WO2017026491A1 - モータ - Google Patents

モータ Download PDF

Info

Publication number
WO2017026491A1
WO2017026491A1 PCT/JP2016/073479 JP2016073479W WO2017026491A1 WO 2017026491 A1 WO2017026491 A1 WO 2017026491A1 JP 2016073479 W JP2016073479 W JP 2016073479W WO 2017026491 A1 WO2017026491 A1 WO 2017026491A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil lead
wire
lead wires
coil
insulating
Prior art date
Application number
PCT/JP2016/073479
Other languages
English (en)
French (fr)
Inventor
幸祐 小川
服部 隆志
俊輔 村上
剛央 新子
英博 芳賀
佳明 山下
貴裕 木津
俊哉 岡本
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to DE112016003666.3T priority Critical patent/DE112016003666T5/de
Priority to US15/750,858 priority patent/US10903711B2/en
Priority to CN201680047039.6A priority patent/CN107925301B/zh
Priority to JP2017534471A priority patent/JP6717309B2/ja
Priority to KR1020187003891A priority patent/KR102010797B1/ko
Publication of WO2017026491A1 publication Critical patent/WO2017026491A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/38Windings characterised by the shape, form or construction of the insulation around winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/161Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/06Machines characterised by the wiring leads, i.e. conducting wires for connecting the winding terminations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/09Machines characterised by wiring elements other than wires, e.g. bus rings, for connecting the winding terminations

