WO2016181876A1 - 楕円状、針状又は棒状架橋ポリマー粒子及びその用途 - Google Patents

楕円状、針状又は棒状架橋ポリマー粒子及びその用途 Download PDF

Info

Publication number
WO2016181876A1
WO2016181876A1 PCT/JP2016/063543 JP2016063543W WO2016181876A1 WO 2016181876 A1 WO2016181876 A1 WO 2016181876A1 JP 2016063543 W JP2016063543 W JP 2016063543W WO 2016181876 A1 WO2016181876 A1 WO 2016181876A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer particles
crosslinked polymer
needle
rod
elliptical
Prior art date
Application number
PCT/JP2016/063543
Other languages
English (en)
French (fr)
Inventor
早川 和寿
橋場 俊文
恵里奈 松坂
Original Assignee
日清紡ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清紡ホールディングス株式会社 filed Critical 日清紡ホールディングス株式会社
Priority to US15/571,907 priority Critical patent/US20180118867A1/en
Priority to JP2016553487A priority patent/JP6164376B2/ja
Priority to EP16792601.3A priority patent/EP3296325A4/en
Priority to CN201680026779.1A priority patent/CN107614540B/zh
Publication of WO2016181876A1 publication Critical patent/WO2016181876A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/0245Specific shapes or structures not provided for by any of the groups of A61K8/0241
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8152Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D11/107Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D11/108Hydrocarbon resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • C09D125/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • C09D133/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J125/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Adhesives based on derivatives of such polymers
    • C09J125/02Homopolymers or copolymers of hydrocarbons
    • C09J125/04Homopolymers or copolymers of styrene
    • C09J125/08Copolymers of styrene
    • C09J125/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/10Homopolymers or copolymers of methacrylic acid esters
    • C09J133/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/24Polymer with special particle form or size
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles

Definitions

  • the present invention relates to elliptical, needle-like or rod-like crosslinked polymer particles and uses thereof.
  • Polymer particles and inorganic particles having a micron size are used as fillers and specimens in various fields such as electronic / electrical materials, optical materials, paints, inks, building materials, biological / pharmaceutical materials, and cosmetics.
  • electronic / electrical materials such as electronic / electrical materials, optical materials, paints, inks, building materials, biological / pharmaceutical materials, and cosmetics.
  • development of particles having an irregular shape different from a spherical shape has been actively carried out, and since various properties such as optical properties and tactile sensation are imparted, application development is being promoted every day.
  • Patent Documents 1 and 2 The present inventors also proceeded with the development of elliptical or acicular polymer particles having a high aspect ratio, and in the characteristics such as concealing property, light diffusing property, and tactile property, particles having characteristics superior to conventional spherical particles.
  • the polymer is crosslinked.
  • the crosslinked polymer particles can be obtained by adding an appropriate amount of a polyfunctional unsaturated monomer to the monomer.
  • this method is very good for obtaining spherical particles, it is difficult to efficiently obtain elliptical crosslinked polymer particles.
  • aggregates increase, or the elliptical shape cannot be maintained, and may be spherical or substantially spherical.
  • the crosslinking reaction proceeds more rapidly as the crosslinking component increases, it becomes considerably difficult to stably obtain particles having a high aspect ratio (major axis / minor axis).
  • crosslinked polymer particles that can be applied to uses requiring heat resistance, chemical resistance, and heat resistance are desired.
  • the present invention has been made in view of the above circumstances, and retains characteristics such as light diffusibility, UV cut property, and tactile sensation, and further has excellent heat resistance, chemical resistance, and heat resistance chemical properties.
  • it is an object to provide rod-like crosslinked polymer particles and uses thereof.
  • the present inventors have obtained elliptical, needle-like or rod-like crosslinked polymer particles obtained by solution polymerization using an unsaturated monomer having a predetermined functional group.
  • the present inventors have found that heat resistance, chemical resistance and heat chemical resistance are improved, thereby completing the present invention.
  • the present invention provides the following elliptical, needle-like or rod-like crosslinked polymer particles and uses thereof.
  • Elliptical, needle-shaped containing 5 to 100 mol% of repeating units derived from an unsaturated monomer having a functional group selected from an epoxy group, carboxyl group, amide group, hydroxy group, amino group and thiol group Or rod-like crosslinked polymer particles, (1)
  • the average (L AV ) of the major axis (L) of the projection two-dimensional view obtained by irradiating light from the direction orthogonal to the major axis direction is 0.1 to 80 ⁇ m
  • the average (D AV ) of the minor axis (D) of the projection two-dimensional view obtained by irradiating light from the direction orthogonal to the major axis direction is 0.05 to 40 ⁇ m
  • the major axis (L) The average (P AV ) of the aspect ratio (L / D) calculated from the diameter and the minor axis (D) is
  • the ratio (SB / SD) of the theoretical specific surface area SD of the true spherical particles calculated from the actual specific surface area SB of the elliptical, needle-like or rod-like crosslinked polymer particles and the volume average particle diameter is SB / SD ⁇ 1.2. Any one of the oval, needle-like, or rod-like crosslinked polymer particles to be filled. 5.
  • the crosslinked polymer particles were added to at least one solvent selected from ethanol, toluene, ethyl acetate, methyl ethyl ketone, dimethylformamide and dipropylene glycol and stirred at 27 ° C. for 30 minutes, the weight loss rate was 10% by mass or less.
  • any one of oval, needle-like or rod-like crosslinked polymer particles of any one of 1-4. 6 When the crosslinked polymer particles are added to at least one solvent selected from ethanol, toluene, ethyl acetate, methyl ethyl ketone, dimethylformamide and dipropylene glycol, and heated and stirred at 70 ° C. for 30 minutes, the weight loss rate is 10% by mass or less.
  • a resin composition comprising the elliptical, needle-like or rod-like crosslinked polymer particles of any one of 1 to 6. 8.
  • a light diffusing sheet comprising the elliptical, needle-like or rod-like crosslinked polymer particles of any one of 1 to 6.
  • a coating composition comprising the elliptical, needle-like or rod-like crosslinked polymer particles of any one of 9.1 to 6.
  • An ink composition comprising the elliptical, needle-like or rod-like crosslinked polymer particles of any of 10.1 to 6.
  • a cosmetic comprising the elliptical, needle-like or rod-like crosslinked polymer particles of any one of 11.1 to 6.
  • An adhesive comprising the elliptical, needle-like, or rod-like crosslinked polymer particles of any one of 1 to 6. 14.
  • a fired and voided molded article obtained by using any one of the elliptical, needle-like, or rod-like crosslinked polymer particles according to any one of 1 to 6. 15.
  • a medical test agent comprising the elliptical, needle-like or rod-like crosslinked polymer particles according to any one of 1 to 6. 16.
  • a method for producing oval, needle-like or rod-like crosslinked polymer particles of 1-6 A synthetic solution containing water, a mixed solvent of a hydrophilic organic solvent and a hydrophobic organic solvent, a polymer stabilizer, a polymerization initiator and the unsaturated monomer is heated, and at least after the start of heating, the pH of the synthetic solution is 5 or less or A method for producing elliptical, needle-like or rod-like crosslinked polymer particles, wherein the solution polymerization is carried out by adjusting to 9 or more. 17.
  • the elliptical, needle-like or rod-like crosslinked polymer particles of the present invention maintain the properties of elliptical polymer particles such as light diffusibility, UV-cutting properties, tactile sensation and the like, while further improving heat resistance, chemical resistance and heat resistance chemical resistance. Is also excellent.
  • FIG. 4 is a diagram showing an SEM photograph of particles obtained in Synthesis Example 1.
  • FIG. It is a figure which shows the light-scattering distribution of the reflected light using the automatic variable angle photometer in the sheet
  • FIG. 4 is a diagram showing an SEM photograph of particles obtained in Synthesis Example 1.
  • FIG. It is a figure which shows the light-scattering distribution of the reflected light using the automatic variable angle photometer in the sheet
  • oval, needle-like or rod-like crosslinked polymer particles have a functional group selected from an epoxy group, a carboxyl group, an amide group, a hydroxy group, an amino group and a thiol group.
  • the average (L AV ) of the major axis (L) of the projection two-dimensional view obtained by irradiating light from the direction orthogonal to the major axis direction is 0.1 to 80 ⁇ m
  • the average (D AV ) of the minor axis (D) of the projection two-dimensional view obtained by irradiating light from the direction orthogonal to the major axis direction is 0.05 to 40 ⁇ m
  • the average (P AV ) of the aspect ratio (L / D) calculated from the diameter and the minor axis (D) is 1.5 to 30 It is.
  • L AV of the crosslinked polymer particles is a 0.1 ⁇ 80 [mu] m, preferably 0.2 ⁇ 60 [mu] m, more preferably 1.0 ⁇ 40 ⁇ m, 2 ⁇ 30 ⁇ m is more preferable.
  • L AV exceeds 80 ⁇ m, the properties are not changed from those of general-purpose fibers, and the superiority is lost. Further, as the specific surface area per unit decreases, optical characteristics such as light scattering tend to be remarkably reduced. On the other hand, if L AV is less than 0.1 ⁇ m, the minor axis becomes thin, so that the optical characteristics may be lowered and the strength may be reduced.
  • D AV of the crosslinked polymer particles is a 0.05 ⁇ 40 [mu] m, preferably 0.1 ⁇ 30 [mu] m, more preferably 0.5 ⁇ 20 ⁇ m, 1 ⁇ 15 ⁇ m is more preferable.
  • D AV exceeds 40 ⁇ m, the characteristics are not different from those of general-purpose spherical particles, and the optical characteristics effect tends to be remarkably reduced as the specific surface area per unit decreases.
  • D AV is less than 0.05 ⁇ m, the optical characteristics may be lowered and the strength may be reduced.
  • the crosslinked polymer particles have a P AV of 1.5 to 30, preferably 1.8 to 25, more preferably 2 to 20, still more preferably 2.2 to 20, and most preferably 2. 5-18. Further, when importance is attached to optical characteristics such as light diffusibility, 3 to 18 is the best. When P AV exceeds 30, easily resulting particles orientation, light scattering, optical characteristics of the light reflection and the like may not be obtained stably. Further, when P AV is less than 1.5, there is only an optical characteristic effect equivalent to that of spherical particles of the same component, and the superiority of the effect is lacking.
  • the volume average particle diameter (MV) of the crosslinked polymer particles is preferably from 0.06 to 50 ⁇ m, more preferably from 0.1 to 30 ⁇ m, still more preferably from 0.5 to 20 ⁇ m.
  • the MV exceeds 50 ⁇ m, the optical property effect may be reduced as the specific surface area per unit decreases.
  • the MV is less than 0.06 ⁇ m, light leakage may occur and the optical characteristic effect may be reduced.
  • the volume average particle diameter is a value measured by a laser scattering / diffraction method.
  • the average particle diameter when the volume is converted to a spherical shape is converted to a spherical shape. Means.
  • the unsaturated monomer A includes a functional group selected from an epoxy group, a carboxyl group, an amide group, a hydroxy group, an amino group, and a thiol group. Examples of the unsaturated monomer A include those shown below. In the following description, “C n ” means that the number of carbon atoms is n.
  • Epoxy group-containing unsaturated monomer Glycidyl (meth) acrylate, ( ⁇ -methyl) glycidyl (meth) acrylate, 3,4-epoxycyclohexyl (meth) acrylate, glycidyl ⁇ -ethyl acrylate, ⁇ -n- Glycidyl propyl acrylate, glycidyl ⁇ -n-butyl acrylate, 3,4-epoxybutyl acrylate, 3,4-epoxybutyl methacrylate, -4,5-epoxypentyl methacrylate, -6,7 acrylic acid Epoxy group-containing (meth) acrylates such as epoxyheptyl, methacrylic acid-6,7-epoxyheptyl, ⁇ -ethylacrylic acid-6,7-epoxyheptyl; o-vinylphenylglycidyl ether, m-vinylphenylglycidylether
  • Carboxyl group-containing unsaturated monomers Unsaturated carboxylic acids such as (meth) acrylic acid, crotonic acid, cinnamic acid, itaconic acid, maleic acid and fumaric acid; itaconic acid mono-C 1 such as itaconic acid monobutyl C 8 alkyl esters; maleic acid mono C 1 ⁇ C 8 alkyl esters such as monobutyl maleate; vinyl group-containing aromatic carboxylic acids such as vinyl benzoate, and include those salts.
  • Unsaturated carboxylic acids such as (meth) acrylic acid, crotonic acid, cinnamic acid, itaconic acid, maleic acid and fumaric acid; itaconic acid mono-C 1 such as itaconic acid monobutyl C 8 alkyl esters; maleic acid mono C 1 ⁇ C 8 alkyl esters such as monobutyl maleate; vinyl group-containing aromatic carboxylic acids such as vinyl benzoate, and include those salts.
  • Hydroxy group-containing unsaturated monomers Hydroxy groups such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, etc. Containing (meth) acrylic monomer; Polyalkylene glycol (meth) acrylic monomer such as polyethylene glycol mono (meth) acrylate and polypropylene glycol mono (meth) acrylate; Hydroxyalkyl such as hydroxyethyl vinyl ether and hydroxybutyl vinyl ether Vinyl ether monomers; hydroxy group-containing allyl monomers such as allyl alcohol and 2-hydroxyethyl allyl ether.
