WO2017018999A1 - Structure de dissipation de chaleur par rayonnement thermique - Google Patents

Structure de dissipation de chaleur par rayonnement thermique Download PDF

Info

Publication number
WO2017018999A1
WO2017018999A1 PCT/US2015/042069 US2015042069W WO2017018999A1 WO 2017018999 A1 WO2017018999 A1 WO 2017018999A1 US 2015042069 W US2015042069 W US 2015042069W WO 2017018999 A1 WO2017018999 A1 WO 2017018999A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal radiation
electronic device
heat dissipation
powder coating
dissipation structure
Prior art date
Application number
PCT/US2015/042069
Other languages
English (en)
Inventor
Chi-Hao Chang
Kuan-Ting Wu
Chien-Ting Lin
Original Assignee
Hewlett-Packard Development Company, L.P.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett-Packard Development Company, L.P. filed Critical Hewlett-Packard Development Company, L.P.
Priority to PCT/US2015/042069 priority Critical patent/WO2017018999A1/fr
Publication of WO2017018999A1 publication Critical patent/WO2017018999A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Definitions

  • Fig. 1 depicts an example sectional view illustrating thermal radiation heat dissipation structure for an electronic device in accordance with one example of the present application.
  • Fig. 2 depicts another example sectional view illustrating thermal radiation heat dissipation structure for an electronic device in accordance with one example of the present application.
  • the present specification describes a structure including a thermal radiation derived powder coating formulation disposed on metal substrates of electronic devices for dissipating heat from the electronic devices.
  • the present specification further describes another structure including a putty layer disposed between the metal substrate and the thermal radiation derived powder coating for dissipating heat from the electronic devices.
  • thermal radiation derived powder coating refers to the powder including both graphene and carbon nanotubes that provides a significantly better heat transfer via z-direction, i.e., in a substantially perpendicular direction to the coated surface/metal substrate.
  • carbon nanotube refers to "cylindrical structure made up of carbon atoms”.
  • the present specification describes the thermal radiation derived powder coating that provides good surface porosity coverage for metal substrates, and more specifically for die casting metal substrates. Furthermore, the thermal radiation derived powder coating offers a significantly high cost/performance value as the thermal releasing technology. In addition, the thermal radiation derived powder coating provides an effective anti-corrosion coating solution for metal substrates. Also, the structure including the thermal radiation derived powder coating may enhance product lifetime for various components included in electronic devices, such as liquid crystal display (LCD) panels, light emitting diodes (LEDs), central processing units (CPUs), batteries and the like. May further reduce the risk of any battery explosion due to overheating and further may alleviate overheating of LCD panels by reducing the LCD panel temperature to below skin temperature of about 40° C or lower. Moreover, the metal substrate structure of electronic devices including the thermal radiation derived powder coating may improve information loading speed and power efficiency.
  • LCD liquid crystal display
  • LEDs light emitting diodes
  • CPUs central processing units
  • the present specification describes the thermal radiation derived powder coating having no volatile organic compounds (VOCs).
  • VOCs volatile organic compounds
  • graphene in the thermal radiation derived powder coating composition provides a very high aspect ratio of about 50 - 5,000, which can provide a good coverage on high porosity substrate surface by powder coating process.
  • the process of application of the thermal radiation derived powder coating onto the high porosity metal substrate may not result in trapping chemical, which may result in serious corrosion problem in magnesium alloy substrates.
  • Fig. 1 depicts an example sectional view 100 of a thermal radiation heat dissipation structure for an electronic device in accordance with techniques of the present application.
  • a thermal radiation derived powder coating 120 is disposed to dissipate heat from the electronic device via thermal radiation 130.
  • the thermal radiation derived powder coating 120 is applied on to the metal substrate 1 10.
  • Example technique includes establishing an electrostatic charge on thermal radiation powder using an applicator such that the maximum voltage is achieved at the tip of the electrode for applying the thermal radiation derived powder coating 120 onto the metal substrate 1 10.
  • the thermal radiation derived coating includes a resin and thermal radiation materials.
  • FIG. 2 depicts another example sectional view 200 of a thermal radiation heat dissipation structure for an electronic device in accordance with techniques of the present application.
  • Example resin materials are polycarbonate (PC), polyethylene terephthalate (PET), polyethylene terephthalate - glycol (PET-G), poly vinyl chloride (PVC), polyacrylic, polyphenylene sulphide (PPS), thermoplastic polymers, thermoset polymers and the like.
  • Example thermal radiation materials are graphene, carbon nanotube, and the like.
  • the thermal radiation derived powder coating includes about or less than 30% by weight of additives, such as aluminum, copper, silver, silicon, gold, diamond, silicon carbide, boron nitride, graphite and/or synthetic thermal conductive materials.
  • the thermal radiation derived powder coating comprises, by weight about 40% of grapheme, less than or about 3% of carbon nanotube, about 2% of diamond, and about 10% of graphite.
  • the thickness of the thermal radiation derived powder coating is in the range of about 5- 60 micrometers ( ⁇ ).
  • Example metal substrate of electronic devices are aluminum, magnesium, lithium, zinc, titanium, niobium, stainless, copper, metal alloy, and the like.
  • the formulation of thermal radiation derived powder coating including graphene and carbon nanotube provides a significantly better heat transfer in the z-axis direction as shown in Fig. 1 .
  • the thermal radiation heat dissipation structure shown in Fig. 2 is similar to the thermal radiation heat dissipation structure shown in Fig. 1 , except a putty layer 210 is disposed between the metal substrate 1 10 and the thermal radiation derived powder coating 120 to enhance heat dissipation via thermal radiation 130.
  • Example putty layer materials include epoxy, silicone, and borax. Further, exemplary borax materials are sodium borate, sodium tetraborate, disodium tetraborate, a salt of boric acid and the like.
  • the metal substrate is an outside cover of the electronic device and/or a semiconductor element of the electronic device.
  • Exemplary electronic device is a computing device, a laptop, a tablet, a smart phone, a notebook, and the like.
  • Exemplary semiconductor elements housed in the electronic device is a central processing unit (CPU), LCD panel, LED, battery or any other such heat generating component/device.
  • CPU central processing unit
  • LCD panel LCD panel
  • LED battery or any other such heat generating component/device.