Definitions

  • the present invention relates to a motor.
  • the coil lead wire is drawn from the stator.
  • the coil lead wire is connected to a control device, a bus bar unit, or the like (see, for example, Patent Documents 1 and 2).
  • Examples of the coil included in the stator include a power feeding coil and a neutral point coil.
  • the power supply coil is connected to an external control device.
  • the neutral point coil is connected to other neutral point coils. In such a connection structure, the coil lead wire needs to be routed to the connection destination while ensuring electrical insulation from the peripheral members.
  • An object of the present invention is to provide a motor capable of routing a coil lead wire to a connection destination while ensuring electrical insulation from peripheral members.
  • a motor includes a rotor having a shaft centered on a central axis extending in the up-down direction, a stator disposed to face the rotor in a radial direction, and a bearing that supports the shaft.
  • a wire support member disposed above the stator, and a bearing holder disposed above the wire support member and holding the bearing, wherein the stator is provided on the plurality of teeth and the plurality of teeth.
  • a plurality of coils, and the wire support member includes a wire holding portion for holding a part of the coil lead line out of the coil lead line drawn from the coil, and another part of the coil lead out.
  • a motor capable of routing a coil lead wire to a connection destination while ensuring electrical insulation from peripheral members.
  • FIG. 1 is a cross-sectional view showing the motor of this embodiment.
  • FIG. 2 is a perspective view showing a wire support member and a stator in the motor of FIG.
  • FIG. 3 is a perspective view showing a bearing holder and a stator unit in the motor of FIG.
  • FIG. 4 is a perspective view showing a bus bar unit and a stator unit in the motor of FIG.
  • FIG. 5 is a partial perspective view showing another aspect of the wire holding portion in the motor of FIG. 6 is a perspective view showing a wire support member of Modification 1 of the motor of FIG.
  • FIG. 7 is a perspective view showing a state where the upper support member of the wire support member of FIG. 6 is removed.
  • FIG. 8 is a perspective view showing a wire support member of Modification 2 of the motor of FIG.
  • FIG. 9 is a partial cross-sectional view showing a motor of Modification 3 of the present embodiment.
  • FIG. 10 is a partial cross-sectional view showing a motor of Modification 4 of the present embodiment.
  • FIG. 11 is a partial cross-sectional view showing a motor of Modification 5 of the present embodiment.
  • FIG. 12 is a perspective view showing a portion of the motor of Modification 6 of the present embodiment.
  • FIG. 13 is a perspective view showing a portion of the motor of Modification 6 of the present embodiment, and is a partially enlarged view of FIG.
  • FIG. 14 is a schematic diagram of a three-phase circuit formed by the coil group of Modification 6 of the present embodiment.
  • FIG. 15 is a plan view showing a stator unit of Modification 6 of the present embodiment.
  • FIG. 16 is a perspective view showing a portion of a motor according to Modification 6 of the present embodiment.
  • FIG. 17 is a perspective view showing a portion of a motor according to Modification 7 of the present embodiment.
  • FIG. 18 is a perspective view showing a portion of a motor according to Modification 8 of the present embodiment.
  • FIG. 19 is a perspective view showing a portion of the motor of Modification 9 of the present embodiment.
  • the direction in which the central axis J extends is the vertical direction.
  • the vertical direction in the present specification is simply a name used for explanation, and does not limit the actual positional relationship or direction of the motor.
  • a direction parallel to the central axis J is simply referred to as an “axial direction”
  • a radial direction centered on the central axis J is simply referred to as a “radial direction”
  • a circumference centered on the central axis J is referred to.
  • the direction (around the central axis J) is simply referred to as “circumferential direction”.
  • “extending in the axial direction” includes not only strictly extending in the axial direction but also extending in a direction inclined by less than 45 ° with respect to the axial direction. Further, in this specification, “extending in the radial direction” means strictly in the range of less than 45 ° with respect to the radial direction in addition to the case of extending in the radial direction, that is, the direction perpendicular to the axial direction. Including the case of extending in an inclined direction.
  • FIG. 1 is a cross-sectional view showing a motor 10 of the present embodiment.
  • FIG. 2 is a perspective view showing a wire support member and a stator.
  • FIG. 3 is a perspective view showing the bearing holder and the stator unit.
  • FIG. 4 is a perspective view showing the bus bar unit and the stator unit.
  • the motor 10 includes a housing 20, a rotor 30, a stator 40, a wire support member 70, a bearing holder 55, a bearing, and a bus bar unit 60.
  • the bearing includes an upper bearing 51 and a lower bearing 52.
  • the bus bar unit 60, the bearing holder 55, the wire support member 70, and the stator 40 are arranged in this order from the upper side to the lower side.
  • the motor 10 has a control device accommodation area 20 ⁇ / b> A capable of accommodating at least a part of the control device 100 on the upper side of the bus bar unit 60.
  • the motor 10 is a three-phase motor having a U phase, a V phase, and a W phase.
  • the housing 20 includes a cylindrical portion 21 extending in the vertical direction, a bottom wall portion 23 positioned at the lower end of the cylindrical portion 21, and an opening 20a that opens upward.
  • a stator 40 and a bearing holder 55 are fixed to the inner surface of the housing 20 in order from the lower side.
  • the cylinder portion 21 has a cylindrical shape centered on the central axis J.
  • the cylindrical portion 21 has an inner peripheral surface 20b that holds the stator 40, an inner peripheral surface 20c that holds the bearing holder 55, and an inner peripheral surface 20d of the control device housing region 20A that houses a part of the control device 100.
  • the inner diameter of the inner peripheral surface 20d is larger than the inner diameter of the inner peripheral surface 20c.
  • the inner diameter of the inner peripheral surface 20c is larger than the inner diameter of the inner peripheral surface 20b. That is, the housing 20 has an inner surface shape in which the inner diameter decreases as going from the opening 20a to the back side (the bottom wall portion 23 side).
  • the inner diameter of the inner peripheral surface 20c is different from the inner diameter of the inner peripheral surface 20d.
  • the housing 20 has an inclined surface 20e that connects the inner peripheral surface 20c and the inner peripheral surface 20d.
  • the inner diameter becomes smaller toward the lower side in the axial direction. That is, the distance in the radial direction between the central axis J and the inclined surface 20e gradually decreases as it goes downward in the axial direction.
  • the cross-sectional shape of the inclined surface 20e is desirably a linear shape or a curved shape.
  • the housing 20 does not necessarily have the inclined surface 20e.
  • the inner peripheral surface 20c and the inner peripheral surface 20d may be connected in the axial direction via a step portion.
  • the housing 20 has a shelf surface 20f.
  • the shelf surface 20f is disposed between the inner peripheral surface 20b and the inner peripheral surface 20c, and extends in the circumferential direction facing the opening 20a.
  • the shelf surface 20f is a receiving surface that supports the bearing holder 55 in the axial direction. With this configuration, the housing 20 can hold the bearing holder 55 in a predetermined position with high accuracy in the axial direction.
  • the shape of the cylindrical portion 21 is not limited to a cylindrical shape. As long as the inner peripheral surface of the cylindrical portion 21 is a shape that can hold the stator 40 and the bearing holder 55, the outer shape of the cylindrical portion 21 may be, for example, a box shape. Further, the outer shape of the cylindrical portion 21 may be a shape combining a cylindrical shape and a box shape. The stator 40 or the bearing holder 55 may be held by a part of the inner surface of the cylindrical portion 21 in the circumferential direction.
  • the bottom wall portion 23 is disposed below the stator 40.
  • the bottom wall portion 23 has a bearing holding portion 23 a and an output shaft hole 22.
  • the bearing holding portion 23 a holds the lower bearing 52.
  • the output shaft hole 22 penetrates the bottom wall portion 23 in the axial direction.
  • the rotor 30 has a shaft 31.
  • the shaft 31 extends along a central axis J that extends in the vertical direction.
  • the rotor 30 rotates in the circumferential direction around the central axis J together with the shaft 31.
  • the lower end of the shaft 31 protrudes to the lower side of the housing 20 through the output shaft hole 22.
  • the upper bearing 51 and the lower bearing 52 support the shaft 31 so as to be rotatable around the central axis J.
  • the bearing holding portion 23 a holds the lower bearing 52 on the lower side of the stator 40.
  • the bearing holder 55 holds the upper bearing 51 on the upper side of the stator 40.
  • the stator 40 is located outside the rotor 30 in the radial direction.
  • the stator 40 includes a stator core 41, an insulator 42, and a coil 43.
  • the stator core 41 has an annular shape centered on the central axis J.
  • the stator core 41 has a plurality of teeth 41a.
  • the insulator 42 is attached to the teeth 41a.
  • the coil 43 is constituted by a conducting wire wound around the insulator 42.
  • the coil 43 is arrange
  • the outer peripheral surface of the stator 40 is fixed to the inner peripheral surface 20 b of the housing 20.
  • the wire support member 70 includes a first conductive member 71, a second conductive member 72, a plurality of wire holding portions 75, and a main body portion 73. In the present embodiment, the number of wire holding parts is six.
  • the wire support member 70 is disposed on the stator 40.
  • the neutral point of the coil is connected to the first conductive member 71 and the second conductive member 72.
  • the first conduction member 71 is referred to as a first neutral point bus bar 71
  • the second conduction member 72 is referred to as a second neutral point bus bar 72.
  • the main body 73 is annular and is disposed on the upper side of the stator 40.
  • the main body 73 has a plurality of legs 73a extending downward in the axial direction.
  • the wire support member 70 is supported on the stator 40 by fitting the leg portion 73a into the attachment groove 42a of the insulator 42.
  • the main body 73 is made of an insulating material such as resin.
  • the wire holding part 75 is disposed on the inner periphery of the main body part 73.
  • the wire holding part 75 has a support wall part 75a and a concave part 75b.
  • the support wall portion 75 a protrudes upward from the main body portion 73.
  • the recess 75b opens to the inside of the support wall 75a in the radial direction.
  • the six wire holding portions 75 are arranged in two at three locations every 120 ° in the circumferential direction.
  • the wire holding part 75 can also be arrange
  • the arrangement and the number of the wire holding portions 75 can be changed as appropriate in consideration of the number of coil lead wires to be described later, the lead positions of the coil lead wires, and the like.
  • the main body 73 has notches 73b and 73c having fan-shaped outer shapes in plan view.
  • the notches 73b and 73c are arranged at two locations on the outer periphery of the main body 73.
  • Each of the first neutral point bus bar 71 and the second neutral point bus bar 72 has three U-shaped connection terminals 71a and 72a and one through hole 71b and 72b.
  • the first neutral point bus bar 71 and the second neutral point bus bar 72 are arranged on the outer peripheral side of the main body portion 73 with respect to the wire holding portion 75. When viewed from the axial direction, the first neutral point bus bar 71 and the second neutral point bus bar 72 are exposed from the notches 73b and 73c.
  • the main body 73 has projections 73d and 73e protruding in the axial direction.
  • the protrusions 73 d and 73 e are disposed on the outer peripheral side of the main body 73.
  • the circumferential positions of the protrusions 73d and 73e are the same as the circumferential positions of the notches 73b and 73c.
  • the protrusions 73d and 73e are fitted into the through holes 71b and 72b of the first neutral point bus bar 71 and the second neutral point bus bar 72, and then heated to melt and solidify. Thereby, the first neutral point bus bar 71 and the second neutral point bus bar 72 are fixed to the main body 73.
  • the first neutral point bus bar 71 and the second neutral point bus bar 72 may be disposed on the inner peripheral portion of the main body 73 together with the notches 73b and 73c.
  • the stator 40 has twelve coil lead wires 91A to 91C, 91a to 91c, 92A to 92C, and 92a to 92c extending from the plurality of coils 43.
  • the coil lead wires 91A to 91C and 92A to 92C are routed on the upper side of the stator 40, bent upward in the axial direction starting from the recess 75b of the wire holding portion 75, and held by the wire holding portion 75.
  • the circumferential width at the radially inner opening of the recess 75 b is smaller than the wire diameter of the coil 43.
  • the inner diameter at the radially outer portion of the recess 75 b is substantially the same as the wire diameter of the coil 43.
  • the opening portion expands due to elastic deformation, and the coil lead wires 91A to 91C and 92A to 92C are inside the recess 75b. After being accommodated in the opening, the opening is restored. In this way, the coil 43 is held by the wire holding part 75.
  • the coil lead wires 91A to 91C and 92A to 92C held by the wire holding portion 75 protrude upward in the axial direction from the recess 75b.
  • the coil 43 has a certain rigidity. Therefore, the coil lead wires 91A to 91C and 92A to 92Cf protruding from the wire holding portion 75 do not fall down or greatly deviate.
  • the coil lead wires 91a to 91c are connected to the connection terminal 71a of the first neutral point bus bar 71.
  • the coil lead wires 92 a to 92 c are connected to the connection terminal 72 a of the second neutral point bus bar 72.
  • the coil lead wires 91A to 91C are wirings for power supply of each phase (U phase, V phase, W phase).
  • the coil lead wires 91a to 91c are wires for connecting neutral points corresponding to the coil lead wires 91A to 91C.
  • the coil lead wires 92A to 92C are power supply wires for each phase.
  • the coil lead wires 92a to 92c are neutral point connection wires corresponding to the coil lead wires 92A to 92C.
  • the insulating tube 98 that is an insulating member is attached to the coil lead wire drawn out from the coil 43.
  • the insulating tube 98 includes coil lead wires 91A to 91C, 91a to 91c, 92A to 92C, 92a to 92c extending along the lower surface of the wire support member 70, and coil lead wires 91A to 91C, 91a to 91c, and 92A to 92C. , 92a to 92c and the coil 43 are electrically insulated from each other.
  • the coil lead wire drawn out from the coil 43 may be electrically insulated by an insulating member other than the insulating tube 98.
  • the bearing holder 55 has a substantially disk shape and is disposed on the upper side of the stator 40.
  • the bearing holder 55 holds the upper bearing 51.
  • the bearing holder 55 is held on the inner peripheral surface 20c of the housing 20 by an interference fit.
  • the bearing holder 55 is fixed to the inner peripheral surface 20b by shrink fitting. Shrink fitting is a fitting method included in an interference fit.
  • the bearing holder 55 may be fixed to the inner peripheral surface 20b of the housing 20 by other methods such as press fitting.
  • the bearing holder 55 can be fixed to the housing 20 without using a fixing member such as a C ring, and the number of parts of the motor 10 can be reduced. If the bearing holder 55 is fixed to the housing 20 using a C-ring, it is necessary to provide a groove for holding the C-ring on the inner peripheral surface 20b of the housing 20. However, since it is not necessary to provide the said groove
  • the bearing holder 55 has an inner cylinder portion 55a, an outer cylinder portion 55b, and a connecting portion 55c.
  • the inner cylinder part 55 a holds the upper bearing 51.
  • the outer cylinder part 55 b is fitted to the inner cylinder part 55 a and the inner peripheral surface 20 b of the housing 20.
  • the connection part 55c connects the inner cylinder part 55a and the outer cylinder part 55b.
  • the connecting portion 55c includes an intermediate cylindrical portion 55d, an inner connecting portion 55e, and an outer connecting portion 55f.
  • the intermediate cylinder portion 55d has a cylindrical shape and is located between the inner cylinder portion 55a and the outer cylinder portion 55b.
  • the inner connecting portion 55e has an annular shape.
  • the inner connection part 55e connects the lower end of the intermediate cylinder part 55d and the outer peripheral surface of the inner cylinder part 55a.
  • the outer connecting portion 55f has an annular shape.
  • the outer connecting portion 55f connects the upper end of the inner connecting portion 55e and the upper end of the outer cylindrical portion 55b.
  • the radially inner end of the connecting portion 55c is bent downward in the axial direction, extends toward the radially inner side, and is connected to the inner cylindrical portion 55a.
  • a gap is formed between the inner cylindrical portion 55a and the connecting portion 55c. Therefore, the inner cylinder part 55a and the connection part 55c can be elastically deformed in the radial direction. Therefore, the bearing holder 55 and the housing 20 expand and contract due to a temperature change during the assembly of the motor 10 or when the motor 10 is used, and an excessive pushing force is applied to the fitting portion between the bearing holder 55 and the housing 20 or the upper bearing 51. Even when pressure is applied, the pressing force is absorbed by the elastic deformation of the inner cylindrical portion 55a and the connecting portion 55c. Therefore, a decrease in the fixing strength between the bearing holder 55 and the housing 20 can be suppressed, and the upper bearing 51 can support the shaft 31 so as to be able to rotate smoothly.
  • the bearing holder 55 has a plurality of through holes 56a to 56c and 57a to 57c that penetrate the bearing holder 55 in the axial direction.
  • the plurality of through holes 56a to 56c and 57a to 57c are disposed in the outer connecting portion 55f.
  • the coil lead wires 91A, 91B, 91C pass through the corresponding through holes 56a, 56b, 56c, respectively, and extend to the upper side of the bearing holder 55.
  • the coil lead wires 92A, 92B, and 92C extend through the corresponding through holes 57a, 57b, and 57c to the upper side of the bearing holder 55, respectively.
  • the inner diameters of the openings of the through holes 56 a and 56 c are larger than the outer diameter of the wire holding part 75.
  • the connection part of the coil leader lines 91a, 91b, and 92c for connecting the neutral point and the connection terminals 71a and 72a can be kept electrically insulated from the bearing holder 55.
  • the configuration of the through holes 56d and 56e arranged in the bearing holder 55 is also the same as that of the through holes 56a and 56c, and thus the description thereof is omitted.
  • the bearing holder 55 is preferably made of a metal material.
  • the bearing holder 55 has three recesses 58 on the upper surface of the outer edge portion of the bearing holder 55.
  • the concave portion 58 is provided on the upper surface of the bearing holder 55 by performing pressure processing (for example, caulking processing) using a pin or the like.
  • pressure processing for example, caulking processing
  • the pressing process is performed on the bearing holder 55, the pressed portion of the upper surface of the bearing holder 55 is plastically deformed to form the recess 58, and the pressing that protrudes radially outward from the outer surface of the bearing holder 55.
  • a portion 59 is formed.
  • the bearing holder 55 is disposed in the housing 20, the inner peripheral surface 20 c of the housing 20 can be locally pressed by the pressing portion 59.
  • the bearing holder 55 is fixed to the inner peripheral surface 20c by shrink fitting and caulking.
  • the pressing portion 59 for the portion of the bearing holder 55 that is tightly fitted to the housing 20 By disposing the pressing portion 59 for the portion of the bearing holder 55 that is tightly fitted to the housing 20, the pressing force between the housing 20 and the bearing holder 55 is locally increased, and the fastening strength of both members is further increased. be able to.
  • At least one of the recesses 58 is disposed in the vicinity of the through holes 56a to 56c.
  • the recess 58 is disposed in the vicinity of the through hole 56a and in the vicinity of the through hole 56b.
  • the distance between the through-holes 56a and 56b and the concave portion 58 in the vicinity is within 15 ° in the circumferential direction with respect to the central axis J.
  • the recess 58 is formed by plastic deformation. Therefore, the strength of the member at the position where the recess 58 is formed is improved.
  • the strength of the bearing holder 55 tends to decrease.
  • the recess 58 is disposed in the vicinity of the through holes 56a to 56c, the strength in the vicinity of the through holes 56a to 56c can be ensured.
  • the linear expansion coefficient of the material constituting the bearing holder 55 is equivalent to the linear expansion coefficient of the material constituting the housing 20. With this configuration, the expansion amount and the contraction amount of the housing 20 and the bearing holder 55 become the same with respect to the temperature change after the bearing holder 55 is assembled to the housing 20. Therefore, the attachment of the bearing holder 55 to the housing 20 is difficult to loosen.
  • the material of the bearing holder 55 is, for example, aluminum or an aluminum alloy.
  • the material of the housing 20 is, for example, aluminum or an aluminum alloy.
