WO2016206021A1 - 电机驱动装置、方法及电机 - Google Patents

电机驱动装置、方法及电机 Download PDF

Info

Publication number
WO2016206021A1
WO2016206021A1 PCT/CN2015/082212 CN2015082212W WO2016206021A1 WO 2016206021 A1 WO2016206021 A1 WO 2016206021A1 CN 2015082212 W CN2015082212 W CN 2015082212W WO 2016206021 A1 WO2016206021 A1 WO 2016206021A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
axis
cross
direct
component
Prior art date
Application number
PCT/CN2015/082212
Other languages
English (en)
French (fr)
Inventor
王超
赵小安
吴玉飞
龚黎明
Original Assignee
广东威灵电机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东威灵电机制造有限公司 filed Critical 广东威灵电机制造有限公司
Priority to JP2017566725A priority Critical patent/JP2018520624A/ja
Priority to KR1020187002126A priority patent/KR20180020268A/ko
Priority to PCT/CN2015/082212 priority patent/WO2016206021A1/zh
Publication of WO2016206021A1 publication Critical patent/WO2016206021A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present invention relates to the field of motor control technologies, and in particular, to a motor driving device, method and motor.
  • the brushless motor mainly adopts the classic vector control scheme.
  • the motor drive device includes a host computer control module and a lower computer control module, wherein the upper computer control module realizes the speed closed loop control, and the lower computer control module
  • the speed control function is implemented.
  • the position calculation module 11 outputs a position feedback signal and a speed feedback signal.
  • the speed calculation module 12 outputs a rotor electrical angular velocity according to the position feedback signal, and the speed controller 1 outputs an adjustment command according to the rotor electrical angular velocity.
  • the direct-axis current calculation module 2 outputs a specified direct-axis current
  • the current controller 4 outputs a direct-axis voltage component and a cross-axis voltage component
  • the voltage limiter 5 outputs a direct-axis voltage and a cross-axis voltage
  • PWM control The device 6 outputs a three-phase AC voltage to the inverter drive module 9 to drive the motor 10.
  • the speed command module 14 converts into a motor speed command
  • the speed controller receives the motor speed command and the speed feedback command of the speed calculation module 12 to generate an axis command of the motor
  • the current controller 4 outputs the same.
  • Straight-axis voltage component and cross-axis voltage component are different from FIG. 1 in that the speed command module 14 converts into a motor speed command, and the speed controller receives the motor speed command and the speed feedback command of the speed calculation module 12 to generate an axis command of the motor, and the current controller 4 outputs the same.
  • FIG. 1 has the advantages of high vector control efficiency, low energy consumption, simple structure, and easy implementation, but the lower computer control module cannot implement no-load speed regulation, even when the upper computer control module is used, due to the upper computer control Module adjustment accuracy and correspondingly insufficient, no-load speed regulation is also more difficult.
  • the technical solution in FIG. 2 has the advantages of the technical solution in FIG. 1 , and the lower computer control module can also perform the speed regulation when the adjustment command is given separately, but the lower position machine control module uses the rotation speed command, which leads to adopting the Huo.
  • the speed of the sensor and the position sensorless speed is difficult to adjust at low speeds.
  • the prior art proposes a solution, that is, the adjustment command outputted by the speed controller 1 passes through the voltage command generation module 17 to generate a voltage command, and the PWM control The inverter module 9 is driven to drive the motor according to the voltage command.
  • the technical solution can achieve no-load speed regulation, the current waveform is poor, the torque ripple is large, and the current output to the motor is uncontrollable.
  • the motor drive device of the prior art has a problem that the torque ripple is large and the current output to the motor is uncontrollable, and at the same time, due to the technical characteristics of the existing solution under a large load condition, especially for a sudden load change. , has a good ability to resist load changes.
  • An object of the present invention is to provide a motor driving device, method and motor, which aim to solve the problem that the motor driving device of the prior art has a large torque ripple and the current output to the motor is uncontrollable and the load disturbance resistance is poor.
  • the present invention is achieved in a first aspect, the first aspect of the invention provides a motor driving device, the motor driving device comprising:
  • a rotary converter configured to rotate the stator current through a coordinate rotation to output a cross-axis current component and a direct-axis current component
  • a position calculator for detecting a position of the motor rotor and outputting a position feedback signal according to the position of the motor rotor
  • a speed calculation module configured to output a rotor electrical angular velocity according to the position feedback signal
  • a speed controller for outputting a speed controller output signal that causes the rotor electrical angular velocity and speed command to be zero
  • the motor driving device further includes:
  • a voltage limit calculation module configured to output the limit voltage after the speed controller output signal is subjected to voltage limitation calculation
  • a direct current generating module for generating a preset direct current
  • a first subtracter configured to subtract the predetermined direct current and the direct current component to obtain a direct axis current difference
  • a current controller for outputting the direct current difference of the direct axis to a zero straight axis voltage component
  • a cross-axis voltage generating module for generating a preset cross-axis voltage component
  • a voltage limiter configured to perform voltage limiting and coordinate transformation on the straight-axis voltage component and the preset cross-axis voltage component according to the limiting voltage and the position feedback signal, and output a direct-axis voltage and a cross-axis voltage;
  • a PWM controller for converting the direct axis voltage and the quadrature axis voltage into a three-phase alternating current voltage.
  • the process for generating the preset cross-axis voltage component by the cross-axis voltage generating module is specifically:
  • the preset cross-axis voltage component is output after calculation according to the following formula:
  • U q is the preset cross-axis voltage component
  • I d is the direct-axis current component
  • is the rotor electrical angular velocity
  • L d is the electronic direct-axis inductance component
  • ⁇ f is the permanent magnet flux linkage.
  • the process of generating the preset cross-axis voltage component by the cross-axis voltage generating module is specifically:
  • the preset cross-axis voltage component is output after calculation according to the following formula:
  • U q is the preset cross-axis voltage component
  • K is the voltage coefficient
  • U d is the direct-axis voltage component
  • U s is the limiting voltage
  • the voltage limiter performs voltage limiting on the straight-axis voltage component and the preset cross-axis voltage component according to the limiting voltage, and then according to the limiting
  • the position feedback signal performs coordinate transformation to output a direct axis voltage and a cross axis voltage
  • the voltage limiter performs coordinate conversion according to the position feedback signal, and then performs voltage limiting output on the straight axis voltage component and the preset cross-axis voltage component according to the limit voltage. Axis voltage and cross-axis voltage.
  • a second aspect of the present invention provides a motor driving method, the motor driving method comprising:
  • the stator current is subjected to coordinate rotation transformation to output a cross-axis current component and a direct-axis current component;
  • the straight axis voltage and the quadrature axis voltage are converted into a three-phase alternating voltage.
  • the step of generating a preset cross-axis voltage component is specifically:
  • the preset cross-axis voltage component is output after calculation according to the following formula:
  • U q is the preset cross-axis voltage component
  • I d is the direct-axis current component
  • is the rotor electrical angular velocity
  • L d is the electronic direct-axis inductance component
  • ⁇ f is the permanent magnet flux linkage.
  • the step of generating a preset cross-axis voltage component is specifically:
  • the preset cross-axis voltage component is output after calculation according to the following formula:
  • U q is the preset cross-axis voltage component
  • K is the voltage coefficient
  • U d is the direct-axis voltage component
  • U s is the limiting voltage
  • a third aspect of the invention provides a motor driving device, the motor driving device comprising:
  • a rotary converter for outputting a cross-axis current component and a direct-axis current component after the stator current is subjected to coordinate rotation transformation
  • a position calculator for detecting a position of the motor rotor and outputting a position feedback signal according to the position of the motor rotor
  • a speed calculation module configured to output a rotor electrical angular velocity according to the position feedback signal
  • a speed controller for outputting a speed controller output signal that causes the rotor electrical angular velocity and the input speed command to go to zero;
  • the motor driving device further includes:
  • a voltage limit calculation module configured to output the limit voltage after the speed controller output signal is subjected to voltage limitation calculation
  • a direct current generating module for generating a preset direct current
