WO2016187737A1 - 一种在无刷直流电机中产生磁石磁力以及减小吸力斥力的方法及其装置 - Google Patents

一种在无刷直流电机中产生磁石磁力以及减小吸力斥力的方法及其装置 Download PDF

Info

Publication number
WO2016187737A1
WO2016187737A1 PCT/CN2015/000430 CN2015000430W WO2016187737A1 WO 2016187737 A1 WO2016187737 A1 WO 2016187737A1 CN 2015000430 W CN2015000430 W CN 2015000430W WO 2016187737 A1 WO2016187737 A1 WO 2016187737A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
degrees
pole
magnetic
rotor
Prior art date
Application number
PCT/CN2015/000430
Other languages
English (en)
French (fr)
Inventor
矫祥田
矫键
Original Assignee
矫祥田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矫祥田 filed Critical 矫祥田
Publication of WO2016187737A1 publication Critical patent/WO2016187737A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means

Definitions

  • the invention relates to a brushless DC motor, in particular to the application of a magnet in a power plant.
  • the magnetism can be used for linear motion and rotational motion.
  • the magnetism is defined as follows: two N poles (or S poles) of two magnets of the same shape are opposed to each other, and a third magnet is placed in the middle of the two N pole magnetic fields, and the N and S poles of the third magnet are internal.
  • the connection is called the magnetic pole axis.
  • the direction of the magnetic pole axis of the third magnet is 90 degrees ⁇ 45 degrees with the direction of the two N-pole magnetic fields.
  • the two magnets are not moving, and the third magnet is N toward the direction of the magnetic pole axis.
  • the polar direction movement that is, the magnetic pole axis moves in the backward direction of the front pole S by the N pole.
  • the magnetism of the magnet Under the condition defined by the magnetism of the magnet, only the magnetism of the magnet has no suction repulsion.
  • the suction repulsion is generated only when the direction of the magnetic pole axis of the third magnet is 0 degrees ⁇ 45 degrees and 180 degrees ⁇ 45 degrees with the directions of the two N-pole magnetic fields.
  • the magnet-magnetism is used to replace the force-electromagnetic force of the cutting magnetic lines used in ordinary motors.
  • the name is a brushless DC motor using magnetism.
  • the magnet is applied between the stator and the rotor of the motor instead of the electromagnetic force.
  • the suction force is applied, and only the magnet is on the rotor.
  • the technical problem to be solved now is that there is still only a magnet on the rotor; There are not only electromagnetic coils but also magnets on the stator. There is only one electromagnetic coil on the stator, and a new magnet is added. Only the magnetism of the magnet is used, and no force is applied.
  • the purpose is to increase the magnetic force of the magnet between the stator magnet and the rotor magnet, and also use the magnetic force of the magnet between the electromagnetic coil on the stator and the rotor magnet to greatly reduce the number of electromagnetic coils and reduce the input external force of the motor. Improve efficiency.
  • the moving magnet is the rotor magnet
  • the magnetite is the stator magnet.
  • the magnetite provides a magnetic field N or S pole, the moving magnet provides a magnetic pole axis NS; the magnet A and the magnet C have two N-poles (or S poles) of the same shape magnet, in their two N-pole magnetic fields
  • the N-pole and S-pole internal wiring of the magnet B is called the magnet pole axis
  • the magnetic pole axis NS direction of the magnet B is 90 degrees ⁇ 45 degrees with the directions of the two N-pole magnetic fields of the magnet A and the magnet C.
  • Magnet magnetic force 3 The length of the N pole of the magnet A and the magnet C is much larger than the length of the magnetic pole B magnetic pole axis.
  • Magnets A and C act as magnetrons, and magnet B moves magnets in the direction of the N pole in the direction of the magnetic pole axis N-S, that is, the magnetic pole axis moves in the backward direction of the front pole S by the N pole. Only the magnet magnetic force has no suction repulsion under the condition that the magnetism is generated.
  • the suction force 1 is received.
  • Magnet B is subjected to a repulsive force 2 at the other end of the N pole.
  • the direction of the suction repulsion is opposite to the direction of the magnet's magnetic force. Longer magnets can be either straight or arcuate. See Figure 1 for the above description.
  • the magnet B moves in the magnetic direction of the magnet as described above. Both ends of the longer magnet B are also subjected to suction and repulsive forces at the shorter magnets A and B, respectively.
  • Magnet A and magnet C can act as a magnet
  • magnet B can act as a magnetite
  • the direction of motion of magnet A and magnet C is opposite to the direction of motion of motive magnet B.
  • the magnetite provides the magnetic pole axis N-S, and the moving magnet provides the magnetic field N or S pole
  • the upper side of the magnet B provides an N-pole magnetic field
  • the lower side of the magnet B provides an S-pole magnetic field
  • the magnet A is on the upper side of the N-pole magnetic field of the magnet B
  • the right side of the magnet A is the N pole
  • the left side is the S pole
  • Magnet C is magnetic On the lower side of the S-pole magnetic field of stone B
  • the right side of the magnet C is the S pole
  • the left side is the N pole.
  • the direction of the magnetic pole axis N-S of the magnet A and the magnet C and the direction of the N-pole magnetic field of the magnet B and the direction of the S-pole magnetic field of the magnet B are respectively 90 degrees ⁇ 45 degrees.
  • the length of the N-S pole axis of magnet A and magnet C is much larger than the length of the magnet B magnetic field.
  • the magnet A and the magnet C act as magnetrons, and the magnet B acts as a moving magnet to move in the direction of the S pole in the direction of the magnetic axis of the magnet A in the direction of the N-S, and also in the direction of the N pole in the direction of the magnetic pole axis N-S of the magnet C.
  • both ends of the magnet B are subjected to suction or repulsive force at both ends of the magnet A and the magnet C, respectively.
  • Longer magnets can be either straight or arcuate. See Figure 3 for the above description.
  • the magnet B moves as described above. Both ends of the longer magnet B are also subjected to suction and repulsive forces at the shorter magnets A and C, respectively.
  • Magnet A and magnet C can act as a magnet
  • magnet B can act as a magnetite
  • the direction of motion of magnet A and magnet C is opposite to the direction of motion of motive magnet B.
  • a magnetite or magnet that provides a magnetic field with a large arc angle providing a magnetostatic or magnet with a magnetic pole axis.
  • the magnet is normally moved by the magnetism of the magnet.
  • the moving magnet moves to both ends of the magnetite, it is blocked by a large reverse repulsion or suction force, and it is easy to stop moving.
  • the angle of a magnetron providing a magnetic field with a large arc angle is 180 degrees, the moving magnet is stopped at a position of 90 degrees in the middle of 180 degrees without being magnetized by the magnet.
  • a magnetite or magnet with a large arc angle is divided into several small magnets, the direction of the magnetic field is the same as the original, the angle is the same, the distance between several small magnets is equal, and the distance is related to the size of the small magnet. .
  • the distance can be large. The suction repulsion of the head and end of several small magnets has been reduced.
  • the first group of small magnets of the magnetostatic group are on the lower side of the moving magnet, and the second group of small magnets are on the upper side of the moving magnet, and the magnetic poles of the small magnets on the upper and lower sides point to the magnetic pole of the moving magnet.
  • the small magnet of the first group of small magnets is placed at the same angular position as the small magnet of the second group of small magnets, which is beneficial to reduce the suction force. Repulsive force.
  • the distance between the magnet and the magnetite should be normal. When the distance is too small, the moving magnet is subjected to three forces of magnet magnetic force repulsion between several small magnets; when the distance is too large, the magnetic force of the magnet received by the moving magnet will decrease; the distance is selected from the place where there is no suction repulsion. When the distance between several small magnets is small, the distance between the magnet and the magnetite is also small.