  • the material of the bearing holder 55 and the housing 20 may be other types of materials.
  • the bus bar unit 60 includes phase bus bars 61a to 61c, 62a to 62c, and a bus bar holder 65.
  • the bus bar holder 65 holds the phase bus bars 61a to 61c and 62a to 62c.
  • the bus bar holder 65 has three through holes 65A, 65B, 65C that penetrate the bus bar holder 65 in the axial direction.
  • the bus bar holder 65 is fixed to the upper surface of the bearing holder 55.
  • Coil lead wires 91A to 91C and 92A to 92C extending upward from the through holes 56a to 56c and 57a to 57c of the bearing holder 55 extend to the upper side of the bus bar holder 65 through the through holes 65A to 65C of the bus bar holder 65.
  • the coil lead wires 91A to 91C and 92A to 92C are connected to the phase bus bars 61a to 61c and 62a to 62c on the upper surface of the bus bar holder 65, respectively.
  • phase bus bars 61 a to 61 c and 62 a to 62 c serve as terminals connected to the control device 100.
  • the bus bar unit 60 is fixed to the upper surface of the bearing holder 55 fixed to the housing 20. Therefore, the phase bus bars 61a to 61c and 62a to 62c are positioned with high accuracy in the axial direction in the control device housing area 20A. With this configuration, the motor 10 and the control device 100 can be easily connected.
  • the motor 10 has a wire support member 70. Therefore, the coil lead wire can be routed to the connection destination while ensuring electrical insulation from the peripheral members.
  • the coil 43 of the stator 40 in the motor 10 is made up of the coil lead wires 91A to 91C and 92A to 92C for feeding each phase and the coil lead wire 91a for neutral point connection by a predetermined winding method.
  • the coil lead wires 91A to 91C and 92A to 92C for power feeding for each phase are connected to the bus bar unit 60 disposed on the upper side of the bearing holder 55.
  • the coil lead wires 91a to 91c and 92a to 92c for connecting the neutral point are connected to each other.
  • the wire support member 70 supports the coil lead wires 91A to 91C and 92A to 92C routed on the upper side of the stator 40 by a wire holding portion 75 at specific positions and supported along the axial direction. Can do. That is, with the wire support member 70, the coil lead wires 91A to 91C and 92A to 92C can be accurately positioned and pulled out with respect to the phase bus bars 61a to 61c and 62a to 62c of the bus bar unit 60 that is the connection destination. it can.
  • the support wall portion 75a of the wire holding portion 75 extends to the inside of the through holes 56a to 56c and 57a to 57c of the bearing holder 55.
  • the coil lead wires 91A to 91C and 92A to 92C can be routed upward of the bearing holder 55 while being electrically insulated from the bearing holder 55.
  • the coil lead wires 91A to 91C and 92A to 92C for feeding each phase are connected to the through holes 56a to 56a of the bearing holder 55. It can be easily pulled out via 56c, 57a to 57c.
  • the coil lead lines 91A to 91C and 92A to 92C are positioned with high accuracy. Therefore, when the bus bar unit 60 is disposed at a predetermined position of the bearing holder 55, it can be easily connected to the phase bus bars 61a to 61c and 62a to 62c.
  • the wire holding member 75 does not need to protrude from the main-body part 73, as long as the wire support member 70 can position and hold
  • a V-shaped notch or hole or the like may be provided in the vicinity of the inner peripheral edge of the main body 73, and the coil leader may be held in the notch or hole.
  • the coil leader can be held with high accuracy. For this reason, when the held coil leader is passed through the through hole of the bearing holder 55, the coil leader can be formed by increasing the diameter of the through hole even if the wire holding portion is not disposed in the through hole. It becomes difficult to contact the inner peripheral surface of the through hole, and electrical insulation between the coil lead wire and the bearing holder 55 can be ensured.
  • the wire support member 70 holds the coil lead wires 91a to 91c and 92a to 92c via the first neutral point bus bar 71 and the second neutral point bus bar 72.
  • the coil lead wires 91a to 91c and 92a to 92c for connecting the neutral point are connected at the wire support member 70 above the stator 40. Therefore, the coil lead wires 91a to 91c and 92a to 92c can be connected to each other without increasing the coil lead length. As a result, it is possible to prevent the coil lead wires 91a to 91c and 92a to 92c from being short-circuited.
  • the coil lead wires 91a to 91c and 92a to 92c for connecting the neutral point may be connected to one place depending on the type of winding method. In this case, the number of neutral point bus bars can be reduced to one.
  • coil lead wires 91A to 91C, 92A to 92C, 91a to 91c, and 92a to 92c for feeding and neutral point connection are drawn to the upper side of the stator 40. That is, all coil lead wires of the stator 40 are drawn to the upper side of the stator 40. Thereby, it is not necessary to provide a space for drawing the coil lead wire between the stator 40 and the bottom wall portion 23. Therefore, the stator 40 can be disposed close to the bottom wall portion 23. In the motor 10, since the proportion of the weight of the stator 40 is large in the total weight, the position of the center of gravity of the motor can be greatly shifted by changing the position of the stator 40 in the axial direction. As shown in FIG.
  • the coil lead wires 91A to 91C and 92A to 92C drawn to the upper side of the bearing holder 55 are connected to the phase bus bars 61a to 61c and 62a to 62c.
  • the control device 100 is connected to phase bus bars 61a to 61c and 62a to 62c. Since the bus bar unit 60 is fixed to the upper surface of the bearing holder 55, the positional accuracy in the axial direction of the phase bus bars 61a to 61c and 62a to 62c is higher than when the bus bar unit 60 is fixed to the stator 40. Therefore, the bus bar unit 60 can be accurately attached to a predetermined position, and the electrical connection between the bus bar unit 60 and the control device 100 can be improved.
  • FIG. 5 is a partial perspective view showing another aspect of the wire holding portion.
  • the wire holding part 175 has a cylindrical support wall part 175a.
  • the support wall portion 175a has a through hole penetrating in the axial direction.
  • the coil lead wire 91A extending from the stator 40 is drawn to the upper side of the wire support member 70 through the through hole of the support wall portion 175a.
  • the concave part 75b opens inward in the radial direction. Therefore, the coil lead wires 91A to 91C and 92A to 92C can be easily fitted into the recess 75b to perform operations such as positioning.
  • the cylindrical wire holding portion 175 shown in FIG. 5 the entire circumference of the coil lead wire is held by the support wall portion 175a. Therefore, it is possible to suppress the coil lead wires 91A to 91C and 92A to 92C from being inclined or coming off from the support wall portion 175a, and to insulate the coil lead wires 91A to 91C and 92A to 92C from other members. Can also be increased.
  • FIG. 6 is a perspective view showing a wire support member 270 according to the first modification of the present embodiment.
  • FIG. 7 is a perspective view showing a state where the upper support member of the wire support member 270 shown in FIG. 6 is removed.
  • a wire support member 270 shown in FIG. 6 is attached to the motor 10 instead of the wire support member 70 shown in FIG. 1 or 2.
  • the wire support member 270 includes a plurality of wire holding portions 75, a first neutral point bus bar 71 and a second neutral point bus bar 72, and a main body portion 273. In FIG. 6, the number of wire holding portions 75 is six.
  • the main body 273 has an upper support member 273a shown in FIG. 6 and a lower support member 273b shown in FIG.
  • the upper support member 273a and the lower support member 273b are insulating members and are generally annular in a plan view.
  • the six wire holding portions 75 are disposed on the inner peripheral edge of the upper support member 273a.
  • a first neutral point bus bar 71 and a second neutral point bus bar 72 are attached to the outer peripheral portion of the lower support member 273b.
  • the lower support member 273b has a plurality of leg portions 273c. 6 and 7, the number of leg portions 273c is three.
  • the leg portion 273c extends axially downward from the outer edge end of the lower support member 273b.
  • the leg portion 273 c is supported by the mounting groove 42 a of the insulator 42.
  • the outer shape of the upper support member 273a and the outer shape of the lower support member 273b in plan view are not limited to an annular shape, and may be, for example, an elliptical shape or an arc shape.
  • the coil lead wires 91A to 91C and 92A to 92C extending from the stator 40 wrap around from the outer peripheral side of the lower support member 273b to the upper surface and are accommodated in the recesses 274 on the upper surface of the lower support member 273b.
  • the coil lead wires 91A to 91C and 92A to 92C are bent upward in the axial direction at the inner peripheral edge of the lower support member 273b.
  • the upper support member 273a is attached to the upper surface of the lower support member 273b.
  • the upper support member 273a covers a part of the coil lead wires 91A to 91C and 92A to 92C arranged in the recess 274.
  • the coil lead wires 91A to 91C and 92A to 92C pass between the upper support member 273a and the lower support member 273b and extend to the wire holding portion 75 of the upper support member 273a.
  • the coil lead wires 91A to 91C and 92A to 92C are held by the wire holding portion 75.
  • the upper support member 273a and the lower support member 273b sandwich the coil lead wire.
  • the stator 40 and the coil lead wires 91A to 91C and 92A to 92C can be insulated.
  • the upper support member 273a between the coil lead wires 91A to 91C, 92A to 92C and the bearing holder 55, insulation between the coil lead wires and the bearing holder 55 can be ensured. That is, in the above configuration, there is no need to provide the insulating tube 98 of the coil lead wire shown in FIG.
  • the upper support member 273a has a through hole 273a1 penetrating in the axial direction.
  • the lower support member 273b has a protrusion 273b1 extending in the axial direction.
  • the protrusion 273b1 is inserted into the through hole 273a1, and the protrusion 273b1 is melted and solidified by heating or the like. As a result, the upper support member 273a is fixed to the lower support member 273b.
  • the upper support member 273a and the lower support member 273b can be fixed by press-fitting, adhesion, snap fit, or the like.
  • the wire holding part 75 may be provided not on the upper support member 273a but on the lower support member 273b.
  • FIG. 8 is a perspective view showing a wire support member 370 of Modification 2 of the present embodiment.
  • a wire support member 370 is attached to the motor 10 instead of the wire support member 70 shown in FIG. 1 or 2.
  • the wire support member 370 includes a plurality of wire holding portions 75, a first neutral point bus bar 71 and a second neutral point bus bar 72, and a main body portion 373.
  • the number of wire holding portions 75 is six.
  • the main body 373 is an annular member in plan view.
  • the six wire holding portions 75 are provided on the inner peripheral edge of the main body portion 373.
  • the first neutral point bus bar 71 and the second neutral point bus bar 72 are attached to the outer peripheral portion of the main body portion 373.
  • a recess 374 is disposed on the upper surface of the main body 373.
  • the coil lead wires 91A to 91C and 92A to 92C extending from the stator 40 go from the outer periphery of the main body 373 to the upper surface and are accommodated in the recess 374.
  • the coil lead wires 91A to 91C and 92A to 92C extend to the wire holding portion 75 on the inner peripheral edge along the upper surface of the main body portion 373.
  • the coil lead wires 91A to 91C and 92A to 92C are held by the wire holding portion 75.
  • the main body portion 373 has a fixing portion 76 that fixes the coil lead wires 92B and 92 to the upper surface of the main body portion. More specifically, a fixing portion 76 that extends in the axial direction is disposed in the recess 374. In the second modification, the fixing portion 76 has a substantially L shape. The distal end of the fixed portion 76 extends from the radially inner side toward the radially outer side. The coil lead wires 92 ⁇ / b> B and 92 ⁇ / b> C are disposed between the fixed portion 76 and the upper surface of the main body portion 373. Preferably, the fixing portion 76 is in contact with the coil lead wires 92B and 92C in the axial direction and the radial direction.
  • fixed part 76 may be provided in all the some recessed parts 374, and may be provided only in the one part recessed part 374.
  • fixed part 76 is not restricted to the above-mentioned shape, Other shapes may be sufficient.
  • the fixing portion 76 may sandwich part of the coil lead wires 92B and 92C.
  • the coil lead wires 91A to 91C and 92A to 92C are routed on the upper surface of the main body 373. That is, the main body 373 is disposed between the stator 40 and the coil lead wires 91A to 91C and 92A to 92C. Thereby, the stator 40 and the coil lead wires 91A to 91C and 92A to 92C can be insulated. Further, the fixing portion 76 suppresses movement of the coil lead wires 92B, 92C and the like on the upper surface of the main body portion 373. The main body 373 is disposed between the coil lead wires 91A to 91C, 92A to 92C and the bearing holder 55.
  • the upper support member 273a (see FIG. 6) is not disposed between the coil lead wires 91A to 91C and 92A to 92C and the bearing holder 55. That is, the coil lead wires 91A to 91C and 92A to 92C are exposed to the outside of the recess 374. Therefore, from the viewpoint of insulation, it is desirable that the coil lead wires 91A to 91C and 92A to 92C are arranged apart from the bearing holder 55.
  • An insulating member such as an insulating tube may be attached to the coil lead wires 91A to 91C and 92A to 92C.
  • FIG. 9 is a partial cross-sectional view showing a motor 410 according to Modification 3 of the present embodiment.
  • the bus bar unit 60 is fixed to the upper surface of the bearing holder 55.
  • the motor 410 shown in FIG. 9 includes a bus bar unit 460 fixed to the lower surface of the bearing holder 55.
  • the bus bar unit 460 includes a bus bar 461 and a bus bar holder 465 that holds the bus bar 461.
  • the bus bar 461 is connected to the coil lead wire 91 ⁇ / b> A held by the wire holding part 75.
  • the bus bar 461 extends to the upper side of the bearing holder 55 through the through hole of the bearing holder 55 and is connected to the control device 100.
  • the bus bar unit 460 includes bus bars connected to the coil lead wires 91A to 91C and 92A to 92C. 9, only the bus bar 461 connected to the coil lead wire 91A is shown, and the bus bars connected to the other coil lead wires 91B, 91C and 92A to 92C are not shown.
  • the bus bar unit 460 is fixed to the lower surface of the bearing holder 55. Therefore, the upper end of the bus bar 461 can be accurately positioned with respect to the housing 20 even if the stator 40, the wire support member 70, and the like are displaced from the predetermined position in the axial direction. Therefore, the bus bar 461 and the control device 100 can be stably connected.
  • the portion of the bus bar 461 connected to the coil lead wire 91 ⁇ / b> A is located in the through hole 551 provided in the bearing holder 55. Thereby, the axial direction dimension of the said part and the bearing holder 55 can be made small.
  • FIG. 10 is a partial cross-sectional view showing a motor 510 of a fourth modification.
  • the motor 510 has a wire support member 570.
  • the wire support member 570 has a configuration in which connection terminals 571 are provided on the wire support member 70 shown in FIGS. 1 and 2.
  • the connection terminal 571 is fixed to the main body portion 73 of the wire support member 570.
  • One end of the connection terminal 571 is connected to the coil lead wire 91 ⁇ / b> A held by the wire holding unit 75.
  • the other end of the connection terminal 571 extends through the through hole 56 a of the bearing holder 55 to the upper side of the bearing holder 55 and is connected to the control device 100.
  • the wire support member 570 has a terminal holding part 572.
  • the terminal holding portion 572 covers a portion of the connection terminal 571 that passes through the through hole 56a.
  • the terminal holding portion 572 is an insulating material, and can electrically insulate the connection terminal 571 and the bearing holder 55 from each other.
  • the wire support member 570 has connection terminals connected to the coil lead wires 91A to 91C and 92A to 92C. In FIG. 10, only the connection terminal 571 connected to the coil lead wire 91A is illustrated, and the connection terminals connected to the other coil lead wires 91B, 91C, 92A to 92C are not shown.
  • the wire support member 570 includes a connection terminal 571. Therefore, the motor 510 does not require a bus bar unit connected to the control device 100. Thereby, the number of parts can be reduced, and the motor 510 can be reduced in the axial direction.
  • FIG. 11 is a partial cross-sectional view showing the motor 10 of the fifth modification. Unlike the structure of the motor 10 shown in FIGS. 1 and 2, the motor 10 of Modification 5 is not provided with the bus bar unit 60, and the coil lead wire 91 ⁇ / b> A and the control device 100 are directly connected. In this structure, the bus bar unit 60 is unnecessary, so that the number of parts can be reduced and the motor can be downsized in the axial direction.
  • a plurality of coils constitute a plurality of connection systems. More specifically, as shown in FIGS. 12 to 15, the plurality of coils constitutes a first connection system A composed of the first coil group 43 ⁇ / b> A and a second connection system B composed of the second coil group 43 ⁇ / b> B. To do. Thereby, even if a failure occurs in one of the first connection system A and the second connection system B, current can be supplied to the motor 610 through the other connection system. As shown in FIG. 14, the 1st connection system A and the 2nd connection system B are comprised by the three-phase circuit to which the coil contained in each was connected by the star connection. Note that the plurality of connection systems are a plurality of circuits in which external power sources electrically connected are different and currents are supplied independently for each connection system.
  • the first coil group 43A includes power feeding side coils 43Aa, 43Ac, 43Ae and neutral point side coils 43Ab, 43Ad, 43Af.
  • the power feeding side coil 43Aa and the neutral point side coil 43Ab are a U-phase coil group connected in series.
  • the power feeding side coil 43Ac and the neutral point side coil 43Ad are a V-phase coil group connected in series.
  • the power feeding side coil 43Ae and the neutral point side coil 43Af are a W-phase coil group connected in series.
  • the second coil group 43B includes power supply side coils 43Ba, 43Bc, and 43Be, and neutral point side coils 43Bb, 43Bd, and 43Bf.
  • the power feeding side coil 43Ba and the neutral point side coil 43Bb are a U-phase coil group connected in series.
  • the power feeding side coil 43Bc and the neutral point side coil 43Bd are a group of V-phase coils connected in series.
  • the power feeding side coil 43Be and the neutral point side coil 43Bf are a W-phase coil group connected in series.
  • the bearing holder 655 has a through hole 656.
  • Lead lines drawn from the power supply side coils 43Aa to 43Be are respectively passed through the through holes 656.
  • the shape of the opening of the through hole 656 in plan view is substantially rectangular.
  • two coil lead lines pass through each through hole 656.
  • the three through holes 656 are arranged along the circumferential direction.
  • the plurality of coils include a plurality of power supply side coils 43Aa to 43Be through which coil lead wires are passed through the through holes 656.
  • the power supply side coils 43Aa to 43Be are connected to the control device 100 via respective coil lead wires.
  • the coil lead wire is a portion drawn from the coil body wound around the teeth 41a, and includes a portion extending in a direction intersecting the axial direction and a portion extending in the axial direction.
  • one end portion of the coil lead wire drawn from the neutral point side coils 43Ab to 43Bf is a neutral point N.
  • One end of the coil lead wire of the neutral point side coils 43Ab, 43Ad, 43Af is connected to a first neutral point bus bar 671 described later. That is, the part which becomes the neutral point N in the leader line of the neutral point side coils 43Ab, 43Ad, 43Af is connected to a first neutral point bus bar 671 which will be described later.
  • One end of each coil lead wire of the neutral point side coils 43Bb, 43Bd, and 43Bf is connected to a second neutral point bus bar 672 described later. That is, a portion that is a neutral point N of each coil lead wire of the neutral point side coils 43Bb, 43Bd, and 43Bf is connected to a second neutral point bus bar 672 described later.
  • the plurality of coils are arranged separately for each connection system. Specifically, the first coil group 43A of the first connection system A and the second coil group 43B of the second connection system B are arranged together on the opposite sides across the virtual line L1 in plan view. .
  • the imaginary line L1 is a straight line orthogonal to the central axis J and passing through the central axis J.
  • the power supply side coils 43Aa to 43Be and the neutral point side coils 43Ab to 43Bf of each connection system are arranged together. Specifically, the power supply side coils 43Aa to 43Be and the neutral point side coils 43Ab to 43Bf are collectively arranged on the opposite sides of the virtual line L2 in plan view. That is, the plurality of power supply side coils 43Aa to 43Be are arranged adjacent to each other, and the plurality of neutral point side coils 43Ab to 43Bf are arranged adjacent to each other.
  • the virtual line L2 is a straight line that is orthogonal to both the central axis J and the virtual line L1 and passes through the central axis J. Note that “a plurality of coils are arranged adjacent to each other” includes that a plurality of coils are attached to adjacent teeth 41a.
  • the wire support member 670 includes a conductive member, a main body portion 673, and a wire holding portion 675.