  • a cross-axis current generating module for generating a preset cross-axis current
  • a first subtracter configured to subtract the predetermined direct current and the direct current component to obtain a direct axis current difference
  • a second subtracter configured to subtract the predetermined cross-axis current and the cross-axis current component to obtain a cross-axis current difference
  • a current controller for outputting the direct-axis current component and the cross-axis voltage component and the cross-axis voltage component of the cross-axis current difference tending to zero;
  • a voltage limiter configured to perform voltage limiting and coordinate transformation on the straight-axis voltage component and the cross-axis voltage component according to the limiting voltage and the position feedback signal, and output a direct-axis voltage and a cross-axis voltage;
  • a PWM controller for converting the direct axis voltage and the quadrature axis voltage into a three-phase alternating current voltage.
  • the preset cross-axis current is a fixed value.
  • the preset cross-axis current is proportional to the magnitude of the speed controller output signal.
  • the voltage limiter performs voltage limiting on the straight-axis voltage component and the preset cross-axis voltage component according to the limiting voltage, and then according to the limiting
  • the position feedback signal performs coordinate transformation to output a direct axis voltage and a cross axis voltage
  • the voltage limiter performs coordinate transformation according to the position feedback signal, and then performs voltage limiting output on the straight axis voltage component and the preset cross-axis voltage component according to the limiting voltage Axis voltage.
  • a fourth aspect of the present invention provides a motor driving method, the motor driving method comprising the following steps:
  • the straight axis voltage and the quadrature axis voltage are converted into a three-phase alternating voltage.
  • the step of generating a preset cross-axis current is specifically:
  • the preset cross-axis current is set to a fixed value.
  • the step of generating a preset cross-axis current is specifically:
  • the preset cross-axis current is set to be proportional to the magnitude of the speed controller output signal.
  • a fifth aspect of the present invention provides an electric machine including an inverter module and a motor module, wherein the motor further includes the motor drive device of the first aspect and the fourth aspect.
  • the motor driving device, method and motor provided by the invention realize the limitation of the cross-axis current by setting the limiting voltage as the limitation of the output voltage of the driving device and setting the value of the cross-axis voltage component, thereby realizing the motor current.
  • the control solves the problem of no-load speed regulation of individual torque control, and solves the problem of the anti-interference ability of the individual speed control load and the problem that the single rotation speed control starting torque is small and the starting speed response is slow.
  • FIG. 1 is a schematic structural view of a motor driving device provided in the prior art
  • FIG. 2 is a schematic structural view of another motor driving device provided in the prior art
  • FIG. 3 is a schematic structural view of another motor driving device provided in the prior art
  • FIG. 4 is a schematic structural diagram of a motor driving device according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a working method of a voltage limiter in a motor driving device according to an embodiment of the present invention
  • FIG. 6 is a flow chart of a motor driving method according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a motor driving device according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a motor driving device according to another embodiment of the present invention.
  • FIG. 9 is a flow chart of a motor driving method according to another embodiment of the present invention.
  • An embodiment of the present invention provides a motor driving device. As shown in FIG. 4, the motor driving device includes:
  • the rotary converter 10 is configured to output the cross-axis current component and the direct-axis current component after the detected stator current is subjected to coordinate rotation transformation.
  • the position calculator 11 is for detecting the position of the rotor of the motor and outputting a position feedback signal according to the position of the rotor of the motor.
  • the speed calculation module 12 is configured to output a rotor electrical angular velocity according to the position feedback signal.
  • the speed controller 1 is configured to output a speed controller output signal that causes the rotor electrical angular velocity and the input speed command to be zero according to the rotor electrical angular velocity output and the rotational speed command output.
  • the motor drive device also includes:
  • the voltage limit calculation module 20 is configured to output a limit voltage after the speed controller output signal is subjected to voltage limitation calculation.
  • the direct axis current generating module 2 is configured to generate a preset direct current.
  • the first subtractor 22 is configured to subtract the preset direct-axis current and the direct-axis current component to obtain a direct-axis current difference.
  • the current controller 4 is for outputting a direct-axis voltage component that causes the direct-axis current difference to be zero.
  • the cross-axis voltage generating module 3 is configured to generate a preset cross-axis voltage component.
  • a voltage limiter 5 for correcting a direct axis voltage component and a preset according to a limit voltage and a position feedback signal
  • the cross-axis voltage component performs voltage limiting and coordinate transformation to output a direct-axis voltage and a cross-axis voltage.
  • the PWM controller 6 is configured to convert the direct-axis voltage and the cross-axis voltage into a three-phase alternating voltage.
  • the speed controller output signal is an adjustment command output by the speed controller 1, which may exist in the form of a voltage value or a voltage range value, or the speed controller output signal exists in digital form in software; voltage limit calculation
  • the module outputs the limit voltage after the speed controller output signal is subjected to the voltage limit calculation, and the calculation method of the voltage limit calculation module can be manually set, for example, taking the speed controller output signal as a voltage signal as an example, and the speed controller outputting the signal
  • the range is 0 to 6 volts, and after the voltage limit calculation module is set, the output limiting voltage can be 0 to 220 volts, which is merely an example and does not constitute a limitation of the present invention.
  • the cross-axis voltage generating module 3 is configured to output a preset cross-axis voltage component, and the cross-axis voltage generating module 3 calculates a preset cross-axis voltage component according to an artificially-calculated calculation formula.
  • the voltage limiter 5 performs voltage limiting on the straight-axis voltage component and the preset cross-axis voltage component according to the limiting voltage to implement control of the output current.
  • the process of generating the preset cross-axis voltage component by the cross-axis voltage generating module 3 is specifically as follows:
  • the preset cross-axis voltage component is output after calculation according to the following formula:
  • U q is the preset cross-axis voltage component
  • I d is the preset direct-axis current component
  • is the rotor electrical angular velocity
  • L d is the electronic direct-axis inductance component
  • ⁇ f is the permanent magnet flux linkage.
  • the process of generating the preset cross-axis voltage component by the cross-axis voltage generating module 3 is specifically as follows:
  • the preset cross-axis voltage component is output after calculation according to the following formula:
  • U q is the preset cross-axis voltage component
  • K is the voltage coefficient
  • U d is the direct-axis voltage component
  • U s is the limiting voltage
  • the preset cross-axis voltage component can be obtained by the formula provided by the above two embodiments.
  • the limitation of the cross-axis current is realized, thereby realizing the control of the motor current and solving the individual torque control.
  • the speed regulation problem solves the problem of the anti-interference ability of the single speed control load and the problem that the single rotation speed control start torque is small and the startup speed response is slow.
  • an embodiment in which the voltage limiter 5 performs voltage limitation and outputs a direct-axis voltage and a cross-axis voltage is:
  • the voltage limiter 5 performs voltage limiting on the straight-axis voltage component and the preset cross-axis voltage component according to the limiting voltage, and then performs coordinate transformation according to the position feedback signal to output the direct-axis voltage and the cross-axis voltage.
  • the voltage limiter 5 performs coordinate transformation according to the position feedback signal, and then voltage-limits the straight-axis voltage and the cross-axis voltage according to the limit voltage to the straight-axis voltage component and the preset cross-axis voltage component.
  • U s is the limiting voltage
  • U d and U q are the direct and cross-axis voltage components in the rotating coordinate system respectively
  • U ⁇ and U ⁇ are the direct and cross-axis voltage components in the stationary coordinate system
  • K is the voltage. coefficient.
  • the motor driving method includes:
  • Step S101 The stator current is subjected to coordinate rotation transformation to output a cross-axis current component and a direct-axis current component.
  • Step S102 Detecting the position of the rotor of the motor and outputting a position feedback signal according to the position of the rotor of the motor number.