  • Amino group-containing unsaturated monomers Allylamine monomers such as allylamine and N-methylallylamine; Amino group-containing styrene monomers such as p-aminostyrene; 2-aminoethyl (meth) acrylate, 2 -Amino group-containing acrylic monomers such as (dimethylamino) ethyl methacrylate; and triazine-containing monomers such as 2-vinyl-4,6-diamino-S-triazine. Among these, a compound having a primary or secondary amino group is preferable.
  • the unsaturated monomer A may contain one kind of the functional group or may contain two or more kinds. Moreover, the unsaturated monomer A can be used individually by 1 type or in combination of 2 or more types.
  • Examples of the unsaturated monomer A include glycidyl (meth) acrylate, ( ⁇ -methyl) from the viewpoints of obtaining stable and efficient crosslinked particles in a relatively low temperature range and industrially practical and cost.
  • Epoxy group-containing monomers carboxyl group-containing monomers such as (meth) acrylic acid, (meth) acrylamide, N-methyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl Amide group-containing monomers such as (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate Hydroxyalkyl (meth) acrylates such as 3-hydroxypropyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; polyalkylene glycol (meth) acrylates such as polyethylene glycol (meth) acrylate and polypropylene glycol (meth) acrylate Preferred are hydroxy group-containing monomers such as p-aminostyrene and amino group-containing monomers such as 2-aminoethyl (meth) acrylate.
  • an epoxy group-containing unsaturated monomer, a carboxyl group-containing unsaturated monomer, an amide group-containing unsaturated monomer, an amino group-containing monomer, etc. are more preferable, and an epoxy group-containing unsaturated monomer Further, a carboxyl group-containing unsaturated monomer, an amide group-containing unsaturated monomer, and the like are more preferable, and an epoxy group-containing monomer is most preferable.
  • the polymer particles of the present invention contain 5 to 100 mol% of repeating units derived from the unsaturated monomer A, preferably 6 to 80 mol%, preferably 7 to 50 mol%. And more preferably 8 to 40 mol%. If the content of the repeating unit derived from the unsaturated monomer A is within this range, from the epoxy group, carboxyl group, amide group, hydroxy group, amino group and thiol group contained in the unsaturated monomer A. Since the crosslinking reaction derived from the selected functional group proceeds efficiently, sufficient heat resistance and chemical resistance can be imparted to the obtained crosslinked polymer particles.
  • the crosslinked polymer particles of the present invention may contain only a repeating unit derived from the unsaturated monomer A, but further, an unsaturated monomer other than the unsaturated monomer A (hereinafter referred to as an unsaturated monomer).
  • a repeating unit derived from (referred to as “mer B”) may be included.
  • unsaturated monomer B examples include styrene monomers, (meth) acrylic acid ester monomers, carboxylic acid vinyl ester monomers, N-vinyl compound monomers, and olefin monomers. Fluorinated olefin monomers, conjugated diene monomers, ionic functional group-containing monomers, and the like.
  • Styrene monomers include styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, ⁇ -methyl styrene, o-ethyl styrene, m-ethyl styrene, p-ethyl styrene, 2,4-dimethyl.
  • Styrene pn-butyl styrene, pt-butyl styrene, pn-hexyl styrene, pn-octyl styrene, pn-nonyl styrene, pn-decyl styrene, pn-dodecyl styrene , P-methoxystyrene, p-phenylstyrene, p-chlorostyrene, 3,4-dichlorostyrene, and the like.
  • Examples of the (meth) acrylic acid ester monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, Pentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate , Lauryl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, phenyl (meth) acrylate, toluyl (meth) acrylate, benzyl (meth) acrylate
  • Fluorine-containing (meth) acrylic monomer N-propylaminoethyl acrylate, N-ethylaminopropyl (meth) acrylate, N-phenylamino (meth) acrylate (Meth) acrylic monomers containing ethyl, (meth) acrylic acid N-cyclohexylaminoethyl and the like; ⁇ - (methacryloyloxypropyl) trimethoxysilane, ⁇ - (methacryloyloxypropyl) dimethoxymethylsilane, etc.
  • Silicon-containing (meth) acrylic monomers (poly) ethylene glycol mono (meth) acrylate, alkoxy-containing (meth) acrylic such as 2-methoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate (Poly) propylene glycol mono (meth) acrylate and other (poly) alkylene glycol (meth) acrylic monomers; methoxy (poly) ethylene glycol mono (meth) acrylate, methoxy (poly) propylene glycol mono Alkoxy (poly) alkylene glycol (meth) acrylic such as (meth) acrylate Monomer; (meth) acrylate, 2-chloroethyl, alpha-chloro (meth) acrylate and the like.
  • carboxylic acid vinyl ester monomers examples include vinyl acetate, vinyl propionate, vinyl benzoate, vinyl butyrate, vinyl formate, vinyl valelate, and vinyl pivalate.
  • N-vinyl compound monomers examples include N-vinyl pyrrole, N-vinyl carbazole, N-vinyl indole, N-vinyl pyrrolidone and the like.
  • Examples of the olefin monomer include ethylene and propylene.
  • Examples of the fluorinated olefin monomer include vinyl fluoride, vinylidene fluoride, tetrafluoroethylene, and hexafluoropropylene.
  • Examples of the conjugated diene monomer include butadiene and isoprene.
  • ionic functional group-containing monomer examples include anionic functional groups such as sulfonic acid group, phosphoric acid group and phenolic hydroxy group (for example, sodium p-styrenesulfonate) or amino group, imidazole group, pyridine group, Examples thereof include those having a cationic functional group such as an amidino group.
  • an unsaturated monomer having an alkylene oxide group, a carbonyl group, an ether group, a cyano group, an isocyanate group, a carbodiimide group, an oxazoline group, or the like can also be used.
  • Examples of the carbonyl group-containing monomer include vinyl group-containing ketones such as vinyl methyl ketone, vinyl hexyl ketone, and methyl isopropenyl ketone.
  • ether group-containing monomer examples include vinyl group-containing ether monomers such as vinyl methyl ether, vinyl ethyl ether, and vinyl isobutyl ether.
  • cyano group-containing monomer examples include acrylonitrile, methacrylonitrile, hexene nitrile, 4-pentenenitrile, p-cyanostyrene, and the like.
  • Unsaturated monomer B can be used singly or in combination of two or more.
  • the unsaturated monomer B is particularly preferably a styrene monomer, a (meth) acrylic acid ester monomer, a carboxylic acid vinyl ester monomer, or the like.
  • the repeating unit derived from the unsaturated monomer B is contained in an amount of 0 to 95 mol%, preferably 20 to 94 mol%, more preferably 50 to 93 mol%, and more preferably 60 to 92 mol. More preferably, it is contained in mol%.
  • the crosslinked polymer particles of the present invention use an epoxy group-containing monomer as the unsaturated monomer A, and optionally a carboxyl group-containing monomer or an amide group-containing monomer.
  • the unsaturated monomer B is synthesized using at least one selected from a styrene monomer, a (meth) acrylic acid ester monomer, and a carboxylic acid vinyl ester monomer. Is preferred.
  • the crosslinked polymer particles of the present invention preferably have a characteristic that the specific surface area is relatively large, such as those having fine irregularities on the particle surface and those having a porous surface. In particular, it is preferably porous.
  • the specific surface area of the crosslinked polymer particles of the present invention preferably satisfies the following formula. SB / SD ⁇ 1.2 (In the formula, SB means the actual specific surface area of each particle, and SD means the theoretical specific surface area of true spherical particles calculated from the volume average particle diameter of each particle.)
  • SB / SD is preferably 1.5 or more, more preferably 1.8 or more, and the best is 2.0 or more. Since the specific surface area is large in this way, the reaction proceeds efficiently during the crosslinking reaction.
  • the actual specific surface area SB of the crosslinked polymer particles of the present invention is not particularly limited, but is preferably 0.1 ⁇ 30m 2 / g, more preferably 0.5 ⁇ 20m 2 / g, 1 ⁇ 10m 2 / g Is more preferable.
  • the specific surface area SB is a value measured by a nitrogen gas adsorption method.
  • the crosslinked polymer particles of the present invention preferably have a water absorption amount or oil absorption amount of 50 mL or more per 100 g of particles and have affinity for at least one (or both) of an aqueous system and an oil system.
  • the water absorption or oil absorption is more preferably 80 mL or more per 100 g of particles, more preferably 100 mL or more per 100 g of particles, and most preferably 120 mL or more per 100 g.
  • the molecular weight of the polymer constituting the particles is not particularly limited, and is usually about 1,000 to 3,000,000 in terms of weight average molecular weight.
  • the crosslinked polymer particles of the present invention are excellent in heat resistance.
  • the melting point is preferably 100 ° C or higher, more preferably 120 ° C or higher, further preferably 150 ° C or higher, and most preferably 200 ° C or higher.
  • the cross-linked polymer particles of the present invention are also characterized by excellent chemical resistance. Specifically, water, alcohols, hydrocarbons, acetates, ketones, ethers and the like are difficult to dissolve at room temperature in water or organic solvents that are generally used for industrial purposes.
  • chemical resistance means that the crosslinked polymer particles of the present invention are added to at least one solvent selected from ethanol, toluene, acetone, ethyl acetate, methyl ethyl ketone, dimethylformamide, and dipropylene glycol at 27 ° C. for 30. It means that the weight reduction rate is 10% by mass or less when stirred for a minute.
  • the crosslinked polymer particles of the present invention have both heat resistance and chemical resistance, but are also characterized by having heat resistance chemical resistance.
  • the heat resistance chemical property means that the crosslinked polymer particles of the present invention are added to at least one solvent selected from ethanol, toluene, ethyl acetate, methyl ethyl ketone, dimethylformamide and dipropylene glycol and stirred at 70 ° C. for 30 minutes. It means that the weight reduction rate is 10% by mass or less.
  • these solvents it is preferable that they have heat resistance chemical resistance with respect to preferably two or more, more preferably three or more, and most preferably all of the solvents described above. This makes it possible to develop applications in many fields.
  • the crosslinked polymer particles of the present invention heat a synthetic solution containing water, a mixed solvent of a hydrophilic organic solvent and a hydrophobic organic solvent, a polymer stabilizer, a polymerization initiator, and the unsaturated monomer, at least after the start of heating. It can manufacture by adjusting the pH of a synthetic solution to 5 or less or 9 or more, and performing solution polymerization. After adjusting the pH of the synthesis solution to 5 or less or 9 or more, it is preferable to maintain the pH at 5 or less or 9 or more until the reaction is completed.
  • the solution polymerization method includes a suspension polymerization method, an emulsion polymerization method, a dispersion polymerization method, a seed polymerization method, and a composite method equivalent thereto.
  • a monomer and a polymerization initiator soluble in the monomer are mechanically stirred in a medium in which they are hardly soluble, and the polymerization reaction is allowed to proceed in a suspended state. This is a method for precipitating or generating polymer particles.
  • a medium such as water, a monomer that is hardly soluble in this medium, and an emulsifier (surfactant) are mixed and a polymerization initiator that is soluble in the medium is added to advance the polymerization reaction.
  • This is a method for precipitating or generating polymer particles.
  • polymer particles are obtained by advancing the polymerization reaction in a uniform solution in which monomers, initiators, dispersion stabilizers and the like are dissolved in a medium in which the monomer dissolves but becomes insoluble as it is polymerized. It is the method of making it precipitate or produce
  • the seed polymerization method is a polymerization method in which another particle serving as a nucleus is added in advance during the polymerization reaction, and the polymerization reaction is performed on the particle surface.
  • the crosslinked polymer particles of the present invention can be obtained by these various solution polymerizations, and a method by suspension polymerization, emulsion polymerization, dispersion polymerization or a combination thereof is more preferable. According to these methods, the seed particle preparation step can be omitted as in seed polymerization.
  • the pH adjustment is performed at least after the start of heating, but may be performed before the start of heating.
  • the pH of the synthesis solution is preferably 0 to 5 or 9 to 14, more preferably 0 to 4 or 10 to 14, still more preferably 0 to 3 or 11 to 14, and most preferably 0 to 2. Or 12-14.
  • the pH is preferably 0 to 5 because the polymerization reaction proceeds more stably and efficiently when the reaction proceeds by shifting to the acidic side.
  • the pH can be adjusted, for example, by gradually dropping the pH adjuster into the synthesis solution after the start of heating and changing the pH to the acid or alkali side.
  • a persulfate described later when used as a polymerization initiator, it decomposes during the polymerization reaction to generate an acid, so that the pH gradually decreases. In this case, it is not necessary to add a pH adjuster.
  • Examples of the pH adjuster include acids such as citric acid, tartaric acid, lactic acid, glycolic acid, hydrochloric acid, nitric acid, sodium citrate, sodium lactate, succinic acid, acetic acid, sodium acetate, fumaric acid, sulfuric acid, malic acid, and phosphoric acid.
  • Alkalis such as sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, sodium carbonate, potassium carbonate, calcium carbonate, ammonium carbonate, ammonia, morpholine, triethanolamine, diethanolamine, dimethylamine, diethylamine, trimethylamine, triethylamine Is mentioned.
  • the pH of the synthesis solution is obtained by measuring the pH of the synthesis solution in a stirred state using a pH measuring device or pH test paper.
  • a mixed solvent of water, a hydrophilic organic solvent and a hydrophobic organic solvent is used as a synthesis solvent. These solvents may be selected from common solvents according to the raw materials used.
