:NO)、処理をステップS14へ戻す。
 CPU90は放熱ポンプ50への指示電圧が最小であると判定した場合(S22:YES)、放熱ポンプ50をオフにする(S23)。放熱量を下げることを繰り返すことにより、指示電圧は最小値に収束するので、放熱ポンプ50の駆動を停止する。
 CPU90は燃料電池300のシステム全体をオフにするか否かを判定する(S24)。システム全体をオフにすると判定する場合の一例として、作業者から発電の停止の指示を受け付けた場合等が該当する。
 CPU90は燃料電池300のシステム全体をオフにすると判定しなかった場合(S24:NO)、ラジエータ通流路5の処理をステップS12へ戻す。
 CPU90は燃料電池300のシステム全体をオフにすると判定した場合(S24:YES)、処理を終了する。
 なお、図2及び図3のフローチャートにおいて、温度の閾値は上述の値に限定されるものではない。
 本実施の形態においては、冷却路をスタック1側とラジエータ51側とで分けており、スタック冷却路4及びラジエータ通流路5夫々の構成がシンプルであり、長さが短い。従って、配管等の汚染源の面積が小さくなり、第1熱媒体及び第2熱媒体の汚染量が少なくなり、金属イオン等により導電率が上がってスタック1の発電効率の低下が抑制し、スタック1の寿命が短くなることが抑制されている。
 そして、冷却路が2経路に分かれることで、スタック1側の第1熱媒体として不凍液が使用できない場合には純水を用い、ラジエータ51側の第2熱媒体としては不凍液を用いることができる。不凍液は防錆剤等の薬剤を種々含むため、ラジエータ通流路5の部品が錆びにくくなり、金属イオンの発生が抑制される。従って、ラジエータ通流路5のラジエータ51等の経路部品の材料として、金属イオンの溶出が少ないSUS等を用いる必要はなく、アルミニウムを用いることができ、コストダウンが図られる。
 特許文献1等の従来の燃料電池においてはスタックとラジエータとを冷却水が循環するので、冷却のために必要な冷却水の流量とラジエータを冷却するファンの風量との両方を同時に制御する必要があった。そして、筐体の換気のためにファンの風量を所定値以上確保する必要があり、この筐体換気用のファンと、風量が少ないラジエータファンとを共用化することが困難であった。
 本実施の形態においては、スタック冷却路4(発熱部側)の流量に依存せず、ラジエータ通流路5(放熱部側)の流量を制御するのみで放熱量を制御することができる。従って、燃料電池300の電池本体100の筐体の必要最小限の換気量を確保しつつ、ラジエータ通流路5の流量を制御して放熱量を制御することができる。よって、ファン52に、ラジエータ51からの熱の放出と電池本体100の筐体の換気との両方の機能を持たせることができる。そして、水素が漏れた場合に、燃料電池300のシステム全体を停止し、水素を希釈して放出することも可能である。
 本実施の形態においては、冷却ポンプ40及び放熱ポンプ50の出力、即ち循環量を制御することにより、第1熱交換部7で移動する熱量を制御することができる。ラジエータ通流路5の循環量が多いほど、第1熱交換部7で奪う熱量が増えるので、2つのポンプの出力を適宜に組み合わせることできめ細かく熱量を制御することができる。
 そして、スタック1の入側と出側の冷却水の温度差を管理することができるので、低温環境下でも、放熱量を減少させる等して、スタック1の温度を安定化させることができる。
 そして、本実施の形態においては、放熱ポンプ50の出力を減少させることにより、第1熱交換部7で奪う熱量を制限し、冷却水を冷やし過ぎることが防止される。
実施の形態2.
 図4は、実施の形態2に係る燃料電池を示すブロック図である。実施の形態2に係る燃料電池301は、電池本体100に、イオン交換樹脂43を備えないこと以外は、実施の形態1に係る燃料電池300と同様の構成を有する。
 本実施の形態においては、冷却路がスタック冷却路4とラジエータ通流路5とに分かれており、ラジエータ51から発生する金属イオン等の不純物が、スタック冷却路4内を通流することがない。
 従って、スタック冷却路4において、イオン交換樹脂を省略することができる。