  • the conducting member includes a first conducting member 671 and a second conducting member 672.
  • the first conduction member 671 is referred to as a first neutral point bus bar 671
  • the second conduction member 672 is referred to as a second neutral point bus bar 672.
  • the first neutral point bus bar 671 connects the coil lead wires of the first connection system A.
  • the second neutral point bus bar 672 connects the coil lead wires of the second connection system B.
  • the first neutral point bus bar 671 and the second neutral point bus bar 672 are held by the main body 673.
  • the first neutral point bus bar 671 and the second neutral point bus bar 672 are plate-like members and extend substantially along the circumferential direction. More specifically, the first neutral point bus bar 671 and the second neutral point bus bar 672 extend in a polygonal line along the substantially circumferential direction. The plate surface of the first neutral point bus bar 671 and the plate surface of the second neutral point bus bar 672 are preferably parallel to the axial direction.
  • the first neutral point bus bar 671 overlaps with the neutral point side coils 43Ab, 43Ad, 43Af in a plan view.
  • the second neutral point bus bar 672 overlaps with the neutral point side coils 43Bb, 43Bd, 43Bf in plan view.
  • the main body 673 has an annular shape centered on the central axis J.
  • the main body 673 has a recess 673a that is recessed upward from the lower surface.
  • the outer shape of the recess 673 a in plan view is a substantially semicircular arc shape extending in the circumferential direction.
  • the recess 673a overlaps the power supply side coils 43Aa to 43Be in a plan view.
  • the recess 673a is opposed to at least a part of the coil lead wires 91Aa to 91Be passed through the through hole 656 in the axial direction through a gap.
  • the inner surface of the recess 673a is connected to the coil lead wire 91Aa of the power feeding side coil 43Aa, the coil lead wire 91Ac of the power feeding side coil 43Ac, and the coil lead wire 91Ae of the power feeding side coil 43Ae via a gap in the axial direction. opposite.
  • the recess 673a is disposed on the upper side of the stator 40. Therefore, the coil lead wires 91Aa, 91Ac, 91Ae of the power supply side coils 43Aa, 43Ac, 43Ae can be wound around the upper side of the stator 40.
  • the coil lead wires 91Aa, 91Ac, 91Ae can be easily wound around when assembling the motor, and the coil lead wires of the respective power supply side coils, which will be described later, can be arranged together in a predetermined region.
  • the power supply side coils 43Aa to 43Be are distributed in the circumferential direction and the coil lead lines of the power supply side coils 43Aa to 43Be are arranged in a predetermined area, the area where the coil lead lines are wound Tends to grow. Therefore, in order to secure a space for winding the coil lead wire, it is necessary to enlarge a region where the recessed portion 673a is provided or to provide a plurality of recessed portions 673a. In this case, the structure of the main body 673 may be complicated.
  • the plurality of power supply side coils 43Aa to 43Be are arranged adjacent to each other. Therefore, when the coil lead wires 91Aa to 91Be of the power supply side coils 43Aa to 43Be are arranged in a predetermined region, the region where the coil lead wires 91Aa to 91Be are wound can be minimized. Thus, by providing one recess 673a in the minimum area, it is possible to suitably secure a space in which the coil lead wires 91Aa to 91Be are wound.
  • the main body 673 has a groove 673b, a protrusion 674, and a hole 673c.
  • the groove portion 673b is recessed downward and extends along the circumferential direction.
  • the main body portion 673 has a groove portion 673 b that holds the first neutral point bus bar 671 and a groove portion 673 b that holds the second neutral point bus bar 672.
  • the first neutral point bus bar 671 and the second neutral point bus bar 672 are press-fitted into the groove portion 673b. As a result, the first neutral point bus bar 671 and the second neutral point bus bar 672 are fitted and held in the groove portion 673b from above.
  • Each groove part 673b is provided discontinuously along the circumferential direction.
  • the groove portion 673b is constituted by four divided groove portions 673d.
  • segmentation groove part 673d is arrange
  • a first recess 673e is disposed between the circumferential directions of the adjacent divided groove portions 673d and the divided groove portions 673d.
  • the 1st recessed part 673e is dented below the part of the main-body part 673 in which the division
  • a cutout 673e1 that is recessed inward in the radial direction is disposed on the bottom surface of the first recess 673e.
  • the coil leaders 91Ab to 91Bf of the neutral point side coils 43Ab to 43Bf are passed through the notch 673e1.
  • the portions of the coil lead wires 91Ab to 91Bf that protrude upward from the notch 673e1 are fixed to the first neutral point bus bar 671 or the second neutral point bus bar 672, for example, by welding. .
  • the welding jig is brought closer to the welded part during the welding operation. Easy to perform welding work.
  • the welded portions of the coil lead wires 91Ab to 91Bf and the neutral point bus bars themselves can be released in the radial direction.
  • the protruding portion 674 protrudes from the upper side of the inner surface of the groove portion 673b in a direction orthogonal to the axial direction.
  • One or two protrusions 674 are arranged in each divided groove 673d.
  • the protrusion 674 includes a protrusion 674 that protrudes radially inward from the radially outer inner surface of the groove 673b, and a protrusion 674 that protrudes radially outward from the radially inner inner surface of the groove 673b. It protrudes radially inward from the radially inner side surface of the groove 673b.
  • the protrusions 674 are disposed on the opposing inner surfaces of the groove 673b. However, the protrusion 674 may be disposed only on one inner surface.
  • the protrusions 674 on both inner surfaces may or may not face each other.
  • the distance between the tip of the projection 674 arranged on one inner surface and the tip of the other inner surface or projection 674 is smaller than the thickness of the first neutral point bus bar and the second neutral point bus bar.
  • the hole 673c penetrates the main body 673 in the axial direction.
  • the hole 673c is provided on the bottom surface of the groove 673b. At least a part of the hole 673c overlaps with the protrusion 674 in plan view. Therefore, for example, when the wire support member 670 is molded using a mold, a portion of the mold where the protrusion 674 is molded can be removed through the hole 673c. Thereby, the structure of the metal mold
  • the wire holding portion 675 protrudes upward from the main body portion 673.
  • the coil lead wires held by the wire holding portion 675 are coil lead wires 91Aa to 91Be of the power supply side coils 43Aa to 43Be.
  • the wire holding part 675 includes a support wall part 675a, a concave part 675b, and a holding concave part 675d.
  • the support wall portion 675a protrudes upward from the main body portion 673.
  • a lid 675c is provided at the upper end of the support wall 675a.
  • a second recessed portion 673f is provided in a portion where the wire holding portion 675 is provided in the main body portion 673.
  • the second recessed portion 673f is recessed radially inward from the outer peripheral surface of the main body portion 673 and opens on both sides in the axial direction.
  • the recess 675b opens outward in the radial direction.
  • the recess 675b opens downward and communicates with the second recess 673f.
  • the holding recess 675d is provided in the lid 675c.
  • the coil lead wires 91Aa to 91Be are held in the holding recess 675d.
  • the coil lead wires 91Aa to 91Be that lie over the upper side of the stator 40 bend in the axial direction near the second recess 673f, and are held by the holding recess 675d via the second recess 673f and the recess 675b, and the lid 675c. It is pulled out to the upper side.
  • the holding recess 675d opens in the radial direction.
  • the coil lead wire of the power supply side coil wound around the teeth 41a extending in the radial direction is pulled out radially above the stator 40, bent in the axial direction through the opening of the holding recess 675d, and held in the holding recess 675d.
  • the opening width of the opening end of the holding recess 675d is narrower than the width on the back side of the holding recess 675d and smaller than the wire diameter of the coil lead wire. Therefore, it can suppress that the coil leader line accommodated in the holding
  • the holding recess 675d opens outward in the radial direction. Therefore, the leading end of the coil lead wire drawn out from the power supply side coil and facing the upper side of the stator 40 can be bent from the radially outer side to the upper side in the axial direction and held in the holding recess 675d.
  • Other members constituting the motor are not disposed outside the holding recess 675d in the radial direction. Therefore, handling such as bending the coil lead wire is easy to perform, and the holding recess 675d is easier to hold.
  • the holding recess 675d is recessed radially inward from the radially outer end of the lid 675c.
  • a plurality of (for example, two) holding recesses 675d are provided for each wire holding portion 675.
  • the wire holding part 675 can hold a plurality of (for example, two) coil lead wires.
  • the holding recess 675d may be opened radially inward.
  • the wire holding portion 675 holds a plurality of coil lead wires together via the holding recess 675d.
  • three wire holding portions 675 are provided, and two coil lead lines are held by two holding recesses 675 d each.
  • the three wire holding portions 675 are located at substantially the same positions as the power supply side coils 43Ba, 43Bc, and 43Be in the circumferential direction.
  • the wire holding part 675 located at substantially the same position in the circumferential direction as the power feeding side coil 43Ba holds the coil lead wires 91Aa and 91Ba.
  • the wire holding portion 675 located at substantially the same position in the circumferential direction as the power feeding side coil 43Bc holds the coil lead wires 91Ac and 91Bc.
  • the wire holding portion 675 located at substantially the same position in the circumferential direction as the power feeding side coil 43Be holds the coil lead wires 91Ae and 91Be. That is, the plurality of coil lead wires held together by the wire holding portions 675 are coil lead wires of a plurality of power supply side coils having different connection systems and in phase with each other.
  • each wire holding portion 675 6 coil lead wires 91Aa to 91Be held by each wire holding portion 675 are arranged in a predetermined area. That is, the coil lead lines that are passed through the through holes 656 of the bearing holder 655 are arranged together in a predetermined region.
  • the predetermined area is one area (lower left in the figure) of the four areas divided by the virtual line L1 and the virtual line L2 shown in FIG.
  • a connecting portion of the control device 100 can be arranged on an extension line of each of the coil lead lines 91Aa to 91Be extending in the axial direction. Therefore, the coil lead wires 91Aa to 91Be can be easily connected to the control device 100.
  • a certain target is collectively arranged in a predetermined region” includes, for example, that a certain target is disposed in a region where the angle in the circumferential direction is 180 degrees or less in plan view.
  • the motor 610 includes an insulating portion 680.
  • the insulating part 680 is made of an insulating material such as plastic or elastomer, and extends along the circumferential direction.
  • the insulating part 680 is held by the bearing holder 655. More specifically, the insulating portion 680 is fitted and held inside the three through holes 656 of the bearing holder 655.
  • the insulating portion 680 surrounds the coil lead wires 91Aa to 91Be inside the through hole 656. As a result, it is possible to ensure insulation between the coil lead wires 91Aa to 91Be passing through the through hole 656 and the bearing holder 655.
  • the inner diameter of the through hole 656 is larger than the wire diameters of the coil lead wires 91Aa to 91Be. Therefore, the coil lead wires 91Aa to 91Be can be easily passed through the through hole 656 when the motor is assembled. In addition, since the coil lead wire and the inner peripheral surface of the through hole are located apart from each other, insulation between the coil lead wire and the bearing holder 655 can be easily ensured.
  • the insulating portion 680 is interposed between the coil lead wires 91Aa to 91Be and the through hole 656 and is held by the bearing holder 655. Therefore, the coil lead wires 91Aa to 91Be can be accurately held with respect to the bearing holder 655. That is, the insulating portion 680 can suppress the positional deviation of the coil lead wires 91Aa to 91Be.
  • the coil lead wires 91Aa to 91Be can be moved to the predetermined positions by adjusting the position of the insulating portion 680.
  • the coil lead wires 91Aa to 91Be can be easily connected to the control device 100 when the motor 610 is assembled.
  • the insulating part 680 has a plurality of holes 680a.
  • the number of holes 680a is six.
  • the hole 680a penetrates the insulating part 680 in the axial direction.
  • Coil lead wires 91Aa to 91Be are respectively passed through the holes 680a.
  • the portions of the coil lead wires 91Aa to 91Be that protrude upward from the insulating portion 680 are connected to the control device 100.
  • the insulating part 680 is a separate member from the wire support member 670.
  • the insulating portion 680 is fitted into the through hole 656 from above.
  • the coil lead wires 91Aa to 91Be can be prevented from being bent as compared with the case where the bearing holder 655 is assembled after the coil lead wires 91Aa to 91Be are passed through the insulating portion 680.
  • the insulating portion 680 into the through hole 656, there is no gap between the coil lead wire and the through hole 656, and the through hole 656 is sealed by the insulating portion 680. Therefore, dust or the like can be prevented from flowing into the motor from the outside of the motor 610. There may be a gap between the insulating portion 680 and the inner surface of the through hole 656.
  • the wire holding part 675 may have a through hole that holds the coil lead wire and penetrates in the axial direction instead of the holding recess 675d.
  • the motor 710 of this modification has a plurality of insulating portions 780.
  • the number of insulating parts 780 is three.
  • the insulating part 780 is different from the insulating part 680 of the motor 610 of the sixth modification.
  • the insulating part 780 has a rectangular parallelepiped shape extending in the axial direction.
  • the insulating part 780 is held by the wire support member 770.
  • the upper end of the insulating part 680 is positioned above the through hole 656 (not shown). Note that the upper end of the insulating portion 680 may be located in the through hole 656.
  • the insulating part 780 is disposed in the plurality of second recesses 673 f of the main body part 673. That is, each insulating portion 780 is fitted into each second recess 673f and held by the wire support member 770.
  • the insulating part 780 is a separate member from the wire support member 770.
  • the insulating part 780 has a plurality of holding holes 780a.
  • the holding hole 780a penetrates the insulating portion 780 in the axial direction, and the coil lead wires 91Aa to 91Be are passed therethrough.
  • the number of holding holes 780a included in each insulating portion 780 is two. With such a configuration, since the insulating portion 780 can be attached to the wire support member 770 before the bearing holder 655 is assembled, the insulating portion 780 can be easily attached to the motor 710.
  • the coil lead wires 91Aa to 91Be are passed through the holding holes 780a of the insulating portion 780, the coil lead wires 91Aa to 91Be held by the wire holding portion 675 are more difficult to come off.
  • the insulating portion 780 covers the leading end side of the coil lead wires 91Aa to 91Be, misalignment of the coil lead wires 91Aa to 91Be is unlikely to occur.
  • the plurality of insulating portions 780 may be formed of a single member having a plurality of holding holes 780a.
  • the motor 810 of this modification is obtained by changing the insulating part 680 and the wire holding part 675 of the motor 610 of the modification 6.
  • the wire holding portion 875 extends upward from the wire holding portion 675 shown in FIGS.
  • the upper end of the wire holding portion 875 is located inside the through hole 656 of the bearing holder 655 or on the upper side of the through hole 656.
  • the wire holding portion 875 surrounds the coil lead wires 91Aa to 91Be inside the through hole 656.
  • the wire holding portion 875 electrically insulates the coil lead wires 91Aa to 91Be from the bearing holder 655. That is, the wire holding part 875 functions as an insulating part in the above-described modification. In other words, in this modification, the insulating part is the wire holding part 875.
  • the wire support member 870 is a single member.
  • the wire holding part 875 and the main body part 673 are parts of a single member.
  • the wire holding portion 875 which is a part of the wire support member 870 which is a single member functions as an insulating portion, so that it is not necessary to separately provide an insulating portion, and the number of parts of the motor 810 is reduced. be able to. Since the leading ends of the coil lead wires 91Aa to 91Be are held by the wire holding portion 875, the coil lead wires 91Aa to 91Be are not easily displaced.
  • the motor 910 of this modification is obtained by changing the insulating portion 680 of the motor 610 of the modification 6.
  • the motor 910 has an insulating part 980.
  • the insulating portion 980 includes a plurality of first insulating members 981 and second insulating members 982.
  • the first insulating member 981 is held by the wire support member 970.
  • the first insulating member 981 is provided on the upper surface of both end portions in the circumferential direction of the second recess 673f in the wire holding portion 675.
  • the first insulating member 981 is a substantially rectangular parallelepiped member extending in the vertical direction.
  • the first insulating member 981 has a step in which the radial dimension and the circumferential dimension decrease from the lower side toward the upper side.
  • each first insulating member 981 has two holes 981a penetrating the first insulating member 981 in the vertical direction and through which the coil lead wires 91Aa to 91Be are passed.
  • the coil lead wires 91Aa to 91Be are covered with a first insulating member 981. Therefore, the coil lead wires 91Aa to 91Be held by the wire holding portion 675 are more difficult to come off.
  • the three first insulating members 981 may be a single member.
  • the second insulating member 982 is a member extending along the circumferential direction.
  • the second insulating member 982 is held in the through hole 656 of the bearing holder 655 and attached to the first insulating member 981.
  • the second insulating member 982 has three fitting portions 982a that are recessed from the radially inner side to the radially outer side.
  • the upper portion of the first insulating member 981 is fitted into the fitting portion 982a.
  • the lower end of the second insulating member 982 is in contact with the step surface perpendicular to the axial direction at the step of the first insulating member 981 from above.
  • the second insulating member 982 is attached to each first insulating member 981 and couples the plurality of first insulating members 981 together.
  • the second insulating member 982 is a separate member from the first insulating member 981.
  • the relative position between the first insulating member 981 and the second insulating member 982 can be finely adjusted. That is, the positional deviation generated in each part is absorbed by adjusting the relative position between the first insulating member 981 and the second insulating member 982, and the arrangement accuracy of the coil lead wires 91Aa to 91Be can be improved. Even if the relative positions of the coil lead wires 91Aa to 91Be are shifted, the positional shift of the coil lead wires 91Aa to 91Be is adjusted by adjusting the relative positions of the connected first insulating member 981 and the second insulating member 982t. It can be corrected.
  • the first insulating member 981 and the second insulating member 982 are connected, so that the positions of the coil lead wires 91Aa to 91Be are It can prevent shifting. Therefore, the coil lead wires 91Aa to 91Be can be protruded upward from the through hole 656 of the bearing holder 655 in a state where the positional accuracy of the coil lead wires 91Aa to 91Be is increased. Therefore, the coil lead wires 91Aa to 91Be can be connected to the control device 100 with high accuracy.
  • the through hole 656 is sealed by the first insulating member 981 and the second insulating member 982.
  • the motor of this modification is obtained by changing the insulating portion 980 of the motor 910 of modification 9.
  • the first insulating member 981 is attached to the wire holding portion 675.
  • the wire holding portion 675 is a separate member from the wire support member 970, and the function of the wire holding portion 675 is also used as the first insulating member 981. That is, according to the present modification, an opening penetrating in the axial direction is provided in a part of the main body portion 673 in the wire support member 970.
  • the coil lead wires 91Aa to 91Be are drawn out in the axial direction.
  • the drawn coil lead wires 91Aa to 91Be are passed through the hole 981a of the first insulating member 981.
  • the first insulating member 981 and the main body 673 are fixed by fastening means provided in each.
  • the second insulating member 982 has a fitting portion 982a fitted to the first insulating member 981.
  • the effect by the wire support member mentioned above is an effect obtained even if it is a case where a conduction member is not provided except the effect concerning a conduction member.
  • each structure mentioned above can be suitably combined in the range which is not mutually contradictory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

