WO2017024774A1 - 一种高容量高倍率负极材料的制备方法 - Google Patents

一种高容量高倍率负极材料的制备方法 Download PDF

Info

Publication number
WO2017024774A1
WO2017024774A1 PCT/CN2016/071956 CN2016071956W WO2017024774A1 WO 2017024774 A1 WO2017024774 A1 WO 2017024774A1 CN 2016071956 W CN2016071956 W CN 2016071956W WO 2017024774 A1 WO2017024774 A1 WO 2017024774A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
resin
soluble
anode material
preparation
Prior art date
Application number
PCT/CN2016/071956
Other languages
English (en)
French (fr)
Inventor
田东
Original Assignee
田东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田东 filed Critical 田东
Publication of WO2017024774A1 publication Critical patent/WO2017024774A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of lithium ion batteries, in particular to a preparation method of a high capacity high rate anode material.
  • lithium-ion batteries have developed rapidly.
  • the commercial lithium ion battery anode material is made of graphite-based carbon material, has low lithium insertion/deintercalation potential, suitable reversible capacity, rich resources, and low price, and is an ideal anode material for lithium ion batteries.
  • its theoretical specific capacity is only 372 mAh/g, which limits the further improvement of the specific energy of lithium-ion batteries and cannot meet the needs of the increasingly high-energy portable mobile power sources.
  • SEI solid electrolyte membrane
  • the solid electrolyte membrane is formed by reacting an electrolyte, a negative electrode material, and lithium ions, and irreversibly consuming lithium ions, which is a major factor in forming an irreversible capacity.
  • the second is that the electrolyte is easily embedded in the lithium ion intercalation process.
  • the electrolyte is reduced, and the resulting gas product causes the graphite sheet to peel off.
  • the graphite sheet peels off and a new interface is formed, resulting in further SEI formation, irreversible capacity increase, and circulation.
  • the stability is degraded.
  • the amorphous carbon formed by pyrolysis of the resin-based polymer has a low degree of order and a loose structure, and lithium ions can be relatively freely embedded and extracted therein without a large influence on the structure thereof.
  • tin is one of the most promising anode materials for carbon materials because tin has a high specific gravity capacity of up to 994 mAh/g; and has a smooth discharge platform similar to graphite.
  • tin similar to other high-capacity metals, tin has very poor cycle performance and cannot perform normal charge and discharge cycles.
  • the volume expansion of metallic tin is remarkable, resulting in poor cycle performance and rapid decay of capacity, so it is difficult to meet the requirements of large-scale production.
  • a non-metallic element such as carbon
  • the metal tin is stabilized by alloying or compounding, and the volume expansion of tin is slowed down. Carbon can prevent direct contact between tin particles, inhibit the agglomeration and growth of tin particles, and act as a buffer layer.
  • the melting point of metal tin is only 232 ° C, which inevitably causes volume expansion during high temperature heat treatment.
  • heat treatment of tin carbon materials the following problems are mainly faced.
  • the tin-carbon composite is heat treated at a higher temperature, the tin particles are more easily fused together to form a large particle, which is in circulation.
  • the electrode material is pulverized and detached, resulting in rapid decrease of battery capacity and deterioration of cycle performance; in low-temperature heat treatment, the resistance of the tin-carbon composite material is large and the conductivity is not good.
  • the technical problem to be solved by the present invention is to provide a method for preparing a high-capacity high-magnification anode material to solve the problems raised in the above background art.
  • a preparation method of a high-capacity high-magnification anode material the preparation steps are as follows:
  • Preparation of precursor slurry According to the ratio of water-soluble resin: tin powder: conductive carbon black: 1:0.05-0.15: 0.02-0.05, the water-soluble resin and conductive carbon black are added to the step (1). Ultrafine tin powder colloidal solution, and adding a certain amount of deionized water, adjusting the solid content to 25% to 45%, and then continuously stirring to obtain a precursor slurry;