  • the hydrophilic organic solvent means that the liquid mixture with water maintains a uniform appearance
  • the hydrophobic organic solvent means a temperature at 1 atm (1.013 ⁇ 10 5 Pa). It means that the mixed liquid cannot maintain a uniform appearance after gently mixing with pure water of the same volume at 20 ° C. and stopping the flow.
  • usable solvents include, for example, water, ion exchange water, distilled water, and hydrophilic organic solvents such as methanol, ethanol, 1-propanol, 2-propanol, ethylene glycol, propylene glycol, butylene glycol, Dipropylene glycol, methyl cellosolve, ethyl cellosolve, propyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, methyl carbitol, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, acetone, tetrahydrofuran, dimethylformamide, N-methyl- Examples include 2-pyrrolidone and acetonitrile. These can be used individually by 1 type or in mixture of 2 or more types.
  • hydrophobic organic solvents examples include 1-butanol, 2-butanol, isobutanol, t-butanol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, t -Pentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 4-methyl-2-pentanol, 2-ethylbutanol, 1-heptanol, 2-heptanol, 3-heptanol, 2-octanol, 2-ethyl -1-Higher alcohols such as hexanol, benzyl alcohol and cyclohexanol; ether alcohols such as butyl cellosolve; polyethers such as polypropylene glycol and polybutylene glycol; ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; vinegar Esters
  • these hydrophobic organic solvents may contain a modified polymer compound such as carbon, nitrogen, oxygen, hydrogen, halogen or the like, a modified polymer compound or a copolymer as long as the effects of the present invention are not impaired.
  • a modified polymer compound such as carbon, nitrogen, oxygen, hydrogen, halogen or the like
  • a modified polymer compound or a copolymer as long as the effects of the present invention are not impaired.
  • These can be used individually by 1 type or in mixture of 2 or more types.
  • hydrophobic organic solvents it is preferable to use a hydrophobic organic solvent having 8 or more carbon atoms that does not react with the raw material unsaturated monomer under polymerization conditions.
  • a hydrophobic organic solvent having 8 or more carbon atoms that does not react with the raw material unsaturated monomer under polymerization conditions.
  • the organic compound having 8 or more carbon atoms is not particularly limited as long as it is a liquid at least at a temperature at which polymerization is carried out and does not adversely affect the formation of crosslinked polymer particles, but has a melting point of 80 ° C. or lower, preferably 60 ° C. or lower.
  • An organic compound having a temperature of 40 ° C. or lower, more preferably 30 ° C. or lower is more preferable.
  • organic compounds examples include n-octane, isooctane, 2,2,3-trimethylpentane, decane, nonane, cyclopentane, methylcyclopentane, methylcyclohexane, ethylcyclohexane, p-menthane, dicyclohexyl, benzene, toluene, Aliphatic or aromatic hydrocarbons such as xylene, ethylbenzene, liquid paraffin, mineral oil, oil for heat medium; siloxane compounds such as polydimethylsiloxane, polymethylphenylsiloxane, polydiphenylsiloxane, silicone oil; polypropylene glycol, polybutylene glycol And the like.
  • the number of carbon atoms may be 8 or more, but considering the dispersion stability of the obtained particles, it is preferably 10 or more, more preferably 12 or more, and most preferably 15 or more.
  • the molecular weight of the hydrophobic organic solvent is preferably 200 or more, more preferably 300 or more, still more preferably 500 or more, and most preferably 1,000 or more.
  • a hydrophobic organic solvent with a large molecular weight in this way, it also plays a role as a dispersant, so that it is possible to obtain a crosslinked polymer particle that is stably monodispersed and has a controlled particle size by suppressing particle sticking and aggregation. Can do.
  • the molecular weight means a weight average molecular weight in the case of a polymer compound.
  • the weight average molecular weight is a measured value in terms of polystyrene by gel permeation chromatography.
  • a polymer compound having a repeating unit is preferable.
  • siloxane compounds such as polydimethylsiloxane, polymethylphenylsiloxane, polydiphenylsiloxane, and silicone oil; polyethers such as polypropylene glycol and polybutylene glycol; aliphatic or aromatic such as liquid paraffin and oil for heat medium Group hydrocarbons and the like.
  • these high molecular weight compounds are water-soluble in a low molecular state, and the hydrophobicity obtained by polymerizing a polymer compound that shows hydrophobicity as it becomes polymerized or a monomer having a polar group in the molecule.
  • the polymer stabilizer described later tends to be uniformly dispersed in the solvent and contributes to further particle stability.
  • the polar group include a hydroxy group, an ether group, and a carbonyl group.
  • hydrophobic organic solvents include polyethers such as polypropylene glycol and polybutylene glycol, and siloxane compounds such as polydimethylsiloxane, polymethylphenylsiloxane, polydiphenylsiloxane, and silicone oil.
  • the mixing ratio of water, hydrophilic organic solvent and hydrophobic organic solvent is preferably 99: 0.5: 0.5 to 25:55:20, and 98: 1: 1 to 35:50:15 in terms of mass ratio. More preferred is 97: 2: 1 to 45:45:10.
  • an emulsified layer lower layer, water-rich layer
  • dissolved layer intermediate layer, hydrophilic solvent-rich layer
  • separation layer upper layer, hydrophobic solvent-rich layer
  • polymer stabilizer examples include polyethylene glycol, polyhydroxystyrene, polystyrene sulfonic acid, hydroxystyrene- (meth) acrylic acid ester copolymer, styrene- (meth) acrylic acid ester copolymer, styrene-hydroxystyrene- (Polyrene derivatives such as meth) acrylic acid ester copolymers; poly (meth) acrylic acid derivatives such as poly (meth) acrylic acid, poly (meth) acrylamide, polyacrylonitrile, polyethyl (meth) acrylate, polybutyl (meth) acrylate; Polyethers such as polymethyl vinyl ether, polyethyl vinyl ether, polybutyl vinyl ether, polyisobutyl vinyl ether, polyhexyl vinyl ether and derivatives thereof; cellulose, methyl cellulose, cellulose acetate, cellulose nitrate Cellulose derivatives such as hydroxymethyl cellulose,
  • the polymer stabilizer is preferably blended in an appropriate amount of 0.01 to 50% by mass with respect to the raw material unsaturated monomer.
  • the polymerization initiator various known polymerization initiators can be used.
  • the water-soluble polymerization initiator include persulfates such as ammonium persulfate, sodium persulfate, and potassium persulfate; '-Azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis (2-methyl-N-phenylpropiate) Onamidine) dihydrochloride, 2,2′-azobis [N- (4-chlorophenyl) -2-methylpropionamidine] dihydrochloride, 2,2′-azobis [N- (4-hydroxyphenyl) -2- Methylpropionamidine] dihydrochloride, 2,2′-azobis [N- (4-amino-phenyl) -2-methylpropionamidine] tetrahydrochloride, 2,2′-azobis [2-methyl-N- (2-hydroxy
  • oil-based initiators include peroxides such as benzoyl peroxide, cumene hydroperoxide, and t-butyl hydroperoxide; azobisisobutyronitrile, azobismethylbutyronitrile, azobisisovaleronitrile, 2 2,2′-azobis (dimethyl isobutyrate), 2,2′-azobis (N-butyl-2-methylpropionamide), 4,4′-azobis (4-cyanopentanoic acid), 2,2′-azobis ( And oil-soluble polymerization initiators such as azo compounds such as 2-amidinopropane) dihydrochloride and 2,2′-azobis (N, N′-dimethyleneisobutylamidine) dihydrochloride.
  • peroxides such as benzoyl peroxide, cumene hydroperoxide, and t-butyl hydroperoxide
  • azobisisobutyronitrile azobismethylbutyronitrile
  • the blending amount of the radical polymerization initiator is usually preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the raw material unsaturated monomer.
  • an initiator such as persulfate
  • it not only functions as a radical initiator, but also acid is generated by hydrolysis and the like, and the pH of the synthesis solution is adjusted without adding a separate pH adjuster. can do.
  • a preferable addition amount is 5 to 30% by mass.
  • crosslinked polymer particles characteristics such as fine irregularities on the surface, porosity, and a large specific surface area by appropriately adjusting the components and composition of water, the hydrophilic organic solvent and the hydrophobic organic solvent. Thereby, the particle surface and the inside can be appropriately modified.
  • the particle size and aspect ratio of the crosslinked polymer particles, the size of fine irregularities on the surface, and the porosity can be controlled more stably. Therefore, various properties such as water absorption and oil absorption can be controlled in a balanced manner.
  • an emulsifier surfactant or the like is added in an appropriate amount of 0.01 to 50% by mass with respect to the raw material unsaturated monomer. It can also be blended.
  • emulsifiers include alkyl sulfate esters such as sodium dodecyl sulfate, alkyl benzene sulfonates such as sodium dodecyl benzene sulfonate, alkyl naphthalene sulfonates, fatty acid salts, alkyl phosphates, and alkyl sulfosuccinates.
  • Anionic emulsifiers such as alkylamine salts, quaternary ammonium salts, alkylbetaines, amine oxides; polyoxyethylene alkyl ethers, polyoxyethylene alkyl allyl ethers, polyoxyethylene alkyl phenyl ethers, sorbitan fatty acid esters, Nonionic emulsifiers such as glycerin fatty acid ester, sucrose fatty acid ester, and polyoxyethylene fatty acid ester are listed. These can be used alone or in combination of two or more.
  • the major axis and minor axis of the crosslinked polymer particles can be controlled. Furthermore, it is preferable to include one or more emulsifiers that are solid at room temperature.
  • a polyfunctional unsaturated monomer may be appropriately blended as a crosslinking aid as long as the characteristics of the crosslinked polymer particles of the present invention are not impaired.
  • a synergistic effect may be obtained even with a small amount.
  • crosslinking agents include aromatic divinyl compounds such as divinylbenzene, divinylbiphenyl, divinylnaphthalene; (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, (poly) tetramethylene glycol di ( (Poly) alkylene glycol-based di (meth) acrylates such as (meth) acrylate; 1,6-hexanediol di (meth) acrylate, 1,8-octanediol di (meth) acrylate, 1,9-nonanediol di (meth) ) Acrylate, 1,10-decanediol di (meth) acrylate, 1,12-dodecanediol di (meth) acrylate, 3-methyl-1,5-pentanediol di (meth) acrylate, 2,4-diethyl-1 , 5-p
  • the content of the raw material unsaturated monomer in the synthesis solution is preferably 1 to 80% by mass in the total synthesis solution, more preferably 5 to 50% by mass, and still more preferably 10 to 30% by mass. .
  • the content of the raw material unsaturated monomer exceeds 80% by mass, aggregates increase, and it may be difficult to obtain polymer particles having the above properties in a high yield in a monodispersed state.
  • it is less than 1% by mass, it takes a long time to complete the reaction, and it is not practical from an industrial viewpoint.
  • the reaction temperature at the time of polymerization varies depending on the type of solvent used, and thus cannot be specified unconditionally, but is usually about 10 to 200 ° C, preferably 30 to 130 ° C, more preferably 40 to 90 ° C. It is.
  • reaction time is not particularly limited as long as it is a time required for the target reaction to be almost completed, and the kind and amount of the unsaturated monomer, the viscosity and concentration of the solution, the target particle size, etc.
  • the reaction time is not particularly limited as long as it is a time required for the target reaction to be almost completed, and the kind and amount of the unsaturated monomer, the viscosity and concentration of the solution, the target particle size, etc.
  • the reaction time is not particularly limited as long as it is a time required for the target reaction to be almost completed, and the kind and amount of the unsaturated monomer, the viscosity and concentration of the solution, the target particle size, etc.
  • 40 to 90 ° C. it is 1 to 72 hours, preferably about 2 to 24 hours.
  • a catalyst reaction accelerator
  • the blending amount can be an appropriate amount that does not adversely affect the physical properties of the particles, for example, 0.01 to 20% by mass with respect to the total mass of the polymerization components.
  • the catalyst is not particularly limited as long as it is a positive catalyst, and can be appropriately selected from known ones.
  • Specific examples include tertiary amines such as benzyldimethylamine, triethylamine, tributylamine, pyridine, and triphenylamine; quaternary ammonium compounds such as triethylbenzylammonium chloride and tetramethylammonium chloride; triphenylphosphine, tricyclophosphine, and the like.
  • Phosphines include phosphonium compounds such as benzyltrimethylphosphonium chloride; imidazole compounds such as 2-methylimidazole and 2-methyl-4-ethylimidazole; alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and lithium hydroxide; Alkali metal carbonates such as sodium and lithium carbonate; Alkali metal salts of organic acids; Halogenation exhibiting Lewis acidity such as boron trichloride, boron trifluoride, tin tetrachloride and titanium tetrachloride Or include catalysts of the complex salts. These can be used alone or in combination of two or more.
  • the solution is obtained by ionizing cations and anions that can be dissolved in water or other polar solvents for the purpose of adjusting the size, shape, quality, etc. of the resulting crosslinked polymer particles. It is also possible to add a compound exhibiting electrical conductivity.
  • the blending amount can be an appropriate amount that does not adversely affect the physical properties of the particles, for example, 0.01 to 80% by mass with respect to the total mass of the polymerization components.
  • the particle size and aspect can be more stably in a monodispersed state.
  • Crosslinked polymer particles having different ratios, shapes, etc. can be produced.
  • the crosslinked polymer particles of the present invention have excellent heat resistance and chemical resistance, they can be used for polymer molded products such as plastics, containers, paints, coating films, fibers, and building materials.
  • polymer molded products such as plastics, containers, paints, coating films, fibers, and building materials.