本発明のモータの一つの態様は、上下方向に延びる中心軸を中心とするシャフトを有するロータと、ロータと径方向に対向して配置されたステータと、シャフトを支持するベアリングと、ステータの上側に配置されるワイヤー支持部材と、ワイヤー支持部材の上側に配置されベアリングを保持するベアリングホルダと、を備える。ステータは、複数のティースと、複数のティースに設けられる複数のコイルと、を有する。ワイヤー支持部材は、コイルから引き出されるコイル引出線のうち、一部のコイル引出線を保持するワイヤー保持部と、他の一部のコイル引出線を互いに電気的に接続する導通部材と、ワイヤー保持部および導通部材を支持する本体部と、を有する。ベアリングホルダは、ベアリングホルダを軸方向に貫通する貫通孔を有する。コイル引出線のコイル端は貫通孔を通ってベアリングホルダの上側へ延びる。

Description

モータ
 本発明は、モータに関する。
 従来のモータでは、コイル引出線は、ステータから引き出される。コイル引出線は、制御装置やバスバーユニットなどに接続される(例えば、特許文献1,2参照)。ステータが有するコイルには、例えば、給電用コイルや中性点用コイルなどがある。給電用コイルは、外部の制御装置に接続される。中性点用コイルは、他の中性点用コイルと接続される。このような接続構造において、コイル引出線は、周辺部材との電気的絶縁を確保しながら、接続先へ引き回す必要がある。
特開2011-010409号公報 特開2011-200022号公報
 本発明は、周辺部材との電気的絶縁を確保しつつコイル引出線を接続先へ引き回すことができるモータを提供することを目的の一つとする。
 本発明の一態様によれば、モータは、上下方向に延びる中心軸を中心とするシャフトを有するロータと、前記ロータと径方向に対向して配置されたステータと、前記シャフトを支持するベアリングと、前記ステータの上側に配置されるワイヤー支持部材と、前記ワイヤー支持部材の上側に配置され前記ベアリングを保持するベアリングホルダと、を備え、前記ステータは、複数のティースと、複数の前記ティースに設けられる複数のコイルと、を有し、前記ワイヤー支持部材は、前記コイルから引き出されるコイル引出線のうち、一部の前記コイル引出線を保持するワイヤー保持部と、他の一部の前記コイル引出線を互いに電気的に接続する導通部材と、前記ワイヤー保持部および前記導通部材を支持する本体部と、を有し、前記ベアリングホルダは、前記ベアリングホルダを軸方向に貫通する貫通孔を有し、前記コイル引出線のコイル端は前記貫通孔を通って前記ベアリングホルダの上側へ延びる。
 本発明の一態様によれば、周辺部材との電気的絶縁を確保しつつコイル引出線を接続先へ引き回すことができるモータが提供される。
図1は、本実施形態のモータを示す断面図である。 図2は、図1のモータにおけるワイヤー支持部材およびステータを示す斜視図である。 図3は、図1のモータにおけるベアリングホルダおよびステータユニットを示す斜視図である。 図4は、図1のモータにおけるバスバーユニットおよびステータユニットを示す斜視図である。 図5は、図1のモータにおけるワイヤー保持部の他の態様を示す部分斜視図である。 図6は、図1のモータにおける変形例1のワイヤー支持部材を示す斜視図である。 図7は、図6のワイヤー支持部材の上側支持部材を取り外した状態を示す斜視図である。 図8は、図1のモータにおける変形例2のワイヤー支持部材を示す斜視図である。 図9は、本実施形態の変形例3のモータを示す部分断面図である。 図10は、本実施形態の変形例4のモータを示す部分断面図である。 図11は、本実施形態の変形例5のモータを示す部分断面図である。 図12は、本実施形態の変形例6のモータの部分を示す斜視図である。 図13は、本実施形態の変形例6のモータの部分を示す斜視図であって、図12における部分拡大図である。 図14は、本実施形態の変形例6のコイル群が構成する三相回路の模式図である。 図15は、本実施形態の変形例6のステータユニットを示す平面図である。 図16は、本実施形態の変形例6のモータの部分を示す斜視図である。 図17は、本実施形態の変形例7のモータの部分を示す斜視図である。 図18は、本実施形態の変形例8のモータの部分を示す斜視図である。 図19は、本実施形態の変形例9のモータの部分を示す斜視図である。
 以下、図面を用いて本発明の実施の形態について説明する。
 以下の説明においては、中心軸Jの延びる方向を上下方向とする。ただし、本明細書における上下方向は、単に説明のために用いられる名称であって、実際のモータの位置関係や方向などを限定しない。また、特に断りのない限り、中心軸Jに平行な方向を単に「軸方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向(中心軸Jの軸周り)を単に「周方向」と呼ぶ。
 なお、本明細書において「軸方向に延びる」とは、厳密に軸方向に延びる場合に加えて、軸方向に対して、45°未満の範囲で傾いた方向に延びる場合も含む。また、本明細書において、「径方向に延びる」とは、厳密に径方向、すなわち、軸方向に対して垂直な方向に延びる場合に加えて、径方向に対して、45°未満の範囲で傾いた方向に延びる場合も含む。
 図1は、本実施形態のモータ10を示す断面図である。図2は、ワイヤー支持部材およびステータを示す斜視図である。図3は、ベアリングホルダおよびステータユニットを示す斜視図である。図4は、バスバーユニットおよびステータユニットを示す斜視図である。
 モータ10は、ハウジング20と、ロータ30と、ステータ40と、ワイヤー支持部材70と、ベアリングホルダ55と、ベアリングと、バスバーユニット60と、を備える。ベアリングは、上側ベアリング51と、下側ベアリング52と、を含む。モータ10では、バスバーユニット60と、ベアリングホルダ55と、ワイヤー支持部材70と、ステータ40とが、上側から下側に向かってこの順に配置される。モータ10は、バスバーユニット60の上側に、制御装置100の少なくとも一部を収容可能な制御装置収容領域20Aを有する。本実施形態において、モータ10は、U相、V相、およびW相を有する三相モータである。
 ハウジング20は、上下方向に延びる筒部21と、筒部21の下端に位置する底壁部23と、上側に開口する開口部20aと、を有する。ハウジング20の内面には、下側から順に、ステータ40と、ベアリングホルダ55とが固定される。
 筒部21は、中心軸Jを中心とする円筒状である。筒部21は、ステータ40を保持する内周面20bと、ベアリングホルダ55を保持する内周面20cと、制御装置100の一部を収容する制御装置収容領域20Aの内周面20dとを有する。内周面20dの内径は、内周面20cの内径よりも大きい。内周面20cの内径は、内周面20bの内径よりも大きい。すなわち、ハウジング20は、開口部20aから奥側(底壁部23側)へ行くに従って内径が小さくなる内面形状を有する。
 内周面20cの内径は、内周面20dの内径と異なる。ハウジング20は、内周面20cと内周面20dとを接続する傾斜面20e、を有する。傾斜面20eの表面形状は、軸方向下側へ行くに従って内径が小さくなる。すなわち、中心軸Jと傾斜面20eとの間の径方向における距離は、軸方向下側へ向うにつれて徐々に小さくなる。傾斜面20eの断面形状は、直線状または湾曲形状が望ましい。これにより、作業者等(モータの組み立て作業者または組み立て装置など)は、開口部20aから挿入されたベアリングホルダ55を、内周面20cにおける取り付け位置へ円滑に配置することができる。
 なお、ハウジング20は、必ずしも傾斜面20eを有さなくてもよい。例えば、ハウジング20では、内周面20cと内周面20dとが段差部を介して軸方向に接続されてもよい。
 ハウジング20は、棚面20fを有する。棚面20fは、内周面20bと内周面20cとの間に配置され、開口部20aに面して周方向に延びる。棚面20fは、ベアリングホルダ55を軸方向に支持する受け面である。この構成により、ハウジング20は、ベアリングホルダ55を、軸方向において高い精度で所定の位置に保持することができる。
 筒部21の形状は、円筒状に限られない。筒部21の内周面がステータ40とベアリングホルダ55とを保持可能な形状であれば、筒部21の外形は、例えば箱形であってもよい。また、筒部21の外形は、円筒形と箱形とを組み合わせた形状であってもよい。ステータ40またはベアリングホルダ55は、筒部21における内面の周方向の一部で保持されてもよい。
 底壁部23は、ステータ40の下側に配置される。底壁部23は、ベアリング保持部23aと、出力軸孔22と、を有する。ベアリング保持部23aは、下側ベアリング52を保持する。出力軸孔22は、底壁部23を軸方向に貫通する。
 ロータ30は、シャフト31を有する。シャフト31は、上下方向に延びる中心軸Jに沿って伸びる。ロータ30は、シャフト31とともに中心軸Jを中心として周方向に回転する。シャフト31の下側の端部は、出力軸孔22を介してハウジング20の下側へ突出する。
 上側ベアリング51および下側ベアリング52は、シャフト31を、中心軸J周りに回転可能に支持する。ベアリング保持部23aは、ステータ40の下側において、下側ベアリング52を保持する。ベアリングホルダ55は、ステータ40の上側において、上側ベアリング51を保持する。
 ステータ40は、ロータ30の径方向外側に位置する。ステータ40は、ステータコア41と、インシュレータ42と、コイル43と、を有する。ステータコア41は、中心軸Jを中心とする円環状である。ステータコア41は、複数のティース41aを有する。インシュレータ42は、ティース41aに取り付けられる。コイル43は、インシュレータ42に巻き回される導線により構成される。コイル43は、各ティース41aに配置される。ステータ40の外周面は、ハウジング20の内周面20bに固定される。
 図1および図2に示すように、ワイヤー支持部材70は、第1導通部材71と、第2導通部材72と、複数のワイヤー保持部75と、本体部73とを有する。本実施形態において、ワイヤー保持部の数は、6個である。ワイヤー支持部材70は、ステータ40上に配置される。第1導通部材71および第2導電部材72には、コイルの中性点が接続する。以下の説明では、第1導通部材71を第1中性点バスバー71と呼び、第2導通部材72を第2中性点バスバー72と呼ぶ。
 本体部73は、環状であって、ステータ40の上側に配置される。本体部73は、軸方向の下側へ延びる複数の脚部73aを有する。脚部73aがインシュレータ42の取付溝42aに嵌め込まれることにより、ワイヤー支持部材70は、ステータ40上に支持される。本体部73は、樹脂等の絶縁材料からなる。
 ワイヤー保持部75は、本体部73の内周縁に配置される。ワイヤー保持部75は、支持壁部75aと、凹部75bと、を有する。支持壁部75aは、本体部73から上方へ突出する。凹部75bは、支持壁部75aの径方向内側に開口する。6つのワイヤー保持部75は、周方向120°おきの3箇所に2つずつ配置される。なお、ワイヤー保持部75は、本体部73の外周縁に配置することもできる。ワイヤー保持部75の配置や個数などは、後述するコイル引出線の本数やコイル引出線の引出位置等を考慮して、適宜変更可能である。
 本体部73は、平面視で扇形の外形を有する切欠部73b、73cを、有する。切欠部73b,73cは、本体部73の外周部の2箇所に配置される。第1中性点バスバー71および第2中性点バスバー72は、それぞれ、3つのU形の接続端子71a,72aと、1つの貫通孔71b,72bを有する。第1中性点バスバー71および第2中性点バスバー72は、ワイヤー保持部75よりも、本体部73の外周側に配置される。軸方向から見たときに、第1中性点バスバー71および第2中性点バスバー72は、切欠部73b,73cから露出する。本体部73は、軸方向に突出する突起部73d,73eを有する。突起部73d,73eは、本体部73の外周側に配置される。突起部73d,73eの周方向位置は、切欠部73b,73cの周方向の位置と同じである。突起部73d,73eは、第1中性点バスバー71および第2中性点バスバー72の貫通孔71b,72bに嵌めこまれた後、加熱されて、溶融固化する。これにより、第1中性点バスバー71および第2中性点バスバー72は、本体部73に固定される。なお、第1中性点バスバー71および第2中性点バスバー72は、切欠部73b,73cとともに、本体部73の内周部に配置されてもよい。
 ステータ40は、複数のコイル43から延びる12本のコイル引出線91A~91C,91a~91c,92A~92C,92a~92cを有する。コイル引出線91A~91C,92A~92Cは、ステータ40の上側を引き回されて、ワイヤー保持部75の凹部75bを起点に軸方向上側に折り曲げられて、ワイヤー保持部75に保持される。凹部75bの径方向内側の開口部における周方向の幅は、コイル43の線径より小さい。凹部75bの径方向外側の部位における内径は、コイル43の線径と、ほぼ同じである。よって、コイル引出線91A~91C,92A~92Cが凹部75bの開口部から奥側へ押し込まれる際には、開口部が弾性変形により広がり、コイル引出線91A~91C,92A~92Cが凹部75b内に収容された後、開口部は元に戻る。このようにしてコイル43はワイヤー保持部75に保持される。ワイヤー保持部75に保持されたコイル引出線91A~91C,92A~92Cは、凹部75bから軸方向上側に突出する。なお、コイル43は一定の剛性を有する。そのため、ワイヤー保持部75から突出するコイル引出線91A~91C,92A~92Cfが倒れたり、大きくずれることはない。
 コイル引出線91a~91cは、第1中性点バスバー71の接続端子71aに接続される。コイル引出線92a~92cは、第2中性点バスバー72の接続端子72aに接続される。
 コイル引出線91A~91Cは各相(U相、V相、W相)の給電用の配線である。コイル引出線91a~91cは、コイル引出線91A~91Cに対応する中性点接続用の配線である。コイル引出線92A~92Cは、各相の給電用の配線である。コイル引出線92a~92cは、コイル引出線92A~92Cに対応する中性点接続用の配線である。
 コイル43から引き出されたコイル引出線には、絶縁部材である絶縁チューブ98が取り付けられる。絶縁チューブ98は、ワイヤー支持部材70の下面に沿って延びるコイル引出線91A~91C、91a~91c、92A~92C、92a~92c同士、およびコイル引出線91A~91C、91a~91c、92A~92C、92a~92cとコイル43とを、それぞれ電気的に絶縁する。。なお、コイル43から引き出されたコイル引出線は、絶縁チューブ98以外の絶縁部材等により、電気的に絶縁されてもよい。
 ベアリングホルダ55は、略円板状であり、ステータ40の上側に配置される。ベアリングホルダ55は、上側ベアリング51を保持する。ベアリングホルダ55は、ハウジング20の内周面20cに、締まり嵌めにより保持される。本実施形態の場合、ベアリングホルダ55は、内周面20bに焼き嵌めによって固定される。焼き嵌めは、締まり嵌めに含まれる嵌め合い方法である。なお、ベアリングホルダ55は、ハウジング20の内周面20bに圧入等の他の方法により固定されてもよい。
 これにより、Cリング等の固定部材を用いることなく、ベアリングホルダ55をハウジング20に固定することができ、モータ10の部品点数を削減することができる。仮に、Cリングを用いてベアリングホルダ55をハウジング20に固定する場合には、ハウジング20の内周面20bに、Cリングを保持する溝を設ける必要がある。しかしながら、上記構成により、当該溝を設ける必要がないため、ハウジング20の肉厚を薄くすることができる。その結果、ステータ40やベアリングホルダ55などを保持するために必要な内径を保ちつつ、ハウジング20の外径を小さくできる。よって、モータ10の小型化を図ることができる。
 図1および図3に示すように、ベアリングホルダ55は、内側筒部55aと、外側筒部55bと、連結部55cとを有する。内側筒部55aは、上側ベアリング51を保持する。外側筒部55bは、内側筒部55aと、ハウジング20の内周面20bに嵌合する。連結部55cは、内側筒部55aと外側筒部55bとを連結する。
 連結部55cは、中間筒部55dと、内側連結部55eと、外側連結部55fと、を有する。中間筒部55dは、円筒状であり、内側筒部55aと外側筒部55bとの間に位置する。平面視において、内側連結部55eの形状は円環状である。内側連結部55eは、中間筒部55dの下端と内側筒部55aの外周面とを接続する。平面視において、外側連結部55fは円環状である。外側連結部55fは、内側連結部55eの上端と外側筒部55bの上端とを接続する。
 図1において、連結部55cの径方向内側の端部は、軸方向下側に屈曲し、径方向内側に向かって延び、内側筒部55aと接続される。内側筒部55aと連結部55cの間には、間隙が構成される。そのため、内側筒部55aおよび連結部55cは、径方向において弾性変形が可能である。したがって、モータ10の組立時またはモータ10の使用時の温度変化によりベアリングホルダ55およびハウジング20が膨張収縮し、ベアリングホルダ55とハウジング20との嵌合部や、上側ベアリング51などに、過大な押圧力が作用した場合であっても、内側筒部55aおよび連結部55cの弾性変形により、その押圧力は吸収される。そのため、ベアリングホルダ55とハウジング20との固定強度の低下を抑制することができ、上側ベアリング51がシャフト31を滑らかに回転可能に支持することができる。
 ベアリングホルダ55は、ベアリングホルダ55を軸方向に貫通する複数の貫通孔56a~56c,57a~57cを有する。複数の貫通孔56a~56c,57a~57cは、外側連結部55fに配置される。
 コイル引出線91A,91B,91Cは、それぞれ対応する貫通孔56a,56b,56cを通過して、ベアリングホルダ55の上側へと延びる。コイル引出線92A,92B,92Cは、それぞれ対応する貫通孔57a,57b,57cを通過してベアリングホルダ55の上側へ延びる。貫通孔56a,56cの開口の内径は、ワイヤー保持部75の外径よりも大きい。これにより、中性点接続用のコイル引出線91a,91b,92cと接続端子71a,72aとの接続部が、ベアリングホルダ55と電気的に絶縁を保つことができる。ベアリングホルダ55に配置された貫通孔56d,56eの構成についても、貫通孔56a,56cと同じであるため、その説明を省略する。
 ベアリングホルダ55は、好ましくは、金属材料からなる。ベアリングホルダ55は、ベアリングホルダ55の外縁部の上面に3つの凹部58を有する。凹部58は、ベアリングホルダ55の上面に、ピン等による加圧加工(例えば、カシメ加工等)などが行われることにより、設けられる。加圧加工がベアリングホルダ55に対して行われると、ベアリングホルダ55の上面の加圧された箇所が塑性変形し、凹部58が形成され、ベアリングホルダ55の外側面から径方向外側に突出する押圧部59が形成される。ベアリングホルダ55がハウジング20内に配置される際に、押圧部59によって、ハウジング20の内周面20cを局所的に押圧することができる。ベアリングホルダ55は、焼き嵌めとカシメにより、内周面20cに固定される。
 ベアリングホルダ55のハウジング20に締まり嵌めされている部分について押圧部59が配置されることにより、ハウジング20とベアリングホルダ55との押圧力が局所的に増加し、両部材の締結強度をより一層高めることができる。
 凹部58のうち少なくとも1つは、貫通孔56a~56cの近傍に配置される。本実施形態では、図3に示すように、貫通孔56aの近傍および貫通孔56bの近傍に、凹部58が配置される。貫通孔56a,56bと近傍の凹部58との距離は、中心軸Jを基準とする周方向の角度で15°以内である。凹部58は、塑性変形により形成される。そのため、凹部58が形成される位置における部材の強度が向上する。貫通孔56a~56cの近傍ではベアリングホルダ55の強度が低下しやすい。しかし、貫通孔56a~56cの近傍に凹部58が配置されるため、貫通孔56a~56cの近傍の強度を確保することができる。
 ベアリングホルダ55を構成する材料の線膨張係数は、ハウジング20を構成する材料の線膨張係数と同等である。この構成により、ハウジング20にベアリングホルダ55を組み付けた後の温度変化に対して、ハウジング20とベアリングホルダ55の膨張量および収縮量が同じになる。そのため、ベアリングホルダ55のハウジング20への取り付けが弛みにくくなる。本実施形態の場合、ベアリングホルダ55の材料は、例えば、アルミニウムまたはアルミニウム合金である。ハウジング20の材料は、例えば、アルミニウムまたはアルミニウム合金である。ベアリングホルダ55およびハウジング20の材料は、他の種類の材料であってもよい。
 バスバーユニット60は、相用バスバー61a~61c,62a~62cと、バスバーホルダ65とを有する。バスバーホルダ65は、相用バスバー61a~61c,62a~62cを保持する。バスバーホルダ65は、バスバーホルダ65を軸方向に貫通する3つの貫通孔65A,65B,65Cを有する。
 バスバーホルダ65は、ベアリングホルダ55の上面に固定される。ベアリングホルダ55の貫通孔56a~56c,57a~57cから上側へ延びるコイル引出線91A~91C、92A~92Cは、バスバーホルダ65の貫通孔65A~65Cを通ってバスバーホルダ65の上側へ延びる。コイル引出線91A~91C,92A~92Cは、バスバーホルダ65の上面において、それぞれ相用バスバー61a~61c,62a~62cに接続される。
 相用バスバー61a~61c,62a~62cは、制御装置100と接続する端子となる。バスバーユニット60は、ハウジング20に固定されたベアリングホルダ55の上面に固定される。そのため、相用バスバー61a~61c,62a~62cは、制御装置収容領域20A内において、軸方向に高い精度で位置決めされる。この構成により、モータ10と制御装置100とを容易に接続することが可能となる。
 本実施形態において、モータ10は、ワイヤー支持部材70を有する。そのため、周辺部材との電気的絶縁を確保しつつ、コイル引出線を接続先へ引き回すことができる。