  • the precursor slurry prepared in the step (2) is subjected to atomization, drying and granulation, and then subjected to powder classification to obtain an average particle diameter of 5 to 35 ⁇ m.
  • the powder obtained in the step (3) is heated to 500-700 ° C at a rate of 1 to 5 ° C / min under the protection of an inert gas, and then kept for 1 to 5 hours, naturally cooled, and cooled. That is, a lithium ion battery anode material is obtained.
  • the large-sized tin powder has a particle diameter of 1 ⁇ m to 3 mm.
  • the large-diameter tin powder: dispersant: deionized water: the mass ratio of the grinding balls is 1:0.02 to 0.05:5 to 10:2 to 5.
  • the dispersing agent is one or more of polyvinyl alcohol, sodium dodecylbenzenesulfonate, sodium lauryl sulfate, alcohol, and sodium carboxymethylcellulose.
  • the grinding ball is a zirconia ball, and one or more of the ball diameters are selected from 2 mm to 40 mm; the rotation speed of the agitating ball mill used is 60-350 rpm.
  • the water-soluble resin is a thermosetting resin, and includes a water-soluble phenol resin, a water-soluble epoxy resin, a water-soluble alkyd resin, a water-soluble polyester resin, a water-soluble acrylic resin, a water-soluble polybutadiene resin, and a water-soluble solution.
  • a water-soluble phenol resin a water-soluble epoxy resin
  • a water-soluble alkyd resin a water-soluble polyester resin
  • a water-soluble acrylic resin a water-soluble polybutadiene resin
  • a water-soluble solution One or more mixtures of cationic resins.
  • the inlet temperature of the spray-dried hot air in the step (3) is 150 ° C to 250 ° C, and the outlet temperature is 40 ° C to 90 ° C.
  • water-soluble resin avoids the environmental pollution caused by the use of organic solvents, and also avoids the safety hazard that is prone to explosion hazard when spray granulation;
  • the amorphous carbon formed by the water-soluble resin after high-temperature carbonization has strong anti-corrosion ability to the electrolyte.
  • the interlayer spacing of the amorphous carbon is large, and the lithium ion can enter and exit quickly to meet the high magnification of the lithium ion battery.
  • the requirements of charge and discharge, secondly, the pores and voids formed by carbonization of the water-soluble resin can buffer the volume effect of the tin powder during charging and discharging, and ensure the overall stability of the material;
  • the conductive carbon black is added to form a conductive network in the material system, which compensates for the lack of conductivity of the amorphous carbon and further enhances the electrical conductivity.
  • Epoxy resin and 30g conductive carbon black add 25Kg deionized water, adjust the solid content to 25%, start stirring and mixing until uniform, then spray dry granulation, collect powder with average particle size between 5 ⁇ 35 ⁇ m Then, it was heated to 650 ° C under nitrogen atmosphere, kept for 3 hours, and then cooled to room temperature to finally obtain a lithium ion battery anode material.
  • the performance of the negative electrode material of the lithium ion battery of Example 1 was examined and tested by the half-cell test method.
  • the negative electrode material of the lithium ion battery prepared in Example 1 was: acetylene black: PVDF (polyvinylidene fluoride) weight ratio of 93:3:4
  • NMP N-methylpyrrolidone
  • LiPF6/EC+DEC+DMC 1:1:1
  • the polypropylene microporous membrane is a membrane and assembled into a battery.
  • the charge-discharge voltage is 0-2.0V, and the charge-discharge rate is 0.2C.
  • the battery performance can be tested.
  • the initial discharge capacity of the electrode material is 445mAh/g, and the capacity after 100 cycles is still 392mAh/g. 88.1%.
  • the performance of the negative electrode material of the lithium ion battery of Example 2 was examined by the same detection method as in Example 1.
  • the initial discharge capacity of the motor material was 469 mAh/g, and the capacity after 100 cycles was still 405 mAh/g. 86.3%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种高容量高倍率负极材料的制备方法,其制备步骤如下:(1)制备超细锡粉胶体溶液;(2)制备前驱体浆料;(3)雾化、干燥、造粒以及分级;(4)热处理;冷却后即得到锂离子电池负极材料。本发明避免了纳米锡因为较大的表面能,发生团聚而导致充放电效率降低和加快容量衰减的问题,节省了生产成本;避免了使用有机溶剂易对环境造成的污染以及在喷雾造粒时易发生***危险的安全隐患;弥补了无定形碳导电性能的不足,进一步增强了导电的性能。