 これにより、燃料電池301自体のコストダウンが図られる。
 以上のように、本発明に係る燃料電池は、水素及び酸素を反応させて発電する発電部を第1熱媒体の循環により冷却する発電部冷却路と、第2熱媒体がラジエータを通流して循環するラジエータ通流路と、前記発電部冷却路に設けられた第1循環ポンプと、前記ラジエータ通流路に設けられた第2循環ポンプと、前記第1熱媒体と前記第2熱媒体との間で熱交換を行う熱交換器とを備えることを特徴とする。
 本発明においては、冷却路を発電部側とラジエータ側とで分けており、発電部冷却路及びラジエータ通流路夫々の構成がシンプルであり、長さが短い。従って、配管等の汚染源の面積が小さくなり、第1熱媒体及び第2熱媒体の汚染量が少なくなり、金属イオン等により導電率が上がって発電部の発電効率の低下が抑制し、発電部の寿命が短くなることが抑制されている。
 そして、冷却路が2経路に分かれることで、発電部側の第1熱媒体として不凍液が使用できない場合には純水を用い、ラジエータ側の第2熱媒体としては不凍液を用いることができ、この場合、ラジエータ通流路のラジエータ等の経路部品の材料として、金属イオンの溶出が少ないSUS等を用いる必要はなく、アルミニウムを用いることができる。
 また、本発明においては、発電部冷却路側の流量に依存せず、ラジエータ通流路の流量を制御するのみで放熱量を制御することができる。従って、燃料電池の(筐体の)必要最小限の換気量を確保しつつ、ラジエータ通流路の流量を制御して放熱量を制御することができる。よって、筐体のファンとラジエータファンとを共通化することができる。
 本発明に係る燃料電池は、前記第2熱媒体は不凍液であることを特徴とする。
 本発明においては第2熱媒体は不凍液であり、不凍液は防錆剤等の薬剤を種々含むため、ラジエータ通流路の部品が錆びにくい。また、アルミニウム製のラジエータを用いた場合に穴が開き難い。そして、外気温が氷点下であってもラジエータ通流路内で凍結しない。
 本発明に係る燃料電池は、前記ラジエータを冷却し、換気を行い、水素が漏れた場合に水素を希釈して放出するファンを備えることを特徴とする。
 本発明においては、1つのファンが3つの機能を有することができ、コストダウンが図られる。
 本発明に係る燃料電池は、前記発電部により発電を行っている場合に、前記ファンは回転することを特徴とする。
 本発明においては、水素が漏れた場合に、すぐに希釈して排気することができる。
 本発明に係る燃料電池は、水素の漏れを検知する水素センサを備え、前記水素センサにより水素の漏れを検知した場合に、前記ファンは回転を続行し、前記第1循環ポンプ及び前記第2循環ポンプは停止することを特徴とする。
 本発明においては、水素が漏れた場合に、燃料電池のシステム全体を停止して水素の供給を停止するとともに、漏れた水素は希釈して外部に排気することができる。
 本発明に係る燃料電池は、前記発電部の流入側における前記第1熱媒体の温度を検出する第1温度検出器と、前記発電部の流出側における前記第1熱媒体の温度を検出する第2温度検出器とを備え、前記第1温度検出器、又は第2温度検出器により検出された温度に基づき、前記第1循環ポンプ、又は第2循環ポンプの出力を制御するように構成されていることを特徴とする。
 本発明においては、温度に基づいて、2つの循環ポンプの出力、即ち循環量を制御することにより、熱交換器で移動する熱量を制御することができる。ラジエータ通流路の循環量が多いほど、熱交換器で奪う熱量が増えるので、2つのポンプの出力を適宜に組み合わせることできめ細かく熱量を制御することができる。
 特許文献1の燃料電池においては、冷却水の温度が所定値未満である場合、冷却水がラジエータへの流路をバイパスするように構成されているが、この場合、閉ループとラジエータ流路との三方切換弁によるタイムラグが生じていたが、本発明の場合、タイムラグがない。
 そして、発電部の入側と出側の冷却水の温度差を管理することができるので、低温環境下でも、発電部の温度を安定させることができる。
