WO2017032155A1 - Procédé de préparation de suspension d'électrode négative de titanate de lithium de batterie au lithium - Google Patents

Procédé de préparation de suspension d'électrode négative de titanate de lithium de batterie au lithium Download PDF

Info

Publication number
WO2017032155A1
WO2017032155A1 PCT/CN2016/086292 CN2016086292W WO2017032155A1 WO 2017032155 A1 WO2017032155 A1 WO 2017032155A1 CN 2016086292 W CN2016086292 W CN 2016086292W WO 2017032155 A1 WO2017032155 A1 WO 2017032155A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
negative electrode
lithium titanate
viscosity
minutes
Prior art date
Application number
PCT/CN2016/086292
Other languages
English (en)
Chinese (zh)
Inventor
田东
Original Assignee
田东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田东 filed Critical 田东
Publication of WO2017032155A1 publication Critical patent/WO2017032155A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the patent relates to the field of lithium ion batteries, in particular to a preparation process and a method for a lithium titanate anode material slurry.
  • Lithium-ion batteries have the advantages of high energy density, small self-discharge, no memory effect, wide operating voltage range, long service life and no environmental pollution. They are the main power source for new energy vehicles.
  • Carbon materials have been widely used in lithium ion batteries because of their low cost, non-toxicity and superior electrochemical properties. Its interface state and fine structure have a great influence on electrode performance.
  • commercial lithium-ion battery carbon anode materials can be divided into lithium titanate, hard carbon and soft carbon.
  • graphite materials are still the mainstream of lithium-ion battery anode materials.
  • Graphite-based carbon materials which have the advantages of low lithium insertion/deintercalation potential, suitable reversible capacity, abundant resources, and low price, are ideal anode materials for lithium ion batteries. However, its theoretical specific capacity is only 372 mAh/g, which limits the further improvement of the specific energy of lithium-ion batteries and cannot meet the needs of the increasingly high-energy portable mobile power sources.
  • Li 4 Ti 5 O 12 is a new type of negative electrode material for lithium ion secondary batteries. Compared with other commercial materials, Li 4 Ti 5 O 12 has the advantages of good cycle performance, no reaction with electrolyte, high safety performance, and stable charge and discharge platform. It is one of the most excellent anode materials for lithium-ion batteries that has received much attention in recent years. Compared with carbon negative electrode materials, lithium titanate has many advantages.
  • the deintercalation of lithium ions in lithium titanate is reversible, and the crystal form of lithium ion in the process of inserting or extracting lithium titanate is not Changed, volume change is less than 1%, so it is called "zero strain material", which can avoid the structure damage caused by the back and forth expansion of the electrode material in the charge and discharge cycle, thereby improving the cycle performance and service life of the electrode, reducing the The number of cycles increases and the specific capacity is greatly attenuated, which has better cycle performance than the carbon negative electrode; however, since lithium titanate is an insulating material, its electrical conductivity is low, resulting in the rate performance in the application of lithium battery. Poor problem, while the theoretical specific capacity of lithium titanate material is 175mAh/g, the actual specific capacity is greater than 160mAh/g, and has the disadvantages of low gram capacity.
  • a lithium ion battery generally includes a positive electrode sheet, a negative electrode sheet, and a separator interposed between the positive electrode sheet and the negative electrode sheet.
  • the positive electrode tab includes a positive electrode current collector and a positive electrode film coated on the positive electrode current collector
  • the negative electrode plate includes a negative electrode current collector and is coated on the negative electrode set Negative film on the fluid.
  • an active material such as lithium cobaltate, graphite, etc.
  • a conductive agent such as acetylene black, carbon nanotubes, carbon fiber, etc.
  • a binder such as polyvinylidene fluoride, polyvinylpyrrolidone, Carboxymethylcellulose sodium, styrene-butadiene rubber emulsion, etc.
  • a solvent such as N-methylpyrrolidone, water, etc.
  • the performance of the electrode paste has an important influence on the performance of the lithium ion battery.
  • the effect of the active substance can be exerted during charging and discharging, and the average gram capacity is exerted. Will be improved to improve the performance of the full battery.
  • the conventional negative electrode slurry preparation method is to carry out the high-speed double-planetary dispersion of the conductive agent with the thickener solution, and then add the negative electrode active material, stir for a certain period of time, and then add the binder to pass through the line. The time was stirred to obtain the final negative electrode slurry.