  • a magnetite or moving magnet with a large arc angle the arc angle is controlled within 120 degrees, and 90 degrees is better. There is no longer a stop motion of the magnetism at the intermediate degree of the arc angle.
  • the circle The arc-shaped magnetite is placed on the upper or lower side of the moving magnet at this position, and its center is placed at the center of the moving magnet, and its both ends are placed on the outer side or the inner side of the moving magnet, which also reduces the suction force. Repulsive force.
  • a circular magnetite with a magnetic field or a magnetic pole axis is provided at 90 degrees (or 60 degrees, etc.), placed on the lower side of the moving magnet from 0 to 90 degrees, and placed 180 degrees to 270 degrees each, with the center placed on the moving magnet At the center of the center, place both ends on the outside of the moving magnet.
  • One is placed at 90 degrees to 180 degrees, either on the upper side or the lower side of the moving magnet.
  • the moving magnet has a good magnet magnetic force to move from 0 to 270 degrees. There is a small suction repulsion that does not affect the motion, and also reduces the suction repulsion.
  • An electromagnetic coil is used at a position of 270 degrees to 0 degrees. On the upper side of the moving magnet, magnetism is also generated after energization, and the moving magnet will continue to operate completely at 360 degrees.
  • Embodiment 1 A magnetron provides a magnetic field N pole (or S pole), and a moving magnet provides a magnetic pole axis N-S.
  • the moving magnet provides a magnetic pole axis N-S with an arc angle of 120 degrees (may be other angles, such as 90 degrees, etc.).
  • the number is one or more.
  • the magnetron can be built in 4 (or other numbers) at 90 degrees (or other angles) at 0 degrees, 30 degrees, 60 degrees, 90 degrees, 180 degrees, 210 degrees, 240 degrees, 270 degrees, respectively.
  • Each has a small magnetite on the underside of the moving magnet.
  • At 90 degrees, 120 degrees, 150 degrees, and 180 degrees each has a small magnetite on the upper side of the moving magnet.
  • the N pole of the magnetostatic magnet points to the moving magnet.
  • An electromagnetic coil is placed at a position of 270 degrees to 0 degrees, and the N pole is directed to the moving magnet when the electromagnetic coil is energized.
  • the moving magnet is not in the application range of the electromagnetic coil, and the electromagnetic coil is not energized.
  • the magnet is operated by the magnetic force of the magnet in the range of 0 to 270 degrees of magnetostatic magnet. There is no obstruction of the suction force and the electromagnetic coil is not energized.
  • the moment when the solenoid is energized and de-energized is controlled by an ordinary Hall element and a power control system.
  • Electromagnetic wire When the coil starts to be energized, the first end of the rotor magnet enters the center of the electromagnetic coil, and when the end of the rotor magnet leaves the center of the electromagnetic coil, it must be powered off. If the electromagnetic coil is not used, and only a magnetite is used to form a circle within 360 degrees, the magnetism of the magnet is substantially eliminated.
  • the magnet is powered by the magnetic force of the magnet generated between the magnetostatic magnet and the moving magnet. It also uses the magnetic force of the magnet generated between the electromagnetic coil and the moving magnet as the power. With two or more electromagnetic coils, it can be between 90 and 180 degrees. One position, one at 270 degrees to 0 degrees, is very good, but uses a little more electricity. With one or two solenoids, the moving magnet can be fully rotated.
  • the above-mentioned magnetostatic magnet at 90 degrees to 180 degrees may adopt an arc-shaped magnetostatic magnet that provides a magnetic field. When placed, the center is placed at the center of the moving magnet, and both ends thereof are placed outside the moving magnet. Or the inside, also placed on the lower side or upper side of the moving magnet.
  • the above-mentioned magnetostatic magnet at 90 degrees to 180 degrees may be a ring-shaped magnetite, placed in the vicinity of the moving magnet.
  • Example 1 has a schematic prototype demonstration.
  • Embodiment 2 A moving magnet provides a magnetic field N pole (or S pole), and a magnetostatic magnet provides a magnetic pole axis N-S.
  • the moving magnet provides a magnetic field N pole or S pole with an arc angle of 120 degrees (may be other angles, such as 90 degrees, etc.), and the number is one or more.
  • the magnetostatic magnet provides the magnetic pole axis NS. It can be built in 4 degrees (or other numbers) at 90 degrees (or other angles), respectively at 0 degrees, 30 degrees, 60 degrees, 90 degrees, 180 degrees, 210 degrees, 240. Degree, 270 degrees, each set a magnetite, on the lower side of the moving magnet, the N pole on the lower side points to the axis of the magnetostatic magnet. At 90 degrees, 120 degrees, 150 degrees, 180 degrees, each set a magnetite, on the upper side of the moving magnet.
  • the S pole on the upper side of the moving magnet points to the magnetic pole axis of the magnetite.
  • An electromagnetic coil is placed at a position of 270 degrees to 0 degrees, and the N-S pole of the electromagnetic coil is directed to the moving magnet when the electromagnetic coil is energized.
  • the moving magnet is not in the application range of the electromagnetic coil, and the electromagnetic coil is not energized.
  • the magnet is operated by the magnetic force of the magnet in the range of 0 to 270 degrees of magnetostatic magnet. There is no obstruction of the suction force and the electromagnetic coil is not energized.
  • the moment when the solenoid is energized and de-energized is controlled by an ordinary Hall element and a power control system.
  • the electromagnetic coil When the electromagnetic coil starts to be energized, the first end of the rotor magnet enters the center of the electromagnetic coil, and when the end of the rotor magnet leaves the center of the electromagnetic coil, it must be powered off. If the electromagnetic coil is not used, and only a magnetite is used to form a circle within 360 degrees, the magnetism of the magnet is substantially eliminated. Use more than two electromagnetic coils, one at 90 degrees to 180 degrees, one at 270 degrees to 0 degrees, which is very good, but uses a little more electricity. With one or two solenoids, the moving magnet can be fully rotated.
  • the magnetic pole axis of the magnetism at the above 90 degrees to 180 degrees may be in the shape of a circular arc.
  • the center is placed at the center of the moving magnet, and both ends thereof are placed outside the moving magnet.
  • Magnet The underside. The magnet is operated by the magnetic force of the magnet in the range of 0 to 270 degrees on the lower side of the magnet, and there is no obstruction of the suction force.
  • Embodiment 2 has a schematic prototype demonstration.
  • a brushless DC motor using only one electromagnetic coil using a magnetic force of a magnet comprising:
  • a moving magnet capable of rotating about one axis constitutes a rotor of the motor, and one end of the moving magnet in the rotating direction is an N pole and the other end is an S pole;
  • a plurality of magnetites are circumferentially spaced apart on one side or both sides of the plane of rotation of the rotor, all of the magnetisms being N-pole or S-poles facing the plane of rotation of the rotor; one of the magnetites is a curved magnet The convex edge of the curved magnet faces the axis, and the central portion of the curved magnet is opposite to the rotating path of the moving magnet, and the two ends of the curved magnet have radial deviation from the rotating path of the moving magnet ;
  • an electromagnetic coil capable of switching between energization and de-energization is provided on one side of the rotation plane of the rotor, and the N-pole of the electromagnetic coil at the time of energization is aligned with the N-pole orientation of each of the magnetisms.
  • a brushless DC motor using only one electromagnetic coil of a magnet magnetic force comprising:
  • a moving magnet that is rotatable about an axis constitutes a rotor of the motor, and an N pole of the moving magnet faces a side of a plane of rotation of the moving magnet;
  • a plurality of magnetites are circumferentially spaced apart on one or both sides of the plane of rotation of the rotor, and the N poles of all the magnetisms are arranged in a clockwise or counterclockwise direction along the rotating circumference of the moving magnet;