 本発明に係る燃料電池は、前記第2温度検出器により検出される前記第1熱媒体の温度が所定値以下である場合に、前記第2循環ポンプの出力を減少させるように構成されていることを特徴とする。
 本発明においては、第2循環ポンプの出力を減少させることにより、熱交換器で奪う熱量を制限し、冷却水を冷やし過ぎることを防止する。
 本発明に係る燃料電池は、前記発電部冷却路、前記熱交換器、及び前記ラジエータ通流路は断熱材により覆われていることを特徴とする。
 本発明においては、外部との熱移動を制限できるので、熱量を制御しやすい。
 本発明に係る制御方法は、水素及び酸素を反応させて発電する発電部を第1循環ポンプにより第1熱媒体を循環させて冷却する発電部冷却路と、前記発電部により生じた熱をラジエータに伝導する第2熱媒体を第2循環ポンプにより循環させるラジエータ通流路と、前記第1熱媒体と前記第2熱媒体との間で熱交換を行う熱交換器とを備える燃料電池の前記熱交換を制御する制御方法であって、前記発電部の流入側における前記第1熱媒体の温度、又は前記発電部の流出側における前記第1熱媒体の温度を取得し、前記流入側、又は流出側における第1熱媒体の温度に基づき、前記第1循環ポンプ、又は第2循環ポンプの出力を制御することを特徴とする。
 本発明においては、温度に基づいて、2つの循環ポンプの出力、即ち循環量を制御することにより、熱交換器で移動する熱量を制御することができる。ラジエータ通流路の循環量が多いほど、熱交換器で奪う熱量が増えるので、2つのポンプの出力を適宜に組み合わせることできめ細かく熱量を制御することができる。特許文献1の燃料電池のように、閉ループとラジエータ流路との切り換えによるタイムラグも生じない。
 そして、発電部の入側と出側の冷却水の温度差を管理することができるので、低温環境下でも、発電部の温度を安定させることができる。
 本発明に係るコンピュータプログラムは、水素及び酸素を反応させて発電する発電部を第1循環ポンプにより第1熱媒体を循環させて冷却する発電部冷却路と、前記発電部により生じた熱をラジエータに伝導する第2熱媒体を第2循環ポンプにより循環させるラジエータ通流路と、前記第1熱媒体と前記第2熱媒体との間で熱交換を行う熱交換器とを備える燃料電池の前記熱交換を制御するコンピュータに、前記発電部の流入側における前記第1熱媒体の温度、又は前記発電部の流出側における前記第1熱媒体の温度を取得し、前記流入側、又は流出側における第1熱媒体の温度に基づき、前記第1循環ポンプ、又は第2循環ポンプの出力を制御する処理を実行させることを特徴とする。
 本発明においては、温度に基づいて、2つの循環ポンプの出力、即ち循環量を制御することにより、熱交換器で移動する熱量を制御することができる。ラジエータ通流路の循環量が多いほど、熱交換器で奪う熱量が増えるので、2つのポンプの出力を適宜に組み合わせることできめ細かく熱量を制御することができる。特許文献1の燃料電池のように、閉ループとラジエータ流路との切り換えによるタイムラグも生じない。
 そして、発電部の入側と出側の冷却水の温度差を管理することができるので、低温環境下でも、発電部の温度を安定させることができる。
 本発明は上述した実施の形態1及び2の内容に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。即ち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態も本発明の技術的範囲に含まれる。
 1 スタック
 2 水素通流路
 26 水素循環ポンプ
 3 空気流路
 30 エアポンプ
 4 スタック冷却路
 40 冷却ポンプ(第1循環ポンプ)
 41 温度センサ(第2温度検出器)
 42 温度センサ(第1温度検出器)
 43 イオン交換樹脂
 44 導電率計
 5 ラジエータ通流路
 50 放熱ポンプ(第2循環ポンプ)
 51 ラジエータ
 52 ファン
 6 ボンベ加熱路
 60 加熱ポンプ
 7 第1熱交換部
 70、80 熱交換器
 81 ヒータ
 9 制御部
 90 CPU
 10 水素検知センサ
 100 電池本体
 200 水素供給部
 20MHボンベ
 21 レギュレータ
 300、301