  • This method firstly requires a long time treatment for the dispersion of the conductive agent, which takes a long time and is not ideal in the dispersion state, especially for the preparation of a slurry using a carbon nanotube (CNT), graphene or the like as a conductive agent; the second conventional process needs to be During the preparation of the slurry, the stirring system is kept under vacuum, which causes the internal temperature of the slurry system to rise easily, and at the same time, externally added circulating water for cooling, so the requirements and wear of the equipment are high.
  • the above results in low slurry preparation efficiency, poor stability, and unsatisfactory effect, which will affect the preparation of the subsequent pole piece and the performance of the lithium battery.
  • the object of the present invention is to provide a method for preparing a lithium battery lithium titanate negative electrode slurry, which can uniformly disperse the components of the slurry in a short time, and the prepared slurry has good uniformity and excellent stability. At the same time, the prepared battery sheet adhesion is improved, and thus the consistency of the battery and the electrochemical performance of the battery are improved.
  • the lithium titanate and the conductive agent are added to the mixing tank in proportion and stirred for 30 to 40 minutes, and at the end of the time 1/2 and at the end, the powder on the paddle and the barrel is scraped;
  • High-viscosity stirring adding 55% to 60% of the total amount of the thickener solution to the stirred powder, stirring and dispersing for 60 to 70 minutes, and at the time of 1/3, 2/3 and end When the slurry is scraped on the paddle and the barrel, the temperature of the slurry is controlled between 25 and 35 ° C;
  • Low-viscosity stirring add 35 to 30% of the total amount of the thickener solution to the above-mentioned high-viscosity stirred slurry, stir and disperse for 60 to 70 minutes, and at time 1/3, 2/3 and At the end, scrape the slurry on the paddle and the barrel, and control the temperature of the slurry. Between 25 and 35 ° C;
  • Viscosity test the viscosity of the slurry with low viscosity stirring in the above steps is tested for viscosity, such as in the normal range of 2000-5000 Mpa ⁇ S, directly into the next step; if it exceeds the above range, 5% of the total amount of thickener solution is added. ⁇ 10%, stir and disperse for a period of 30 to 40 minutes, and at time 1/2 and at the end, scrape the slurry on the paddle and the barrel, and then test the viscosity of the slurry to reach the viscosity range.
  • Next step the viscosity of the slurry with low viscosity stirring in the above steps is tested for viscosity, such as in the normal range of 2000-5000 Mpa ⁇ S, directly into the next step; if it exceeds the above range, 5% of the total amount of thickener solution is added. ⁇ 10%, stir and disperse for a period of 30 to 40 minutes, and at time 1/2 and at the end, scrape the
  • Adding binder adding binder SBR, stirring and dispersing, the time is 10 to 30 minutes;
  • Vacuum defoaming Under low-speed stirring state, the barrel is vacuumed, the degree of vacuum is -0.09 ⁇ -0.1MPa, and the time is 15-30 minutes, that is, the lithium titanate negative electrode slurry prepared by the method of the invention is obtained. .
  • lithium titanate is a mixture of one or both of lithium titanate prepared from anatase type titanium dioxide or rutile type titanium dioxide.
  • the conductive agent in the above step 2 is one or a mixture of conductive carbon black, conductive graphite, carbon nanotubes, carbon fibers, and graphene.
  • the mass ratio of each component of lithium titanate, conductive agent, thickener and binder is (90-97): (1-4): (1-5) : (1-3), the solvent is 80% to 120% of the total amount of each of the above components.
  • the agitation device is a dual planetary vacuum agitator, and the slurry temperature is controlled by a method of introducing a constant temperature circulating water to the planetary agitating barrel at a corresponding temperature.
  • the present invention has the following advantages:
  • the preparation time is short: the preparation time of the lithium titanate negative electrode slurry of the invention is about 265 to 380 minutes, and in the subsequent preparation process, the accumulation of the actual experience can omit the viscosity test step and directly enter the final vacuum elimination.
  • the bubble process can save 30 to 40 minutes. If there are multiple devices to prepare the thickener solution, it can save 60 to 100 minutes, compared with the conventional anode slurry preparation process for about 7 to 9 hours. Increased production efficiency;
  • equipment wear is small: the invention only needs to vacuum the barrel in the final vacuum defoaming process, compared with the traditional process in the slurry preparation process, the stirring system has been kept vacuuming, resulting in the stirring process The heat is difficult to dissipate, the temperature of the slurry is easy to rise, and the effect is substantially improved.