  • the magnet is a curved magnet, the convex edge of the curved magnet faces the axis, and a central portion of the curved magnet is opposite to a rotating path of the moving magnet, and both ends of the curved magnet and a rotating path of the moving magnet Radial deviation;
  • an electromagnetic coil capable of switching between energization and de-energization is provided on one side of the rotation plane of the rotor, and the N-pole of the electromagnetic coil at the time of energization is aligned with the N-pole orientation of each of the magnetisms.
  • a plurality of magnetites are arranged in the first quadrant, and a plurality of other magnets are arranged in the third quadrant, in the second quadrant.
  • the arc magnet is provided, and the electromagnetic coil is disposed in the fourth quadrant.
  • the moving magnet has an arc shape, and the central angle thereof is between 90 degrees and 120 degrees. Between degrees.
  • the central angle of the curved magnet is between 80 and 100 degrees.
  • the electromagnetic coil has an arc shape with a central angle of between 80 and 100 degrees.
  • a control method of a brushless DC motor using only one electromagnetic coil using the magnetism of the magnet is to start energizing at a moment when the head end of the moving magnet is opposite to the midpoint of the electromagnetic coil, at the end of the moving magnet and the electromagnetic coil The midpoint position begins to de-energize at a relative moment.
  • the force that the moving magnet is subjected to is the magnetism of the magnet.
  • the magnet magnetic force generated between the moving magnet and the magnetostatic magnet is much longer than the magnet magnetic force generated between the moving magnet and the electromagnetic coil; the motor utilizes the magnet magnetic force generated between the magnetostatic magnet and the moving magnet.
  • the magnetic force generated by the magnet between the electromagnetic coil and the moving magnet is also used as the power. Because only one electromagnetic coil is used, the input external force is greatly reduced compared with the permanent magnet brushless DC motor. At the same output power, the device is small in size. to raise efficiency. Greatly reduce costs and have energy saving significance.
  • FIG. 1, FIG. 2, FIG. 3, and FIG. 4 are schematic diagrams showing an available solution for generating magnetism in a basic technical solution
  • Figure 5 is a brushless magnet (dynamic magnet) on the rotor provides the magnetic pole axis, the magnet on the stator (the magnetite) provides the N-pole magnetic field, there are multiple magnetite magnets, and the magnet magnetic force of only one electromagnetic coil is used in the position of the magnetite.
  • Figure 6 is a magnet (dynamic magnet) on the rotor provides the magnetic field N and S poles, the magnet on the stator (the magnetite) provides the magnetic pole axis, there are multiple magnetism magnets, and only one electromagnetic coil is used in the magnetite position.
  • A is a magnetite
  • B is a magnet
  • C is a magnetite
  • N is an N pole
  • S is an S pole
  • Arrow 1 indicates suction
  • Arrow 2 indicates repulsive force
  • Arrow 3 indicates magnetism
  • arrow direction indicates The direction of the force
  • Z is the moving magnet
  • D is the magnetite
  • X is the electromagnetic coil
  • ZH is the shaft.
  • the rotor magnet provides a magnetic pole axis
  • the stator magnet provides an N-pole magnetic field
  • a plurality of stator magnets and a magnet magnetic brushless DC motor using only one electromagnetic coil at the position of the stator magnet.
  • the rotor magnet Z provides a magnetic pole axis N-S with an arc angle of 120 degrees (other angles such as 90 degrees, etc.). Move in a clockwise direction.
  • the magnet D on the stator is built in four at 90 degrees, respectively at 0 degrees, 30 degrees, 60 degrees, 90 degrees, 180 degrees, 210 degrees, 240 degrees, 270 degrees, each set a magnet, N pole up, respectively, D1 , D2, D3, D4, D5, D6, D7, D8, placed on the lower side of the rotor magnet Z.
  • a stator magnet D9 is placed, and the D9 adopts an arc-shaped magnetic field for supplying a magnetic field.
  • the center is placed at the center of the rotor magnet Z, and both ends thereof are placed in the rotor.
  • the outer side of the magnet Z is also placed on the lower side or the upper side of the rotor magnet Z.
  • the N pole of the stator magnet D is directed to the rotor magnet Z.
  • An electromagnetic coil X is placed at a position of 270 degrees to 0 degrees, and the N pole of the electromagnetic coil X is directed to the rotor magnet Z when energized.
  • the rotor magnet Z is not in the application range of the electromagnetic coil X, and the electromagnetic coil X is not energized.
  • the rotor magnet Z is magnetized by the magnetic force of the magnet in the range of the stator magnet D of 0 to 270 degrees, and there is no obstruction of the suction repulsion, and the electromagnetic coil X is not energized.
  • the timing at which the electromagnetic coil X is energized and de-energized is controlled by a Hall element and a power supply control system for a common permanent magnet brushless DC motor.
  • the electromagnetic coil X starts to be energized, the first end of the rotor magnet Z enters the center of the electromagnetic coil X, and when the end of the rotor magnet Z leaves the center of the electromagnetic coil X, it must be powered off.
  • the rotor magnet Z is operated by the magnetic force of the magnet in the range of the N pole that provides the magnetic field by the electromagnetic coil X of 270 degrees to 0 degrees, and there is no hindrance of the suction repulsion.
  • the rotor magnet uses the magnetic force of the magnet generated between the stator magnet and the rotor magnet as the power, and also uses the magnetic force of the magnet generated between the electromagnetic coil and the rotor magnet as the power, and the rotor magnet is completely rotated.
  • the rotor magnet provides a magnetic field
  • the stator magnet provides a magnetic pole axis, a plurality of stator magnets, and a magnet magnetic brushless DC motor using only one electromagnetic coil at the position of the stator magnet.
  • the rotor magnet Z provides magnetic field N and S poles with an arc angle of 120 degrees (other angles such as 90 degrees, etc.). Move in a clockwise direction. The N pole is down and the S pole is up.
  • the stator magnet D has four built-in magnets at 90 degrees, respectively at 0 degrees, 30 degrees, 60 degrees, 90 degrees, 180 degrees, 210 degrees, 240 degrees, and 270 degrees. Each magnet is provided with a magnetic pole axis, which is D1, D2. , D3, D4, D5, D6, D7, D8, placed on the lower side of the N pole of the rotor magnet Z. At a position of 90 degrees to 180 degrees, a stator magnet D9 is placed, and an arc-shaped magnet that provides a magnetic pole axis is placed. At the time of placement, the center is placed at the center of the rotor magnet Z, and both ends thereof are placed in the rotor.
  • the outer side of the magnet Z is also placed on the lower side of the rotor magnet Z.
  • the N pole of the rotor magnet Z is directed to the pole axis of the stator magnet D.
  • an electromagnetic coil X is placed, and when the electromagnetic coil X is energized, its magnetic pole axis points to the magnetic field of the rotor magnet Z.
  • the rotor magnet Z is not in the application range of the electromagnetic coil X, and the electromagnetic coil is not energized.
  • the rotor magnet Z is moved by the magnetic force of the magnet between the magnetite and the magnet in the range of the stator magnet D of 0 to 270 degrees, and there is no obstruction of the suction force, and the electromagnetic coil X is not energized.
  • the timing at which the electromagnetic coil X is energized and de-energized is controlled by a Hall element and a power supply control system for a common permanent magnet brushless DC motor.
  • the electromagnetic coil X starts to be energized, the first end of the rotor magnet Z enters the center of the electromagnetic coil X, and when the end of the rotor magnet Z leaves the center of the electromagnetic coil X, it must be powered off.
  • the rotor magnet is moved by the magnetic force of the magnet in the range of the magnetic pole axis provided by the electromagnetic coil X of 270 to 0 degrees, and there is no hindrance of the suction repulsion.
  • the rotor magnet uses the magnetic force of the magnet generated between the stator magnet and the rotor magnet as the power, and also uses the magnetic force of the magnet generated between the electromagnetic coil and the rotor magnet as the power, and the rotor magnet is completely rotated.