  • Step S103 Output a rotor electrical angular velocity according to the position feedback signal, and output a speed controller output signal that causes the rotor electrical angular velocity and speed command to approach zero according to the rotor electrical angular velocity and the speed command.
  • Step S104 The speed controller output signal is subjected to voltage limitation calculation and the limit voltage is output.
  • Step S105 Generate a preset direct-axis current, obtain a direct-axis current difference by subtracting the preset direct-axis current from the direct-axis current component, and output the direct-axis current difference to zero according to the direct-axis current difference output.
  • Straight axis voltage component
  • Step S106 Generate a preset cross-axis voltage component, and perform voltage limiting and coordinate transformation on the straight-axis voltage component and the preset cross-axis voltage component according to the limiting voltage and the position feedback signal, and output the direct-axis voltage and the cross-axis voltage;
  • Step S107 Convert the straight-axis voltage and the cross-axis voltage into a three-phase AC voltage.
  • step S106 as an implementation manner, the step of generating a preset cross-axis voltage component is specifically:
  • the preset cross-axis voltage component is output after calculation according to the following formula:
  • U q is the preset cross-axis voltage component
  • I d is the preset direct-axis current component
  • is the rotor electrical angular velocity
  • L d is the electronic direct-axis inductance component
  • ⁇ f is the permanent magnet flux linkage.
  • step S106 as another implementation manner, the step of generating a preset cross-axis voltage component is specifically:
  • the preset cross-axis voltage component is output after calculation according to the following formula:
  • U q is the preset cross-axis voltage component
  • K is the voltage coefficient
  • U d is the direct-axis voltage component
  • U s is the limiting voltage
  • Another embodiment of the present invention provides a motor driving device, where the motor driving device includes:
  • the rotary converter 10 is configured to output a cross-axis current component and a direct-axis current component after the stator current is subjected to coordinate rotation transformation;
  • a position calculator 11 for detecting the position of the rotor of the motor and outputting a position feedback signal according to the position of the rotor of the motor;
  • a speed calculation module 12 configured to output a rotor electrical angular velocity according to the position feedback signal
  • a speed controller 1 for outputting a speed controller output signal that causes the rotor electrical angular velocity and speed command to tend to zero;
  • the motor drive device also includes:
  • the voltage limit calculation module 20 is configured to output a limit voltage after the speed controller output signal is subjected to voltage limitation calculation;
  • a direct current generating module 2 for generating a preset direct current
  • a cross-axis current generating module 8 for generating a preset cross-axis current
  • a first subtractor 22 configured to subtract a preset direct current and a direct current component to obtain a direct axis current difference
  • a second subtractor 23 configured to subtract a predetermined cross-axis current and a cross-axis current component to obtain a cross-axis current difference
  • a current controller 4 for outputting an output direct-axis voltage component and a cross-axis voltage component that cause the direct-axis current difference and the cross-axis current difference to be zero;
  • a voltage limiter 5 configured to perform voltage limiting and coordinate transformation on the direct-axis voltage component and the cross-axis voltage component according to the limiting voltage and the position feedback signal, and output the direct-axis voltage and the cross-axis voltage;
  • the PWM controller 6 is configured to convert the direct-axis voltage and the cross-axis voltage into a three-phase alternating voltage.
  • the speed controller output signal is an adjustment command output by the speed controller 1, which may exist in the form of a voltage value or a voltage range value, or the speed controller output signal exists in digital form in software; voltage limit calculation
  • the module 20 outputs the limit voltage after the speed controller output signal is subjected to the voltage limit calculation, and the calculation mode of the voltage limit calculation module can be manually set, for example, taking the speed controller output signal as a voltage signal as an example, and the speed controller output signal The range is 0 to 6 volts. After the voltage limit calculation module is set, the output voltage limit voltage can be 0 to 220 volts, which is merely an example and does not constitute a limitation of the present invention.
  • an embodiment in which the cross-axis current generating module 8 outputs a preset cross-axis current according to the speed controller output signal is:
  • the preset cross-axis current is a fixed value.
  • the maximum output current value is limited by setting the cross-axis current to a certain fixed value.
  • an embodiment in which the cross-axis current generating module 8 outputs a preset cross-axis current according to the speed controller output signal is:
  • the preset cross-axis current is proportional to the magnitude of the speed controller output signal.
  • the preset cross-axis current is a current value obtained by converting the output signal of the speed controller
  • one implementation solution is to compare the maximum value and the minimum value of the voltage in the output signal of the speed controller with the preset cross-axis current value.
  • the maximum and minimum values correspond to each other and can be mapped using a linear interpolation relationship.
  • an embodiment in which the voltage limiter 5 performs voltage limitation and outputs a direct-axis voltage and a cross-axis voltage is:
  • the voltage limiter 5 voltage-limits the straight-axis voltage component and the cross-axis voltage component according to the limit voltage, and then performs coordinate transformation based on the position feedback signal to output the direct-axis voltage and the cross-axis voltage.
  • an embodiment in which the voltage limiter 5 performs voltage limitation and outputs a direct-axis voltage and a cross-axis voltage is:
  • the voltage limiter 5 performs coordinate transformation based on the position feedback signal, and then voltage-limits the direct-axis voltage component and the cross-axis voltage component according to the limit voltage to output the direct-axis voltage and the cross-axis voltage.
  • U s is the limiting voltage
  • U d and U q are the direct and cross-axis voltage components in the rotating coordinate system
  • U ⁇ and U ⁇ are the direct and cross-axis voltage components in the stationary coordinate system
  • K is the voltage. coefficient.
  • the motor driving method includes the following steps:
  • Step S201 The stator current is subjected to coordinate rotation transformation to output a cross-axis current component and a direct-axis current component.
  • Step S202 detecting the position of the motor rotor, and outputting a position feedback signal according to the position of the motor rotor.
  • Step S203 Output a rotor electrical angular velocity according to the position feedback signal, and output a rotor electrical angular velocity output speed controller output signal that causes the rotor electrical angular velocity and the speed command to be zero according to the rotor electrical angular velocity and the input speed command.
  • Step S204 The speed controller output signal is subjected to a voltage limit calculation and then the limit voltage is output.
  • Step S205 generating a preset direct-axis current, and subtracting the preset direct-axis current from the direct-axis current component to obtain a direct-axis current difference.
  • Step S206 Generate a preset cross-axis current, and subtract the calculated cross-axis current and the cross-axis current component to obtain a cross-axis current difference.
  • Step S207 Output a direct-axis voltage component and a cross-axis voltage component that cause the direct-axis current difference and the cross-axis current difference to be zero according to the direct-axis current difference and the cross-axis current difference;
  • Step S208 Perform voltage limiting and coordinate transformation on the direct-axis voltage component and the cross-axis voltage component according to the limiting voltage and the position feedback signal, and output the direct-axis voltage and the cross-axis voltage.
  • Step S209 Convert the straight-axis voltage and the cross-axis voltage into a three-phase AC voltage.
  • step S206 the step of generating a preset cross-axis current is specifically:
  • step S206 the step of generating a preset cross-axis current is specifically:
  • Another embodiment of the present invention provides an electric machine including an inverter module 9 and a motor module 10, and further includes the above-described motor driving device.
  • the motor driving device, the method and the motor provided by the invention realize the limitation of the cross-axis current by setting the limiting voltage as the limitation of the output voltage of the driving device, and setting the value of the cross-axis voltage component, thereby solving the problem of the individual torque control.
  • the speed regulation problem solves the problem of the anti-interference ability of the single speed control load and the problem that the single rotation speed control starting torque is small and the starting speed response is slow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种电机驱动装置、方法及电机,所述电机驱动装置包括旋转变换器(10)、位置计算器(11)、速度计算模块(12)、速度控制器(1);其还包括电压限制计算模块(20),将速度控制器输出信号经过电压限制计算后输出限制电压;第一减法器(22),用于获得直轴电流差;电流控制器(4),输出直轴电压分量;交轴电压生成模块(3),用于输出预设交轴电压分量;电压限制器(5),对直轴电压分量和预设交轴电压分量进行电压限幅和坐标变换后输出直轴电压和交轴电压;PWM控制器(6),将直轴电压和交轴电压转换成三相交流电压。通过将限制电压作为驱动装置输出电压的限制,并设定交轴电压分量值,实现对交轴电流的限制,从而实现对电机电流的控制。