  • the short-time vacuum treatment reduces the burden on the equipment and reduces equipment wear;
  • the lithium titanate negative electrode slurry prepared by the invention has a solid content of about 45 to 55%, and has a high solid content and a low viscosity compared with the conventional preparation process, so the proportion of water used is Correspondingly, the energy consumption required for evaporation of water during subsequent coating is reduced;
  • the invention firstly stirs and disperses the negative electrode active material and the conductive agent to avoid agglomeration of the conductive agent in the slurry, and adopts high-viscosity stirring and dispersion in the early stage, and the mechanical force of the stirring paddle on the slurry (extrusion) , collision, friction) large, can play a good dispersion effect, and then use low viscosity mixing, so that the components are completely dispersed.
  • the lithium battery prepared by using the lithium battery lithium titanate negative electrode provided by the invention has low internal resistance, is not easy to generate heat, has high energy density, good cycle performance and long service life.
  • the preparation steps are as follows:
  • the negative electrode active material and the conductive agent are added to the stirring tank to be stirred and dispersed for 30 minutes, and the powder on the paddle and the barrel is scraped at the time of 15 minutes and 30 minutes;
  • the test result is 5332 Mpa ⁇ S, the value of the normal range is 5%, the total amount of the solvent is added, and the dispersion is stirred for 30 minutes, and the time is 15 minutes. And 30 minutes, scrape the slurry on the paddle and the barrel, and then test the viscosity of the slurry.
  • the test result is 4215Mpa ⁇ S, which meets the viscosity range requirement;
  • the barrel is vacuumed, the degree of vacuum is -0.09 ⁇ -0.1MPa, and the time is 15 minutes, that is, the lithium titanate negative electrode slurry prepared by the method of the invention is obtained, and the total consumption time is about 265. minute.
  • the lithium titanate negative electrode slurry is coated, dried, rolled, and cut into negative electrode sheets, and then assembled with lithium iron phosphate positive electrode sheets, separators, electrolytes, and battery casings. After the charge and discharge activation, a 18650 type cylindrical lithium iron phosphate battery with an initial design capacity of 1350 mA was obtained.
  • the preparation takes about 7 hours, and according to the conventional production process of the lithium battery, a cylindrical lithium iron phosphate battery of 18650 type with an initial design capacity of 1350 mA is obtained.
  • Example 1 The electrical properties of the 18650-type cylindrical lithium iron phosphate battery prepared in Example 1 and Comparative Example 1 were tested and charged and discharged at 1 C, and the cycle capacity retention rate was 1000 times.
  • Example 1 was 98.14%
  • Comparative Example 1 was 96.85%
  • the energy density and internal resistance test comparison results are shown in Table 1.
  • the preparation steps are as follows:
  • the negative electrode active material and the conductive agent are added to the stirring tank to be stirred and dispersed for 40 minutes, and the powder on the paddle and the barrel is scraped at the time of 20 minutes and 40 minutes;
  • the barrel is vacuumed, the degree of vacuum is -0.09 ⁇ -0.1MPa, and the time is 30 minutes, that is, the lithium titanate negative electrode slurry prepared by the method of the invention is obtained, and the total consumption time is about 360. minute.
  • the lithium titanate negative electrode slurry is coated, dried, rolled, and cut into negative electrode sheets, and then assembled with lithium cobaltate positive electrode sheets, separators, electrolytes, and battery casings. After the charge and discharge were activated, a 18650 type cylindrical battery with an initial design capacity of 1600 mA was obtained.
  • the preparation takes about 7.5 hours, and according to the conventional production process of the lithium battery, a cylindrical type battery of 18650 type and an initial design capacity of 1600 mA is obtained.
  • Example 2 The electrical properties of the 18650-type cylindrical battery prepared in Example 2 and Comparative Example 2 were tested and charged and discharged at 1 C, and the cycle capacity retention rate was 1000 times, and Example 2 was 97.23%, and Comparative Example 2 was 93.23%.
  • the energy density and internal resistance test comparison results are shown in Table 1.
  • the lithium battery prepared by using the lithium titanate negative electrode slurry prepared by the method of the present invention has higher energy density than the lithium battery produced by the conventional negative electrode slurry production process, and has an internal resistance. Both are lower than the lithium battery produced by the conventional negative electrode slurry production process.