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

一种在无刷直流电机中产生磁石磁力以及减小吸力斥力的方法及其装置,该无刷直流电机是一种利用磁石磁力的、只用一个电磁线圈的电机。磁石之间有吸力和斥力,还有第三个力,即磁石磁力。转子中,电机与永磁无刷电机都只用磁石;定子中,永磁无刷电机只用多个电磁线圈而不用磁石,电机只用一个电磁线圈及多个磁石。该电机利用静磁石与动磁石之间产生的磁石磁力为动力,同时利用电磁线圈与动磁石之间产生的磁石磁力为动力,只用一个电磁线圈使转子旋转起来。该无刷直流电机产生磁石磁力并且减小吸力斥力,大大减小使用外电力并提高效率。

Description

利用磁石磁力的只用一个电磁线圈的无刷直流电机 技术领域
本发明涉及一种无刷直流电机,特别涉及磁石在动力设备中的应用。
背景技术
根据以前中国发明专利申请的内容继续进行发明:
1.申请日2006年12月8日,名称“磁石磁力装置”,申请号200610161921.1;
2.申请日2013年4月11日,名称“磁石磁力装置”,申请号201310125200.5;
3.申请日2013年11月13日,名称“磁石与电磁线圈连接技术应用装置”,申请号201310562225.1;
4.申请日2014年11月24日,名称“利用磁石磁力的无刷直流电机”,申请号201410673906.X。
磁石之间有吸力,斥力,还有第3个力-磁石磁力。其第3个力-磁石磁力在上述专利中有详细说明。利用磁石磁力可以作直线运动和旋转运动。磁石磁力定义如下,在两个相同形状的磁石的两个N极(或S极)相对,在其两个N极磁场的中间置第3个磁石,第3个磁石的N极和S极内部连线叫作磁石磁极轴线,第3个磁石的磁极轴线方向与两个N极磁场的方向成90度±45度,两个相同的磁石不动,第3个磁石向其磁极轴线方向的N极方向运动,即磁极轴线按N极在前S极在后的运动。在磁石磁力定义的条件下只有磁石磁力没有吸力斥力。吸力斥力只在第3个磁石的磁极轴线方向与两个N极磁场的方向成0度±45度和180度±45度时产生。
发明内容
<要解决的技术问题>
利用磁石磁力代替普通电机中用的切割磁力线的力-电磁力。在申请日是2014年11月24日,名称是利用磁石磁力的无刷直流电机中,其电机的定子和转子之间应用磁石磁力代替电磁力,同时也应用吸力斥力,其转子上只有磁石,其定子上只有多个电磁线圈。现在要解决的技术问题是:其转子上仍只有磁石; 其定子上不仅有电磁线圈,还有磁石,作到定子上只有一个电磁线圈,新增加多个磁石,只用磁石磁力,不用吸力斥力。目的是增加利用定子磁石与转子磁石之间的磁石磁力作动力,也利用定子上的电磁线圈与转子磁石之间的磁石磁力的作动力,大大减少电磁线圈的数量,减少电机的输入外力,大大提高效率。在下面的说明中,动磁石就是转子磁石,静磁石就是定子磁石。
<基本技术方案>
基本技术方案1:多种产生磁石磁力的可利用的方案
1.静磁石提供磁场N极或S极,动磁石提供磁极轴线N-S;磁石A和磁石C两个相同形状的磁石的两个N极(或S极)相对,在其两个N极磁场的中间置磁石B,磁石B的N极和S极内部连线叫作磁石磁极轴线,磁石B的磁极轴线N-S方向与磁石A和磁石C两个N极磁场的方向成90度±45度,产生磁石磁力3。磁石A和磁石C的N极的长度比磁石B磁极轴线的长度大很多。磁石A和C作静磁石不动,磁石B作动磁石向其磁极轴线N-S方向的N极方向运动,即磁极轴线按N极在前S极在后的运动。在产生磁石磁力的条件下只有磁石磁力没有吸力斥力。磁石B作动磁石向其磁极轴线N-S方向的N极方向运动到磁石A和磁石C的N极的末端时受到吸力1。磁石B在N极的另一个末端受到斥力2。吸力斥力的方向与磁石磁力的方向相反。较长的磁石可以是直线,也可以是圆弧形状。可以看图1显示以上的叙述。
磁石A和磁石C的N极的长度比磁石B磁极轴线N-S的长度小很多时,磁石B与上述一样按磁石磁力方向运动。较长的磁石B的两端在较短的磁石A和B处也分别受到吸力和斥力。
磁石A和磁石C可以作动磁石,磁石B可以作静磁石,磁石A和磁石C的运动方向与原动磁石B的运动方向相反。
只用磁石A和磁石B,不用磁石C,磁石B与上述一样按磁石磁力方向运动。但是在磁石A和磁石B之间还有较小的吸力1和斥力2,对磁石磁力的影响很小。磁石A和磁石B的长度分别不一样时磁石B一样运动。在两端也有吸力和斥力,与磁石磁力的方向相反。可以看图2显示以上的叙述。
2.静磁石提供磁极轴线N-S,动磁石提供磁场N极或S极
磁石B的上侧提供N极磁场,磁石B的下侧提供S极磁场。磁石A在磁石B的N极磁场的上侧,磁石A的右侧是N极,左侧是S极。磁石C在磁 石B的S极磁场的下侧,磁石C的右侧是S极,左侧是N极。磁石A和磁石C的磁极轴线N-S方向与磁石B的N极磁场的方向和磁石B的S极磁场的方向分别为成90度±45度。磁石A和磁石C的N-S磁极轴线的长度比磁石B磁场的长度大很多。磁石A和磁石C作静磁石不动,磁石B作动磁石,向磁石A的磁极轴线N-S方向的S极方向运动,也是向磁石C的磁极轴线N-S方向的N极方向运动。同样磁石B的两端在磁石A和磁石C的两端分别受到吸力或斥力。较长的磁石可以是直线,也可以是圆弧形状。可以看图3显示以上的叙述。
磁石A和磁石C的N-S磁极轴线的长度比磁石B磁场N或S的长度小很多时,磁石B与上述一样运动。较长的磁石B的两端在较短的磁石A和C处也分别受到吸力和斥力。
磁石A和磁石C可以作动磁石,磁石B可以作静磁石,磁石A和磁石C的运动方向与原动磁石B的运动方向相反。
只用磁石A和磁石B,不用磁石C,磁石B与上述一样按磁石磁力方向运动。磁石A和磁石B的长度分别不一样时磁石B一样运动。但是在磁石A和磁石B之间还有较小的吸力1和斥力2,对磁石磁力的影响很小。在两端也有吸力和斥力,与磁石磁力的方向相反。可以看图4显示以上的叙述。
基本技术方案2.减小与磁石磁力反方向的吸力和斥力大小的方案