Claims (10)

  1.  水素及び酸素を反応させて発電する発電部を第1熱媒体の循環により冷却する発電部冷却路と、
     第2熱媒体がラジエータを通流して循環するラジエータ通流路と、
     前記発電部冷却路に設けられた第1循環ポンプと、
     前記ラジエータ通流路に設けられた第2循環ポンプと、
     前記第1熱媒体と前記第2熱媒体との間で熱交換を行う熱交換器と
     を備えることを特徴とする燃料電池。
  2.  前記第2熱媒体は不凍液であることを特徴とする請求項1に記載の燃料電池。
  3.  前記ラジエータを冷却し、換気を行い、水素が漏れた場合に水素を希釈して放出するファンを備えることを特徴とする請求項1又は2に記載の燃料電池。
  4.  前記発電部により発電を行っている場合に、前記ファンは回転することを特徴とする請求項3に記載の燃料電池。
  5.  水素の漏れを検知する水素センサを備え、
     前記水素センサにより水素の漏れを検知した場合に、
     前記ファンは回転を続行し、
     前記第1循環ポンプ及び前記第2循環ポンプは停止することを特徴とする請求項3又は4に記載の燃料電池。
  6.  前記発電部の流入側における前記第1熱媒体の温度を検出する第1温度検出器と、
     前記発電部の流出側における前記第1熱媒体の温度を検出する第2温度検出器と
     を備え、
     前記第1温度検出器、又は第2温度検出器により検出された温度に基づき、前記第1循環ポンプ、又は第2循環ポンプの出力を制御するように構成されていることを特徴とする請求項1から4までのいずれか1項に記載の燃料電池。
  7.  前記第2温度検出器により検出される前記第1熱媒体の温度が所定値以下である場合に、前記第2循環ポンプの出力を減少させるように構成されていることを特徴とする請求項6に記載の燃料電池。
  8.  前記発電部冷却路、前記熱交換器、及び前記ラジエータ通流路は断熱材により覆われていることを特徴とする請求項1から7までのいずれか1項に記載の燃料電池。
  9.  水素及び酸素を反応させて発電する発電部を第1循環ポンプにより第1熱媒体を循環させて冷却する発電部冷却路と、前記発電部により生じた熱をラジエータに伝導する第2熱媒体を第2循環ポンプにより循環させるラジエータ通流路と、前記第1熱媒体と前記第2熱媒体との間で熱交換を行う熱交換器とを備える燃料電池の前記熱交換を制御する制御方法であって、
     前記発電部の流入側における前記第1熱媒体の温度、又は前記発電部の流出側における前記第1熱媒体の温度を取得し、
     前記流入側、又は流出側における第1熱媒体の温度に基づき、前記第1循環ポンプ、又は第2循環ポンプの出力を制御することを特徴とする制御方法。
  10.  水素及び酸素を反応させて発電する発電部を第1循環ポンプにより第1熱媒体を循環させて冷却する発電部冷却路と、前記発電部により生じた熱をラジエータに伝導する第2熱媒体を第2循環ポンプにより循環させるラジエータ通流路と、前記第1熱媒体と前記第2熱媒体との間で熱交換を行う熱交換器とを備える燃料電池の前記熱交換を制御するコンピュータに、
     前記発電部の流入側における前記第1熱媒体の温度、又は前記発電部の流出側における前記第1熱媒体の温度を取得し、
     前記流入側、又は流出側における第1熱媒体の温度に基づき、前記第1循環ポンプ、又は第2循環ポンプの出力を制御する
     処理を実行させることを特徴とするコンピュータプログラム。
PCT/JP2016/071813 2015-09-17 2016-07-26 燃料電池、制御方法、及びコンピュータプログラム WO2017047235A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16846108.5A EP3352273A4 (en) 2015-09-17 2016-07-26 FUEL CELL, CONTROL METHOD AND COMPUTER PROGRAM
US15/914,454 US20180198139A1 (en) 2015-09-17 2018-03-07 Fuel cell, control method and computer readable recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-184505 2015-09-17
JP2015184505A JP6593057B2 (ja) 2015-09-17 2015-09-17 燃料電池、制御方法、及びコンピュータプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/914,454 Continuation US20180198139A1 (en) 2015-09-17 2018-03-07 Fuel cell, control method and computer readable recording medium