Description

一种高容量高倍率负极材料的制备方法 技术领域
本发明涉及锂离子电池领域,具体为一种高容量高倍率负极材料的制备方法。
背景技术
自从1990年日本索尼公司率先研制成功锂离子电池并将其商品化以来,锂离子电池得到了迅猛发展。如今锂离子电池已经广泛地应用于民用及军用的各个领域。随着科技的不断进步,人们对电池的性能提出了更多更高的要求:电子设备的小型化和个性化发展,需要电池具有更小的体积和更高的比能量输出;航空航天能源要求电池具有循环寿命,更好的低温充放电性能和更高的安全性能;电动汽车需要大容量、低成本、高稳定性和安全性能的电池。
目前商业化锂离子电池负极材料采用的是石墨类碳材料,具有较低的锂嵌入/脱嵌电位、合适的可逆容量且资源丰富、价格低廉等优点,是比较理想的锂离子电池负极材料。但其理论比容量只有372mAh/g,因而限制了锂离子电池比能量的进一步提高,不能满足日益发展的高能量便携式移动电源的需求。同时,石墨作为负极材料时,在首次充放电过程中在其表面形成一层固体电解质膜(SEI)。固体电解质膜是电解液、负极材料和锂离子等相互反应形成,不可逆地消耗锂离子,是形成不可逆容量的一个主要的因素;其二是在锂离子嵌入的过程中,电解质容易与其共嵌在迁出的过程中,电解液被还原,生成的气体产物导致石墨片层剥落,尤其在含有PC的电解液中,石墨片层脱落将形成新界面,导致进一步SEI形成,不可逆容量增加,同时循环稳定性下降。而树脂类聚合物热解后形成的无定形碳的有序度低,结构比较松散,锂离子能相对自由地在其中嵌入和脱出而不会对其结构产生大的影响。
另外,锡是一种最有希望取代碳材料的负极材料,这是因为锡具有高达994mAh/g的高克比容量;并且具有类似于石墨的平稳的放电平台。但与其它高容量金属相似,锡的循环性能非常差,不能进行正常的充放电循环。在可逆储锂过程中,金属锡体积膨胀显著,导致循环性能变差,容量迅速衰减,因此难以满足大规模生产的要求。为此,通过引入碳等非金属元素,以合金化或复合的方式来稳定金属锡,减缓锡的体积膨胀。碳能够阻止锡颗粒间的直接接触,抑制锡颗粒的团聚和长大,起到缓冲层的作用。
虽然锡碳材料的研究获得了较大的进步,但是金属锡的熔点只有232℃,其在进行高温热处理时不可避免地发生体积膨胀。当前,对锡碳材料进行热处理时,主要面临着以下一些问题。锡碳复合材料在较高温热处理时,锡颗粒较容易融合在一起团聚成大颗粒,在循环 过程中电极材料粉化脱落,导致电池容量的迅速降低和循环性能变差;在低温热处理时,锡碳复合材料的电阻大,导电性不好。
发明内容
本发明所解决的技术问题在于提供一种高容量高倍率负极材料的制备方法,以解决上述背景技术中提出的问题。
本发明所解决的技术问题采用以下技术方案来实现:
一种高容量高倍率负极材料的制备方法,其制备步骤如下:
(1)制备超细锡粉胶体溶液:将大粒径的锡粉按照固含量15%~30%加入到含分散剂的去离子水中,然后加入研磨球,搅拌研磨直至锡粉的平均粒径D50达到0.1~1μm,得到含有超细锡粉胶体溶液;
(2)制备前驱体浆料:按照水溶性树脂:锡粉:导电炭黑的比例为1:0.05~0.15:0.02~0.05,称取水溶性树脂和导电炭黑加入到步骤(1)中含有超细锡粉胶体溶液中,并加入一定量的去离子水,调节固含量至25%~45%,然后不断搅拌,得到前驱体浆料;
(3)雾化、干燥、造粒以及分级:将步骤(2)中制备的前驱体浆料通过雾化、干燥和造粒,再经过粉体分级得到平均粒径介于5~35μm之间的粉体;
(4)热处理:将步骤(3)中所得到的粉体在惰性气体的保护下,以1~5℃/min的速度升温至500~700℃,再保温1~5h,自然降温,冷却后即得到锂离子电池负极材料。
进一步的,所述大粒径的锡粉的粒径为1μm~3mm。
进一步的,步骤(1)中大粒径的锡粉:分散剂:去离子水:研磨球的质量比为1:0.02~0.05:5~10:2~5。
进一步的,所述分散剂为聚乙烯醇、十二烷基苯磺酸钠、十二烷基硫酸钠、酒精和羟甲基纤维素钠中的一种或几种。