1.一个圆弧角度较大的提供磁场的静磁石或动磁石,提供磁极轴线的静磁石或动磁石,动磁石利用磁石磁力一般情况下正常运动。动磁石运动到静磁石的两端时受到较大的反方向斥力或吸力的阻挡,很易被停止运动。一个圆弧角度较大的提供磁场的静磁石的角度到180度时,出现动磁石在180度的中间90度处不受磁石磁力而停止运动。提供解决上述问题的方案如下:
将一个圆弧角度较大的静磁石或动磁石,分割为几个小磁石,其磁场方向与原样相同,角度相同,几个小磁石之间的距离相等,距离的大小与小磁石的大小有关。小磁石大时距离也可大。几个小磁石的首端及末端的吸力斥力已减小。
静磁石第一组几个小磁石在动磁石的下侧,第二组几个小磁石在动磁石的上侧,上下侧小磁石的磁极都指向动磁石的磁极。第一组几个小磁石的末端小磁石与第二组几个小磁石的首端小磁石置在相同的角度位置,有利于减小吸力 斥力。
动磁石与静磁石之间的距离要选择正常。其距离太小时,动磁石受到几个小磁石之间的磁石磁力吸力斥力三个力;其距离太大时,动磁石受到的磁石磁力将减小;选择其距离刚刚没有吸力斥力的地方。几个小磁石之间的距离小时,动磁石与静磁石之间的距离也小。
一个圆弧角度较大的静磁石或动磁石,圆弧角度控制在120度以内,90度更好。在圆弧角度的中间度数处不再有磁石磁力的停止运动。
2.单个的圆弧状的提供磁场的静磁石,或单个的圆弧状的提供磁极轴线的静磁石,在动磁石的下侧有两组几个小静磁石相邻空间的位置时,圆弧状的静磁石置于此处位置的动磁石的上侧或下侧,将其中心置于动磁石的中心处,将其的两端置于动磁石的外侧或内侧,也减小了吸力斥力。
提供磁场或磁极轴线的圆环形静磁石,提供90度(或60度等),在动磁石的下侧0度至90度,180度至270度各置放一个,其中心置于动磁石的中心处,将其的两端置于动磁石的外侧。在90度至180度处也置放一个,在动磁石的上侧或下侧。动磁石在0度至270度有较好的磁石磁力而运动,有极小的吸力斥力不影响运动,也减小了吸力斥力。在270度至0度位置利用一个电磁线圈,在动磁石的上侧,通电后也产生磁石磁力,动磁石就会在360度完全继续运转起来。
<利用基本技术方案的实施例>
实施例1:静磁石提供磁场N极(或S极),动磁石提供磁极轴线N-S的只用一个电磁线圈的利用磁石磁力的无刷直流电机方案。
动磁石提供磁极轴线N-S,其圆弧角度为120度(可以是其他角度,如90度等)。个数是一或多个。静磁石在90度(也可以是其他角度)内置4个(也可以是其他个数),分别在0度,30度,60度,90度,180度,210度,240度,270度,各置一个小静磁石,在动磁石的下侧。在90度,120度,150度,180度,各置一个小静磁石,在动磁石的上侧。静磁石的N极指向动磁石。在270度至0度的位置安置一个电磁线圈,电磁线圈通电时其N极指向动磁石。动磁石不在电磁线圈的应用范围内,电磁线圈不通电。动磁石在0度至270度的静磁石范围内受磁石磁力而运转,没有吸力斥力的阻碍,电磁线圈不通电。电磁线圈通电和断电的时刻由普通的霍尔元件及电源控制***来控制。电磁线 圈开始通电时刻是转子磁石的首端进入电磁线圈的中心,当转子磁石的末端离开电磁线圈的中心时刻,必须断电。如果不用电磁线圈,在360度内只用静磁石围成圆状,则磁石磁力基本消失了。动磁石利用了静磁石与动磁石之间产生的磁石磁力为动力,也利用了电磁线圈与动磁石之间产生的磁石磁力为动力,用两个以上的电磁线圈,可以在90度至180度位置一个,在270度至0度位置一个,其受力很好,但用电稍多。用一个或二个电磁线圈,动磁石能完全旋转起来。
上述的90度至180度处的静磁石可以采用圆弧状的提供磁场的静磁石,在置放时,将其中心置于动磁石的中心处,将其的两端置于动磁石的外侧或内侧,也置于动磁石的下侧或上侧。上述的90度至180度处的静磁石可以采用圆环形静磁石,置于动磁石的近处。实施例1有原理样机演示。
实施例2:动磁石提供磁场N极(或S极),静磁石提供磁极轴线N-S的只用一个电磁线圈的利用磁石磁力的无刷直流电机方案。
动磁石提供磁场N极或S极,其圆弧角度为120度(可以是其他角度,如90度等),个数是一或多个。静磁石提供磁极轴线N-S,在90度(也可以是其他角度)内置4个(也可以是其他个数),分别在0度,30度,60度,90度,180度,210度,240度,270度,各置一个静磁石,在动磁石的下侧,其下侧的N极指向静磁石的磁机轴线。在90度,120度,150度,180度,各置一个静磁石,在动磁石的上侧。动磁石上侧的S极指向静磁石的磁极轴线。在270度至0度的位置安置一个电磁线圈,电磁线圈通电时其N-S极指向动磁石。动磁石不在电磁线圈的应用范围内,电磁线圈不通电。动磁石在0度至270度的静磁石范围内受磁石磁力而运转,没有吸力斥力的阻碍,电磁线圈不通电。电磁线圈通电和断电的时刻由普通的霍尔元件及电源控制***来控制。电磁线圈开始通电时刻是转子磁石的首端进入电磁线圈的中心,当转子磁石的末端离开电磁线圈的中心时刻,必须断电。如果不用电磁线圈,在360度内只用静磁石围成圆状,则磁石磁力基本消失了。用两个以上的电磁线圈,可以在90度至180度位置一个,在270度至0度位置一个,其受力很好,但用电稍多。用一个或二个电磁线圈,动磁石能完全旋转起来。
上述的90度至180度处的静磁石的磁极轴线可以采用圆弧状,在置放时,将其中心置于动磁石的中心处,将其的两端置于动磁石的外侧,也置于动磁石 的下侧。动磁石在下侧的从0度至270度的静磁石范围内受磁石磁力而运转,没有吸力斥力的阻碍。实施例2有原理样机演示。
实施例3:
一种利用磁石磁力的只用一个电磁线圈的无刷直流电机,其包括:
能够绕一个轴旋转的动磁石构成电机的转子,所述动磁石沿旋转方向的一端为N极,另一端为S极;
在所述转子的旋转平面的一侧或者两侧沿圆周方向间隔设有多个静磁石,所有静磁石均以N极或均以S极朝向转子的旋转平面;其中一个静磁石为弧形磁石,所述弧形磁石的凸边朝向所述轴,所述弧形磁石的中心部位与动磁石的旋转路径相对,所述弧形磁石的两端部位与动磁石的旋转路径有径向的偏差;