Abstract

L'invention concerne, dans un exemple, une structure de dissipation de chaleur par rayonnement thermique, destinée à dissiper la chaleur d'un dispositif électronique. La structure de dissipation de chaleur par rayonnement thermique comprend un substrat métallique du dispositif électronique. En outre, la structure de dissipation de chaleur par rayonnement thermique comprend un revêtement de poudre dérivé de rayonnement thermique qui est disposé sur le substrat métallique du dispositif électronique pour dissiper la chaleur du dispositif électronique par le biais d'un rayonnement thermique, le revêtement de poudre dérivé de rayonnement thermique comprenant une résine et des matériaux de rayonnement thermique, et les matériaux de rayonnement thermique comprenant du graphène et des nanotubes de carbone. FIG. 2 : Z-AXIS AXE Z
PCT/US2015/042069 2015-07-24 2015-07-24 Structure de dissipation de chaleur par rayonnement thermique WO2017018999A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2015/042069 WO2017018999A1 (fr) 2015-07-24 2015-07-24 Structure de dissipation de chaleur par rayonnement thermique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2015/042069 WO2017018999A1 (fr) 2015-07-24 2015-07-24 Structure de dissipation de chaleur par rayonnement thermique

Publications (1)

Publication Number Publication Date
WO2017018999A1 true WO2017018999A1 (fr) 2017-02-02

Family

ID=57884971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/042069 WO2017018999A1 (fr) 2015-07-24 2015-07-24 Structure de dissipation de chaleur par rayonnement thermique

Country Status (1)

Country Link
WO (1) WO2017018999A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013793A1 (fr) * 2017-07-13 2019-01-17 Hewlett-Packard Development Company, L.P. Composition(s) de revêtement
WO2020251549A1 (fr) * 2019-06-11 2020-12-17 Hewlett-Packard Development Company, L.P. Substrats d'alliage métallique revêtus et leur procédé de production