  • UV scattering is also effective, for example, filters, packaging materials, containers, paints, paint films, inks, fibers, building materials, recording media, image display devices are used to protect UV-sensitive contents and the like. Further, it can be used for a solar cell cover, and the decomposition of a compound unstable to light can also be suppressed.
  • the crosslinked polymer particles of the present invention can increase the strength of the molded product as compared with the conventional spherical shape. Therefore, since the strength of the molded product can be maintained even when the particles are highly filled, it can be applied to a light diffusing plate, a light diffusing sheet or a fired voided molded product utilizing optical characteristics.
  • the crosslinked polymer particles of the present invention can be dispersed in water, a hydrophilic organic solvent, a hydrophobic organic solvent or a mixed solvent thereof and used as a dispersion.
  • a hydrophilic organic solvent and a hydrophobic organic solvent the thing similar to what was illustrated in the manufacturing method of a polymer particle is mentioned.
  • the crosslinked polymer particles of the present invention can be used as an additive for molded products such as liquids, coating films, films, board materials, and paper.
  • the crosslinked polymer particle-containing composition of the present invention includes a light scattering agent, an optical filter material, a colorant, a cosmetic, an absorbent, an adsorbent, an ink, an adhesive, an electromagnetic wave shielding material, a fluorescent sensor, a biomarker, a recording material, and a recording element.
  • polarizing materials drug carriers for drug delivery systems (DDS), biosensors, DNA chips, test agents, fired pore-formed products, and the like.
  • interior products such as window glass products, curtains, and wall materials
  • window glass products such as window glass products, curtains, and wall materials
  • wall materials not only prevents sunburn and adverse effects on the human body, but also indoors and interiors. It is also useful in that it can prevent deterioration of decorative items.
  • the crosslinked polymer particle of the present invention is suitable as a cosmetic additive. Applications that use many thermoforming and organic solvents that have been difficult to add while maintaining the inherent lightness, light scattering, tactile properties, flow properties, solution dispersibility, etc. of the crosslinked polymer particles of the present invention Can be deployed.
  • the crosslinked polymer particle of the present invention has an adhesive force different from a general spherical shape due to its unique shape, and has an effect of improving the fixing force of a molded body such as a foundation and the holding force after application. Furthermore, the skin can be brightened by the optical characteristics, and the covering power can be improved by the blurring effect.
  • the slipperiness unique to the shape makes it easy to spread on the skin, and by filling the textured grooves finely, wrinkles and pores can be made inconspicuous and the flowability of the entire product can be freely controlled. it can.
  • the amount of polymer added to the entire product can be increased by utilizing the adhesive force and holding force, and an unprecedented cosmetic effect can be found.
  • a preferred addition amount is 0.1 to 50% by mass, preferably 0.5 to 30% by mass, based on the amount of product blended.
  • Light scattering properties such as UV scattering effect and blurring effect, fluidity, moldability, adhesion improvement, finish feeling, etc. can be appropriately adjusted according to the application / purpose.
  • the cosmetic additive is particularly preferably 1 to 20% by mass. In addition, you may use it combining suitably with commercially available particle
  • a highly effective cosmetic may be a skin care product, a hair product, an antiperspirant product, a makeup product, a UV protection product, a fragrance product, and the like.
  • basic cosmetics such as milky lotion, cream, lotion, calamine lotion, sunscreen agent, makeup base material, suntan agent, after shave lotion, pre-shave lotion, pack fee, cleansing agent, face wash, anti-acne cosmetics, essence, etc.
  • foundation Makeup cosmetics such as white powder, mascara, eye shadow, eyeliner, eyebrow, teak, nail color, lip balm, lipstick, shampoo, rinse, conditioner, hair color, hair tonic, set agent, body powder, hair restorer, Deodorant, hair remover, soap, body shampoo, bath agent, hand soap, perfume and the like.
  • the form of the product is not particularly limited, and it may be liquid, emulsion, cream, solid, paste, gel, powder, multilayer, mousse, spray or the like. A useful effect can be expected as an additive for these cosmetic
  • the crosslinked polymer particles of the present invention are additives for printing inks used in screen printing, offset printing, process printing, gravure printing, tampo printing, coater, inkjet, etc., for marking pens, for ballpoint pens, for fountain pens, for brush pens, It can be used as an additive for writing instrument inks such as magic, and for stationery items such as crayons, paints, and erasers.
  • the crosslinked polymer particles of the present invention are suitable as an additive for coating materials used for brush coating, spray coating, electrostatic coating, electrodeposition coating, flow coating, roller coating, dip coating, and the like.
  • transportation equipment such as automobiles, trains, helicopters, boats, bicycles, snow vehicles, ropeways, lifts, fovercrafts, motorcycles, sashes, shutters, water tanks, doors, balconies, building skin panels, roofing materials Building materials such as stairs, skylights, concrete fences, exterior and interior walls inside and outside buildings, guardrails, pedestrian bridges, soundproof walls, signs, highway side walls, railway viaducts, road members such as bridges, tanks, pipes, towers, Plant components such as chimneys, greenhouses, greenhouses, silos, agricultural equipment such as agricultural seats, communication equipment such as utility poles, power transmission towers, parabolic antennas, electrical wiring boxes, lighting equipment, air conditioner outdoor units, washing machines, refrigerators , Electric devices such as microwave ovens, and their covers, monuments, tombstones, pavement materials, windshield sheets, waterproof sheets,
  • a water-dispersible paint besides the solvent-type paint, a water-dispersible paint, a non-water-dispersible paint, a powder paint, an electrodeposition paint, and the like can be appropriately selected as necessary.
  • the average major axis (L AV ) and average minor axis (D AV ) of the particles were calculated by measuring the major axis (L) and minor axis (D) of 100 randomly extracted particles.
  • Theoretical specific surface area (SD)
  • the volume average particle diameter of the elliptical, needle-shaped or rod-shaped crosslinked polymer particles is 2r (m), the radius is r (m), and the density is G (g / m 3 ).
  • the surface area S ′ (m 2 ) and the volume V (m 3 ) of the true spherical particles having a radius r (m) are represented by the following equations, respectively.
  • the obtained particle dispersion was separately transferred to a 3,000 mL flask and the deposits in the synthesis vessel (flask and stirring blade) were confirmed. Next, from a separately transferred particle dispersion, washing and filtration were repeated 5 times with methanol using a known suction filtration equipment, followed by vacuum drying to obtain polymer particles A1.
  • 100 particles obtained were randomly extracted and observed for shape by SEM, they were oval, needle-like or rod-like polymer particles, L AV was 18.2 ⁇ m, and P AV was 6.5. there were.
  • Example 2 A methyl methacrylate-glycidyl methacrylate copolymer particle dispersion by the same method as in Example 1 except that the pH adjuster was changed to 1 mol / L sodium hydroxide and the pH was adjusted to 12 during synthesis. Got. The pH at the end of the reaction was also 12. The obtained particle dispersion was separately transferred to a 3,000 mL flask and the deposits in the synthesis vessel (flask and stirring blade) were confirmed. Next, from the separately transferred particle dispersion, washing and filtration were repeated 5 times with methanol using a known suction filtration equipment, and vacuum dried to obtain polymer particles A2.
  • 100 particles obtained were randomly extracted and observed by SEM, they were oval, needle-like or rod-like polymer particles, L AV was 16.1 ⁇ m, and P AV was 8.1. there were. Further, although foreign matters were confirmed, almost no deformation such as aggregates and sticking was observed.
  • a part of the obtained particles was measured with a Fourier transform infrared spectrophotometer, it was confirmed that the peak derived from the epoxy group having a wave number of 910 (1 / cm) was reduced as compared with that before the synthesis. .
  • Example 3 A compound shown below was charged all at once into a 2,000 mL flask to prepare a synthesis solution. Then, it stirred at room temperature for 1 hour. The liquid phase was in a state where the aqueous phase portion, the emulsified phase portion and the oil phase portion were mixed together. Next, the oil bath temperature is set to 80 ° C. under a nitrogen stream, heating and stirring (400 rpm) are started, and heating and stirring (400 rpm) are performed for 8 hours to disperse the styrene-methacrylic acid-glycidyl methacrylate copolymer particles. A liquid was obtained.
  • the pH of the synthesis solution before the start of heating was 7, the pH 2 hours after the start of heating was 2, and the pH at the end of the reaction was 1. 1085.0 g of water Methanol 155.0g Polypropylene glycol (# 2000) 15.1 g Polyvinylpyrrolidone (K-15) 25.0g Sucrose lauryl ester 7.2g 28.8g ammonium persulfate Styrene 144.0g Methacrylic acid 144.0 g Glycidyl methacrylate 72.0g
  • the obtained particle dispersion was separately transferred to a 3,000 mL flask and the deposits in the synthesis vessel (flask and stirring blade) were confirmed. Next, from the separately transferred particle dispersion, washing and filtration were repeated 5 times with methanol using a known suction filtration equipment, and vacuum dried to obtain polymer particles A3.
  • 100 particles obtained were randomly extracted and observed by SEM, they were oval, needle-like or rod-like polymer particles, L AV was 31.6 ⁇ m, and P AV was 10.5. there were.
  • Example 4 A compound shown below was charged all at once into a 2,000 mL flask to prepare a synthesis solution. Then, it stirred at room temperature for 1 hour. The liquid phase was in a state where the aqueous phase portion, the emulsified phase portion and the oil phase portion were mixed together. Next, the oil bath temperature is set to 80 ° C. under a nitrogen stream, heating and stirring (400 rpm) are started, and heating and stirring (400 rpm) are performed for 8 hours to obtain a styrene-glycidyl methacrylate copolymer particle dispersion. It was.
  • the obtained particle dispersion was separately transferred to a 3,000 mL flask and the deposits in the synthesis vessel (flask and stirring blade) were confirmed. Next, from the separately transferred particle dispersion, washing and filtration were repeated 5 times with methanol using a known suction filtration equipment, and vacuum dried to obtain polymer particles A4.
  • Example 5 A compound shown below was charged all at once into a 2,000 mL flask to prepare a synthesis solution. Then, it stirred at room temperature for 1 hour. The liquid phase was in a state where the aqueous phase portion, the emulsified phase portion and the oil phase portion were mixed together. Moreover, it was 8 when pH of the synthetic solution was measured. Next, the oil bath temperature is set to 85 ° C. under a nitrogen stream, heating and stirring (400 rpm) are started, and heating and stirring (400 rpm) are performed for 15 hours to disperse the styrene-methacrylamide-glycidyl methacrylate copolymer particles. A liquid was obtained.
  • the obtained particle dispersion was separately transferred to a 3,000 mL flask and the deposits in the synthesis vessel (flask and stirring blade) were confirmed.
  • 100 particles obtained were randomly extracted and observed by SEM, they were oval, needle-like or rod-like polymer particles, L AV was 24.8 ⁇ m, and P AV was 7.2. there were.
  • Example 6 A compound shown below was charged all at once into a 2,000 mL flask to prepare a synthesis solution. Then, it stirred at room temperature for 1 hour. The liquid phase was in a state where the aqueous phase portion, the emulsified phase portion and the oil phase portion were mixed. Next, the oil bath temperature is set to 80 ° C. under a nitrogen stream, heating and stirring (300 rpm) are started, and heating and stirring (300 rpm) are performed for 8 hours to obtain a methyl methacrylate-glycidyl methacrylate copolymer particle dispersion. It was.
  • the pH of the synthesis solution before the start of heating was 7, the pH 2 hours after the start of heating was 2, and the pH at the end of the reaction was 1. 1254.0 g of water Methanol 66.0g Polypropylene glycol (# 1000) 18.0g Polyvinylpyrrolidone (K-15) 25.0g Sucrose laurate 6.5g 27.1 g ammonium persulfate Methyl methacrylate 255.0g 63.9 g of glycidyl methacrylate
  • the obtained particle dispersion was separately transferred to a 3,000 mL flask and the deposits in the synthesis vessel (flask and stirring blade) were confirmed. Next, from the separately transferred particle dispersion, washing and filtration were repeated 5 times with methanol using a known suction filtration equipment, followed by vacuum drying to obtain polymer particles A6.
  • the resulting 100 particles were extracted at random, observation of the shape in SEM, elliptical, a needle-like or rod-polymer particles, L AV is 16.8 m, P AV is 1.9 there were.
  • Example 1 A methyl methacrylate-glycidyl methacrylate copolymer particle dispersion was obtained in the same manner as in Example 1 except that the pH was not adjusted. The pH of the synthesis solution before starting heating was 7, the pH after 2 hours from starting heating was 7, and the pH at the end of the reaction was 7. The obtained particle dispersion was separately transferred to a 3,000 mL flask, and the deposits inside the synthesis container (flask and stirring blade) were confirmed. It was. Next, the particle dispersion liquid separately transferred was vacuum-dried by repeating washing-filtration-classification five times with methanol using a known suction filtration equipment to obtain polymer particles B1.
  • Aqueous phase water 1280.0g Polyvinylpyrrolidone (K-15) 8.0g 4.8g ammonium persulfate Oil phase Toluene 80.0g Polystyrene (Mw 45,000) 16.0g Methyl methacrylate 128.0g Glycidyl methacrylate 32.0g (Polystyrene: Polystyrene from Aldrich, average Mw ca. 45,000)
  • the obtained particle dispersion was separately transferred to a 3,000 mL flask, and the deposits inside the synthesis container (flask and stirring blade) were confirmed. As a result, agglomerates were formed around the flask and the polymer was deposited on the stirring blade. It was. Next, washing-filtration-classification was repeated 5 times with methanol using a known suction filtration equipment from the separately transferred particle dispersion, followed by vacuum drying to obtain polymer particles B2.