Description

电机驱动装置、方法及电机 技术领域
本发明涉及电机控制技术领域,尤其涉及一种电机驱动装置、方法及电机。
背景技术
目前,无刷电动机主要采用经典矢量控制方案,如图1和图2所示,电机驱动装置包括上位机控制模块和下位机控制模块,其中,上位机控制模块实现转速闭环控制,下位机控制模块实现调速功能,如图1所示,位置计算模块11输出位置反馈信号和速度反馈信号,速度计算模块12根据所述位置反馈信号输出转子电角速度,速度控制器1根据转子电角速度输出调节指令给交轴电流计算模块3,直轴电流计算模块2输出指定直轴电流,电流控制器4输出直轴电压分量和交轴电压分量,电压限制器5输出直轴电压和交轴电压,PWM控制器6输出三相交流电压给逆变驱动模块9以驱动电动机10。
图2与图1的不同点在于速度指令模块14转换成电机速度指令,速度控制器接收所述电机速度指令与速度计算模块12的速度反馈指令生成电机的交轴指令,电流控制器4再输出直轴电压分量和交轴电压分量。
图1中的技术方案的优点在于矢量控制效率高,能耗小,结构简单,并且易于实现,但是下位机控制模块不能实现空载调速,甚至即使带上位机控制模块时,由于上位机控制模块调节精度和相应不够,空载调速也比较困难。
图2中的技术方案除了具有图1中技术方案的优点外,其下位机控制模块在单独给定调节指令时,也能进行调速,但是由于下位机控制模块用到转速指令,导致采用霍尔传感器和无位置传感器转速在低速时调速困难。
图1和图2的技术方案在编码器精度低特别是霍尔传感器的控制中,负载抗扰能力很差。
为了解决图1和图2中技术方案的缺陷,如图3所示,现有技术提出一种解决方案,即将速度控制器1输出的调节指令经过电压指令生成模块17后生成电压指令,PWM控制器根据电压指令驱动逆变器模块9以驱动电机,该技术方案虽然能够实现空载调速,但是电流波形较差,转矩脉动大并且输出给电机的电流不可控。综上所述,现有技术中的电机驱动装置存在转矩脉动大并且输出给电机的电流不可控的问题,同时由于现有方案的技术特点在大负载情况下,特别是对于负载突变情况下,有良好的抗负载变化能力。
技术问题
本发明的目的在于提供一种电机驱动装置、方法及电机,旨在解决针对现有技术中的电机驱动装置存在转矩脉动大并且输出给电机的电流不可控,抗负载扰动能力差的问题。
技术解决方案
本发明是这样实现的,第一方面提供一种电机驱动装置,所述电机驱动装置包括:
旋转变换器,用于将所述定子电流经过坐标旋转变换后输出交轴电流分量和直轴电流分量;
位置计算器,用于检测电机转子的位置,并根据所述电机转子的位置输出位置反馈信号;
速度计算模块,用于根据所述位置反馈信号输出转子电角速度;
速度控制器,用于输出使所述转子电角速度和转速指令趋向于零的速度控制器输出信号;
所述电机驱动装置还包括:
电压限制计算模块,用于将所述速度控制器输出信号经过电压限制计算后输出限制电压;
直轴电流生成模块,用于生成预设直轴电流;
第一减法器,用于将所述预设直轴电流与所述直轴电流分量进行减法运算后得到直轴电流差;
电流控制器,用于输出使所述直轴电流差趋向于零直轴电压分量;
交轴电压生成模块,用于生成预设交轴电压分量;
电压限制器,用于根据所述限制电压和所述位置反馈信号对所述直轴电压分量和所述预设交轴电压分量进行电压限幅和坐标变换后输出直轴电压和交轴电压;
PWM控制器,用于将所述直轴电压和所述交轴电压转换成三相交流电压。
结合第一方面,作为第一方面的第一种实施方式,所述交轴电压生成模块生成预设交轴电压分量的过程具体为:
根据以下算式进行计算后输出预设交轴电压分量:
Uq=ω(Id×Ldf);
其中,Uq为预设交轴电压分量,Id为直轴电流分量,ω为转子电角速度,Ld为电子直轴电感分量,ψf为永磁体磁链。
结合第一方面,作为第一方面的第二种实施方式,所述交轴电压生成模块生成预设交轴电压分量的过程具体为:
根据以下算式进行计算后输出预设交轴电压分量:
Figure PCTCN2015082212-appb-000001
其中,Uq为预设交轴电压分量,K为电压系数,Ud为直轴电压分量,Us为限制电压。
结合第一方面,作为第一方面的第三种实施方式,所述电压限制器根据所述限制电压对所述直轴电压分量和所述预设交轴电压分量进行电压限幅后,再根据所述位置反馈信号进行坐标变换输出直轴电压和交轴电压;
或者,所述电压限制器根据所述位置反馈信号进行坐标变换后,再根据所述限制电压对所述直轴电压分量和所述预设交轴电压分量进行电压限幅输出直 轴电压和交轴电压。
本发明第二方面提供一种电机驱动方法,所述电机驱动方法包括:
将定子电流经过坐标旋转变换后输出交轴电流分量和直轴电流分量;
检测电机转子的位置,并根据所述电机转子的位置输出位置反馈信号;
根据所述位置反馈信号输出转子电角速度,并根据所述转子电角速度和速度指令输出使所述转子电角速度和速度指令趋向于零的速度控制器输出信号;
将所述速度控制器输出信号经过电压限制计算后输出限制电压;
生成预设直轴电流,将所述预设直轴电流与所述直轴电流分量进行减法运算后得到直轴电流差,并根据所述直轴电流差输出使所述直轴电流差趋向于零的直轴电压分量;
生成预设交轴电压分量,并根据所述限制电压和所述位置反馈信号对所述直轴电压分量和所述预设交轴电压分量进行电压限幅和坐标变换后输出直轴电压和交轴电压;
将所述直轴电压和所述交轴电压转换成三相交流电压。
结合第二方面,作为第二方面的第一种实施方式,所述生成预设交轴电压分量的步骤具体为:
根据以下算式进行计算后输出预设交轴电压分量:
Uq=ω(Id×Ldf);
其中,Uq为预设交轴电压分量,Id为直轴电流分量,ω为转子电角速度,Ld为电子直轴电感分量,ψf为永磁体磁链。
结合第二方面,作为第二方面的第二种实施方式,所述生成预设交轴电压分量的步骤具体为:
根据以下算式进行计算后输出预设交轴电压分量:
Figure PCTCN2015082212-appb-000002
其中,Uq为预设交轴电压分量,K为电压系数,Ud为直轴电压分量,Us为限制电压。
本发明第三方面提供一种电机驱动装置,所述电机驱动装置包括:
旋转变换器,用于将定子电流经过坐标旋转变换后输出交轴电流分量和直轴电流分量;
位置计算器,用于检测电机转子的位置,并根据所述电机转子的位置输出位置反馈信号;
速度计算模块,用于根据所述位置反馈信号输出转子电角速度;
速度控制器,用于输出使所述转子电角速度和所输入的速度指令趋向零的速度控制器输出信号;
所述电机驱动装置还包括:
电压限制计算模块,用于将所述速度控制器输出信号经过电压限制计算后输出限制电压;
直轴电流生成模块,用于生成预设直轴电流;
交轴电流生成模块,用于生成预设交轴电流;
第一减法器,用于将所述预设直轴电流与所述直轴电流分量进行减法运算后得到直轴电流差;
第二减法器,用于将所述预设交轴电流与所述交轴电流分量进行减法运算后得到交轴电流差;
电流控制器,用于输出所述直轴电流差和所述交轴电流差趋向于零的直轴电压分量和交轴电压分量;
电压限制器,用于根据所述限制电压和所述位置反馈信号对所述直轴电压分量和所述交轴电压分量进行电压限幅和坐标变换后输出直轴电压和交轴电压;