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090084994A1 (en) * 2002-05-28 2009-04-02 Astic Signals Defenses Llc System and method for filtering electromagnetic transmissions
KR20110015160A (ko) * 2009-08-07 2011-02-15 삼성전자주식회사 반도체 모듈
US20110151214A1 (en) * 2006-07-17 2011-06-23 E.I.Du Pont De Nemours And Company Metal compositions, thermal imaging donors and patterned multilayer compositions derived therefrom
US20120229981A1 (en) * 2011-03-09 2012-09-13 Chen-Lung Lin Electrically insulating and thermally conductive composition and electronic device
KR20120123645A (ko) * 2011-04-28 2012-11-09 주식회사 솔루에타 수평열전 테이프 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090084994A1 (en) * 2002-05-28 2009-04-02 Astic Signals Defenses Llc System and method for filtering electromagnetic transmissions
US20110151214A1 (en) * 2006-07-17 2011-06-23 E.I.Du Pont De Nemours And Company Metal compositions, thermal imaging donors and patterned multilayer compositions derived therefrom
KR20110015160A (ko) * 2009-08-07 2011-02-15 삼성전자주식회사 반도체 모듈
US20120229981A1 (en) * 2011-03-09 2012-09-13 Chen-Lung Lin Electrically insulating and thermally conductive composition and electronic device
KR20120123645A (ko) * 2011-04-28 2012-11-09 주식회사 솔루에타 수평열전 테이프 및 그 제조방법

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013793A1 (fr) * 2017-07-13 2019-01-17 Hewlett-Packard Development Company, L.P. Composition(s) de revêtement
CN110832050A (zh) * 2017-07-13 2020-02-21 惠普发展公司,有限责任合伙企业 一种或多种涂料组合物
JP2020523233A (ja) * 2017-07-13 2020-08-06 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. コーティング組成物
EP3622034A4 (fr) * 2017-07-13 2020-11-25 Hewlett-Packard Development Company, L.P. Composition(s) de revêtement
US11309229B2 (en) 2017-07-13 2022-04-19 Hewlett-Packard Development Company, L.P. Coating composition(s)
WO2020251549A1 (fr) * 2019-06-11 2020-12-17 Hewlett-Packard Development Company, L.P. Substrats d'alliage métallique revêtus et leur procédé de production
US20220112609A1 (en) * 2019-06-11 2022-04-14 Hewlett-Packard Development Company, L.P. Coated metal alloy substrates and process of production thereof
US11952665B2 (en) 2019-06-11 2024-04-09 Hewlett-Packard Development Company, L.P. Coated metal alloy substrates and process of production thereof

Similar Documents

Publication Publication Date Title
US20150313041A1 (en) Graphene dissipation structure
JP6440715B2 (ja) 放熱性に優れた金属封止材、その製造方法、及び上記金属封止材で封止された柔軟電子素子
JP4459470B2 (ja) 電子部品の放熱構造体及びそれに用いる放熱シート
JP6349543B2 (ja) 冷却構造体および冷却構造体の製造方法
US11031319B2 (en) Thermal interface materials with adhesive selant for electronic components
KR100943520B1 (ko) 고방열 방사 세라믹 무기물이 코팅된 히트싱크와 이의 제조방법 및 이를 구비한 메탈 pcb
CN104610925A (zh) 一种石墨烯和液态金属复合式散热方法
CN203896650U (zh) 一种镀金属的高导石墨膜
WO2017018999A1 (fr) Structure de dissipation de chaleur par rayonnement thermique
KR20080075993A (ko) 변형이 유연한 히트 싱크와 이의 제조방법
US10117355B2 (en) Heat dissipation foil and methods of heat dissipation
CN206217267U (zh) 一种石墨烯铜箔膜片
CN110660761A (zh) 热传导结构体或半导体装置
CN103781329A (zh) 一种石墨铝箔导热材料
CN104538312A (zh) 利用氮化硼制备散热芯片的方法
JP7288101B2 (ja) 熱伝導構造及び電子装置
CN210075901U (zh) 散热结构与电子装置
US20070048520A1 (en) Thermal interface material and method for making the same
CN108012505A (zh) 一种利用石墨烯材料制备的散热片
CN205674588U (zh) 一种石墨烯散热膜
WO2019170894A1 (fr) Formulation de dissipateur thermique et son procédé de fabrication
TWM444700U (zh) 散熱貼片
TWI789149B (zh) 散熱結構與電子裝置
JP7288102B2 (ja) 熱伝導構造及び電子装置
CN202941072U (zh) 石墨导热胶带

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15899797

Country of ref document: EP

Kind code of ref document: A1