Abstract

L'invention concerne un procédé de préparation d'une suspension d'électrode négative de titanate de lithium de batterie au lithium. Les divers composants de la suspension sont uniformément dispersés au cours d'un temps relativement court par l'intermédiaire d'étapes telles que la préparation d'une solution épaississante, la dispersion de poudre, l'agitation à viscosité élevée, l'agitation à faible viscosité, le test de viscosité, l'ajout de liant et le démoussage sous vide. La suspension préparée a une bonne uniformité et une excellente stabilité, et l'adhérence d'une pièce polaire de batterie préparée est améliorée, ce qui permet d'améliorer la consistance d'une batterie et les performances électrochimiques de la batterie. Le procédé de préparation présente des avantages tels qu'un court temps de préparation, une faible usure du matériel, une faible consommation d'énergie lors de la production et un bon effet de dispersion. Une batterie au lithium fabriquée à partir de la suspension d'électrode négative de titanate de lithium de batterie au lithium préparée a une faible résistance interne, ne produit pars facilement de chaleur, et présente une densité d'énergie élevée, une bonne performance de cycle et une longue durée de vie.
PCT/CN2016/086292 2015-08-25 2016-06-17 Procédé de préparation de suspension d'électrode négative de titanate de lithium de batterie au lithium WO2017032155A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510529085.7 2015-08-25
CN201510529085.7A CN105161675A (zh) 2015-08-25 2015-08-25 一种锂电池钛酸锂负极浆料的制备方法

Publications (1)

Publication Number Publication Date
WO2017032155A1 true WO2017032155A1 (fr) 2017-03-02

Family

ID=54802483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086292 WO2017032155A1 (fr) 2015-08-25 2016-06-17 Procédé de préparation de suspension d'électrode négative de titanate de lithium de batterie au lithium

Country Status (2)

Country Link
CN (1) CN105161675A (fr)
WO (1) WO2017032155A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110380000A (zh) * 2019-08-14 2019-10-25 北方奥钛纳米技术有限公司 钛酸锂负极电极片的制备方法及钛酸锂负极材料比容量的测试方法
CN113823762A (zh) * 2021-09-16 2021-12-21 湖北亿纬动力有限公司 一种负极浆料的混合方法、电池制备方法以及用途
CN114212766A (zh) * 2021-11-04 2022-03-22 湖南金硅科技有限公司 一种补锂改性硅材料及其制备方法和应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161675A (zh) * 2015-08-25 2015-12-16 田东 一种锂电池钛酸锂负极浆料的制备方法
CN106058259B (zh) * 2016-01-21 2018-07-27 万向一二三股份公司 一种高比容量硅基负极复合粘结剂及含有该粘结剂的负极片的制备方法
CN107834048A (zh) * 2017-11-24 2018-03-23 深圳市比克动力电池有限公司 钛酸锂电池负极浆料及其制备方法
CN108172756B (zh) * 2018-01-31 2020-07-14 北京国能电池科技股份有限公司 负极浆料的制备方法
CN109728272B (zh) * 2018-12-19 2022-07-22 南昌卡耐新能源有限公司 一种锂电池正极制浆工艺
CN110165157B (zh) * 2019-04-22 2022-03-18 河南电池研究院有限公司 一种含碳纳米管的钛酸锂浆料的均匀混料方法
CN112531202A (zh) * 2020-12-04 2021-03-19 上海普澜特夫精细化工有限公司 一种含多孔材料的电极浆料的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694872A (zh) * 2009-10-21 2010-04-14 保定风帆新能源有限公司 一种锂离子电池浆料混合制备方法
CN102403531A (zh) * 2011-11-15 2012-04-04 山东精工电子科技有限公司 一种高倍率磷酸铁锂电池及其制备方法
CN102856556A (zh) * 2012-08-23 2013-01-02 青岛瀚博电子科技有限公司 水系钛酸锂动力型电池负极浆料的制备方法
CN102891283A (zh) * 2011-07-22 2013-01-23 湖北骆驼特种电源有限公司 锂离子动力电池负极干混配料工艺
CN103872288A (zh) * 2014-03-17 2014-06-18 山东润峰集团新能源科技有限公司 一种锂离子电池负极浆料的制备方法
CN105140521A (zh) * 2015-08-24 2015-12-09 深圳市斯诺实业发展有限公司 一种锂电池负极浆料的制备方法
CN105161675A (zh) * 2015-08-25 2015-12-16 田东 一种锂电池钛酸锂负极浆料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102916166B (zh) * 2012-10-16 2015-03-11 彩虹集团公司 一种锂离子电池浆料的制备方法
CN104681785A (zh) * 2015-02-12 2015-06-03 山东精工电子科技有限公司 锂离子电池负极涂覆材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694872A (zh) * 2009-10-21 2010-04-14 保定风帆新能源有限公司 一种锂离子电池浆料混合制备方法
CN102891283A (zh) * 2011-07-22 2013-01-23 湖北骆驼特种电源有限公司 锂离子动力电池负极干混配料工艺
CN102403531A (zh) * 2011-11-15 2012-04-04 山东精工电子科技有限公司 一种高倍率磷酸铁锂电池及其制备方法
CN102856556A (zh) * 2012-08-23 2013-01-02 青岛瀚博电子科技有限公司 水系钛酸锂动力型电池负极浆料的制备方法
CN103872288A (zh) * 2014-03-17 2014-06-18 山东润峰集团新能源科技有限公司 一种锂离子电池负极浆料的制备方法
CN105140521A (zh) * 2015-08-24 2015-12-09 深圳市斯诺实业发展有限公司 一种锂电池负极浆料的制备方法
CN105161675A (zh) * 2015-08-25 2015-12-16 田东 一种锂电池钛酸锂负极浆料的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110380000A (zh) * 2019-08-14 2019-10-25 北方奥钛纳米技术有限公司 钛酸锂负极电极片的制备方法及钛酸锂负极材料比容量的测试方法
CN113823762A (zh) * 2021-09-16 2021-12-21 湖北亿纬动力有限公司 一种负极浆料的混合方法、电池制备方法以及用途
CN114212766A (zh) * 2021-11-04 2022-03-22 湖南金硅科技有限公司 一种补锂改性硅材料及其制备方法和应用
CN114212766B (zh) * 2021-11-04 2024-02-13 湖南金硅科技有限公司 一种补锂改性硅材料及其制备方法和应用