PWM控制器,用于将所述直轴电压和所述交轴电压转换成三相交流电压。
结合第三方面,作为第三方面的第一种实施方式,所述预设交轴电流为固定值。
结合第三方面,作为第三方面的第二种实施方式,所述预设交轴电流与所述速度控制器输出信号的大小成正比关系。
结合第三方面,作为第三方面的第三种实施方式,所述电压限制器根据所述限制电压对所述直轴电压分量和所述预设交轴电压分量进行电压限幅后,再根据所述位置反馈信号进行坐标变换输出直轴电压和交轴电压;
或者,所述电压限制器根据所述位置反馈信号进行坐标变换后,再根据所述限制电压对所述直轴电压分量和所述预设交轴电压分量进行电压限幅输出直轴电压和交轴电压。
本发明第四方面提供一种电机驱动方法,所述电机驱动方法包括以下步骤:
将所述定子电流经过坐标旋转变换后输出交轴电流分量和直轴电流分量;
检测电机转子的位置,根据所述电机转子的位置输出位置反馈信号和速度反馈信号;
根据所述位置反馈信号输出转子电角速度,并根据所述转子电角速度和所输入的速度指令输出使所述转子电角速度和速度指令趋向于零的速度控制器输出信号;
将所述速度控制器输出信号经过电压限制计算后输出限制电压;
生成预设直轴电流,将所述预设直轴电流与所述直轴电流分量进行减法运算后得到直轴电流差;
生成预设交轴电流,将所述预设交轴电流与所述交轴电流分量进行减法运算后得到交轴电流差;
根据所述直轴电流差和所述交轴电流差输出使所述直轴电流差和所述交轴电流差趋向于零的直轴电压分量和交轴电压分量;
根据所述限制电压和所述位置反馈信号对所述直轴电压分量和所述预设交轴电压分量进行电压限幅和坐标变换后输出直轴电压和交轴电压;
将所述直轴电压和所述交轴电压转换成三相交流电压。
结合第四方面,作为第四方面的第一种实施方式,所述生成预设交轴电流的步骤具体为:
将所述预设交轴电流设定为固定值。
结合第四方面,作为第四方面的第二种实施方式,所述生成预设交轴电流的步骤具体为:
将所述预设交轴电流设定为与所述速度控制器输出信号的大小成正比关系。
本发明第五方面提供一种电机,其包括逆变器模块和电机模块,其特征在于,所述电机还包括第一方面以及第四方面提供的电机驱动装置。
有益效果
本发明提供的电机驱动装置、方法及电机,通过将限制电压作为驱动装置输出电压的限制,并通过设定交轴电压分量值,实现了对交轴电流的限制,从而实现了对电机电流的控制,解决了单独转矩控制的空载调速问题,同时解决了单独转速控制负载的抗干扰能力强弱的问题和单独转速控制启动转矩小和启动速度响应慢的问题。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中提供的一种电机驱动装置的结构示意图;
图2是现有技术中提供的另一种电机驱动装置的结构示意图;
图3是现有技术中提供的另一种电机驱动装置的结构示意图;
图4是本发明一种实施例提供的电机驱动装置的结构示意图;
图5是本发明一种实施例提供的电机驱动装置中的电压限制器的工作方法示意图;
图6是本发明一种实施例提供的电机驱动方法的流程图;
图7是本发明另一种实施例提供的电机驱动装置的结构示意图;
图8是本发明另一种实施例提供的电机驱动装置的结构示意图;
图9是本发明另一种实施例提供的电机驱动方法的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
为了说明本发明的技术方案,下面通过具体实施例来进行说明。
本发明一种实施例提供一种电机驱动装置,如图4所示,电机驱动装置包括:
旋转变换器10,用于将检测到的定子电流经过坐标旋转变换后输出交轴电流分量和直轴电流分量。
位置计算器11,用于检测电机转子的位置,并根据电机转子的位置输出位置反馈信号。
速度计算模块12,用于根据位置反馈信号输出转子电角速度。
速度控制器1,用于根据转子电角速度输出和转速指令输出使转子电角速度和所输入的速度指令趋向于零的速度控制器输出信号。
电机驱动装置还包括:
电压限制计算模块20,用于将速度控制器输出信号经过电压限制计算后输出限制电压。
直轴电流生成模块2,用于生成预设直轴电流。
第一减法器22,用于将预设直轴电流与直轴电流分量进行减法运算后得到直轴电流差。
电流控制器4,用于输出使直轴电流差趋向于零的直轴电压分量。
交轴电压生成模块3,用于生成预设交轴电压分量。
电压限制器5,用于根据限制电压和位置反馈信号对直轴电压分量和预设 交轴电压分量进行电压限幅和坐标变换后输出直轴电压和交轴电压。
PWM控制器6,用于将直轴电压和交轴电压转换成三相交流电压。
具体的,速度控制器输出信号是速度控制器1输出的调节指令,其可以以电压值或电压范围值的形式存在,或者该速度控制器输出信号在软件中以数字的形式存在;电压限制计算模块将速度控制器输出信号经过电压限制计算后输出限制电压,该电压限制计算模块的计算方式可以通过人为设定,例如,以速度控制器输出信号为电压信号为例,速度控制器输出信号的范围为0至6伏,经过对电压限制计算模块进行设定后,其输出的限制电压可以为0至220伏,此处仅为举例,不构成对本发明的限定。
具体的,交轴电压生成模块3用于输出预设交轴电压分量,该交轴电压生成模块3根据人为设定的计算公式计算得出预设交轴电压分量。
具体的,电压限制器5根据限制电压对直轴电压分量和预设交轴电压分量进行电压限幅,以实现对输出电流的控制。
作为本发明实施例中预设交轴电压分量计算方式的一个实施例,交轴电压生成模块3生成预设交轴电压分量的过程具体为:
根据以下算式进行计算后输出预设交轴电压分量:
Uq=ω(Id×Ldf);
其中,Uq为预设交轴电压分量,Id为预设直轴电流分量,ω为转子电角速度,Ld为电子直轴电感分量,ψf为永磁体磁链。
作为本发明实施例中预设交轴电压分量计算方式的另一个实施例,交轴电压生成模块3生成预设交轴电压分量的过程具体为:
根据以下算式进行计算后输出预设交轴电压分量:
Figure PCTCN2015082212-appb-000003
其中,Uq为预设交轴电压分量,K为电压系数,Ud为直轴电压分量,Us为限制电压。
通过上述两个实施方式提供的公式,可以获取预设交轴电压分量。
本发明实施例通过将限制电压作为驱动装置输出电压的限制,并通过设定交轴电压分量值,实现了对交轴电流的限制,从而实现了对电机电流的控制,解决了单独转矩控制的调速问题,同时解决了单独转速控制负载的抗干扰能力强弱的问题和单独转速控制启动转矩小和启动速度响应慢的问题。
进一步地,如图5所示,电压限制器5进行电压限制后输出直轴电压和交轴电压的一种实施方式为:
电压限制器5根据限制电压对直轴电压分量和预设交轴电压分量进行电压限幅后,再根据位置反馈信号进行坐标变换输出直轴电压和交轴电压。
电压限制器5进行电压限制后输出直轴电压和交轴电压的另一种实施方式为:
电压限制器5根据位置反馈信号进行坐标变换后,再根据限制电压对直轴电压分量和预设交轴电压分量进行电压限幅输出直轴电压和交轴电压。
上述两种实施方式中可通过以下算式获得:
Figure PCTCN2015082212-appb-000004
或者
Figure PCTCN2015082212-appb-000005