在所述转子的旋转平面的一侧还设有一个能够切换通电与断电状态的电磁线圈,所述电磁线圈在通电时的N极朝向与各个静磁石的N极朝向是一致的。
实施例4:
一种利用磁石磁力的只周一个电磁线圈的无刷直流电机,其包括:
能够绕一个轴旋转的动磁石构成电机的转子,所述动磁石的N极朝向该动磁石的旋转平面的一侧;
在所述转子的旋转平面的一侧或者两侧沿圆周方向间隔设有多个静磁石,所有静磁石的N极均沿动磁石的旋转圆周以顺时针方向或者逆时针方向布置;其中一个静磁石为弧形磁石,所述弧形磁石的凸边朝向所述轴,所述弧形磁石的中心部位与动磁石的旋转路径相对,所述弧形磁石的两端部位与动磁石的旋转路径有径向的偏差;
在所述转子的旋转平面的一侧还设有一个能够切换通电与断电状态的电磁线圈,所述电磁线圈在通电时的N极朝向与各个静磁石的N极朝向是一致的。
上述实施例3或实施例4中:在所述静磁石所处的平面中,第一象限内间隔设有数个静磁石,第三象限内间隔设有另外数个静磁石,在第二象限内设有所述弧形磁石,在第四象限内设有所述电磁线圈。
上述实施例3或实施例4中:所述动磁石呈弧形,其圆心角处于90度-120 度之间。
上述实施例3或实施例4中:所述弧形磁石的圆心角处于80-100度之间。
上述实施例3或实施例4中:所述电磁线圈呈弧形,其圆心角处于80-100度之间。
实施例5:
一种前述利用磁石磁力的只用一个电磁线圈的无刷直流电机的控制方法,是在动磁石的首端与电磁线圈的中点位置相对的一刻开始通电,在动磁石的尾端与电磁线圈的中点位置相对的一刻开始断电。
<有益效果>
动磁石的运动所受到的力是磁石磁力。在上述方案中,动磁石与静磁石之间产生的磁石磁力的时间比动磁石与电磁线圈之间产生的磁石磁力的时间大很多;本电机利用了静磁石与动磁石之间产生的磁石磁力为动力,也利用了电磁线圈与动磁石之间产生的磁石磁力为动力,因为只用一个电磁线圈,所输入的外力比永磁无刷直流电机大大减小。在相同的输出功率下,该设备的体积较小。效率提高。大大降低成本,有节能意义。
附图说明
图1、图2、图3、图4是基本技术方案中产生磁石磁力的可利用的方案的示意图;
图5是转子上的磁石(动磁石)提供磁极轴线、定子上的磁石(静磁石)提供N极磁场、静磁石有多个、在静磁石位置上只用一个电磁线圈的磁石磁力的无刷直流电机的示意图;
图6是转子上的磁石(动磁石)提供磁场N极和S极、定子上的磁石(静磁石)提供磁极轴线、静磁石有多个、在静磁石位置上只用一个电磁线圈的磁石磁力的无刷直流电机的示意图。
附图标记说明:A是静磁石,B是动磁石,C是静磁石;N是N极,S是S极;箭头1表示吸力,箭头2表示斥力,箭头3表示磁石磁力,箭头的方向表示力的方向,Z是动磁石,D是静磁石,X是电磁线圈,ZH是轴。
具体实施方式
优选方式1:转子磁石提供磁极轴线、定子磁石提供N极磁场、定子磁石有多个、在定子磁石位置上只用一个电磁线圈的磁石磁力无刷直流电机。
如图5所示,转子磁石Z提供磁极轴线N-S,其圆弧角度为120度(也可以是其他角度,如90度等)。按顺时针方向运动。
定子上的磁石D在90度内置4个,分别在0度,30度,60度,90度,180度,210度,240度,270度,各置一个磁石,N极向上,分别是D1,D2,D3,D4,D5,D6,D7,D8,置于转子磁石Z的下侧。在90度至180度位置,置一个定子磁石D9,D9采用圆弧状的提供磁场的磁石,在置放时,将其中心置于转子磁石Z的中心处,将其的两端置于转子磁石Z的外侧,也置于转子磁石Z的下侧或上侧。定子磁石D的N极指向转子磁石Z。在270度至0度的位置安置一个电磁线圈X,电磁线圈X通电时其N极指向转子磁石Z。转子磁石Z不在电磁线圈X的应用范围内,电磁线圈X不通电。转子磁石Z在0度至270度的定子磁石D范围内受磁石磁力而运动,没有吸力斥力的阻碍,电磁线圈X不通电。电磁线圈X通电和断电的时刻由普通永磁无刷直流电机用的霍尔元件及电源控制***来控制。电磁线圈X开始通电时刻是转子磁石Z的首端进入电磁线圈X的中心,当转子磁石Z的末端离开电磁线圈X的中心时刻,必须断电。转子磁石Z在270度至0度的电磁线圈X提供磁场的N极范围内受磁石磁力而运转,没有吸力斥力的阻碍。转子磁石利用了定子磁石与转子磁石之间产生的磁石磁力为动力,也利用了电磁线圈与转子磁石之间产生的磁石磁力为动力,转子磁石完全旋转起来。
优选方式2:转子磁石提供磁场、定子磁石提供磁极轴线、定子磁石有多个、在定子磁石位置上只用一个电磁线圈的磁石磁力无刷直流电机。
如图6所示,转子磁石Z提供磁场N极和S极,其圆弧角度为120度(也可以是其他角度,如90度等)。按顺时针方向运动。N极向下,S极向上。
定子磁石D在90度内置4个,分别在0度,30度,60度,90度,180度,210度,240度,270度,各置一个磁石,提供磁极轴线,分别是D1,D2,D3,D4,D5,D6,D7,D8,置于转子磁石Z的N极的下侧。在90度至180度位置,置一个定子磁石D9,采用圆弧状的提供磁极轴线的磁石,在置放时,将其中心置于转子磁石Z的中心处,将其的两端置于转子磁石Z的外侧,也置于转子磁石Z的下侧。转子磁石Z的N极指向定子磁石D的磁极轴线。在270 度至0度的位置按置一个电磁线圈X,电磁线圈X通电时其磁极轴线指向转子磁石Z的磁场。转子磁石Z不在电磁线圈X的应用范围内,电磁线圈不通电。转子磁石Z在0度至270度的定子磁石D范围内受静磁石和动磁石之间的磁石磁力而运动,没有吸力斥力的阻碍,电磁线圈X不通电。电磁线圈X通电和断电的时刻由普通永磁无刷直流电机用的霍尔元件及电源控制***来控制。电磁线圈X开始通电时刻是转子磁石Z的首端进入电磁线圈X的中心,当转子磁石Z的末端离开电磁线圈X的中心时刻,必须断电。转子磁石在270度至0度的电磁线圈X提供的磁极轴线的范围内受磁石磁力而运动,没有吸力斥力的阻碍。转子磁石利用了定子磁石与转子磁石之间产生的磁石磁力为动力,也利用了电磁线圈与转子磁石之间产生的磁石磁力为动力,转子磁石完全旋转起来。