Also Published As

Publication number Publication date
CN105161675A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
WO2017031885A1 (fr) Procédé de préparation de boue d'électrode négative de batterie au lithium
WO2017032154A1 (fr) Procédé de préparation d'une suspension de graphite de cathode pour accumulateur au lithium
WO2017032155A1 (fr) Procédé de préparation de suspension d'électrode négative de titanate de lithium de batterie au lithium
WO2017031884A1 (fr) Procédé de préparation de boue d'électrode positive de batterie au lithium
WO2017032144A1 (fr) Procédé de préparation de suspension de cathode de phosphate de lithium-fer
CN106207129B (zh) 一种高倍率锂离子电池正极浆料的制备方法
WO2017031943A1 (fr) Procédé de préparation de pâte d'électrode négative pour pile au lithium dopée à la poudre de silice de haute capacité
WO2017032167A1 (fr) Procédé de préparation de suspension d'électrode positive d'oxyde de lithium et de cobalt
WO2017032166A1 (fr) Procédé de préparation de suspension épaisse d'électrode négative de pile au lithium dopée avec de la poudre d'étain
CN107204446B (zh) 锂离子电池正极材料及其制备方法
WO2017032165A1 (fr) Procédé de préparation de suspension épaisse d'électrode positive à base de manganate de lithium
WO2016201940A1 (fr) Procédé de préparation de matériau d'anode composite à base de carbone/graphite
CN104795541B (zh) 一种锂离子电池负极浆料制备方法
CN103199258A (zh) 锂离子电池正极材料、正极制备方法及锂离子电池
CN107104227B (zh) 锂离子电池正极材料及其制备方法
CN107316992B (zh) 钛酸锂负极材料及其制备方法
WO2016202167A1 (fr) Suspension d'électrode négative de titanate de lithium pour batteries au lithium-ion et son procédé de préparation
WO2016206548A1 (fr) Procédé de préparation de matériau d'électrode négative modifié haute tension pour pile au lithium
CN112186140B (zh) 应用于硅碳负极的硅基活性复合导电浆料及负极合浆方法
WO2017107806A1 (fr) Procédé de préparation d'une pâte d'électrode positive pour batterie au lithium-ion
WO2016201982A1 (fr) Pâte d'anode au graphite de pile lithium-ion et son procédé de préparation
WO2016202164A1 (fr) Procédé de préparation pour préparer un matériau d'électrode négative de carbone/graphite/étain composite
CN112271285A (zh) 一种锂离子电池正极浆料的制备工艺
CN114497508A (zh) 一种功率型人造石墨复合材料及其制备方法
CN105870401A (zh) 石墨烯作为导电剂用于锂离子电池负极浆料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 16838415

Country of ref document: EP

Kind code of ref document: A1