进一步的,所述研磨球为氧化锆球,选取球径为2mm~40mm中的一种或几种搭配使用;所用搅拌球磨机的转速为60~350转/分。
进一步的,所述水溶性树脂为热固性树脂,包括水溶性酚醛树脂、水溶性环氧树脂、水溶性醇酸树脂、水溶性聚酯树脂、水溶性丙烯酸树脂、水溶性聚丁二烯树脂、水溶性阳离子树脂中的一种或一种以上的混合物。
进一步的,步骤(3)中喷雾干燥的热空气的进口温度为150℃~250℃,出口温度为40℃~90℃。
与现有技术相比,本发明的有益效果如下:
1、通过大粒径锡粉制备粒径在0.1~1μm的超细锡粉的方法,避免了锡粉因粒径大在充放电时产生的体积效应;同时还避免了纳米锡因为较大的表面能,发生团聚而导致充放电效率降低和加快容量衰减的问题,节省了生产成本;
2、选用水溶性树脂,避免了使用有机溶剂易对环境造成的污染,同时还避免了在通过喷雾造粒时易发生***危险的安全隐患;
3、水溶性树脂经过高温碳化后形成的无定形碳,对电解液具有较强的抗腐蚀性能力,同时,无定形炭的层间距较大,锂离子能快速进出,满足锂离子电池高倍率充放电的要求,其次水溶性树脂碳化后形成的孔洞和空隙能够缓冲锡粉在充放电时产生的体积效应,保证材料的整体稳定性能;
4、加入导电炭黑,在材料体系内形成了一个导电网络,弥补了无定形碳导电性能的不足,进一步增强了导电的性能。
具体实施方式
为了使本发明的技术手段、创作特征、工作流程、使用方法达成目的与功效易于明白了解,下面进一步阐述本发明。
实施例1
称取一定量粒径为2mm的锡粉1Kg,加入到8Kg去离子水中,然后加入25g的羟甲基纤维素钠作为分散剂,然后加入氧化锆研磨球4Kg(直径2mm的1Kg,直径5mm的2Kg,直径10mm的1Kg)后,开始搅拌球磨,6h后经过检测,粉体粒径D50为0.76μm;按照水溶性树脂:锡粉:导电炭黑的比例为1:0.1:0.03,加入10Kg水溶性环氧树脂和30g导电炭黑,同时加入25Kg去离子水,调节固含量至25%,开始搅拌混合直至均匀,然后喷雾干燥造粒,收集平均粒径介于5~35μm之间的粉体,然后在氮气保护下加热至650℃,保温3小时,然后冷却至室温,最终得到锂离子电池负极材料。
检验实施例1锂离子电池负极材料的性能,用半电池测试方法进行测试,用实施例1制备的锂离子电池负极材料:乙炔黑:PVDF(聚偏氟乙烯)重量比为93:3:4,加适量NMP(N-甲基吡咯烷酮)调成浆状,涂布于铜箔上,经真空110℃干燥8小时制成负极片;以金属锂片为对电极,电解液为1mol/L的LiPF6/EC+DEC+DMC=1:1:1,聚丙烯微孔膜为隔膜,组装成电池。充放电电压为0~2.0V,充放电速率为0.2C,对电池性能进行能测试,该电极材料的首次放电容量达445mAh/g,100次循环后的容量仍有392mAh/g,保持率为88.1%。
实施例2
称取一定量粒径为5mm的锡粉1Kg,加入到10Kg去离子水中,然后加入30g的羟甲基纤维 素钠作为分散剂,然后加入氧化锆研磨球5Kg(直径2mm的2Kg,直径5mm的2Kg,直径10mm的1Kg)后,开始搅拌球磨,10h后经过检测,粉体粒径D50为0.54μm。按照水溶性树脂:锡粉:导电炭黑=1:0.09:0.04,加入11Kg水溶性环氧树脂和40g导电炭黑,同时加入20Kg去离子水,调节固含量至30%,开始搅拌混合直至均匀,然后喷雾干燥造粒,收集平均粒径介于10~35μm之间的粉体,然后在氮气保护下加热至700℃,保温4小时,然后冷却至室温,最终得到锂离子电池负极材料。
检验实施例2锂离子电池负极材料的性能,采用实施例1相同的检测方法进行检测,该电机材料的首次放电容量达469mAh/g,100次循环后的容量仍有405mAh/g,保持率为86.3%。
以上显示和描述了本发明的基本原理、主要特征及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明的要求保护范围由所附的权利要求书及其等效物界定。