Publications (1)

Publication Number Publication Date
WO2017047235A1 true WO2017047235A1 (ja) 2017-03-23

Family

ID=58288828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071813 WO2017047235A1 (ja) 2015-09-17 2016-07-26 燃料電池、制御方法、及びコンピュータプログラム

Country Status (4)

Country Link
US (1) US20180198139A1 (ja)
EP (1) EP3352273A4 (ja)
JP (1) JP6593057B2 (ja)
WO (1) WO2017047235A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107390735A (zh) * 2017-08-17 2017-11-24 深圳市优品壹电子有限公司 温度控制方法及装置
JP7023680B2 (ja) * 2017-11-22 2022-02-22 ダイニチ工業株式会社 発電装置、制御装置および制御プログラム
JP7062993B2 (ja) * 2018-02-13 2022-05-09 トヨタ自動車株式会社 燃料電池の検査方法および検査システム
JP7047658B2 (ja) * 2018-08-07 2022-04-05 トヨタ自動車株式会社 燃料電池システム
US10998565B2 (en) * 2019-02-01 2021-05-04 Hyundai Motor Company System and method for controlling coolant temperature for fuel cell
FR3101483B1 (fr) * 2019-09-27 2021-10-29 Airbus Système de piles à combustible pour un aéronef
CN110828866B (zh) * 2019-11-15 2023-01-31 上海电气集团股份有限公司 车载燃料电池的冷却循环***及其控制方法
CN113745568B (zh) * 2021-11-08 2022-02-08 潍坊力创电子科技有限公司 一种整车热管理方法及***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100383A (ja) * 2000-09-25 2002-04-05 Honda Motor Co Ltd 燃料電池用冷却装置
JP2002117876A (ja) * 2000-10-12 2002-04-19 Honda Motor Co Ltd 燃料電池の冷却装置
JP2003168461A (ja) * 2001-11-30 2003-06-13 Aisin Seiki Co Ltd 燃料電池システムの換気方法および換気装置
US20040224201A1 (en) * 1998-09-22 2004-11-11 Ballard Power Systems Inc. Antifreeze cooling subsystem
JP2005108458A (ja) * 2003-09-26 2005-04-21 Nissan Motor Co Ltd 燃料電池の温度調整装置
JP2008147121A (ja) * 2006-12-13 2008-06-26 Toyota Motor Corp 燃料電池評価装置
JP2012104313A (ja) * 2010-11-09 2012-05-31 Honda Motor Co Ltd 燃料電池システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2792259B1 (fr) * 1999-04-15 2001-06-15 Valeo Thermique Moteur Sa Dispositif de refroidissement pour vehicule electrique a pile a combustible
JP3849375B2 (ja) * 1999-11-18 2006-11-22 松下電器産業株式会社 熱電併給装置
US20060166056A1 (en) * 2003-08-07 2006-07-27 Akinari Nakamura Fuel cell power generation system
JP2007043846A (ja) * 2005-08-04 2007-02-15 Toyota Motor Corp 移動体
JP5033327B2 (ja) * 2005-12-16 2012-09-26 株式会社Eneosセルテック 燃料電池熱電併給装置
JP2009187703A (ja) * 2008-02-04 2009-08-20 Aisin Seiki Co Ltd 燃料電池システム
JP2010004649A (ja) * 2008-06-19 2010-01-07 Honda Motor Co Ltd 燃料電池車両の換気装置
EP2352197B1 (en) * 2008-11-20 2014-08-20 Panasonic Corporation Fuel cell system
JP4761260B2 (ja) * 2009-05-28 2011-08-31 Toto株式会社 固体電解質型燃料電池
WO2018047259A1 (ja) * 2016-09-07 2018-03-15 日産自動車株式会社 燃料電池システム及びその制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040224201A1 (en) * 1998-09-22 2004-11-11 Ballard Power Systems Inc. Antifreeze cooling subsystem
JP2002100383A (ja) * 2000-09-25 2002-04-05 Honda Motor Co Ltd 燃料電池用冷却装置
JP2002117876A (ja) * 2000-10-12 2002-04-19 Honda Motor Co Ltd 燃料電池の冷却装置
JP2003168461A (ja) * 2001-11-30 2003-06-13 Aisin Seiki Co Ltd 燃料電池システムの換気方法および換気装置
JP2005108458A (ja) * 2003-09-26 2005-04-21 Nissan Motor Co Ltd 燃料電池の温度調整装置
JP2008147121A (ja) * 2006-12-13 2008-06-26 Toyota Motor Corp 燃料電池評価装置
JP2012104313A (ja) * 2010-11-09 2012-05-31 Honda Motor Co Ltd 燃料電池システム