  • the obtained particle dispersion was separately transferred to a 3,000 mL flask.
  • the lump of the aggregate which the polymer precipitated a little around the flask and the stirring blade was seen.
  • centrifugal separation was repeated 5 times from the separately transferred particle dispersion, and classification and washing operations were performed to obtain polymethyl methacrylate single spherical polymer particles B3 having an average particle diameter of 5 ⁇ m.
  • the volume average particle diameter was 5 ⁇ m spherical polymer particles.
  • the peak originating in the epoxy group of wave number 910 (1 / cm) did not change compared with the synthesis
  • Table 1 shows a summary of the MV, L AV , D AV , P AV , particle component, and shape of the particles obtained in Examples 1 to 6 and Comparative Examples 1 to 3.
  • Table 2 summarizes the SB, SD, water absorption, and oil absorption of the particles obtained in Examples 1 to 6 and Comparative Examples 1 to 3.
  • Example 7 comparative examples 4, 5
  • About the obtained optical sheets 1 to 3 the appearance of the optical sheet was visually confirmed, and the particle shape was confirmed by SEM. The results are shown in Table 8.
  • Example 8 Comparative Examples 6 and 7
  • a haze meter NDH-5000 manufactured by Nippon Denshoku Industries Co., Ltd.
  • the optical sheets 4 and 5 were subjected to UV transmission light analysis at wavelengths of 320 nm, 360 nm, and 400 nm using an ultraviolet-visible spectrophotometer (UV-2450 manufactured by JASCO Corporation). The results are shown in Table 11.
  • the elliptical, needle-like, or rod-like crosslinked polymer particles of the present invention clearly have a high UV scattering effect due to a decrease in transmitted light in the UV region (particularly UV-A). It was confirmed that unique optical characteristics could be maintained.
  • the oval, needle-like or rod-like crosslinked polymer particles of the present invention have a high concealing property because they have a high scattering effect in the visible light and UV light regions. It was.
  • Example 11 was excellent in touch, slipperiness, and particle adhesion properties.
  • the elliptical, needle-like or rod-like crosslinked polymer particles obtained by the present invention have heat resistance and chemical resistance and sufficiently retain the characteristics obtained from the conventional elliptical shape. Therefore, it can be applied to applications that require heat resistance, chemical resistance, and heat resistance chemical properties.
  • Optical materials such as paints, inks, molded products, cosmetics, and light diffusion sheets, and baked pores. It is expected that it can be effectively used for applications such as moldings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Birds (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Dermatology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

エポキシ基、カルボキシル基、アミド基、ヒドロキシ基、アミノ基及びチオール基から選ばれる官能基を有する不飽和単量体に由来する繰り返し単位を全繰り返し単位中5~100モル%含む楕円状、針状又は棒状架橋ポリマー粒子であって、(1)長軸方向と直交する方向から光を照射して得られる投影二次元図の長径(L)の平均(LAV)が0.1~80μm、(2)長軸方向と直交する方向から光を照射して得られる投影二次元図の短径(D)の平均(DAV)が0.05~40μm、及び(3)前記長径(L)と短径(D)とから算出されるアスペクト比(L/D)の平均(PAV)が1.5~30である楕円状、針状又は棒状架橋ポリマー粒子を提供する。

Description

楕円状、針状又は棒状架橋ポリマー粒子及びその用途
 本発明は、楕円状、針状又は棒状架橋ポリマー粒子及びその用途に関する。
 ミクロンサイズを有するポリマー粒子や無機粒子は、充填剤や検体として電子・電気材料、光学材料、塗料、インク、建築材料、生物・医薬材料、化粧料等の種々の分野で使用されている。近年、特に球状とは異なる異形状の粒子の開発が活発に行われており、光学特性、触感等様々な特性が付与されることから、日々応用開発も進められている。
 本発明者らも、高アスペクト比を有する楕円状又は針状ポリマー粒子の開発を進め、隠蔽性、光拡散性、触感性等の各特性において、従来の球状粒子よりも優れた特徴の粒子を見出している(特許文献1、2)。
 しかしながら、多くの用途において有機溶媒及び成形品等の熱の加わる用途には、耐熱性、耐薬品性とも未だ不十分な状態であった。また、圧力が加わると曲がりやすく、楕円形状の特性が損なわれることがあった。
 ポリマー粒子の耐熱性や耐薬品性を高めるために、ポリマーを架橋することが行われている。一般的に、架橋ポリマー粒子は、単量体中に多官能の不飽和単量体を適量添加することによって得ることができる。しかし、当該方法は球状の粒子を得るには非常に優れているが、楕円状架橋ポリマー粒子を効率よく得ることは難しい。本発明者らの検討では、前記多官能の不飽和単量体を添加して架橋粒子を得ようとすると、凝集物が増え、又は楕円形状を維持できなくなり、球状や略球状になる場合が多く、良好な楕円状架橋ポリマー粒子を効率よく得ることは難しい。また、架橋成分が多くなるほど架橋反応が迅速に進むため、高アスペクト比(長径/短径)を有する粒子を安定的に得ることはかなり難しくなる。
 このような状況下、耐熱性、耐薬品性及び耐熱薬品性が必要な用途への応用が可能な架橋ポリマー粒子が望まれている。
特開2009-235353号公報 特開2009-235355号公報
 本発明は、前記事情に鑑みなされたもので、光拡散性、UVカット性、触感性等の特性を保持し、更に耐熱性、耐薬品性及び耐熱薬品性に優れた、楕円状、針状又は棒状架橋ポリマー粒子及びその用途を提供することを目的とする。
 本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、所定の官能基を有する不飽和単量体を用いて溶液重合することによって得られる楕円状、針状又は棒状架橋ポリマー粒子が、耐熱性、耐薬品性及び耐熱薬品性が向上することを見出し、本発明を完成した。
 すなわち、本発明は、下記楕円状、針状又は棒状架橋ポリマー粒子及びその用途を提供する。
1.エポキシ基、カルボキシル基、アミド基、ヒドロキシ基、アミノ基及びチオール基から選ばれる官能基を有する不飽和単量体に由来する繰り返し単位を全繰り返し単位中5~100モル%含む楕円状、針状又は棒状架橋ポリマー粒子であって、
(1)長軸方向と直交する方向から光を照射して得られる投影二次元図の長径(L)の平均(LAV)が0.1~80μm、
(2)長軸方向と直交する方向から光を照射して得られる投影二次元図の短径(D)の平均(DAV)が0.05~40μm、及び
(3)前記長径(L)と短径(D)とから算出されるアスペクト比(L/D)の平均(PAV)が1.5~30
である楕円状、針状又は棒状架橋ポリマー粒子。
2.前記官能基が、エポキシ基、カルボキシル基、アミノ基又はアミド基である1の楕円状、針状又は棒状架橋ポリマー粒子。
3.更に、スチレン系単量体、(メタ)アクリル酸エステル系単量体及びカルボン酸ビニルエステル系単量体より選ばれる少なくとも1種の不飽和単量体に由来する繰り返し単位を含む1又は2の楕円状、針状又は棒状架橋ポリマー粒子。
4.楕円状、針状又は棒状架橋ポリマー粒子の実際の比表面積SB及び体積平均粒子径から算出される真球状粒子の理論比表面積SDの比(SB/SD)が、SB/SD≧1.2を満たす1~3のいずれかの楕円状、針状又は棒状架橋ポリマー粒子。
5.前記架橋ポリマー粒子をエタノール、トルエン、酢酸エチル、メチルエチルケトン、ジメチルホルムアミド及びジプロピレングリコールから選ばれる少なくとも1種の溶媒に添加して27℃で30分間攪拌したとき、重量減少率が10質量%以下である1~4のいずれかの楕円状、針状又は棒状架橋ポリマー粒子。
6.前記架橋ポリマー粒子をエタノール、トルエン、酢酸エチル、メチルエチルケトン、ジメチルホルムアミド及びジプロピレングリコールから選ばれる少なくとも1種の溶媒に添加して70℃で30分間加熱攪拌したとき、重量減少率が10質量%以下であることを特徴とする1~5のいずれかの楕円状、針状又は棒状架橋ポリマー粒子。
7.1~6のいずれかの楕円状、針状又は棒状架橋ポリマー粒子を用いてなる樹脂組成物。
8.1~6のいずれかの楕円状、針状又は棒状架橋ポリマー粒子を用いてなる光拡散シート。
9.1~6のいずれかの楕円状、針状又は棒状架橋ポリマー粒子を用いてなる塗料組成物。
10.1~6のいずれかの楕円状、針状又は棒状架橋ポリマー粒子を用いてなるインク組成物。
11.1~6のいずれかの楕円状、針状又は棒状架橋ポリマー粒子を用いてなる化粧料。
12.1~6のいずれかの楕円状、針状又は棒状架橋ポリマー粒子を用いてなる電気・電子工業材料。
13.1~6のいずれかの楕円状、針状又は棒状架橋ポリマー粒子を用いてなる接着剤。
14.1~6のいずれかの楕円状、針状又は棒状架橋ポリマー粒子を用いて得られる焼成空孔化成形物。
15.1~6のいずれかの楕円状、針状又は棒状架橋ポリマー粒子を用いてなる医療用検査薬。
16.1~6の楕円状、針状又は棒状架橋ポリマー粒子の製造方法であって、
 水、親水性有機溶媒及び疎水性有機溶媒の混合溶媒、高分子安定剤、重合開始剤及び前記不飽和単量体を含む合成溶液を加熱し、少なくとも加熱開始後に合成溶液のpHを5以下又は9以上に調整して溶液重合を行うことを特徴とする楕円状、針状又は棒状架橋ポリマー粒子の製造方法。
17.前記水、親水性有機溶媒及び疎水性有機溶媒の混合比が、質量比で、99:0.5:0.5~25:55:20である16の楕円状、針状又は棒状架橋ポリマー粒子の製造方法。
18.前記疎水性有機溶媒が、分子量が200以上の有機化合物である16又は17の楕円状、針状又は棒状架橋ポリマー粒子の製造方法。
 本発明の楕円状、針状又は棒状架橋ポリマー粒子は、光拡散性、UVカット性、触感性等といった楕円状ポリマー粒子の特性を保持しつつ、更に耐熱性、耐薬品性及び耐熱薬品性にも優れたものである。
合成例1で得られた粒子のSEM写真を示す図である。 実施例9、比較例8で作製した評価用シートにおける自動変角光度計を用いた反射光の光散乱分布を示す図である。
 [楕円状、針状又は棒状架橋ポリマー粒子]
 本発明の楕円状、針状又は棒状架橋ポリマー粒子(以下、単に架橋ポリマー粒子ともいう)は、エポキシ基、カルボキシル基、アミド基、ヒドロキシ基、アミノ基及びチオール基から選ばれる官能基を有する不飽和単量体(以下、不飽和単量体Aという)に由来する繰り返し単位を5~100モル%含むものであって、
(1)長軸方向と直交する方向から光を照射して得られる投影二次元図の長径(L)の平均(LAV)が0.1~80μm、
(2)長軸方向と直交する方向から光を照射して得られる投影二次元図の短径(D)の平均(DAV)が0.05~40μm、及び
(3)前記長径(L)と短径(D)とから算出されるアスペクト比(L/D)の平均(PAV)が1.5~30
である。