Claims (7)

  1. 一种高容量高倍率负极材料的制备方法,其特征是:其制备步骤如下:
    (1)制备超细锡粉胶体溶液:将大粒径的锡粉按照固含量15%~30%加入到含分散剂的去离子水中,然后加入研磨球,搅拌研磨直至锡粉的平均粒径D50达到0.1~1μm,得到含有超细锡粉胶体溶液;
    (2)制备前驱体浆料:按照水溶性树脂:锡粉:导电炭黑的比例为1:0.05~0.15:0.02~0.05,称取水溶性树脂和导电炭黑加入到步骤(1)中含有超细锡粉胶体溶液中,并加入一定量的去离子水,调节固含量至25%~45%,然后不断搅拌,得到前驱体浆料;
    (3)雾化、干燥、造粒以及分级:将步骤(2)中制备的前驱体浆料通过雾化、干燥和造粒,再经过粉体分级得到平均粒径介于5~35μm之间的粉体;
    (4)热处理:将步骤(3)中所得到的粉体在惰性气体的保护下,以1~5℃/min的速度升温至500~700℃,再保温1~5h,自然降温,冷却后即得到锂离子电池负极材料。
  2. 根据权利要求1所述的一种高容量高倍率负极材料的制备方法,其特征是:步骤(1)中所述大粒径的锡粉的粒径为1μm~3mm,且大粒径的锡粉:分散剂:去离子水:研磨球的质量比为1:0.02~0.05:5~10:2~5。
  3. 根据权利要求1或2所述的一种高容量高倍率负极材料的制备方法,其特征是:步骤(1)中所述分散剂为聚乙烯醇、十二烷基苯磺酸钠、十二烷基硫酸钠、酒精和羟甲基纤维素钠中的一种或几种。
  4. 根据权利要求1所述的一种高容量高倍率负极材料的制备方法,其特征是:步骤(1)中所述研磨球为氧化锆球,选取球径为2mm~40mm中的一种或几种搭配使用。
  5. 根据权利要求4所述的一种高容量高倍率负极材料的制备方法,其特征是:选用搅拌球磨机的转速为60~350转/分。
  6. 根据权利要求1所述的一种高容量高倍率负极材料的制备方法,其特征是:步骤(2)中所述水溶性树脂为热固性树脂,包括水溶性酚醛树脂、水溶性环氧树脂、水溶性醇酸树脂、水溶性聚酯树脂、水溶性丙烯酸树脂、水溶性聚丁二烯树脂、水溶性阳离子树脂中的一种或一种以上的混合物。
  7. 根据权利要求1所述的一种高容量高倍率负极材料的制备方法,其特征是:步骤(3)中喷雾干燥时热空气的进口温度为150℃~250℃,出口温度为40℃~90℃。
PCT/CN2016/071956 2015-08-07 2016-01-25 一种高容量高倍率负极材料的制备方法 WO2017024774A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510481576.9A CN105140496A (zh) 2015-08-07 2015-08-07 一种高容量高倍率负极材料的制备方法
CN201510481576.9 2015-08-07

Publications (1)

Publication Number Publication Date
WO2017024774A1 true WO2017024774A1 (zh) 2017-02-16

Family

ID=54725771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071956 WO2017024774A1 (zh) 2015-08-07 2016-01-25 一种高容量高倍率负极材料的制备方法

Country Status (2)