 前述のように、モータ10におけるステータ40のコイル43は、所定の巻線方法により、各相の給電用のコイル引出線91A~91C,92A~92Cと、中性点接続用のコイル引出線91a~91c,92a~92cとを有する。各相の給電用のコイル引出線91A~91C,92A~92Cは、ベアリングホルダ55の上側に配置されたバスバーユニット60に接続する。中性点接続用のコイル引出線91a~91c,92a~92cは、互いに接続される。
 ワイヤー支持部材70は、ワイヤー保持部75により、ステータ40の上側を引き回されたコイル引出線91A~91C,92A~92Cを、特定の位置に位置決めして、軸方向に沿わせて支持することができる。つまり、ワイヤー支持部材70によって、コイル引出線91A~91C,92A~92Cを、接続先であるバスバーユニット60の相用バスバー61a~61c,62a~62cに対して、精度良く位置決めして引き出すことができる。
さらに、本実施形態では、ワイヤー保持部75の支持壁部75aがベアリングホルダ55の貫通孔56a~56c,57a~57cの内側まで延びる。これにより、モータ10では、コイル引出線91A~91C,92A~92Cを、ベアリングホルダ55との電気的絶縁を図りつつ、ベアリングホルダ55の上側へ引き回すことができる。
 よって、ステータ40とワイヤー支持部材70とを組み合わせた組立体に、ベアリングホルダ55を配置すると、各相の給電用のコイル引出線91A~91C,92A~92Cを、ベアリングホルダ55の貫通孔56a~56c,57a~57cを介して、容易に引き出すことができる。各コイル引出線91A~91C,92A~92Cが精度良く位置決めされている。そのため、バスバーユニット60をベアリングホルダ55の所定位置に配置する場合に、相用バスバー61a~61c,62a~62cと容易に接続できる。
また、ワイヤー支持部材70は、コイル引出線を特定の位置に位置決めして軸方向に沿わせて保持できれば、ワイヤー保持部75が本体部73から突出していなくてもよい。例えば、本体部73の内周縁付近にV字状などの切りかきや孔などを設け、この切りかきや孔などにコイル引出線が保持されてもよい。この構成では、コイル引出線を精度良く保持することができる。そのため、保持されたコイル引出線がベアリングホルダ55の貫通孔に通されるときに、ワイヤー保持部が貫通孔内に配置されなくても、その貫通孔の孔径を大きくすれば、コイル引出線が貫通孔の内周面と接触しづらくなり、コイル引出線とベアリングホルダ55との電気的絶縁を確保できる。
 モータ10では、ワイヤー支持部材70が、第1中性点バスバー71および第2中性点バスバー72を介してコイル引出線91a~91c,92a~92cを保持する。これにより、中性点接続用のコイル引出線91a~91c,92a~92cは、ステータ40の上方にあるワイヤー支持部材70において接続がなされる。そのため、コイルの引出長を長くすることなく、コイル引出線91a~91c,92a~92cを互いに接続することができる。その結果、コイル引出線91a~91c,92a~92cが短絡することを抑制できる。
 また、ステータ40の中性点接続用のコイル引出線91a~91c、92a~92cをワイヤー支持部材70に設けた第1中性点バスバー71および第2中性点バスバー72に接続することで、給電用のコイル引出線91A~91C、92A~92Cが接続されるバスバーユニット60の構成を単純にできる。これにより、例えば、ハウジング20における制御装置100が配置されるスペースを容易に確保することができる。
 中性点接続用のコイル引出線91a~91c,92a~92cは、巻線方法の種類により、一か所に接続する場合がある。この場合、中性点用バスバーの枚数を1枚にすることができる。
 モータ10では、給電用および中性点接続用のコイル引出線91A~91C,92A~92C,91a~91c,92a~92cが、ステータ40の上側へ引き出される。すなわち、ステータ40の全てのコイル引出線が、ステータ40の上側に引き出される。これにより、ステータ40と底壁部23との間に、コイル引出線を引き回すスペースを設ける必要がない。そのため、ステータ40を底壁部23に近づけて配置することができる。モータ10では、全重量のうちステータ40の重量が占める割合が大きいため、ステータ40の軸方向の位置を変えることにより、モータの重心位置を大きくずらすことができる。図1に示すように、ステータ40がモータ10の軸方向下側に配置された状態でモータ10が外部装置に取り付けられる場合、その外部装置側にモータ10の重心が位置する。その結果、モータ10の駆動時において、モータ10から発生する振動を抑制することができる。
 ベアリングホルダ55の上側に引き出されたコイル引出線91A~91C,92A~92Cは、相用バスバー61a~61c,62a~62cに接続される。制御装置100には、相用バスバー61a~61c,62a~62cが接続される。バスバーユニット60がベアリングホルダ55の上面に固定されているため、バスバーユニット60がステータ40に固定される場合に比べて、相用バスバー61a~61c,62a~62cの軸方向の位置精度は高い。そのため、バスバーユニット60を所定の位置に精度よく取り付けることができ、バスバーユニット60と制御装置100との電気的接続を良好にできる。
 本発明は上述の実施形態に限られるものではなく、後述するような他の実施形態および変形例を採用することもできる。以下の説明において上記説明と同様の構成については、適宜同一の符号を付す等により説明を省略する場合がある。
 図5は、ワイヤー保持部の他の態様を示す部分斜視図である。図5に示すように、ワイヤー保持部175は、円筒状の支持壁部175aを有する。支持壁部175aは軸方向に貫通する貫通孔を有する。ステータ40から延びるコイル引出線91Aは、支持壁部175aの貫通孔を通ってワイヤー支持部材70の上側へ引き出される。
 図2に示したワイヤー保持部75では、凹部75bが径方向内側に開口する。そのため、凹部75bへコイル引出線91A~91C、92A~92Cを容易に嵌め込み、位置決め等の作業を行うことができる。一方、図5に示す円筒状のワイヤー保持部175では、支持壁部175aによってコイル引出線の全周を保持する。そのため、コイル引出線91A~91C,92A~92Cが傾いたり、支持壁部175aから外れたりすることを抑制することができ、コイル引出線91A~91C,92A~92Cと他の部材との絶縁性も高めることができる。
 (変形例1)
 図6は、本実施形態の変形例1にかかるワイヤー支持部材270を示す斜視図である。図7は、図6に示すワイヤー支持部材270の上側支持部材を取り外した状態を示す斜視図である。
 図6および図7では、図1または図2に示したワイヤー支持部材70に代えて、図6に示すワイヤー支持部材270がモータ10に取り付けられている。ワイヤー支持部材270は、複数のワイヤー保持部75と、第1中性点バスバー71および第2中性点バスバー72と、本体部273と、を有する。図6では、ワイヤー保持部75の数は、6つである。本体部273は、図6に示す上側支持部材273aと、図7に示す下側支持部材273bとを有する。
 上側支持部材273aおよび下側支持部材273bは、絶縁部材であり、平面視において概ね円環状である。6つのワイヤー保持部75は、上側支持部材273aの内周縁に配置される。下側支持部材273bの外周部には、第1中性点バスバー71と第2中性点バスバー72とが取り付けられる。下側支持部材273bは、複数の脚部273cを有する。図6および図7では、脚部273cの数は、3本である。脚部273cは、下側支持部材273bの外縁端から軸方向下側へ延びる。脚部273cは、インシュレータ42の取付溝42aで支持される。なお、平面視における上側支持部材273aの外形および下側支持部材273bの外形は、円環状に限らず、例えば、楕円状や円弧状などであってもよい。
 ステータ40から延びるコイル引出線91A~91C,92A~92Cは、下側支持部材273bの外周側から上面へ回り込み、下側支持部材273bの上面の凹部274に収容される。コイル引出線91A~91C,92A~92Cは、下側支持部材273bの内周縁において、軸方向上側へ屈曲される。上側支持部材273aは下側支持部材273bの上面に取り付けられる。上側支持部材273aは、凹部274内に配置されるコイル引出線91A~91C,92A~92Cの一部を覆う。コイル引出線91A~91C,92A~92Cは、上側支持部材273aと下側支持部材273bとの間を通って、上側支持部材273aのワイヤー保持部75へ延びる。コイル引出線91A~91C、92A~92Cは、ワイヤー保持部75に保持される。
 上記構成では、上側支持部材273aと下側支持部材273bとが、コイル引出線を挟み込む。コイル引出線91A~91C,92A~92Cとステータ40との間に下側支持部材273bが配置されることにより、ステータ40とコイル引出線91A~91C,92A~92Cとを絶縁することができる。コイル引出線91A~91C,92A~92Cとベアリングホルダ55との間に上側支持部材273aが配置されることにより、コイル引出線とベアリングホルダ55との絶縁を確保することができる。つまり、上記構成では、図1に示すコイル引出線の絶縁チューブ98を設ける必要がない。
 上側支持部材273aは、軸方向に貫通する貫通孔273a1を有する。下側支持部材273bは、軸方向に伸びる突起部273b1を有する。貫通孔273a1には突起部273b1が挿入され、突起部273b1が加熱等により溶融して固化する。これにより、上側支持部材273aは、下側支持部材273bと、固定される。
なお、上側支持部材273aと下側支持部材273bとは、圧入、接着、スナップフィット等により固定することも可能である。ワイヤー保持部75は、上側支持部材273aではなく、下側支持部材273bに設けられていてもよい。
 (変形例2)
 図8は、本実施形態の変形例2のワイヤー支持部材370を示す斜視図である。図8では、図1または図2に示したワイヤー支持部材70に代えて、ワイヤー支持部材370は、モータ10に取り付けられている。ワイヤー支持部材370は、複数のワイヤー保持部75と、第1中性点バスバー71および第2中性点バスバー72と、本体部373と、を有する。図8では、ワイヤー保持部75の数は、6つである。
 本体部373は、平面視で円環状の部材である。6つのワイヤー保持部75は、本体部373の内周縁に設けられる。第1中性点バスバー71および第2中性点バスバー72は、本体部373の外周部に取り付けられる。
 本体部373の上面には、凹部374が配置される。ステータ40から延びるコイル引出線91A~91C,92A~92Cは、本体部373の外周から上面へ回り込み、凹部374に収容される。コイル引出線91A~91C,92A~92Cは、本体部373の上面に沿って内周縁のワイヤー保持部75へ延びる。コイル引出線91A~91C,92A~92Cは、ワイヤー保持部75に保持される。
  本体部373は、コイル引出線92B,92を本体部の上面に固定する固定部76を有する。より詳細には、凹部374には、軸方向に伸びる固定部76が配置される。変形例2では、固定部76は略L字形状である。固定部部76の先端は、径方向内側から径方向外側に向かって伸びる。コイル引出線92B,92Cは、固定部76と本体部373の上面との間に配置される。好ましくは、固定部76は、コイル引出線92B,92Cと軸方向および径方向に接触する。これにより、コイル引出線92B,92Cが本体部373の上面から軸方向上側に浮き上がることを抑制することができる。また、モータ10に外力等が加わってコイル引出線92B,92Cが本体部373の上面上を移動しようとしても固定部76に当たるため、コイル引出線92B,92Cの径方向への移動を抑えることができる。なお、固定部76は、複数の凹部374の全部に設けられていてもよく、一部の凹部374にのみ設けられていてもよい。また、固定部76の形状は、上述の形状に限られず、他の形状であってもよい。固定部76がコイル引出線92B,92Cの一部を挟みこんでもよい。
 変形例2の構成では、コイル引出線91A~91C、92A~92Cが本体部373の上面で引き回される。すなわち、ステータ40とコイル引出線91A~91C,92A~92Cとの間に本体部373が配置される。これにより、ステータ40とコイル引出線91A~91C,92A~92Cとを絶縁することができる。また、固定部76は、本体部373の上面におけるコイル引出線92B,92C等の移動を抑制する。本体部373は、コイル引出線91A~91C,92A~92Cとベアリングホルダ55との間に、配置される。これにより、コイル引出線91A~91C,92A~92Cとベアリングホルダ55との絶縁を確保することができる。変形例1の構成とは異なり、変形例2では、コイル引出線91A~91C,92A~92Cとベアリングホルダ55との間に、上側支持部材273a(図6参照)が配置されていない。すなわち、コイル引出線91A~91C、92A~92Cが、凹部374の外部に露出する。そのため、絶縁の観点から、コイル引出線91A~91C、92A~92Cは、ベアリングホルダ55と離れて配置されることが望ましい。なお、コイル引出線91A~91C、92A~92Cに絶縁チューブなどの絶縁部材が取り付けられてもよい。
 (変形例3)
 図9は、本実施形態の変形例3のモータ410を示す部分断面図である。図1に示したモータ10では、バスバーユニット60はベアリングホルダ55の上面に固定される。それに対して、図9に示すモータ410は、ベアリングホルダ55の下面に固定されるバスバーユニット460を備える。バスバーユニット460は、バスバー461と、バスバー461を保持するバスバーホルダ465と、を有する。バスバー461は、ワイヤー保持部75に保持されるコイル引出線91Aと、接続される。バスバー461は、ベアリングホルダ55の貫通孔を通ってベアリングホルダ55の上側へ延び、制御装置100と接続される。
 バスバーユニット460は、コイル引出線91A~91C,92A~92Cと接続されるバスバーを有する。図9では、コイル引出線91Aと接続されるバスバー461のみを図示し、他のコイル引出線91B,91C,92A~92Cと接続されるバスバーについては図示を省略している。
 変形例3の構成では、バスバーユニット460がベアリングホルダ55の下面に固定される。そのため、ステータ40やワイヤー支持部材70などが所定の位置から軸方向にずれたとしても、バスバー461の上端をハウジング20に対して正確に位置決めすることができる。したがって、バスバー461と制御装置100とを安定して接続することができる。
 バスバー461におけるコイル引出線91Aと接続する部位は、ベアリングホルダ55に設けられる貫通孔551内に位置する。これにより、当該部位とベアリングホルダ55との軸方向寸法を小さくできる。
 (変形例4)
 図10は、変形例4のモータ510を示す部分断面図である。図10に示すように、モータ510は、ワイヤー支持部材570を有する。ワイヤー支持部材570は、図1および図2に示したワイヤー支持部材70に、接続端子571が設けられた構成である。接続端子571は、ワイヤー支持部材570の本体部73に固定される。接続端子571の一方の端部は、ワイヤー保持部75に保持されたコイル引出線91Aに接続される。接続端子571の他方の端部は、ベアリングホルダ55の貫通孔56aを通ってベアリングホルダ55の上側へ延び、制御装置100と接続される。
 ワイヤー支持部材570は、端子保持部572を有する。端子保持部572は、接続端子571における貫通孔56aを通る部分を覆う。端子保持部572は絶縁材料であり、接続端子571とベアリングホルダ55とを電気的に絶縁することができる。なお、ワイヤー支持部材570は、コイル引出線91A~91C、92A~92Cと接続される接続端子を有する。図10では、コイル引出線91Aと接続される接続端子571のみを図示し、他のコイル引出線91B、91C、92A~92Cと接続される接続端子については図示を省略している。
 変形例4では、ワイヤー支持部材570が接続端子571を備える。そのため、モータ510では、制御装置100と接続するバスバーユニットが不要になる。これにより、部品点数を削減でき、またモータ510を軸方向に小型化することができる。
 (変形例5)
 図11は、変形例5のモータ10を示す部分断面図である。図1および図2に示したモータ10の構造とは異なり、変形例5のモータ10は、バスバーユニット60が設けられておらず、コイル引出線91Aと制御装置100とが直接接続される。この構造では、バスバーユニット60が不要であるため、部品点数を削減でき、またモータを軸方向に小型化することができる。
 (変形例6)
 本変形例のモータ610において、複数のコイルは、複数の接続系統を構成する。より詳細には、図12から図15に示すように、複数のコイルは、第1コイル群43Aからなる第1接続系統Aと、第2コイル群43Bからなる第2接続系統Bと、を構成する。これにより、第1接続系統Aと第2接続系統Bのいずれか一方の接続系統に不具合が生じた場合であっても、他方の接続系統を介してモータ610に電流を供給することができる。図14に示すように、第1接続系統Aおよび第2接続系統Bは、それぞれに含まれるコイルがスター結線によって接続された三相回路によって構成される。なお、複数の接続系統とは、電気的に接続される外部電源がそれぞれ異なり、接続系統ごとに独立して電流が供給される複数の回路である。
 第1コイル群43Aは、給電側コイル43Aa,43Ac,43Aeと、中性点側コイル43Ab,43Ad,43Afと、を含む。給電側コイル43Aaと中性点側コイル43Abとは、直列に接続されたU相のコイル群である。給電側コイル43Acと中性点側コイル43Adとは、直列に接続されたV相のコイル群である。給電側コイル43Aeと中性点側コイル43Afとは、直列に接続されたW相のコイル群である。
 第2コイル群43Bは、給電側コイル43Ba,43Bc,43Beと、中性点側コイル43Bb,43Bd,43Bfと、を含む。給電側コイル43Baと中性点側コイル43Bbとは、直列に接続されたU相のコイル群である。給電側コイル43Bcと中性点側コイル43Bdとは、直列に接続されたV相のコイル群である。給電側コイル43Beと中性点側コイル43Bfとは、直列に接続されたW相のコイル群である。
 図12に示すように、ベアリングホルダ655は、貫通孔656を有する。給電側コイル43Aa~43Beから引き出された引出線は、それぞれ、貫通孔656に通される。平面視における貫通孔656の開口の形状は、略矩形状である。図12では、2本のコイル引出線が、各貫通孔656を通る。3つの貫通孔656は、周方向に沿って配置される。すなわち、本変形例において、複数のコイルは、コイル引出線が貫通孔656に通される複数の給電側コイル43Aa~43Beを含む。給電側コイル43Aa~43Beは、各コイル引出線を介して制御装置100に接続される。なお、コイル引出線は、ティース41aに巻かれたコイル本体から引き出された部分であり、軸方向と交差する方向に延びる部分および軸方向に延びる部分を含む。
 図14に示すように、中性点側コイル43Ab~43Bfから引き出されるコイル引出線の一方の端部は、中性点Nとなる。中性点側コイル43Ab,43Ad,43Afのコイル引出線の一方の端部が、後述する第1中性点バスバー671に接続される。すなわち、中性点側コイル43Ab,43Ad,43Afの引出線における中性点Nとなる部位が、後述する第1中性点バスバー671に接続される。中性点側コイル43Bb,43Bd,43Bfの各コイル引出線の一方の端部が、後述する第2中性点バスバー672に接続される。すなわち、中性点側コイル43Bb,43Bd,43Bfの各コイル引出線の中性点Nとなる部位は、後述する第2中性点バスバー672に接続される。
 図15に示すように、複数のコイルは、接続系統ごとに分けて配置される。具体的には、第1接続系統Aの第1コイル群43Aと第2接続系統Bの第2コイル群43Bとは、平面視において、仮想線L1を挟んでそれぞれ反対側にまとめて配置される。仮想線L1は、中心軸Jと直交し、中心軸Jを通る直線である。
 各接続系統の給電側コイル43Aa~43Beと中性点側コイル43Ab~43Bfとは、それぞれまとめて配置される。具体的には、給電側コイル43Aa~43Beと中性点側コイル43Ab~43Bfとは、平面視において、仮想線L2を挟んでそれぞれ反対側にまとめて配置される。すなわち、複数の給電側コイル43Aa~43Beは、隣り合って配置され、複数の中性点側コイル43Ab~43Bfは、隣り合って配置される。仮想線L2は、中心軸Jおよび仮想線L1の両方と直交し、中心軸Jを通る直線である。なお、「複数のコイルが隣り合って配置される」とは、隣り合うティース41aに複数のコ
イルがそれぞれ装着されることを含む。
 図12に示すように、ワイヤー支持部材670は、導通部材と、本体部673と、ワイヤー保持部675と、を有する。導通部材は、第1導通部材671と、第2導通部材672と、を含む。以下の説明では、第1導通部材671を第1中性点バスバー671と呼び、第2導通部材672を第2中性点バスバー672と呼ぶ。第1中性点バスバー671は、第1接続系統Aの各コイル引出線を接続する。第2中性点バスバー672は、第2接続系統Bの各コイル引出線を接続する。第1中性点バスバー671および第2中性点バスバー672は、本体部673に保持される。
 図12および図15に示すように、第1中性点バスバー671および第2中性点バスバー672は、板状部材であり、略周方向に沿って延びる。より詳細には、第1中性点バスバー671および第2中性点バスバー672は、略周方向に沿って折れ線状に伸びる。第1中性点バスバー671の板面および第2中性点バスバー672の板面は、好ましくは、軸方向と平行である。
 図15に示すように、第1中性点バスバー671は、中性点側コイル43Ab,43Ad,43Afと平面視において重なる。第2中性点バスバー672は、中性点側コイル43Bb,43Bd,43Bfと平面視において重なる。
 図12に示すように、本体部673は、中心軸Jを中心とする円環状である。本体部673は、下側の面から上側に窪む凹部673aを有する。図15に示すように、平面視における凹部673aの外形は、周方向に延びる略半円弧状である。凹部673aは、給電側コイル43Aa~43Beと平面視において重なる。凹部673aは、貫通孔656に通されるコイル引出線91Aa~91Beの少なくとも一部と、軸方向に隙間を介して対向する。