 前記架橋ポリマー粒子のLAVは、0.1~80μmであるが、0.2~60μmが好ましく、1.0~40μmがより好ましく、2~30μmが更に好ましい。LAVが80μm超となると、汎用の繊維と特性が変わらなくなり優位性がなくなる。また、単位当たりの比表面積の減少に伴い、光散乱等の光学特性が著しく低減する傾向がある。また、LAVが0.1μmを下回ると、短径も細くなることから光学特性の低下や、強度が低減することがある。
 前記架橋ポリマー粒子のDAVは、0.05~40μmであるが、0.1~30μmが好ましく、0.5~20μmがより好ましく、1~15μmが更に好ましい。DAVが40μm超となると、汎用的な球状粒子と特性が変わらなくなり、単位当たりの比表面積の減少に伴い光学特性効果が著しく低減する傾向がある。また、DAVが0.05μmを下回ると、光学特性の低下や、強度が低減することがある。
 前記架橋ポリマー粒子のPAVは、1.5~30であるが、好ましくは1.8~25、より好ましくは2~20であり、更に好ましくは2.2~20であり、最良は2.5~18である。また、光拡散性等の光学特性を重視する場合は、3~18が最良である。PAVが30を超えると、得られる粒子が配向しやすく、光散乱性、光反射性等の光学特性が安定的に得られないことがある。またPAVが1.5未満であると、同成分の球状粒子程度の光学特性効果しかなく、効果の優位性に欠ける。
 また、前記架橋ポリマー粒子の体積平均粒子径(MV)は、0.06~50μmが好ましく、0.1~30μmがより好ましく、0.5~20μmが更に好ましい。MVが50μm超となると、単位当たりの比表面積の減少に伴い光学特性効果が低減することがある。また、MVが0.06μmを下回ると、光抜けが生じ、光学特性効果が低減することがある。
 なお、本発明において体積平均粒子径とは、レーザー散乱・回折法による測定値であり、例えば、楕円状、針状又は棒状の粒子や異形粒子においては体積を球状に換算した場合の平均粒子径を意味する。
 前記不飽和単量体Aは、エポキシ基、カルボキシル基、アミド基、ヒドロキシ基、アミノ基及びチオール基から選ばれる官能基を含む。前記不飽和単量体Aとしては、例えば、以下に示すものが挙げられる。なお、以下の説明において「Cn」は炭素原子数がnであることを意味する。
(1)エポキシ基含有不飽和単量体
 グリシジル(メタ)アクリレート、(β-メチル)グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシル(メタ)アクリレート、α-エチルアクリル酸グリシジル、α-n-プロピルアクリル酸グリシジル、α-n-ブチルアクリル酸グリシジル、アクリル酸-3,4-エポキシブチル、メタクリル酸-3,4-エポキシブチル、メタクリル酸-4,5-エポキシペンチル、アクリル酸-6,7-エポキシヘプチル、メタクリル酸-6,7-エポキシヘプチル、α-エチルアクリル酸-6,7-エポキシヘプチル等のエポキシ基含有(メタ)アクリレート類;o-ビニルフェニルグリシジルエーテル、m-ビニルフェニルグリシジルエーテル、p-ビニルフェニルグリシジルエーテル、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル等のビニルグリシジルエーテル類;2,3-ジグリシジルオキシスチレン、3,4-ジグリシジルオキシスチレン、2,4-ジグリシジルオキシスチレン、3,5-ジグリシジルオキシスチレン、2,6-ジグリシジルオキシスチレン、5-ビニルピロガロールトリグリシジルエーテル、4-ビニルピロガロールトリグリシジルエーテル、ビニルフロログリシノールトリグリシジルエーテル、2,3-ジヒドロキシメチルスチレンジグリシジルエーテル、3,4-ジヒドロキシメチルスチレンジグリシジルエーテル、2,4-ジヒドロキシメチルスチレンジグリシジルエーテル、3,5-ジヒドロキシメチルスチレンジグリシジルエーテル、2,6-ジヒドロキシメチルスチレンジグリシジルエーテル、2,3,4-トリヒドロキシメチルスチレントリグリシジルエーテル、1,3,5-トリヒドロキシメチルスチレントリグリシジルエーテル、アリルグリシジルエーテル、3,4-エポキシビニルシクロヘキサン、ジ(β-メチル)グリシジルマレート、ジ(β-メチル)グリシジルフマレート等のエチレン性不飽和結合とエポキシ基とを含む単量体等が挙げられる。
(2)カルボキシル基含有不飽和単量体
 (メタ)アクリル酸、クロトン酸、ケイ皮酸、イタコン酸、マレイン酸、フマル酸等の不飽和カルボン酸;イタコン酸モノブチル等のイタコン酸モノC1~C8アルキルエステル;マレイン酸モノブチル等のマレイン酸モノC1~C8アルキルエステル;ビニル安息香酸等のビニル基含有芳香族カルボン酸等、及びこれらの塩が挙げられる。
(3)アミド基含有不飽和単量体
 (メタ)アクリルアミド、α-エチル(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジメチル-p-スチレンスルホンアミド、N,N-ジメチルアミノエチル(メタ)アクリルアミド、N,N-ジエチルアミノエチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジエチルアミノプロピル(メタ)アクリルアミド等が挙げられる。
(4)ヒドロキシ基含有不飽和単量体
 2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシ基含有(メタ)アクリル系単量体;ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等のポリアルキレングリコール(メタ)アクリル系単量体;ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル等のヒドロキシアルキルビニルエーテル系単量体;アリルアルコール、2-ヒドロキシエチルアリルエーテル等のヒドロキシ基含有アリル単量体等が挙げられる。
(5)アミノ基含有不飽和単量体
 アリルアミン、N-メチルアリルアミン等のアリルアミン系単量体;p-アミノスチレン等のアミノ基含有スチレン系単量体;2-アミノエチル(メタ)アクリレート、2-(ジメチルアミノ)エチルメタクリレート等のアミノ基含有アクリル系単量体;2-ビニル-4,6-ジアミノ-S-トリアジン等のトリアジン含有単量体等が挙げられる。これらの中でも、1級又は2級アミノ基を有する化合物が好ましい。
(6)チオール(メルカプト)基含有不飽和単量体
 N-(2-メルカプトエチル)アクリルアミド、N-(2-メルカプト-1-カルボキシエチル)アクリルアミド、N-(2-メルカプトエチル)メタクリルアミド、N-(4-メルカプトフェニル)アクリルアミド、N-(7-メルカプトナフチル)アクリルアミド、マレイン酸モノ2-メルカプトエチルアミド、2-メルカプトエチル(メタ)アクリレート、2-メルカプト-1-カルボキシエチル(メタ)アクリレート等のメルカプト基含有(メタ)アクリル系単量体等が挙げられる。
 なお、不飽和単量体Aは、前記官能基を1種含むものでもよく、2種以上含むものであってもよい。また、不飽和単量体Aは、1種単独で又は2種以上組み合わせて用いることができる。
 前記不飽和単量体Aとしては、比較的低い温度領域で安定的に効率よく架橋粒子が得られることや工業的に実用的かつコスト面の観点から、グリシジル(メタ)アクリレート、(β-メチル)グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシル(メタ)アクリレート、アリルグリシジルエーテル、3,4-エポキシビニルシクロヘキサン、ジ(β-メチル)グリシジルマレート、ジ(β-メチル)グリシジルフマレート等のエポキシ基含有単量体、(メタ)アクリル酸等のカルボキシル基含有単量体、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド等のアミド基含有単量体、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート等のポリアルキレングリコール(メタ)アクリレート等のヒドロキシ基含有単量体、p-アミノスチレン、2-アミノエチル(メタ)アクリレート等のアミノ基含有単量体等が好ましい。これらのうち、エポキシ基含有不飽和単量体、カルボキシル基含有不飽和単量体、アミド基含有不飽和単量体、アミノ基含有単量体等がより好ましく、エポキシ基含有不飽和単量体、カルボキシル基含有不飽和単量体、アミド基含有不飽和単量体等が更に好ましく、エポキシ基含有単量体が最も好ましい。
 本発明のポリマー粒子は、前記不飽和単量体Aに由来する繰り返し単位を、全繰り返し単位中5~100モル%含むが、6~80モル%含むことが好ましく、7~50モル%含むことがより好ましく、8~40モル%含むことが更に好ましい。前記不飽和単量体Aに由来する繰り返し単位の含有量がこの範囲であれば、前記不飽和単量体Aに含まれるエポキシ基、カルボキシル基、アミド基、ヒドロキシ基、アミノ基及びチオール基から選ばれる官能基に由来する架橋反応が効率よく進むので、得られた架橋ポリマー粒子に十分な耐熱性、耐薬品性を付与することができる。
 本発明の架橋ポリマー粒子は、前記不飽和単量体Aに由来する繰り返し単位のみを含むものでもよいが、更に、前記不飽和単量体A以外の不飽和単量体(以下、不飽和単量体Bという)に由来する繰り返し単位を含んでもよい。
 前記不飽和単量体Bとしては、スチレン系単量体、(メタ)アクリル酸エステル系単量体、カルボン酸ビニルエステル系単量体、N-ビニル化合物系単量体、オレフィン系単量体、フッ化オレフィン系単量体、共役ジエン系単量体、イオン性官能基含有単量体等が挙げられる。
 スチレン系単量体としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、p-n-ブチルスチレン、p-t-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン、p-メトキシスチレン、p-フェニルスチレン、p-クロロスチレン、3,4-ジクロロスチレン等が挙げられる。
 (メタ)アクリル酸エステル系単量体としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル等の炭化水素基含有(メタ)アクリル系単量体;(メタ)アクリル酸2,2,2-トリフルオロエチル、(メタ)アクリル酸3,3,3-トリフルオロプロピル、(メタ)アクリル酸2-(パーフルオロエチル)エチル、(メタ)アクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、(メタ)アクリル酸2-パーフルオロエチル、(メタ)アクリル酸テトラフルオロプロピル、(メタ)アクリル酸パーフルオロメチル、(メタ)アクリル酸1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル、(メタ)アクリル酸2-パーフルオロメチル-2-パーフルオロエチルメチル、(メタ)アクリル酸2-(パーフルオロヘキシル)エチル、(メタ)アクリル酸2-(パーフルオロデシル)エチル、(メタ)アクリル酸2-(パーフルオロヘキサデシル)エチル等のフッ素含有(メタ)アクリル系単量体;アクリル酸N-プロピルアミノエチル、(メタ)アクリル酸N-エチルアミノプロピル、(メタ)アクリル酸N-フェニルアミノエチル、(メタ)アクリル酸N-シクロヘキシルアミノエチル等のアルキルアミノ基含有(メタ)アクリル系単量体;γ-(メタクリロイルオキシプロピル)トリメトキシシラン、γ-(メタクリロイルオキシプロピル)ジメトキシメチルシラン等のケイ素含有(メタ)アクリル系単量体;(ポリ)エチレングリコールモノ(メタ)アクリレート、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸3-メトキシブチル等のアルコキシ基含有(メタ)アクリル系単量体;(ポリ)プロピレングリコールモノ(メタ)アクリレート等の(ポリ)アルキレングリコール(メタ)アクリル系単量体;メトキシ(ポリ)エチレングリコールモノ(メタ)アクリレート、メトキシ(ポリ)プロピレングリコールモノ(メタ)アクリレート等のアルコキシ(ポリ)アルキレングリコール(メタ)アクリル系単量体;(メタ)アクリル酸2-クロロエチル、α-クロロ(メタ)アクリル酸メチル等が挙げられる。
 カルボン酸ビニルエステル系単量体としては、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、酪酸ビニル、ギ酸ビニル、バレリン酸ビニル、ピバリン酸ビニル等が挙げられる。
 N-ビニル化合物系単量体としては、N-ビニルピロール、N-ビニルカルバゾール、N-ビニルインドール、N-ビニルピロリドン等が挙げられる。
 オレフィン系単量体としては、エチレン、プロピレン等が挙げられる。フッ化オレフィン系単量体としては、フッ化ビニル、フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン等が挙げられる。共役ジエン系単量体としては、ブタジエン、イソプレン等が挙げられる。
 イオン性官能基含有単量体としては、スルホン酸基、リン酸基、フェノール性ヒドロキシ基等のアニオン性官能基(例えば、p-スチレンスルホン酸ナトリウム等)又はアミノ基、イミダゾール基、ピリジン基、アミジノ基等のカチオン性官能基を有するものが挙げられる。
 また、前記不飽和単量体Bとして、アルキレンオキサイド基、カルボニル基、エーテル基、シアノ基、イソシアネート基、カルボジイミド基、オキサゾリン基等を有する不飽和単量体も使用することができる。
 カルボニル基含有単量体としては、ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトン等のビニル基含有ケトン等が挙げられる。
 エーテル基含有単量体としては、ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテル等のビニル基含有エーテル系単量体が挙げられる。
 シアノ基含有単量体としては、アクリロニトリル、メタクリロニトリル、ヘキセンニトリル、4-ペンテンニトリル、p-シアノスチレン等が挙げられる。
 不飽和単量体Bは、1種単独で又は2種以上組み合わせて用いることができる。
 これらの中でも、前記不飽和単量体Bとしては、スチレン系単量体、(メタ)アクリル酸エステル系単量体、カルボン酸ビニルエステル系単量体等が特に好ましい。
 前記不飽和単量体Bに由来する繰り返し単位は、全繰り返し単位中0~95モル%含むが、20~94モル%含むことが好ましく、50~93モル%含むことがより好ましく、60~92モル%含むことが更に好ましい。