Also Published As

Publication number Publication date
JP2017059453A (ja) 2017-03-23
US20180198139A1 (en) 2018-07-12
EP3352273A4 (en) 2019-06-26
JP6593057B2 (ja) 2019-10-23
EP3352273A1 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6593057B2 (ja) 燃料電池、制御方法、及びコンピュータプログラム
CN106941183B (zh) 燃料电池***和燃料电池车辆
KR102600177B1 (ko) 연료전지 시스템에서 결함에 대처하기 위한 방법
JP7340753B2 (ja) 燃料電池システム
JP2012155978A (ja) 燃料電池システム
KR20120084712A (ko) 전기화학 에너지 저장장치 및 전기화학 에너지 저장장치를 냉각 또는 가열하기 위한 방법
KR102550728B1 (ko) 연료전지 시스템에서 결함에 대처하기 위한 방법
CN114695915A (zh) 用于热管理的燃料电池***及其方法
JP7026324B2 (ja) 燃料電池システム
JP3643069B2 (ja) 燃料電池の冷却方法
US11362353B2 (en) Fuel cell, control method for fuel cell, and computer readable recording medium
KR102576221B1 (ko) 연료전지 시스템에서 냉각수 온도를 제어하기 위한 방법
WO2022024779A1 (ja) 燃料電池システム
WO2017154310A1 (ja) 燃料電池、燃料電池の制御方法、及びコンピュータプログラム
JP6071388B2 (ja) 燃料電池システムの冷却制御装置
JP2017182916A (ja) 燃料電池、推定方法及びコンピュータプログラム
JP5376585B2 (ja) 燃料電池システム
KR102595285B1 (ko) 연료전지 시스템에서 효율 개선을 위한 방법
JP2017182915A (ja) 燃料電池、燃料電池の制御方法、及びコンピュータプログラム
US20240063412A1 (en) Fuel cell system and thermal management method thereof
JP2005190881A (ja) 燃料電池の冷却装置
JP6540575B2 (ja) 燃料電池システムの制御方法
JP2010212120A (ja) 燃料電池システム
JP5531052B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2003288922A (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016846108

Country of ref document: EP