 図15では、凹部673aの内側面は、給電側コイル43Aaのコイル引出線91Aa、給電側コイル43Acのコイル引出線91Ac、および給電側コイル43Aeのコイル引出線91Aeと、軸方向に隙間を介して対向する。凹部673aはステータ40の上側に配置される。そのため、給電側コイル43Aa,43Ac,43Aeのコイル引出線91Aa,91Ac,91Aeをステータ40の上側において這い回すことが可能となる。その結果、モータの組み立て時においてコイル引出線91Aa,91Ac,91Aeを容易に這い回すことができ、後述する各給電側コイルのコイル引出線を所定領域にまとめて配置することができる。
 また、例えば、給電側コイル43Aa~43Beを周方向に分散して配置し、各給電側コイル43Aa~43Beのコイル引出線を所定領域にまとめて配置する場合、コイル引出線が這い回される領域が大きくなりやすい。そのため、コイル引出線を這い回すための空間を確保するには、凹部673aを設ける領域を大きくする、あるいは凹部673aを複数設ける等の必要がある。この場合、本体部673の構造が複雑化する場合がある。
 これに対して、本変形例では、上述したように複数の給電側コイル43Aa~43Beが隣り合って配置される。そのため、各給電側コイル43Aa~43Beのコイル引出線91Aa~91Beを所定領域にまとめて配置する際に、コイル引出線91Aa~91Beが這い回される領域を最小限にすることができる。これにより、1つの凹部673aを最小限の領域に設けることで、コイル引出線91Aa~91Beが這い回される空間を好適に確保することができる。
 図16に示すように、本体部673は、溝部673bと、突起部674と、孔673cと、を有する。溝部673bは、下側に窪み、周方向に沿って延びる。図12に示すように、本体部673は、第1中性点バスバー671を保持する溝部673bと、第2中性点バスバー672を保持する溝部673bと、をそれぞれ有する。第1中性点バスバー671および第2中性点バスバー672は、溝部673bに圧入される。これにより、第1中性点バスバー671および第2中性点バスバー672は、溝部673bに上側から嵌め込まれて保持される。
 各溝部673bは、周方向に沿って不連続に設けられる。図12では、溝部673bは、4つの分割溝部673dによって構成される。分割溝部673dは、周方向に沿って間隔をあけて配置される。隣り合う分割溝部673dと分割溝部673dとの周方向の間には、第1凹部673eが配置される。第1凹部673eは、分割溝部673dが設けられた本体部673の部分よりも下側に窪み、本体部673を径方向に貫通する。
 図16に示すように、第1凹部673eの底面には、径方向内側に窪む切り欠き673e1が配置される。切り欠き673e1には、中性点側コイル43Ab~43Bfのコイル引出線91Ab~91Bfが通される。図12に示すように、各コイル引出線91Ab~91Bfにおける切り欠き673e1から上側に突出した部分は、第1中性点バスバー671または第2中性点バスバー672と、例えば、溶接によって固定される。
 このように、第1凹部673eを設けて、第1凹部673eの内部でコイル引出線91Ab~91Bfと各中性点バスバーとを固定することにより、溶接作業時において溶接治具を溶接部分に近づけやすく、溶接作業を行いやすい。また、コイル引出線91Ab~91Bfと各中性点バスバーとの溶接する部分自体を、径方向に逃がすことができる。
 図16に示すように、突起部674は、溝部673bにおける内側面の上側から軸方向と直交する方向に突出する。突起部674は、各分割溝部673dに、1つあるいは2つずつ配置される。突起部674は、溝部673bの径方向外側の内側面から径方向内側に突出する突起部674と、溝部673bの径方向内側の内側面から径方向外側に突出する突起部674と、を含む。溝部673bの径方向外側の内側面から径方向内側に突出する。突起部674は、溝部673bにおける対向する内側面にそれぞれ配置される。しかしながら、突起部674は、一方の内側面にのみ配置されてもよい。両方の内側面の突起部674は、互いに対向してもよいし、対向しなくてもよい。
 一方の内側面に配置された突起部674の先端と、他方の内側面または突起部674の先端と間の距離は、第1中性点バスバーおよび第2中性点バスバーの厚みよりも小さい。これにより、溝部673bに第1中性点バスバー671が嵌め込まれたときに、突起部674は、第1中性点バスバー671を押圧する。第2中性点バスバー672についても同様である。すなわち、溝部673bに第2中性点バスバー672が嵌め込まれたときに、突起部674は、第2中性点バスバー672を押圧する。そのため、第1中性点バスバー671および第2中性点バスバー672を、溝部673b内において容易に取り付けることができ、強固に保持することができる。これにより、本体部673が第1中性点バスバー671および第2中性点バスバー672を安定して保持することができる。
 孔673cは、本体部673を軸方向に貫通する。孔673cは、溝部673bの底面に設けられる。孔673cの少なくとも一部は、平面視において突起部674と重なる。そのため、例えば、金型を用いてワイヤー支持部材670を成型する際に、金型における突起部674を成型する部分を、孔673cを介して抜くことができる。これにより、ワイヤー支持部材670を成型する金型の構造を簡単にでき、かつ、金型を用いたワイヤー支持部材670の成型を容易にできる。
 図12および図13に示すように、ワイヤー保持部675は、本体部673から上側に突出する。ワイヤー保持部675に保持されるコイル引出線は、給電側コイル43Aa~43Beのコイル引出線91Aa~91Beである。ワイヤー保持部675は、支持壁部675aと、凹部675bと、保持凹部675dと、を有する。支持壁部675aは、本体部673から上側に突出する。支持壁部675aの上端には、蓋部675cが設けられる。本体部673におけるワイヤー保持部675が設けられる部分には、第2凹部673fが設けられる。第2凹部673fは、本体部673の外周面から径方向内側に窪み、軸方向両側に開口する。凹部675bは、径方向外側に開口する。凹部675bは、下側に開口し、第2凹部673fと連通する。
 保持凹部675dは、蓋部675cに設けられる。保持凹部675dには、コイル引出線91Aa~91Beが保持される。ステータ40の上側を這うコイル引出線91Aa~91Beは、第2凹部673f付近で、軸方向の上側に屈曲し、第2凹部673fおよび凹部675bを介して、保持凹部675dに保持され、蓋部675cの上側へ引き出される。
 保持凹部675dは、径方向に開口する。径方向に延びるティース41aに巻かれた給電側コイルのコイル引出線は、ステータ40の上側に径方向に引き出され、保持凹部675dの開口を介して軸方向に屈曲し、保持凹部675dに保持される。これにより、保持凹部675dにコイル引出線を容易に保持させることができる。保持凹部675dの開口端の開口幅は、保持凹部675dの奥側の幅よりも狭く、かつ、コイル引出線の線径よりも小さい。そのため、保持凹部675dに収容されたコイル引出線が容易に外れることを抑制することができる。
 図12および図13では、保持凹部675dは、径方向外側に開口する。そのため、給電側コイルから引き出され、ステータ40の上側を這うコイル引出線の先端を、径方向外側から軸方向の上側に屈曲させ、保持凹部675dに保持させることができる。保持凹部675dの径方向外側には、モータを構成する他の部材が配置されない。そのため、コイル引出線を屈曲させる等の取り扱いが行いやすく、より保持凹部675dに保持させやすい。保持凹部675dは、蓋部675cの径方向外側の端部から径方向内側に窪む。保持凹部675dは、ワイヤー保持部675ごとに複数(例えば、2つずつ)設けられる。これにより、ワイヤー保持部675に複数(例えば、2本)のコイル引出線を保持させることができる。なお、保持凹部675dは、径方向内側に開口してもよい。
 このように、ワイヤー保持部675は、保持凹部675dを介して、複数のコイル引出線をまとめて保持する。図12および図13では、ワイヤー保持部675は、3つ設けられ、それぞれ2つの保持凹部675dによって2本ずつコイル引出線を保持する。3つのワイヤー保持部675は、周方向において、給電側コイル43Ba,43Bc,43Beのそれぞれと略同じ位置にある。
 給電側コイル43Baと周方向において略同じ位置にあるワイヤー保持部675は、コイル引出線91Aa,91Baを保持する。給電側コイル43Bcと周方向において略同じ位置にあるワイヤー保持部675は、コイル引出線91Ac,91Bcを保持する。給電側コイル43Beと周方向において略同じ位置にあるワイヤー保持部675は、コイル引出線91Ae,91Beを保持する。すなわち、各ワイヤー保持部675がまとめて保持する複数のコイル引出線は、互いに接続系統が異なり、かつ、互いに同相の複数の給電側コイルのコイル引出線である。
 そのため、第1接続系統Aと第2接続系統Bとにおける同相の給電側コイルのコイル引出線を、ワイヤー保持部675によって、略同じ位置でまとめて保持できる。これにより、同相の電流が供給されるコイル引出線同士を制御装置100に容易に接続することができる。なお、「ワイヤー保持部がコイル引出線をまとめて保持する」とは、1つのワイヤー保持部に複数のコイル引出線が保持されることを含む。
 各ワイヤー保持部675に保持される6つのコイル引出線91Aa~91Be、所定領域にまとめて配置される。すなわち、ベアリングホルダ655の貫通孔656に通されるコイル引出線は、所定領域にまとめて配置される。本変形例において所定領域は、図15に示す仮想線L1と仮想線L2とによって区切られた4つの領域のうちの一つの(図では左下の)領域ARである。軸方向に伸びる各コイル引出線91Aa~91Beの延長線上に、制御装置100の接続部を配置することができる。そのため、コイル引出線91Aa~91Beを制御装置100に容易に接続することができる。また、制御装置100にロータ30の回転位置を検出する回転センサが設けられる場合に、コイル引出線が分散して配置される構成に比べて、回転センサによるセンシングに与える影響を低減することができる。なお、「ある対象が所定領域にまとめて配置される」とは、例えば、平面視において周方向の角度が180度以下となる領域内に、ある対象が配置されることを含む。
 図12および図13に示すように、モータ610は、絶縁部680を備える。絶縁部680は、プラスチックまたはエラストマー等の絶縁材料からなり、周方向に沿って延びる。絶縁部680は、ベアリングホルダ655に保持される。より詳細には、絶縁部680は、ベアリングホルダ655の3つの貫通孔656の内側に嵌め合わされて保持される。絶縁部680は、貫通孔656の内側において、コイル引出線91Aa~91Beを囲む。これにより、貫通孔656を通るコイル引出線91Aa~91Beとベアリングホルダ655との絶縁を確保することができる。
また、貫通孔656の内径は、コイル引出線91Aa~91Beの線径よりも大きい。そのため、モータの組み立て時において、コイル引出線91Aa~91Beを貫通孔656に容易に通すことができる。また、コイル引出線と貫通孔内周面とが離れて位置するため、コイル引出線とベアリングホルダ655との絶縁を容易に確保することができる。
また、コイル引出線91Aa~91Beは、そのような貫通孔656を通るだけであると、先端側が拘束されないため、外力を受けると倒れ、位置がずれる恐れがある。しかしながら、本変形例では、絶縁部680がコイル引出線91Aa~91Beと貫通孔656の間に介在し、ベアリングホルダ655に保持される。そのため、コイル引出線91Aa~91Beを、ベアリングホルダ655に対して精度よく保持することができる。つまり、絶縁部680は、コイル引出線91Aa~91Beの位置ずれを抑制することができる。また、コイル引出線91Aa~91Beが所定の位置からずれた場合であっても、絶縁部680の位置を調整することにより、コイル引出線91Aa~91Beを所定の位置へ移動させることができる。これにより、モータ610の組み立て時において、コイル引出線91Aa~91Beを制御装置100に容易に接続することができる。
 絶縁部680は、複数の孔680aを有する。図12では、孔680aの数は6個である。孔680aは、絶縁部680を軸方向に貫通する。孔680aには、コイル引出線91Aa~91Beがそれぞれ通される。コイル引出線91Aa~91Beにおける絶縁部680から上側に突出した部分が、制御装置100に接続される。本変形例において、絶縁部680は、ワイヤー支持部材670と別部材である。
ベアリングホルダ655が組み付けられ、コイル引出線91Aa~91Beが貫通孔656を通された状態において、絶縁部680は、貫通孔656に上側から嵌め合わされる。この場合、絶縁部680にコイル引出線91Aa~91Beを通してからベアリングホルダ655を組み付ける場合に比べて、コイル引出線91Aa~91Beが折れ曲がることを抑制できる。
 また、絶縁部680が貫通孔656に嵌め合わせられることにより、コイル引出線と貫通孔656との間の隙間が無くなり、貫通孔656が絶縁部680により封止される。そのため、モータ610の外部から粉塵等がモータ内部へ流入することが防止できる。なお、絶縁部680と貫通孔656の内側面との間には隙間があってもよい。
 なお、ワイヤー保持部675は、保持凹部675dの代わりに、コイル引出線を保持し軸方向に貫通する貫通孔を有してもよい。
 (変形例7)
 本変形例のモータ710は、複数の絶縁部780を有する。図17では、絶縁部780の数は、3つである。絶縁部780は、変形例6のモータ610の絶縁部680とは異なる。図17に示すように、絶縁部780は、軸方向に延びる直方体状である。絶縁部780は、ワイヤー支持部材770に保持される。絶縁部680の上端は、貫通孔656の上側に位置する(図示省略)。なお、絶縁部680の上端は、貫通孔656内に位置してもよい。絶縁部780は、本体部673の複数の第2凹部673fに配置される。すなわち、各絶縁部780は、各第2凹部673fにそれぞれ嵌め合わされて、ワイヤー支持部材770に保持される。絶縁部780は、ワイヤー支持部材770と別部材である。
絶縁部780は、複数の保持孔780aをそれぞれ有する。保持孔780aは、絶縁部780を軸方向に貫通し、コイル引出線91Aa~91Beが通される。図17では、各絶縁部780が有する保持孔780aの数は、それぞれ2つである。このような構成により、ベアリングホルダ655を組み付ける前に、絶縁部780をワイヤー支持部材770に取り付けることができるため、絶縁部780を容易にモータ710に取り付けることが可能である。
 コイル引出線91Aa~91Beは絶縁部780の保持孔780aに通されるため、ワイヤー保持部675に保持されたコイル引出線91Aa~91Beがより一層外れにくい。また、コイル引出線91Aa~91Beのより先端側まで絶縁部780が覆うため、コイル引出線91Aa~91Beの位置ずれが生じにくい。
なお、この変形例では複数の絶縁部780は、複数の保持孔780aを有する一つの部材から構成されてもよい。
 (変形例8)
 本変形例のモータ810は、変形例6のモータ610の絶縁部680およびワイヤー保持部675を変更したものである。図18に示すように、本変形例のモータ810においてワイヤー保持部875は、図12および図13に示すワイヤー保持部675よりも、上側に延びる。ワイヤー保持部875の上端は、ベアリングホルダ655の貫通孔656の内側または貫通孔656の上側に、位置する。ワイヤー保持部875は、貫通孔656の内側において、コイル引出線91Aa~91Beを囲む。ワイヤー保持部875は、コイル引出線91Aa~91Beとベアリングホルダ655とを電気的に絶縁する。すなわち、ワイヤー保持部875は、上述の変形例における絶縁部としての機能を有する。言い換えれば、本変形例において、絶縁部は、ワイヤー保持部875である。
 本変形例においては、ワイヤー支持部材870は単一の部材である。ワイヤー保持部875と本体部673とは、単一の部材の部分である。このように、単一の部材であるワイヤー支持部材870の一部であるワイヤー保持部875が、絶縁部として機能することで、別途絶縁部を設ける必要がなく、モータ810の部品点数を削減することができる。コイル引出線91Aa~91Beのより先端側がワイヤー保持部875で保持されるため、コイル引出線91Aa~91Beの位置ずれが生じにくい。
 (変形例9)
 本変形例のモータ910は、変形例6のモータ610の絶縁部680を変更したものである。モータ910は、絶縁部980を有する。図19に示すように、絶縁部980は、複数の第1絶縁部材981と、第2絶縁部材982と、を有する。第1絶縁部材981は、ワイヤー支持部材970に保持される。第1絶縁部材981は、ワイヤー保持部675における第2凹部673fの周方向両端部の上面に設けられる。第1絶縁部材981は、上下方向に延びる略直方体状の部材である。第1絶縁部材981は、下側から上側に向かって径方向の寸法および周方向の寸法が小さくなる段差を有する。
 図19では、第1絶縁部材981は、3つ設けられる。各第1絶縁部材981は、第1絶縁部材981を上下方向に貫通し、コイル引出線91Aa~91Beが通される孔981aを2つずつ有する。コイル引出線91Aa~91Beは第1絶縁部材981で覆われる。そのため、ワイヤー保持部675に保持されたコイル引出線91Aa~91Beがより一層外れにくい。なお、3つの第1絶縁部材981は、単一部材であってもよい。
 第2絶縁部材982は、周方向に沿って延びる部材である。第2絶縁部材982は、ベアリングホルダ655の貫通孔656に保持され、第1絶縁部材981に取り付けられる。第2絶縁部材982は、径方向内側から径方向外側に窪む嵌合部982aを3つ有する。嵌合部982aには、第1絶縁部材981の上部が嵌め合わされる。第2絶縁部材982の下端は、第1絶縁部材981の段差における軸方向と直交する段差面に、上側から接触する。これにより、第2絶縁部材982は、各第1絶縁部材981に取り付けられ、複数の第1絶縁部材981を連結する。第2絶縁部材982は、第1絶縁部材981と別部材である。
 これにより、第1絶縁部材981と第2絶縁部材982との相対位置を微調整することができる。即ち、各部に生じた位置ずれは、第1絶縁部材981と第2絶縁部材982との相対位置を調整することで吸収され、コイル引出線91Aa~91Beの配置精度を向上させることができる。各コイル引出線91Aa~91Beの相対位置がずれていても、連結された第1絶縁部材981と第2絶縁部材982tの相対位置を調整することにより、各コイル引出線91Aa~91Beの位置ずれを矯正することができる。また、各コイル引出線91Aa~91Beに外力が加わる等した場合であっても、第1絶縁部材981と第2絶縁部材982とが連結しているため、各コイル引出線91Aa~91Beの位置がずれることを防止できる。そのため、コイル引出線91Aa~91Beの位置精度を高くした状態において、ベアリングホルダ655の貫通孔656から上側に突出させることができる。したがって、コイル引出線91Aa~91Beを制御装置100に精度よく接続することができる。
 第2絶縁部材982が貫通孔656に保持されるため、第1絶縁部材981と第2絶縁部材982により、貫通孔656が封止される。しかしながら、変形例6と同様に、第1絶縁部材981と貫通孔656の内側面との間に隙間があってもよく、第2絶縁部材982と貫通孔656の内側面との間に隙間があってもよい。
(変形例10)
 本変形例のモータは、変形例9のモータ910の絶縁部980を変更したものであるが、変更が小幅であるため、図19を参照して説明する。変形例9のモータ910においては、第1絶縁部材981がワイヤー保持部675に取り付けられる。それに対して、本変形例では、ワイヤー保持部675をワイヤー支持部材970と別部材とし、ワイヤー保持部675の機能を第1絶縁部材981に兼用させる。即ち、本変形例は、ワイヤー支持部材970において、本体部673の一部に軸方向に貫通する開口が設けられる。本体部673の開口から、コイル引出線91Aa~91Beが軸方向に引き出される。引き出されたコイル引出線91Aa~91Beは、第1絶縁部材981の孔981aに通される。第1絶縁部材981と本体部673とは、それぞれに設けた締結手段によって固定される。第2絶縁部材982は、嵌合部982aが第1絶縁部材981に嵌め合わされる。第1絶縁部材981が取り付けられることにより、コイル引出線91Aa~91Beは第1絶縁部材981に保持され、所定の位置に調整することができる。さらに、第2絶縁部材982の位置を調整することにより、コイル引出線91Aa~91Beの位置を、各第1絶縁部材981を介して、さらに調整することができる。なお、3つの第1絶縁部材は、単一の部材であってもよい。
 なお、上述したワイヤー支持部材による作用効果は、導通部材に係る作用効果を除いて、導通部材が設けられない場合であっても得られる作用効果である。
 また、上述した各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。
 10,410,510,610,710,810,910…モータ、30…ロータ、31…シャフト、40…ステータ、41a…ティース、43…コイル、55,655…ベアリングホルダ、56a,56b,56c,56d,56e,57a,57b,57c,551,656…貫通孔、673a…凹部、70,270,370,570,670,770,870,970…ワイヤー支持部材、71,671…第1中性点バスバー(第1導通部材)、72,672…第2中性点バスバー(第2導通部材)、73,273,373,673…本体部、674…突起部、75,175,675,875…ワイヤー保持部、91A~91C,91a~91c,92A~92C,92a~92c,91Aa~91Af,91Ba~91Bf…コイル引出線、43Aa,43Ac,43Ae,43Ba,43Bc,43Be…給電側コイル、673b…溝部、673c…孔、675d…保持凹部、680,780,980…絶縁部、981…第1絶縁部材、982…第2絶縁部材、A…第1接続系統、AR…領域(所定領域)、B…第2接続系統、J…中心軸