 本発明の架橋ポリマー粒子は、架橋効果が優れる点を考慮すると、不飽和単量体Aとしてエポキシ基含有単量体、必要に応じてカルボキシル基含有単量体又はアミド基含有単量体を用い、及び不飽和単量体Bとしてスチレン系単量体、(メタ)アクリル酸エステル系単量体及びカルボン酸ビニルエステル系単量体より選ばれる少なくとも1種を用いて合成されるものであることが好ましい。
 本発明の架橋ポリマー粒子は、粒子表面に微細な凹凸を有しているもの、多孔質であるもの等、比表面積が比較的大きくなる特徴を有していることが好ましい。特に、多孔質であることが好ましい。
 本発明の架橋ポリマー粒子の比表面積は、次式を満たすものであることが好ましい。
  SB/SD≧1.2
(式中、SBは各粒子の実際の比表面積を意味し、SDは各粒子の体積平均粒子径から算出される真球状粒子の理論比表面積を意味する。)
 SB/SDは、好ましくは1.5以上であり、より好ましくは1.8以上であり、最良は2.0以上である。このように比表面積が大きいため、架橋反応時に効率よく反応が進行する。
 また、本発明の架橋ポリマー粒子の実際の比表面積SBは、特に限定されないが、0.1~30m2/gが好ましく、0.5~20m2/gがより好ましく、1~10m2/gが更に好ましい。なお、比表面積SBは、窒素ガス吸着法により測定した値である。
 本発明の架橋ポリマー粒子は、吸水量又は吸油量が粒子100gあたり50mL以上であり、水系、油系の少なくとも一方(又は双方)に親和性を有する粒子であることが好ましい。前記吸水量又は吸油量は、粒子100gあたり80mL以上がより好ましく、粒子100gあたり100mL以上が更に好ましく、100gあたり120mL以上が最良である。
 粒子を構成するポリマーの分子量としては、特に限定されず、通常、重量平均分子量で、1,000~3,000,000程度である。
 本発明の架橋ポリマー粒子は、耐熱性に優れている。具体的には、その融点が100℃以上であることが好ましく、120℃以上がより好ましく、150℃以上が更に好ましく、200℃以上が最良である。なお、更に使用用途や目的によっては250℃以上の架橋ポリマー粒子を作製することも可能である。
 本発明の架橋ポリマー粒子は、耐薬品性に優れていることも大きな特徴である。具体的には、水、アルコール類、炭化水素類、酢酸エステル類、ケトン類、エーテル類等、汎用的に工業用途で使用される水又は有機溶媒に室温で溶解しにくいものである。本発明において耐薬品性とは、本発明の架橋ポリマー粒子を、エタノール、トルエン、アセトン、酢酸エチル、メチルエチルケトン、ジメチルホルムアミド及びジプロピレングリコールから選ばれる少なくとも1種の溶媒に添加して27℃で30分攪拌したとき、重量減少率が10質量%以下であることを意味する。
 本発明の架橋ポリマー粒子は耐熱性、耐薬品性を持ち合わせているが、耐熱薬品性も有していることが大きな特徴である。本発明において耐熱薬品性とは、本発明の架橋ポリマー粒子を、エタノール、トルエン、酢酸エチル、メチルエチルケトン、ジメチルホルムアミド及びジプロピレングリコールから選ばれる少なくとも1種の溶媒に添加して70℃で30分攪拌したとき、重量減少率が10質量%以下であることを意味する。これらの溶媒のうち、好ましくは前述した2種以上、更に好ましくは3種以上、最良はすべての溶媒に対して、耐熱薬品性を有していることが好ましい。これによって、多くの分野において応用展開が可能となる。
[楕円状、針状又は棒状架橋ポリマー粒子の製造方法]
 本発明の架橋ポリマー粒子は、水、親水性有機溶媒及び疎水性有機溶媒の混合溶媒、高分子安定剤、重合開始剤及び前記不飽和単量体を含む合成溶液を加熱し、少なくとも加熱開始後に合成溶液のpHを5以下又は9以上に調整して溶液重合を行うことで製造することができる。合成溶液のpHを5以下又は9以上に調整した後は、反応が終了するまでpHを5以下又は9以上に保つことが好ましい。
 溶液重合法として具体的には、懸濁重合法、乳化重合法、分散重合法、シード重合法及びこれらに準ずる複合化した方法を含むものとする。
 懸濁重合法は、単量体と、単量体に可溶な重合開始剤等とを、これらが難溶な媒体中で機械的に攪拌し、懸濁させた状態で重合反応を進行させてポリマー粒子を析出又は生成させる方法である。
 乳化重合法は、水等の媒体と、この媒体に難溶な単量体と乳化剤(界面活性剤)等とを混合するとともに、媒体に可溶な重合開始剤を加えて重合反応を進行させてポリマー粒子を析出又は生成させる方法である。
 分散重合法は、単量体は溶解するがポリマー化するに従い不溶となる液状媒体において単量体、開始剤、分散安定剤等が媒体に溶解した均一溶液で重合反応を進行させてポリマー粒子を析出又は生成させる方法である。
 シード重合法は、重合反応の際にあらかじめ核となる別の粒子を加え、その粒子表面で重合反応を行う重合法のことである。
 本発明の架橋ポリマー粒子は、これら各種の溶液重合によって得ることができるが、より好ましくは懸濁重合、乳化重合、分散重合又はその組み合わせによる方法がよい。これらの方法によれば、シード重合のように、シード粒子の準備工程を省くことができる。
 pHの調整は、少なくとも加熱開始後に行うが、加熱開始前に行ってもよい。前記合成溶液のpHは、好ましくは0~5又は9~14であり、より好ましくは0~4又は10~14であり、更に好ましくは0~3又は11~14であり、最良は0~2又は12~14である。このように酸性又はアルカリ性側にシフトさせていくと、ラジカル重合と反応基による架橋反応を同一進行させながら架橋粒子を得ることができる。酸性側にシフトさせて反応を進行させた方がより安定的に効率よく重合反応が進行することから、pHは0~5であることが好ましい。
 pHの調整方法としては、例えば、加熱開始後、徐々にpH調整剤を合成溶液に滴下して、pHを酸又はアルカリ側へと変化させることで行うことができる。または、重合開始剤として後述する過硫酸塩を用いると、重合反応中に分解して酸を生じるため、徐々にpHが低下する。この場合は、pH調整剤を加えなくてもよい。
 前記pH調整剤としては、クエン酸、酒石酸、乳酸、グリコール酸、塩酸、硝酸、クエン酸ナトリウム、乳酸ナトリウム、コハク酸、酢酸、酢酸ナトリウム、フマル酸、硫酸、リンゴ酸、リン酸等の酸や、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸アンモニウム、アンモニア、モルホリン、トリエタノールアミン、ジエタノールアミン、ジメチルアミン、ジエチルアミン、トリメチルアミン、トリエチルアミン等のアルカリが挙げられる。
 合成溶液のpHを5以下又は9以上に調整して溶液重合を行うことで目的の楕円形状骨格を形成させつつ架橋反応が促進されるため、凝集物や不純物が少なく、安定して単分散の架橋ポリマー粒子が得られる。
 なお、本発明において、合成溶液のpHは、pH測定器又はpH試験紙を用いて、攪拌している状態の合成溶液のpHを測定することで得られるものである。
 合成用溶媒としては、水、親水性有機溶媒及び疎水性有機溶媒の混合溶媒を使用する。これらの溶媒は、使用する原料等に応じて一般的な溶媒の中から適切なものを選択すればよい。なお、本発明において親水性有機溶媒とは、水との混合液が均一な外観を維持するものを意味し、疎水性有機溶媒とは、1気圧(1.013×105Pa)において、温度20℃で同容量の純水と緩やかにかき混ぜ、流動がおさまった後に当該混合液体が均一な外観を維持できないものを意味する。
 具体的に、使用可能な溶媒としては、例えば、水、イオン交換水、蒸留水、親水性有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、エチレングリコール、プロピレングリコール、ブチレングリコール、ジプロピレングリコール、メチルセロソルブ、エチルセロソルブ、プロピルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、メチルカルビトール、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、アセトン、テトラヒドロフラン、ジメチルホルムアミド、N-メチル-2-ピロリドン、アセトニトリル等が挙げられる。これらは、1種単独で又は2種以上混合して用いることができる。
 疎水性有機溶媒としては、1-ブタノール、2-ブタノール、イソブタノール、t-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、t-ペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、4-メチル-2-ペンタノール、2-エチルブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、2-オクタノール、2-エチル-1-ヘキサノール、ベンジルアルコール、シクロヘキサノール等の高級アルコール類;ブチルセロソルブ等のエーテルアルコール;ポリプロピレングリコール、ポリブチレングリコール等のポリエーテル類;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、プロピオン酸エチル、ブチルカルビトールアセテート等のエステル類;ペンタン、2-メチルブタン、n-ヘキサン、シクロヘキサン、2-メチルペンタン、2,2-ジメチルブタン、2,3-ジメチルブタン、ヘプタン、n-オクタン、イソオクタン、2,2,3-トリメチルペンタン、デカン、ノナン、シクロペンタン、メチルシクロペンタン、メチルシクロヘキサン、エチルシクロヘキサン、p-メンタン、ジシクロヘキシル、ベンゼン、トルエン、キシレン、エチルベンゼン、流動パラフィン、ミネラルオイル、熱媒用オイル等の脂肪族又は芳香族炭化水素;ポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリジフェニルシロキサン、シリコーンオイル等のシロキサン化合物;四塩化炭素、トリクロロエチレン、クロロベンゼン、テトラブロモエタン等のハロゲン化炭化水素等が挙げられる。なお、これら疎水性有機溶媒は、本発明の効果を阻害しない範囲で、炭素、窒素、酸素、水素、ハロゲン等置換された変性化合物、共重合体等の変性されたポリマー化合物を含んでもよい。これらは、1種単独で又は2種以上混合して用いることができる。
 前記疎水性有機溶媒のうち、重合条件下では原料不飽和単量体と反応しない、炭素原子数8個以上の疎水性有機溶媒を使用することが好ましい。このような疎水性有機溶媒を反応系中に共存させることで、生成してくる架橋ポリマー粒子の分散性を向上させることができ、粒子径をより均一に制御することが可能となる。
 前記炭素原子数8個以上の有機化合物は、少なくとも重合を進める温度では液体であり、架橋ポリマー粒子生成に悪影響を及ぼさないものであれば特に限定されないが、融点80℃以下、好ましくは60℃以下、より好ましくは40℃以下、より一層好ましくは30℃以下の有機化合物がよい。このような有機化合物としては、n-オクタン、イソオクタン、2,2,3-トリメチルペンタン、デカン、ノナン、シクロペンタン、メチルシクロペンタン、メチルシクロヘキサン、エチルシクロヘキサン、p-メンタン、ジシクロヘキシル、ベンゼン、トルエン、キシレン、エチルベンゼン、流動パラフィン、ミネラルオイル、熱媒用オイル等の脂肪族又は芳香族炭化水素;ポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリジフェニルシロキサン、シリコーンオイル等のシロキサン化合物;ポリプロピレングリコール、ポリブチレングリコール等のポリエーテル類等が挙げられる。炭素原子数は8個以上であればよいが、得られる粒子の分散安定性を考慮すると、10個以上が好ましく、12個以上がより好ましく、15個以上が最適である。
 更に、前記疎水性有機溶媒の分子量は、200以上が好ましく、300以上がより好ましく、500以上がより一層好ましく、1,000以上が最適である。このように分子量が大きい疎水性有機溶媒を用いることによって分散剤的な役割も果たすため、粒子のくっつきや凝集化を抑え、安定的に単分散かつ粒子径が制御された架橋ポリマー粒子を得ることができる。
 なお、本発明において分子量とは、高分子化合物である場合は重量平均分子量のことを意味する。前記重量平均分子量は、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算測定値である。
 分子量が200以上の疎水性有機溶媒としては、繰り返し単位を有する高分子化合物が好ましい。具体的には、ポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリジフェニルシロキサン、シリコーンオイル等のシロキサン化合物;ポリプロピレングリコール、ポリブチレングリコール等のポリエーテル類;流動パラフィン、熱媒用オイル等の脂肪族又は芳香族炭化水素等が挙げられる。特に、これら高分子化合物は、低分子の状態は水溶性であり高分子化するに従い疎水性を示す高分子化合物や極性基を分子内部に有する単量体を重合することによって得られた疎水性有機溶媒であると更に好ましい。このような極性基を分子内部に有すると、後述する高分子安定剤が溶媒内で均一に分散しやすく一層の粒子安定性に寄与する。前記極性基としては、ヒドロキシ基、エーテル基、カルボニル基等が挙げられる。
 このような好ましい疎水性有機溶媒として具体的には、ポリプロピレングリコール、ポリブチレングリコール等のポリエーテル類、ポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリジフェニルシロキサン、シリコーンオイル等のシロキサン化合物等が挙げられる。
 水、親水性有機溶媒及び疎水性有機溶媒の混合比は、質量比で、99:0.5:0.5~25:55:20が好ましく、98:1:1~35:50:15がより好ましく、97:2:1~45:45:10が更に好ましい。
 このような混合溶媒を用いると、静置した場合に現れる乳化層(下層、水リッチ層)、溶解層(中間層、親水性溶媒リッチ層)及び分離層(上層、疎水性溶媒リッチ層)が共存する状態(ファジー状態)となり、重合反応においてもこのファジー状態の中で前記各層に不飽和単量体が溶け込んだ状態で重合反応が進行するものと推測される。このファジー状態を形成する溶媒系において重合反応を進行させる場合、開始剤によって重合を誘発するとともに熱による溶媒の溶解バランスが崩れ、粒子析出界面の張力の変化に伴い分散状態が安定した状態で、楕円状、針状又は棒状ポリマー粒子が得られるとともに、合成溶液のpHを所定の値とすることで架橋反応が促進されることにより、架橋ポリマー粒子が得られるものと推測される。