Country Link
CN (1) CN105140496A (zh)
WO (1) WO2017024774A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113845099A (zh) * 2021-06-30 2021-12-28 南京邮电大学 一种弧光放电技术用于制备CoSP钠电负极材料的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140496A (zh) * 2015-08-07 2015-12-09 田东 一种高容量高倍率负极材料的制备方法
CN106876678A (zh) * 2017-03-30 2017-06-20 苏州载物强劲新材料科技有限公司 一种金属及其氧化物与碳复合材料生产工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346304A (zh) * 2013-06-25 2013-10-09 南开大学 一种用于锂二次电池负极的锡碳复合材料及其制备方法
CN103346305A (zh) * 2013-07-01 2013-10-09 华南师范大学 人造石墨为载体的锂电池硅碳复合负极材料的制备和应用
CN104009218A (zh) * 2014-05-07 2014-08-27 上海应用技术学院 锂离子电池负极材料锡/钛酸锂复合电极材料的制备方法
CN105140496A (zh) * 2015-08-07 2015-12-09 田东 一种高容量高倍率负极材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101017893B (zh) * 2006-02-08 2010-05-12 深圳市比克电池有限公司 一种锂离子电池负极用锡碳复合电极材料及制备方法
CN101202340A (zh) * 2007-12-07 2008-06-18 广西师范大学 锂离子电池负极用锡碳纳米复合材料及其制备方法
CN101997110B (zh) * 2009-08-19 2012-11-28 深圳市贝特瑞新能源材料股份有限公司 热碳还原法制备锂离子电池用锡碳复合负极材料的方法
CN103259005B (zh) * 2013-05-08 2015-08-19 深圳市斯诺实业发展有限公司 一种高容量高倍率锂离子电池负极材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346304A (zh) * 2013-06-25 2013-10-09 南开大学 一种用于锂二次电池负极的锡碳复合材料及其制备方法
CN103346305A (zh) * 2013-07-01 2013-10-09 华南师范大学 人造石墨为载体的锂电池硅碳复合负极材料的制备和应用
CN104009218A (zh) * 2014-05-07 2014-08-27 上海应用技术学院 锂离子电池负极材料锡/钛酸锂复合电极材料的制备方法
CN105140496A (zh) * 2015-08-07 2015-12-09 田东 一种高容量高倍率负极材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113845099A (zh) * 2021-06-30 2021-12-28 南京邮电大学 一种弧光放电技术用于制备CoSP钠电负极材料的方法
CN113845099B (zh) * 2021-06-30 2024-04-26 南京邮电大学 一种弧光放电技术用于制备CoSP钠电负极材料的方法

Also Published As

Publication number Publication date
CN105140496A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2016201940A1 (zh) 一种炭/石墨复合负极材料的制备方法
CN104659366A (zh) 一种动力锂离子电池负极材料的制备方法
CN103259005B (zh) 一种高容量高倍率锂离子电池负极材料的制备方法
WO2017024897A1 (zh) 一种改性锂电池负极材料的制备方法
WO2010040285A1 (zh) 钛系负极活性物质及其制备方法、钛系锂离子动力电池
WO2017024720A1 (zh) 一种高容量锂离子电池负极材料的制备方法
CN104868106A (zh) 一种石墨烯包覆锂离子电池石墨负极材料的方法及其应用
WO2017024719A1 (zh) 一种高容量锂电池负极材料的制备方法
CN111146427A (zh) 一种以聚苯胺为碳源制备中空核壳结构纳米硅碳复合材料的方法及应用该材料的二次电池
CN108682787B (zh) 一种锂离子电池极片及其制备方法
WO2016202164A1 (zh) 一种炭/石墨/锡复合负极材料的制备方法
CN110931756A (zh) 高性能且粒径可调控的硅碳复合负极材料及其制备方法
WO2016169150A1 (zh) 一种石墨细粉掺杂处理用作负极材料的方法
WO2016192542A1 (zh) 一种改性石墨负极材料的制备方法
WO2017024896A1 (zh) 一种金属锡掺杂复合钛酸锂负极材料的制备方法
CN102867945B (zh) 含有中空碳纳米结构的锂离子电池石墨负极材料的制备方法
CN102361073A (zh) 一种锂离子电池硅铝碳复合负极材料的制备方法
CN113401897B (zh) 一种黑磷基石墨复合锂离子电池负极材料的制备方法
CN104966814A (zh) 一种高安全性的金属锂负极及其制备方法
WO2017024891A1 (zh) 一种锂离子动力电池负极材料的制备方法
CN104425822B (zh) 一种锂离子电池石墨负极材料及其制备方法
WO2017024775A1 (zh) 一种改性钛酸锂负极材料的制备方法
CN114368748A (zh) 一种人造石墨材料的制备方法、负极材料及电池
WO2017024902A1 (zh) 一种改性锂电池钛酸锂负极材料的制备方法
WO2017024774A1 (zh) 一种高容量高倍率负极材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 16834402

Country of ref document: EP

Kind code of ref document: A1