Claims (16)

  1.  上下方向に延びる中心軸を中心とするシャフトを有するロータと、
     前記ロータと径方向に対向して配置されたステータと、
     前記シャフトを支持するベアリングと、
     前記ステータの上側に配置されるワイヤー支持部材と、
     前記ワイヤー支持部材の上側に配置され前記ベアリングを保持するベアリングホルダと、
     を備え、
     前記ステータは、
      複数のティースと、
      複数の前記ティースに設けられる複数のコイルと、
     を有し、
     前記ワイヤー支持部材は、
      前記コイルから引き出されるコイル引出線のうち、一部の前記コイル引出線を保持するワイヤー保持部と、
      他の一部の前記コイル引出線を互いに電気的に接続する導通部材と、
      前記ワイヤー保持部および前記導通部材を支持する本体部と、
     を有し、
     前記ベアリングホルダは、前記ベアリングホルダを軸方向に貫通する貫通孔を有し、前記コイル引出線のコイル端は前記貫通孔を通って前記ベアリングホルダの上側へ延びる、
     モータ。
  2.  前記本体部は、下側の面から上側に窪む凹部を有し、
     前記凹部は、前記貫通孔に通される前記コイル引出線の少なくとも一部と軸方向に隙間を介して対向する、請求項1に記載のモータ。
  3.  複数の前記コイルは、前記コイル引出線が前記貫通孔に通される複数の給電側コイルを含み、
     複数の前記給電側コイルは、隣り合って配置される、請求項2に記載のモータ。
  4.  複数の前記コイルは、複数の接続系統を構成し、
     前記ワイヤー保持部は、複数の前記コイル引出線をまとめて保持し、
     前記ワイヤー保持部がまとめて保持する複数の前記コイル引出線は、互いに前記接続系統が異なり、かつ、互いに同相の複数の前記コイルの前記コイル引出線である、請求項1から3のいずれか一項に記載のモータ。
  5.  前記ワイヤー保持部は、前記コイル引出線が保持される保持凹部を有し、
     前記保持凹部は、径方向に開口する、請求項1から4のいずれか一項に記載のモータ。
  6.  前記保持凹部は、径方向外側に開口する、請求項5に記載のモータ。
  7.  前記貫通孔の内側において、前記コイル引出線を囲む絶縁部を備える、請求項1から6のいずれか一項に記載のモータ。
  8.  前記絶縁部は、前記ベアリングホルダに保持される、請求項7に記載のモータ。
  9.  前記絶縁部は、前記ワイヤー支持部材に保持される、請求項7に記載のモータ。
  10.  前記絶縁部は、前記ワイヤー保持部である、請求項7に記載のモータ。
  11.  前記絶縁部は、
      前記ワイヤー支持部材に保持される第1絶縁部材と、
      前記第1絶縁部材と別部材であり、前記ベアリングホルダに保持され、前記第1絶縁部材に取り付けられる第2絶縁部材と、
     を有する、請求項7に記載のモータ。
  12.  前記絶縁部は、複数の前記第1絶縁部材を有し、
     前記第2絶縁部材は、複数の前記第1絶縁部材を連結する、請求項11に記載のモータ。
  13.  前記貫通孔に通される前記コイル引出線は、所定領域にまとめて配置される、請求項1から12のいずれか一項に記載のモータ。
  14.  前記本体部は、
      下側に窪み、前記導通部材が保持される溝部と、
      前記溝部の内側面から軸方向と直交する方向に突出し、前記導通部材を押圧する突起部と、
     を有する、請求項1から13のいずれか一項に記載のモータ。
  15.  前記本体部は、前記本体部を軸方向に貫通し、少なくとも一部が平面視において前記突起部と重なる孔を有する、請求項14に記載のモータ。
  16.  複数の前記コイルは、第1接続系統と、第2接続系統と、を構成し、
     前記導通部材は、前記第1接続系統の前記コイル引出線を接続する第1導通部材と、前記第2接続系統の前記コイル引出線を接続する第2導通部材と、を含む、請求項1から15のいずれか一項に記載のモータ。
PCT/JP2016/073479 2015-08-10 2016-08-09 モータ WO2017026491A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112016003666.3T DE112016003666T5 (de) 2015-08-10 2016-08-09 Motor
US15/750,858 US10903711B2 (en) 2015-08-10 2016-08-09 Motor
CN201680047039.6A CN107925301B (zh) 2015-08-10 2016-08-09 马达
JP2017534471A JP6717309B2 (ja) 2015-08-10 2016-08-09 モータ
KR1020187003891A KR102010797B1 (ko) 2015-08-10 2016-08-09 모터

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-158390 2015-08-10
JP2015158390 2015-08-10
JP2016-068371 2016-03-30
JP2016068371 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017026491A1 true WO2017026491A1 (ja) 2017-02-16

Family

ID=57983780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073479 WO2017026491A1 (ja) 2015-08-10 2016-08-09 モータ

Country Status (6)

Country Link
US (1) US10903711B2 (ja)
JP (1) JP6717309B2 (ja)
KR (1) KR102010797B1 (ja)
CN (1) CN107925301B (ja)
DE (1) DE112016003666T5 (ja)
WO (1) WO2017026491A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168090A1 (ja) * 2017-03-14 2018-09-20 日本電産株式会社 ステータ、モータ、電動パワーステアリング装置
WO2019031049A1 (ja) * 2017-08-09 2019-02-14 日本電産株式会社 モータ
WO2019031050A1 (ja) * 2017-08-09 2019-02-14 日本電産株式会社 モータおよびモータの製造方法
WO2019065584A1 (ja) * 2017-09-28 2019-04-04 日本電産株式会社 モータ
CN110809849A (zh) * 2017-07-27 2020-02-18 博泽沃尔兹堡汽车零部件有限公司 用于将连接单元安装在电动机的部件上的方法
JP2021010252A (ja) * 2019-07-02 2021-01-28 日本電産株式会社 モータ
WO2021193039A1 (ja) * 2020-03-25 2021-09-30 日本電産株式会社 モータ
WO2022190806A1 (ja) * 2021-03-11 2022-09-15 株式会社デンソー 回転電機

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026492A1 (ja) * 2015-08-10 2017-02-16 日本電産株式会社 モータ
DE112017004052T5 (de) * 2016-08-12 2019-04-25 Nidec Corporation Motor und elektrische Servolenkvorrichtung
US11075562B2 (en) * 2017-03-31 2021-07-27 Nidec Corporation Bus bar unit and motor
JPWO2020026710A1 (ja) * 2018-08-03 2021-08-02 日本電産株式会社 ステータ、およびモータ
US20210320548A1 (en) * 2018-08-03 2021-10-14 Nidec Corporation Stator and motor
KR20200016468A (ko) * 2018-08-07 2020-02-17 현대모비스 주식회사 차량 구동모터용 터미널 장치
US11936266B2 (en) * 2018-09-11 2024-03-19 Lg Innotek Co., Ltd. Motor having stator with guide and holder
JP2020054208A (ja) * 2018-09-28 2020-04-02 日本電産株式会社 モータ
KR20200037585A (ko) * 2018-10-01 2020-04-09 현대모비스 주식회사 구동모터용 터미널 어셈블리
FR3088499B1 (fr) * 2018-11-08 2020-10-23 Valeo Equip Electr Moteur Machine electrique tournante munie d'une bouche isolante de sorties de phases
DE102018131965A1 (de) * 2018-12-12 2020-06-18 Thyssenkrupp Ag Stator, Anschlusskomponente und elektrische Maschine
KR20200080715A (ko) * 2018-12-27 2020-07-07 엘지이노텍 주식회사 모터
JP2020162293A (ja) * 2019-03-27 2020-10-01 日本電産株式会社 バスバー装置、モータ、及びバスバー装置の製造方法
CN113439378B (zh) * 2019-03-28 2023-10-27 日本电产株式会社 马达
EP3993232B1 (en) * 2019-06-27 2024-06-05 Mitsubishi Electric Corporation Electric drive device and electric power steering device
KR20210133544A (ko) * 2020-04-29 2021-11-08 엘지전자 주식회사 팬모터
DE102020111763A1 (de) * 2020-04-30 2021-11-04 Schaeffler Technologies AG & Co. KG Statoreinheit für eine elektrische Maschine, entsprechende elektrische Maschine und Verfahren zum Erstellen einer Sternverschaltung
CN113726073A (zh) 2020-05-26 2021-11-30 日本电产株式会社 马达和电气产品
DE102022203218A1 (de) 2022-03-31 2023-10-05 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Elektromotor und Kühlerlüfter mit einem solchen Elektromotor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014138499A (ja) * 2013-01-17 2014-07-28 Nippon Densan Corp モータ
JP2014158409A (ja) * 2013-01-17 2014-08-28 Mitsuba Corp 電動モータおよび電動ポンプ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980013882A (ko) 1996-08-05 1998-05-15 구자홍 전동기의 리드와이어 용접부 절연장치
JP4783012B2 (ja) 2004-12-28 2011-09-28 日立オートモティブシステムズ株式会社 電動パワーステアリング用モータ及びその製造方法
DE102007005357A1 (de) * 2006-02-03 2007-10-04 Asmo Co., Ltd., Kosai Stator
DE112008001262T5 (de) 2007-05-25 2010-04-01 Mitsubishi Electric Corp. Bürstenloser Motor
JP5290612B2 (ja) * 2008-04-15 2013-09-18 アスモ株式会社 ステータ、モータ及びステータの製造方法
CN101577455B (zh) 2008-05-05 2013-07-31 德昌电机(深圳)有限公司 具有多级电路的电机及其导线连接器
JP5401902B2 (ja) * 2008-10-03 2014-01-29 日本電産株式会社 モータ
JP5460095B2 (ja) * 2009-03-26 2014-04-02 株式会社ミツバ ブラシレスモータ
JP4811749B2 (ja) 2009-06-24 2011-11-09 株式会社デンソー 駆動装置
JP5703604B2 (ja) * 2010-03-03 2015-04-22 日本電産株式会社 バスバーユニット及びモータ
JP5063722B2 (ja) 2010-03-19 2012-10-31 三菱電機株式会社 電動式駆動装置およびそれを搭載した電動式パワーステアリング装置
JP5847543B2 (ja) * 2011-11-08 2016-01-27 株式会社ミツバ バスバーユニットおよびブラシレスモータ
JP5328969B2 (ja) 2012-03-12 2013-10-30 日立電線株式会社 電動機及び集中配電部材
JP6098920B2 (ja) 2012-10-19 2017-03-22 日本電産株式会社 ステータユニットおよびモータ
JP2014093880A (ja) 2012-11-05 2014-05-19 Denso Corp 回転電機
US9929614B2 (en) 2013-07-02 2018-03-27 Nidec Corporation Motor with integrated slot liner and bobbin with guides for conductor coils
JP6215351B2 (ja) * 2013-12-05 2017-10-18 日立オートモティブシステムズ株式会社 回転電機
JP6184520B2 (ja) * 2013-12-16 2017-08-23 三菱電機株式会社 機電一体型駆動装置及びその製造方法
JP6459492B2 (ja) * 2014-12-22 2019-01-30 株式会社デンソー 駆動装置、および、これを用いた電動パワーステアリング装置
DE102015212821A1 (de) * 2015-07-09 2017-01-12 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Statoranordnung, elektrische Drehstrommaschine und Verfahren zum Herstellen einer Statoranordnung
WO2017026550A1 (ja) * 2015-08-10 2017-02-16 日本電産株式会社 モータ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014138499A (ja) * 2013-01-17 2014-07-28 Nippon Densan Corp モータ
JP2014158409A (ja) * 2013-01-17 2014-08-28 Mitsuba Corp 電動モータおよび電動ポンプ

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109964389A (zh) * 2017-03-14 2019-07-02 日本电产株式会社 定子、马达、电动助力转向装置
JPWO2018168090A1 (ja) * 2017-03-14 2020-01-16 日本電産株式会社 ステータ、モータ、電動パワーステアリング装置
US11342805B2 (en) 2017-03-14 2022-05-24 Nidec Corporation Stator, motor, and electric power steering device
WO2018168090A1 (ja) * 2017-03-14 2018-09-20 日本電産株式会社 ステータ、モータ、電動パワーステアリング装置
JP7060007B2 (ja) 2017-03-14 2022-04-26 日本電産株式会社 ステータ、モータ、電動パワーステアリング装置
CN109964389B (zh) * 2017-03-14 2021-08-20 日本电产株式会社 定子、马达、电动助力转向装置
CN110809849B (zh) * 2017-07-27 2022-04-26 博泽沃尔兹堡汽车零部件有限公司 用于将连接单元安装在电动机的部件上的方法
US11689085B2 (en) 2017-07-27 2023-06-27 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Method for mounting a switching unit on a component of an electric motor
CN110809849A (zh) * 2017-07-27 2020-02-18 博泽沃尔兹堡汽车零部件有限公司 用于将连接单元安装在电动机的部件上的方法
WO2019031049A1 (ja) * 2017-08-09 2019-02-14 日本電産株式会社 モータ
WO2019031050A1 (ja) * 2017-08-09 2019-02-14 日本電産株式会社 モータおよびモータの製造方法
JPWO2019065584A1 (ja) * 2017-09-28 2020-10-22 日本電産株式会社 モータ
CN111052557B (zh) * 2017-09-28 2022-04-22 日本电产株式会社 马达
CN111052557A (zh) * 2017-09-28 2020-04-21 日本电产株式会社 马达
JP7192776B2 (ja) 2017-09-28 2022-12-20 日本電産株式会社 モータ
WO2019065584A1 (ja) * 2017-09-28 2019-04-04 日本電産株式会社 モータ
JP2021010252A (ja) * 2019-07-02 2021-01-28 日本電産株式会社 モータ
WO2021193039A1 (ja) * 2020-03-25 2021-09-30 日本電産株式会社 モータ
WO2022190806A1 (ja) * 2021-03-11 2022-09-15 株式会社デンソー 回転電機

Also Published As

Publication number Publication date
JPWO2017026491A1 (ja) 2018-05-31
US20180233984A1 (en) 2018-08-16
DE112016003666T5 (de) 2018-05-03
JP6717309B2 (ja) 2020-07-01
KR20180030604A (ko) 2018-03-23
US10903711B2 (en) 2021-01-26
KR102010797B1 (ko) 2019-08-14
CN107925301B (zh) 2020-01-17
CN107925301A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
WO2017026491A1 (ja) モータ
US11557936B2 (en) Motor including a bearing holder with through-holes
JP7024783B2 (ja) バスバーユニット及びそれを備えたモータ
US11277047B2 (en) Busbar apparatus, motor, and method of manufacturing busbar apparatus
JP7052789B2 (ja) バスバーユニット及びそれを備えたモータ
CN112366883A (zh) 马达和电动助力转向装置
JP7006675B2 (ja) モータ
JP7318654B2 (ja) モータ
JP2012135188A (ja) モータ
WO2019167522A1 (ja) モータ
JP2019149912A (ja) モータ
WO2020080548A1 (ja) モータ
CN112583212B (zh) 马达
WO2020195399A1 (ja) モータ
JP6719531B2 (ja) ステータ及びモータ
WO2019167843A1 (ja) モータ
WO2020195401A1 (ja) モータ
WO2020067254A1 (ja) モータ
JP2021058011A (ja) バスバー装置、ステータおよびモータ
WO2019082709A1 (ja) ステータおよびモータ
CN112583212A (zh) 马达
JP2019170069A (ja) モータ及び電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835188

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534471

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15750858

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187003891

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016003666

Country of ref document: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018002714

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 16835188

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018002714

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180208