时,
Figure PCTCN2015082212-appb-000006
其中,Us为限制电压,Ud和Uq分别为旋转坐标系下的直轴和交轴电压分量,Uα和Uβ为静止坐标系下的直轴和交轴电压分量,K为电压系数。
本发明另一种实施例提供一种电机驱动方法,如图6所示,电机驱动方法包括:
步骤S101.将定子电流经过坐标旋转变换后输出交轴电流分量和直轴电流分量。
步骤S102.检测电机转子的位置,并根据电机转子的位置输出位置反馈信 号。
步骤S103.根据位置反馈信号输出转子电角速度,并根据转子电角速度和速度指令输出使所述转子电角速度和速度指令趋向于零的速度控制器输出信号。
步骤S104.将速度控制器输出信号经过电压限制计算后输出限制电压。
步骤S105.生成预设直轴电流,将预设直轴电流与直轴电流分量进行减法运算后得到直轴电流差,并根据直轴电流差输出使所述直轴电流差趋向于零的输出直轴电压分量。
步骤S106.生成预设交轴电压分量,并根据限制电压和位置反馈信号对直轴电压分量和预设交轴电压分量进行电压限幅和坐标变换后输出直轴电压和交轴电压;
步骤S107.将直轴电压和交轴电压转换成三相交流电压。
其中,在步骤S106中,作为一种实施方式,生成预设交轴电压分量的步骤具体为:
根据以下算式进行计算后输出预设交轴电压分量:
Uq=ω(Id×Ldf);
其中,Uq为预设交轴电压分量,Id为预设直轴电流分量,ω为转子电角速度,Ld为电子直轴电感分量,ψf为永磁体磁链。
其中,在步骤S106中,作为另一种实施方式,生成预设交轴电压分量的步骤具体为:
根据以下算式进行计算后输出预设交轴电压分量:
Figure PCTCN2015082212-appb-000007
其中,Uq为预设交轴电压分量,K为电压系数,Ud为直轴电压分量,Us为限制电压。
本发明另一种实施例提供一种电机驱动装置,电机驱动装置包括:
旋转变换器10,用于将定子电流经过坐标旋转变换后输出交轴电流分量和直轴电流分量;
位置计算器11,用于检测电机转子的位置,并根据电机转子的位置输出位置反馈信号;
速度计算模块12,用于根据位置反馈信号输出转子电角速度;
速度控制器1,用于输出使转子电角速度和速度指令趋向于零的速度控制器输出信号;
电机驱动装置还包括:
电压限制计算模块20,用于将速度控制器输出信号经过电压限制计算后输出限制电压;
直轴电流生成模块2,用于生成预设直轴电流;
交轴电流生成模块8,用于生成预设交轴电流;
第一减法器22,用于将预设直轴电流与直轴电流分量进行减法运算后得到直轴电流差;
第二减法器23,用于将预设交轴电流与交轴电流分量进行减法运算后得到交轴电流差;
电流控制器4,用于输出使直轴电流差和交轴电流差趋向于零的输出直轴电压分量和交轴电压分量;
电压限制器5,用于根据限制电压和位置反馈信号对直轴电压分量和交轴电压分量进行电压限幅和坐标变换后输出直轴电压和交轴电压;
PWM控制器6,用于将直轴电压和交轴电压转换成三相交流电压。
具体的,速度控制器输出信号是速度控制器1输出的调节指令,其可以以电压值或电压范围值的形式存在,或者该速度控制器输出信号在软件中以数字的形式存在;电压限制计算模块20将速度控制器输出信号经过电压限制计算后输出限制电压,该电压限制计算模块的计算方式可以通过人为设定,例如,以速度控制器输出信号为电压信号为例,速度控制器输出信号的范围为0至6伏,经过对电压限制计算模块进行设定后,其输出的限制电压可以为0至220伏,此处仅为举例,不构成对本发明的限定。
进一步地,如图7所示,交轴电流生成模块8根据速度控制器输出信号输出预设交轴电流的一种实施方式为:
预设交轴电流为固定值。
具体的,通过将交轴电流设定为某个固定值,以用来限制最大输出电流值。
进一步地,如图8所示,交轴电流生成模块8根据速度控制器输出信号输出预设交轴电流的一种实施方式为:
预设交轴电流与速度控制器输出信号的大小成正比关系。
具体的,预设交轴电流为经过速度控制器输出信号转换后得到的电流值,其中一种实现方案是将速度控制器输出信号中电压的最大值和最小值与预设交轴电流值的最大值和最小值相对应,可以采用线性插值关系进行对应。
进一步地,电压限制器5进行电压限制后输出直轴电压和交轴电压的一种实施方式为:
电压限制器5根据限制电压对直轴电压分量和交轴电压分量进行电压限幅后,再根据位置反馈信号进行坐标变换输出直轴电压和交轴电压。
进一步地,电压限制器5进行电压限制后输出直轴电压和交轴电压的一种实施方式为:
电压限制器5根据位置反馈信号进行坐标变换后,再根据限制电压对直轴电压分量和交轴电压分量进行电压限幅输出直轴电压和交轴电压。
上述两种实施方式中可通过以下算式获得:
Figure PCTCN2015082212-appb-000008
或者
Figure PCTCN2015082212-appb-000009
时,
Figure PCTCN2015082212-appb-000010
其中,Us为限制电压,Ud和Uq分别为旋转坐标系下的直轴和交轴电压分量, Uα和Uβ为静止坐标系下的直轴和交轴电压分量,K为电压系数。
本发明另一种实施例提供一种电机驱动方法,如图9所示,电机驱动方法包括以下步骤:
步骤S201.将定子电流经过坐标旋转变换后输出交轴电流分量和直轴电流分量。
步骤S202.检测电机转子的位置,根据电机转子的位置输出位置反馈信号。
步骤S203.根据位置反馈信号输出转子电角速度,并根据转子电角速度和所输入的速度指令输出使转子电角速度和速度指令趋向于零的转子电角速度输出速度控制器输出信号。
步骤S204.将速度控制器输出信号经过电压限制计算后输出限制电压。
步骤S205.生成预设直轴电流,将预设直轴电流与直轴电流分量进行减法运算后得到直轴电流差。
步骤S206.生成预设交轴电流,将预设交轴电流与交轴电流分量进行减法运算后得到交轴电流差。
步骤S207.根据所述直轴电流差和所述交轴电流差输出使所述直轴电流差和所述交轴电流差趋向于零的直轴电压分量和交轴电压分量;
步骤S208.根据限制电压和位置反馈信号对直轴电压分量和交轴电压分量进行电压限幅和坐标变换后输出直轴电压和交轴电压。
步骤S209.将直轴电压和交轴电压转换成三相交流电压。
作为一种实施方式,步骤S206中,生成预设交轴电流的步骤具体为:
将预设交轴电流设定为固定值。
作为另一种实施方式,步骤S206中,生成预设交轴电流的步骤具体为:
将预设交轴电流设定为与速度控制器输出信号速度控制器输出信号大小成正比关系。
本发明另一种实施例提供一种电机,其包括逆变器模块9和电机模块10,还包括上述的电机驱动装置。
本发明提供的电机驱动装置、方法及电机,通过将限制电压作为驱动装置输出电压的限制,并通过设定交轴电压分量值,实现了对交轴电流的限制,解决了单独转矩控制的调速问题,同时解决了单独转速控制负载的抗干扰能力强弱的问题和单独转速控制启动转矩小和启动速度响应慢的问题。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明由所提交的权利要求书确定的专利保护范围。