Claims (4)

  1. 一种产生磁石磁力的技术方案,其主要特征在于:静磁石提供磁场N极或S极,动磁石提供磁极轴线N-S,磁石A和磁石C两个相同形状的磁石的两个N极(或S极)相对,在其两个N极磁场的中间置磁石B,磁石B的N极和S极内部连线叫作磁石磁极轴线,磁石B的磁极轴线N-S方向与磁石A和磁石C两个N极磁场的方向成90度±45度,产生磁石磁力;磁石A和磁石C的N极的长度比磁石B磁极轴线的长度大很多;磁石A和C作静磁石不动,磁石B作动磁石向其磁极轴线N-S方向的N极方向运动,即磁极轴线按N极在前S极在后的运动;磁石B作动磁石向其磁极轴线N-S方向的N极方向运动到磁石A和磁石C的N极的末端时受到吸力,磁石B在N极的另一个末端受到斥力,吸力斥力的方向与磁石磁力的方向相反;较长的磁石可以是直线,也可以是圆弧形状;磁石A和磁石C的N极的长度比磁石B磁极轴线N-S的长度小很多时,磁石B一样按磁石磁力方向运动,较长的磁石B的两端在较短的磁石A和B处也分别受到吸力和斥力;磁石A和磁石C可以作动磁石,磁石B可以作静磁石,磁石A和磁石C的运动方向与原动磁石B的运动方向相反;只用磁石A和磁石B,不用磁石C,磁石B与上述一样按磁石磁力方向运动,在磁石A和磁石B之间还有较小的吸力和斥力,对磁石磁力的影响很小;磁石A和磁石B的长度分别不一样时磁石B一样运动,在两端也有吸力和斥力,与磁石磁力的方向相反;
    静磁石提供磁极轴线N-S,动磁石提供磁场N极或S极,磁石B的上侧提供N极磁场,磁石B的下侧提供S极磁场,磁石A在磁石B的N极磁场的上侧,磁石A的右侧是N极,左侧是S极,磁石C在磁石B的S极磁场的下侧,磁石C的右侧是S极,左侧是N极,磁石A和磁石C的磁极轴线N-S方向与磁石B的N极磁场的方向和磁石B的S极磁场的方向分别为成90度±45度;磁石A和磁石C的N-S磁极轴线的长度比磁石B磁场的长度大很多,磁石A和磁石C作静磁石不动,磁石B作动磁石,向磁石A的磁极轴线N-S方向的S极方向运动,也是向磁石C的磁极轴线N-S方向的N极方向运动,同样磁石B的两端在磁石A和磁石C的两端分别受到吸力或斥力;较长的磁石可以是直线,也可以是圆弧形状;磁石A和磁石C的N-S磁极轴线的长度 比磁石B磁场N或S的长度小很多时,磁石B与上述一样运动,较长的磁石B的两端在较短的磁石A和C处也分别受到吸力和斥力;磁石A和磁石C可以作动磁石,磁石B可以作静磁石,磁石A和磁石C的运动方向与原动磁石B的运动方向相反;
    只用磁石A和磁石B,不用磁石C,磁石B与上述一样按磁石磁力方向运动,磁石A和磁石B的长度分别不一样时磁石B一样运动,在磁石A和磁石B之间还有较小的吸力和斥力,对磁石磁力的影响很小,在两端也有吸力和斥力,与磁石磁力的方向相反。
  2. 一种减小与磁石磁力反方向的吸力和斥力大小的技术方案,其主要特征在于:将一个圆弧角度较大的静磁石或动磁石,分割为几个小磁石,其磁场方向与原样相同,角度相同,几个小磁石之间的距离相等,距离的大小与小磁石的大小有关,小磁石大时距离也可大,几个小磁石的首端及末端的吸力斥力已减小;
    静磁石第一组几个小磁石在动磁石的下侧,第二组几个小磁石在动磁石的上侧,上下侧小磁石的磁极都指向动磁石的磁极,第一组几个小磁石的末端小磁石与第二组几个小磁石的首端小磁石置在相同的角度位置,减小了吸力斥力;
    动磁石与静磁石之间的距离要选择正常,其距离太小时,动磁石受到几个小磁石之间的磁石磁力吸力斥力三个力,其距离太大时,动磁石受到的磁石磁力将减小,选择其距离刚刚没有吸力斥力的地方,几个小磁石之间的距离小时,动磁石与静磁石之间的距离也小;
    一个圆弧角度较大的静磁石或动磁石,圆弧角度控制在120度以内,90度更好,在圆弧角度的中间处不再有磁石磁力的停止运动;
    单个的圆弧状的提供磁场的静磁石,或单个的圆弧状的提供磁极轴线的静磁石,在动磁石的下侧有两组几个小静磁石相邻空间的位置时,圆弧状的静磁石置于此处位置的动磁石的上侧或下侧,将其中心置于动磁石的中心处,将其的两端置于动磁石的外侧或内侧,也减小了吸力斥力;
    提供磁场或磁极轴线的单个圆环形静磁石,提供90度(或60度等),在动磁石的下侧0度至90度,180度至270度各置放一个,其中心置于动磁石的中心处,将其的两端置于动磁石的外侧,在90度至180度处也置放一个,在 动磁石的上侧或下侧,动磁石在0度至270度有较好的磁石磁力而运动,有极小的吸力斥力不影响运动,也减小了吸力斥力;在270度至0度位置只利用一个电磁线圈,在动磁石的上侧,通电后也产生磁石磁力,动磁石就会在360度完全继续运转起来。
  3. 一种利用磁石磁力及减小吸力斥力的装置,其特征在于:静磁石提供磁场N极(或S极),动磁石提供磁极轴线N-S的只用一个电磁线圈的无刷直流电机;转子磁石提供磁极轴线N-S,其圆弧角度为120度(也可以是其他角度,如90度等);定子磁石在90度(也可以是其他角度)内置4个(也可以是其他个数),分别在0度,30度,60度,90度,180度,210度,240度,270度,各置一个小磁石,在转子磁石的下侧,在90度,120度,150度,180度,各置一个小磁石,在转子磁石的上侧,定子上的磁石的N极指向转子磁石;在270度至0度的位置安置一个电磁线圈,电磁线圈通电时其N极指向转子磁石;转子磁石不在电磁线圈的应用范围内,电磁线圈不通电,转子磁石在0度至270度的定子磁石范围内受磁石磁力而运动,没有吸力斥力的阻碍,电磁线圈不通电;电磁线圈通电和断电的时刻由普通的霍尔元件及电源控制***来控制,电磁线圈开始通电时刻是转子磁石的首端进入电磁线圈的中心,当转子磁石的末端离开电磁线圈的中心时刻,必须断电;转子磁石利用了定子磁石与转子磁石之间产生的磁石磁力为动力,也利用了电磁线圈与转子磁石之间产生的磁石磁力为动力;用两个以上的电磁线圈,可以在90度至180度位置一个,在270度至0度位置一个,其受力很好,用电稍多;用一个或二个电磁线圈,转子磁石能完全旋转起来;
    上述的90度至180度处的定子磁石可以采用圆弧状的提供磁场的磁石,在置放时,将其中心置于转子磁石位置上的中心处,将其的两端置于转子磁石位置上的中心的外侧或内侧,也可以置于转子上的磁石的下侧或上侧。
  4. 一种利用磁石磁力及减小吸力斥力的装置,其特征在于:转子磁石提供磁场N极(或S极),定子磁石提供磁极轴线N-S的只用一个电磁线圈的无刷直流电机;转子磁石提供磁场N极或S极,其圆弧角度为120度(也可以是其他角度,如90度等),定子磁石提供磁极轴线N-S,在90度(也可以是其他角度)内置4个(也可以是其他个数),分别在0度,30度,60度,90度,180度,210度,240度,270度,各置一个小磁石,在转子磁石的下侧,其下 侧的N极指向定子磁石的磁机轴线,在90度,120度,150度,180度,各置一个小磁石,在转子磁石的上侧,转子磁石上侧的S极指向定子磁石的磁极轴线;在270度至0度的位置安置一个电磁线圈,电磁线圈通电时其N-S极指向转子磁石,转子磁石不在电磁线圈的应用范围内,电磁线圈不通电,转子磁石在0度至270度的定子磁石范围内受磁石磁力而运转,没有吸力斥力的阻碍,电磁线圈不通电;电磁线圈通电和断电的时刻由普通的霍尔元件及电源控制***来控制,电磁线圈开始通电时刻是转子磁石的首端进入电磁线圈的中心,当转子磁石的末端离开电磁线圈的中心时刻,必须断电;用两个以上的电磁线圈,在90度至180度位置一个,在270度至0度位置一个,其受力很好,用电稍多;用一个或二个电磁线圈,转子磁石能完全旋转起来;
    上述的90度至180度处的定子磁石的磁极轴线可以采用圆弧状,在置放时,将其中心置于转子磁石位置的中心处,将其的两端置于转子磁石的外侧,也置于动磁石的下侧,转子磁石在下侧的从0度至270度的定子磁石范围内受磁石磁力而运转,没有吸力斥力的阻碍。
PCT/CN2015/000430 2015-05-26 2015-06-19 一种在无刷直流电机中产生磁石磁力以及减小吸力斥力的方法及其装置 WO2016187737A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510271235.9A CN106301078A (zh) 2015-05-26 2015-05-26 利用磁石磁力的只用一个电磁线圈的无刷直流电机
CN201510271235.9 2015-05-26