Claims (15)

  1. 一种电机驱动装置,所述电机驱动装置包括:
    旋转变换器,用于将定子电流经过坐标旋转变换后输出交轴电流分量和直轴电流分量;
    位置计算器,用于检测电机转子的位置,并根据所述电机转子的位置输出位置反馈信号;
    速度计算模块,用于根据所述位置反馈信号输出转子电角速度;
    速度控制器,用于输出使所述转子电角速度和所输入的速度指令趋向于零的速度控制器输出信号;
    其特征在于,所述电机驱动装置还包括:
    电压限制计算模块,用于将所述速度控制器输出信号经过电压限制计算后输出限制电压;
    直轴电流生成模块,用于生成预设直轴电流;
    第一减法器,用于将所述预设直轴电流与所述直轴电流分量进行减法运算后得到直轴电流差;
    电流控制器,用于输出使所述直轴电流差趋向于零的直轴电压分量;
    交轴电压生成模块,用于生成预设交轴电压分量;
    电压限制器,用于根据所述限制电压和所述位置反馈信号对所述直轴电压分量和所述预设交轴电压分量进行电压限幅和坐标变换后输出直轴电压和交轴电压;
    PWM控制器,用于将所述直轴电压和所述交轴电压转换成三相交流电压。
  2. 如权利要求1所述的电机驱动装置,其特征在于,所述交轴电压生成模块生成预设交轴电压分量的过程具体为:
    根据以下算式进行计算后输出预设交轴电压分量:
    Uq=ω(Id×Ldf);
    其中,Uq为预设交轴电压分量,Id为直轴电流分量,ω为转子电角速度, Ld为电子直轴电感分量,ψf为永磁体磁链。
  3. 如权利要求1所述的电机驱动装置,其特征在于,所述交轴电压生成模块生成预设交轴电压分量的过程具体为:
    根据以下算式进行计算后输出预设交轴电压分量:
    Figure PCTCN2015082212-appb-100001
    其中,Uq为预设交轴电压分量,K为电压系数,Ud为直轴电压分量,Us为限制电压。
  4. 如权利要求1所述的电机驱动装置,其特征在于,所述电压限制器根据所述限制电压对所述直轴电压分量和所述预设交轴电压分量进行电压限幅后,再根据所述位置反馈信号进行坐标变换输出直轴电压和交轴电压;
    或者,所述电压限制器根据所述位置反馈信号进行坐标变换后,再根据所述限制电压对所述直轴电压分量和所述预设交轴电压分量进行电压限幅输出直轴电压和交轴电压。
  5. 一种电机驱动方法,其特征在于,所述电机驱动方法包括:
    将定子电流经过坐标旋转变换后输出交轴电流分量和直轴电流分量;
    检测电机转子的位置,并根据所述电机转子的位置输出位置反馈信号;
    根据所述位置反馈信号输出转子电角速度,并根据所述转子电角速度和速度指令输出使所述转子电角速度和速度指令趋向于零的速度控制器输出信号;
    将所述速度控制器输出信号经过电压限制计算后输出限制电压;
    生成预设直轴电流,将所述预设直轴电流与所述直轴电流分量进行减法运算后得到直轴电流差,并根据所述直轴电流差输出使所述直轴电流差趋向于零的直轴电压分量;
    生成预设交轴电压分量,并根据所述限制电压和所述位置反馈信号对所述直轴电压分量和所述预设交轴电压分量进行电压限幅和坐标变换后输出直轴电压和交轴电压;
    将所述直轴电压和所述交轴电压转换成三相交流电压。
  6. 如权利要求5所述的电机驱动方法,其特征在于,所述生成预设交轴电压分量的步骤具体为:
    根据以下算式进行计算后输出预设交轴电压分量:
    Uq=ω(Id×Ldf);
    其中,Uq为预设交轴电压分量,Id为预设直轴电流分量,ω为转子电角速度,Ld为电子直轴电感分量,ψf为永磁体磁链。
  7. 如权利要求5所述的电机驱动方法,其特征在于,所述生成预设交轴电压分量的步骤具体为:
    根据以下算式进行计算后输出预设交轴电压分量:
    Figure PCTCN2015082212-appb-100002
    其中,Uq为预设交轴电压分量,K为电压系数,Ud为直轴电压分量,Us为限制电压。
  8. 一种电机驱动装置,所述电机驱动装置包括:
    旋转变换器,用于将定子电流经过坐标旋转变换后输出交轴电流分量和直轴电流分量;
    位置计算器,用于检测电机转子的位置,并根据所述电机转子的位置输出位置反馈信号;
    速度计算模块,用于根据所述位置反馈信号输出转子电角速度;
    速度控制器,用于输出使所述转子电角速度和所输入的速度指令趋向于零的速度控制器输出信号;
    其特征在于,所述电机驱动装置还包括:
    电压限制计算模块,用于将所述速度控制器输出信号经过电压限制计算后输出限制电压;
    直轴电流生成模块,用于生成预设直轴电流;
    交轴电流生成模块,用于生成预设交轴电流;
    第一减法器,用于将所述预设直轴电流与所述直轴电流分量进行减法运算 后得到直轴电流差;
    第二减法器,用于将所述预设交轴电流与所述交轴电流分量进行减法运算后得到交轴电流差;
    电流控制器,用于输出使所述直轴电流差和所述交轴电流差趋向于零的直轴电压分量和交轴电压分量;
    电压限制器,用于根据所述限制电压和所述位置反馈信号对所述直轴电压分量和所述交轴电压分量进行电压限幅和坐标变换后输出直轴电压和交轴电压;
    PWM控制器,用于将所述直轴电压和所述交轴电压转换成三相交流电压。
  9. 如权利要求8所述的电机驱动装置,其特征在于,所述预设交轴电流为固定值。
  10. 如权利要求8所述的电机驱动装置,其特征在于,所述预设交轴电流与所述速度控制器输出信号的大小成正比关系。
  11. 如权利要求8所述的电机驱动装置,其特征在于,所述电压限制器根据所述限制电压对所述直轴电压分量和所述交轴电压分量进行电压限幅后,再根据所述位置反馈信号进行坐标变换输出直轴电压和交轴电压;
    或者,所述电压限制器根据所述位置反馈信号进行坐标变换后,再根据所述限制电压对所述直轴电压分量和所述交轴电压分量进行电压限幅输出直轴电压和交轴电压。
  12. 一种电机驱动方法,其特征在于,所述电机驱动方法包括以下步骤:
    将定子电流经过坐标旋转变换后输出交轴电流分量和直轴电流分量;
    检测电机转子的位置,根据所述电机转子的位置输出位置反馈信号;
    根据所述位置反馈信号输出转子电角速度,并根据所述转子电角速度和所输入的速度指令输出使所述转子电角速度和速度指令趋向于零的速度控制器输出信号;
    将所述速度控制器输出信号经过电压限制计算后输出限制电压;
    生成预设直轴电流,将所述预设直轴电流与所述直轴电流分量进行减法运 算后得到直轴电流差;
    生成预设交轴电流,将所述预设交轴电流与所述交轴电流分量进行减法运算后得到交轴电流差;
    根据所述直轴电流差和所述交轴电流差输出使所述直轴电流差和所述交轴电流差趋向于零的直轴电压分量和交轴电压分量;
    根据所述限制电压和所述位置反馈信号对所述直轴电压分量和所述预设交轴电压分量进行电压限幅和坐标变换后输出直轴电压和交轴电压;
    将所述直轴电压和所述交轴电压转换成三相交流电压。
  13. 如权利要求12所述的电机驱动方法,其特征在于,所述生成预设交轴电流的步骤具体为:
    将所述预设交轴电流设定为固定值。
  14. 如权利要求12所述的电机驱动方法,其特征在于,所述生成预设交轴电流的步骤具体为:
    将所述预设交轴电流设定为与所述速度控制器输出信号大小成正比关系。
  15. 一种电机,其包括逆变器模块和电机模块,其特征在于,所述电机还包括权利要求1至4以及权利要求8至11中任一项所述的电机驱动装置。
PCT/CN2015/082212 2015-06-24 2015-06-24 电机驱动装置、方法及电机 WO2016206021A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017566725A JP2018520624A (ja) 2015-06-24 2015-06-24 モーター駆動装置とその方法、及びモーター
KR1020187002126A KR20180020268A (ko) 2015-06-24 2015-06-24 전동기 구동 장치, 방법 및 전동기
PCT/CN2015/082212 WO2016206021A1 (zh) 2015-06-24 2015-06-24 电机驱动装置、方法及电机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/082212 WO2016206021A1 (zh) 2015-06-24 2015-06-24 电机驱动装置、方法及电机

Publications (1)

Publication Number Publication Date
WO2016206021A1 true WO2016206021A1 (zh) 2016-12-29

Family

ID=57584468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082212 WO2016206021A1 (zh) 2015-06-24 2015-06-24 电机驱动装置、方法及电机

Country Status (3)

Country Link
JP (1) JP2018520624A (zh)
KR (1) KR20180020268A (zh)
WO (1) WO2016206021A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111490709A (zh) * 2020-04-17 2020-08-04 东南大学深圳研究院 一种磁齿轮功率分配电机的模型预测控制***及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113819623B (zh) * 2021-09-10 2022-11-15 青岛海尔空调器有限总公司 用于控制电机运行的方法、装置、空调及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2429074A2 (en) * 2010-09-09 2012-03-14 Hitachi Car Engineering Co., Ltd. Brushless motor control device and brushless motor system
CN102487263A (zh) * 2010-12-03 2012-06-06 三菱电机株式会社 控制装置
JP2012130100A (ja) * 2010-12-13 2012-07-05 Samsung Yokohama Research Institute Co Ltd モータ制御装置及びモータ制御方法
CN104836505A (zh) * 2015-05-28 2015-08-12 广东威灵电机制造有限公司 电机驱动装置、方法及电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2429074A2 (en) * 2010-09-09 2012-03-14 Hitachi Car Engineering Co., Ltd. Brushless motor control device and brushless motor system
CN102487263A (zh) * 2010-12-03 2012-06-06 三菱电机株式会社 控制装置
JP2012130100A (ja) * 2010-12-13 2012-07-05 Samsung Yokohama Research Institute Co Ltd モータ制御装置及びモータ制御方法
CN104836505A (zh) * 2015-05-28 2015-08-12 广东威灵电机制造有限公司 电机驱动装置、方法及电机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111490709A (zh) * 2020-04-17 2020-08-04 东南大学深圳研究院 一种磁齿轮功率分配电机的模型预测控制***及方法

Also Published As

Publication number Publication date
KR20180020268A (ko) 2018-02-27
JP2018520624A (ja) 2018-07-26

Similar Documents

Publication Publication Date Title
JP6194466B2 (ja) モータ駆動装置
JP5870591B2 (ja) 同期電動機の制御装置及び制御方法
CN110022106B (zh) 一种基于高频信号注入的永磁同步电机无位置传感器控制方法
JP2004048868A5 (zh)
CN105743414A (zh) 电力转换装置、控制装置及载波频率的改变方法
WO2008052388A1 (fr) Procédé de commande d'un moteur électrique
CN108390602B (zh) 一种混合励磁同步电机直接预测功率控制方法
JP2004064909A (ja) モータ制御装置
CN101741309A (zh) 一种永磁同步电机磁场定向控制装置及控制方法
CN108988725A (zh) 一种采用改进复矢量pi控制器的永磁同步电机电流谐波抑制***及方法
JP2011050178A (ja) モータ制御装置及び発電機制御装置
CN202696533U (zh) 一种变速永磁交流发电机***
WO2016206021A1 (zh) 电机驱动装置、方法及电机
JP2018170928A (ja) モータ制御装置
WO2016187883A1 (zh) 电机驱动装置、方法及电机
JP2009195049A (ja) モータ制御装置
CN104836505B (zh) 电机驱动装置、方法及电机
CN112039384A (zh) 一种高效率伺服驱动控制***
TWI383574B (zh) 交流馬達驅動器的弱磁控制方法及裝置
CN104335478B (zh) 用于控制同步磁阻电动机的方法
CN104901593B (zh) 电机驱动装置、方法及电机
JP2007089336A (ja) 電動機付ターボチャージャ用回転検出装置及び電動機付ターボチャージャの回転検出方法
WO2015109863A1 (zh) 一种扩展ecm电机转速范围的控制方法
JP2018198479A (ja) 同期電動機の制御装置
JP2001238493A (ja) 発電機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895921

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017566725

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187002126

Country of ref document: KR

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/05/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15895921

Country of ref document: EP

Kind code of ref document: A1