Publications (1)

Publication Number Publication Date
WO2016187737A1 true WO2016187737A1 (zh) 2016-12-01

Family

ID=57393717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000430 WO2016187737A1 (zh) 2015-05-26 2015-06-19 一种在无刷直流电机中产生磁石磁力以及减小吸力斥力的方法及其装置

Country Status (2)

Country Link
CN (1) CN106301078A (zh)
WO (1) WO2016187737A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101013870A (zh) * 2006-12-08 2007-08-08 矫祥田 磁石磁力装置
CN103208951A (zh) * 2013-04-11 2013-07-17 矫祥田 磁石磁力装置
CN103840714A (zh) * 2014-03-06 2014-06-04 李扬远 永磁致动装置
CN104320020A (zh) * 2014-11-24 2015-01-28 矫祥田 利用磁石磁力的无刷直流电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101013870A (zh) * 2006-12-08 2007-08-08 矫祥田 磁石磁力装置
CN103208951A (zh) * 2013-04-11 2013-07-17 矫祥田 磁石磁力装置
CN103840714A (zh) * 2014-03-06 2014-06-04 李扬远 永磁致动装置
CN104320020A (zh) * 2014-11-24 2015-01-28 矫祥田 利用磁石磁力的无刷直流电机

Also Published As

Publication number Publication date
CN106301078A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
JP5906360B2 (ja) 磁力回転装置、電動機、および電動発電機
US20190312497A1 (en) Ferromagnetic core toroid motor and generator
ES2322450T3 (es) Motor electrico de iman permanente rotatorio que tiene expansiones polares de estator de dimensiones variables.
US20080224550A1 (en) Magnetic Motor
CN113192718B (zh) 用于生成磁场的方法和设备
JPWO2013108581A1 (ja) 永久磁石型回転機
JP2012130223A (ja) 同期モータ
JP2019525722A (ja) 同軸電磁装置
KR101702035B1 (ko) 영구자석의 자기력선 제어를 이용한 모터
JP2013179724A (ja) 回転加速装置
WO2016187737A1 (zh) 一种在无刷直流电机中产生磁石磁力以及减小吸力斥力的方法及其装置
WO2016082293A1 (zh) 利用磁石磁力的无刷直流电机
US20140042837A1 (en) Three phased balanced or unbalanced asymmetric reluctance motor
TWI652883B (zh) Magnetic power generator
US9934897B1 (en) Polarity-switching magnet diode
TWM564862U (zh) Magnetic power generator
JP2023001836A (ja) 電圧や電流、周波数などの制御を一切不要とする究極のモータ
WO2010068988A1 (en) Asymmetric electric pulse motor (aepm) and digital control system
EP3958441A1 (en) Synchronous machine with a segmented stator and a multi-contour magnetic system based on permanent magnets
WO2007073671A1 (fr) Moteur
JP2019122218A (ja) モーターの高回転および高トルク出力を非常に簡易な方法で実現すると共にコギング・トルクを無くしスムーズで静かなモーター回転を実現する
JP3897043B2 (ja) 磁力回転装置
WO2017038859A1 (ja) 電動機
CN109818473A (zh) 一种磁力叠加直流电机
TW202046603A (zh) 應用嵌齒能之環式動能產生裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15892822

Country of ref document: EP

Kind code of ref document: A1