 前記高分子安定剤としては、ポリエチレングリコール、ポリヒドロキシスチレン、ポリスチレンスルホン酸、ヒドロキシスチレン-(メタ)アクリル酸エステル共重合体、スチレン-(メタ)アクリル酸エステル共重合体、スチレン-ヒドロキシスチレン-(メタ)アクリル酸エステル共重合体等のポリスチレン誘導体;ポリ(メタ)アクリル酸、ポリ(メタ)アクリルアミド、ポリアクリロニトリル、ポリエチル(メタ)アクリレート、ポリブチル(メタ)アクリレート等のポリ(メタ)アクリル酸誘導体;ポリメチルビニルエーテル、ポリエチルビニルエーテル、ポリブチルビニルエーテル、ポリイソブチルビニルエーテル、ポリヘキシルビニルエーテル等のポリエーテル類及びその誘導体;セルロース、メチルセルロース、酢酸セルロース、硝酸セルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース等のセルロース誘導体;ポリビニルアルコール、ポリビニルブチラール、ポリビニルホルマール、ポリ酢酸ビニル等のポリ酢酸ビニル誘導体;ポリビニルピリジン、ポリビニルピロリドン、ポリエチレンイミン、ポリ-2-メチル-2-オキサゾリン等の含窒素ポリマー誘導体;ポリ塩化ビニル、ポリ塩化ビニリデン等のポリハロゲン化ビニル誘導体等の各種疎水性又は親水性の安定剤が挙げられる。これらは、1種単独で又は2種以上組み合わせて用いることができる。
 前記高分子安定剤は、原料不飽和単量体に対して、0.01~50質量%の適切な量で配合することが好ましい。
 前記重合開始剤としては、公知の種々の重合開始剤を用いることができ、例えば、水溶性重合開始剤としては、過硫酸アンモニウム、過硫酸ナトリウム、過流酸カリウム等の過硫酸塩;2,2'-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2'-アゾビス(2-アミジノプロパン)二塩酸塩、2,2'-アゾビス(2-メチル-N-フェニルプロピオンアミジン)二塩酸塩、2,2'-アゾビス[N-(4-クロロフェニル)-2-メチルプロピオンアミジン]二塩酸塩、2,2'-アゾビス[N-(4-ヒドロキシフェニル)-2-メチルプロピオンアミジン]二塩酸塩、2,2'-アゾビス[N-(4-アミノ-フェニル)-2-メチルプロピオンアミジン]四塩酸塩、2,2'-アゾビス[2-メチル-N(フェニルメチル)プロピオンアミジン]二塩酸塩、2,2'-アゾビス[2-メチル-N-2-プロペニルプロピオンアミジン]二塩酸塩、2,2'-アゾビス[N-(2-ヒドロキシエチル)-2-メチルプロピオンアミジン]二塩酸塩、2,2'-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2'-アゾビス[2-(4,5,6,7-テトラヒドロ-1H-1,3-ジアゼピン-2-イル)プロパン]二塩酸塩、2,2'-アゾビス[2-(3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]二塩酸塩、2,2'-アゾビス[2-(5-ヒドロキシ-3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]二塩酸塩、2,2'-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}二塩酸塩、2,2'-アゾビス-2-シアノプロパン-1-スルホン酸二ナトリウム塩、4,4'-アゾビス(4-シアノペンタン酸)ナトリウム塩等のアゾ系開始剤等の水溶性又はイオン性の重合開始剤が挙げられる。
 一方、油性開始剤としては、過酸化ベンゾイル、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等の過酸化物;アゾビスイソブチロニトリル、アゾビスメチルブチロニトリル、アゾビスイソバレロニトリル、2,2'-アゾビス(イソ酪酸ジメチル)、2,2'-アゾビス(N-ブチル-2-メチルプロピオンアミド)、4,4'-アゾビス(4-シアノペンタン酸)、2,2'-アゾビス(2-アミジノプロパン)ジヒドロクロライド、2,2'-アゾビス(N,N'-ジメチレンイソブチルアミジン)ジヒドロクロライド等のアゾ系化合物等の油溶性重合開始剤が挙げられる。
 これらの重合開始剤は、1種単独で又は2種以上混合して用いることができる。前記ラジカル重合開始剤の配合量は、通常、原料不飽和単量体100質量部に対して、0.01~50質量部であることが好ましい。
 これらのうち、過流酸塩等の開始剤を用いると、ラジカル開始剤として機能するだけでなく、加水分解等により酸が生じ、別途pH調整剤を添加しなくても合成溶液のpHを調整することができる。好ましい添加量としては5~30質量%である。
 架橋ポリマー粒子に表面の微細な凹凸、多孔質性、大きな比表面積といった特徴を持たせることは、水、親水性有機溶媒及び疎水性有機溶媒の成分、組成を適宜調整することで可能である。これによって、粒子表面及び内部を適度に改質させることができる。
 本発明においては、以上のような溶媒組成の調整を行うことで、架橋ポリマー粒子の粒子径やアスペクト比、表面の微細な凹凸の大きさ、多孔質性をより安定的に制御できることから、用途によって吸水性、吸油性等の諸性能をバランスよく制御できることとなる。
 本発明の架橋ポリマー粒子を製造する際には、必要に応じて、乳化剤(界面活性剤)等を、前記原料不飽和単量体に対して、0.01~50質量%の適切な量で配合することもできる。
 乳化剤(界面活性剤)としては、ドデシル硫酸ナトリウム等のアルキル硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、脂肪酸塩、アルキルリン酸塩、アルキルスルホコハク酸塩等のアニオン系乳化剤;アルキルアミン塩、第4級アンモニウム塩、アルキルベタイン、アミンオキサイド等のカチオン系乳化剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレン脂肪酸エステル等のノニオン系乳化剤等が挙げられる。これらは、1種単独で又は2種以上組み合わせて用いることができる。
 乳化剤を添加することにより、架橋ポリマー粒子の長径、短径をコントロールすることができる。更に、常温で固体である乳化剤を1種以上含むことが好ましい。
 なお、重合反応の際に、本発明の架橋ポリマー粒子の特徴を損なわない範囲で、適宜多官能の不飽和単量体を架橋助剤として配合してもよい。耐熱性、耐薬品性用途によっては少量でも相乗効果が得られる場合がある。架橋剤としては、ジビニルベンゼン、ジビニルビフェニル、ジビニルナフタレン等の芳香族ジビニル化合物;(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート等の(ポリ)アルキレングリコール系ジ(メタ)アクリレート;1,6-ヘキサンジオールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、2,4-ジエチル-1,5-ペンタンジオールジ(メタ)アクリレート、ブチルエチルプロパンジオールジ(メタ)アクリレート、3-メチル-1,7-オクタンジオールジ(メタ)アクリレート、2-メチル-1,8-オクタンジオールジ(メタ)アクリレート等のアルカンジオール系ジ(メタ)アクリレート;1,6-ヘキサンジオールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、2,4-ジエチル-1,5-ペンタンジオールジ(メタ)アクリレート、ブチルエチルプロパンジオールジ(メタ)アクリレート、3-メチル-1,7-オクタンジオールジ(メタ)アクリレート、2-メチル-1,8-オクタンジオールジ(メタ)アクリレート等のアルカンジオール系ジ(メタ)アクリレート;グリセリンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセロールアクリロキシジ(メタ)アクリレート、エトキシ化シクロヘキサンジメタノールジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、1,1,1-トリスヒドロキシメチルエタンジ(メタ)アクリレート、1,1,1-トリスヒドロキシメチルエタントリ(メタ)アクリレート、1,1,1-トリスヒドロキシメチルプロパントリ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート等の多官能(メタ)アクリレート;N,N-ジビニルアニリン、ジビニルエーテル、ジビニルスルフィド、ジビニルスルフォン等の化合物が挙げられる。これらは、1種単独で又は2種以上組み合わせて用いることができる。
 合成溶液中における、原料不飽和単量体の含有量は、全合成溶液中1~80質量%とすることが好ましく、より好ましくは5~50質量%、更に好ましくは10~30質量%である。原料不飽和単量体の含有量が80質量%を超えると、凝集物が増え、単分散化した状態で前記物性を有するポリマー粒子を高収率で得ることが困難になることがある。一方、1質量%未満であると、反応が完結するまでに長時間を要し、また工業的観点から実用的ではない。
 重合時の反応温度は、使用する溶媒の種類によっても変わるものであるため一概には規定できないが、通常、10~200℃程度であり、好ましくは30~130℃、より好ましくは40~90℃である。
 また、反応時間は、目的とする反応がほぼ完結するのに要する時間であれば特に限定されず、不飽和単量体の種類及びその配合量、溶液の粘度及びその濃度、目的の粒子径等に大きく左右されるが、例えば、40~90℃の場合、1~72時間、好ましくは2~24時間程度である。
 また、重合反応の際に、得られる粒子の用途等に応じて、触媒(反応促進剤)を配合することができる。配合量は、粒子物性に悪影響を及ぼさない適切な量、例えば、重合成分の合計質量に対して、0.01~20質量%とすることができる。
 触媒は正触媒であれば特に限定されず、公知のものから適宜選択して使用することができる。具体例としては、ベンジルジメチルアミン、トリエチルアミン、トリブチルアミン、ピリジン、トリフェニルアミン等の3級アミン;トリエチルベンジルアンモニウムクロライド、テトラメチルアンモニウムクロライド等の第4級アンモニウム化合物;トリフェニルホスフィン、トリシクロホスフィン等のホスフィン;ベンジルトリメチルホスホニウムクロライド等のホスホニウム化合物;2-メチルイミダゾール、2-メチル-4-エチルイミダゾール等のイミダゾール化合物;水酸化カリウム、水酸化ナトリウム、水酸化リチウム等のアルカリ金属水酸化物;炭酸ナトリウム、炭酸リチウム等のアルカリ金属炭酸塩;有機酸のアルカリ金属塩;三塩化ホウ素、三フッ化ホウ素、四塩化スズ、四塩化チタン等のルイス酸性を示すハロゲン化物又はその錯塩等の触媒が挙げられる。これらは、1種単独で又は2種以上組み合わせて用いることができる。
 また、重合反応の際に、得られる架橋ポリマー粒子の大きさ、形状、品質等を調整する目的で、水又はその他の極性溶媒に溶解し得る、陽イオンと陰イオンとに電離してその溶液が電気伝導性を示す化合物を添加することも可能である。
 このような化合物の具体例としては、塩類、無機酸、無機塩基、有機酸、有機塩基、イオン液体等が挙げられる。配合量は、粒子物性に悪影響を及ぼさない適切な量、例えば、重合成分の合計質量に対して、0.01~80質量%とすることができる。
 不飽和単量体、高分子安定剤、溶媒の種類及び量比、並びに必要に応じて用いられる分散剤や乳化剤の量比を変えることで、単分散の状態でより安定して粒子径やアスペクト比、形状等の異なる架橋ポリマー粒子を製造することができる。
[楕円状、針状又は棒状架橋ポリマー粒子の用途]
 本発明の架橋ポリマー粒子は、優れた耐熱性、耐薬品性を有しているので、プラスチック、容器、塗料、塗膜、繊維、建材等の高分子成形品に用いることができる。また、UV散乱性にも効果があることから、UVに弱い内容物等を保護するため、例えば、フィルタ、包装材料、容器、塗料、塗膜、インク、繊維、建材、記録媒体、画像表示装置、太陽電池カバーに用いることができ、光に不安定な化合物の分解を抑制することもできる。
 また、本発明の架橋ポリマー粒子は、従来の球状と比べて成形品の強度を上げることができる。そのため粒子を高充填しても成形品の強度を維持することができることから光学特性を利用した光拡散板や光拡散シートや焼成空孔化成形物への応用も可能である。
 本発明の架橋ポリマー粒子は、水、親水性有機溶媒、疎水性有機溶媒又はこれらの混合溶媒に分散させ、分散液として使用できる。ここで、親水性有機溶媒及び疎水性有機溶媒としては、ポリマー粒子の製造方法において例示したものと同様のものが挙げられる。
 本発明の架橋ポリマー粒子は、液体、塗膜、フィルム、板材、紙等の成型品への添加剤として利用することができる。本発明の架橋ポリマー粒子含有組成物は、光散乱剤や光学フィルタ材料、着色剤、化粧品、吸収剤、吸着剤、インク、接着剤、電磁波シールド材、蛍光センサー、生体マーカー、記録材料、記録素子、偏光材料、薬物送達システム(DDS)用薬物保持体、バイオセンサー、DNAチップ、検査薬、焼成空孔化成形物等に広く利用することができる。
 また、本発明の架橋ポリマー粒子を前駆体に混入させた上で、硬化、炭化、焼結等の焼成処理を施すことにより、粒子形状の孔をもつ焼成空孔化成形物を製造することもできる。
 更に、窓ガラス製品やカーテン、壁材等のインテリア製品等によって室内、及び車内等へ入射する光又はUVを遮蔽することは、人体の日焼け及び人体への悪影響を防ぐばかりでなく、室内や車内の装飾品等の劣化を防ぐことができるという点でも有用となる。
 本発明の架橋ポリマー粒子は、化粧品用添加剤として好適である。本発明の架橋ポリマー粒子本来の軽量性、光散乱性、触感性、流動特性、溶液分散性等を保持しつつ、今まで添加することが困難であった熱成形や有機溶媒を多く使用する用途へ展開が可能となる。本発明の架橋ポリマー粒子は、独特の形状から一般の球状とは異なる付着力を有しており、例えばファンデーション等の成形体の固着力、塗布後の保持力を向上させる効果がある。更に、その光学特性によって肌を明るく見せ、ぼかし効果によりカバー力を向上できる。また、形状特有のすべり性によって、肌の上でののびに優れ、更にキメの溝を細かく埋めることで、シワや毛穴を目立たなくしたり、製品全体の流れ性を自由にコントロールしたりすることができる。また、付着力、保持力を利用して製品全体のポリマー添加量を多くすることができ、従来に無い化粧効果を見出すことができる。好ましい添加量としては、製品配合量に対して0.1~50質量%であり、好ましくは0.5~30質量%である。UV散乱効果、ぼかし効果等の光散乱性、流動性、成形性、付着向上、仕上り感等用途/目的に応じて適宜調整することができる。本発明者らの検討では化粧品用添加剤としては、1~20質量%が特に好ましい。なお、市販の粒子と適宜調整し組み合わせて使用してもよい。
 特に、効果が高い化粧品として、具体的には、スキンケア製品、頭髪製品、制汗剤製品、メイクアップ製品、UV防御製品、香料製品等であってよい。例えば、乳液、クリーム、ローション、カラミンローション、サンスクリーン剤、化粧下地料、サンタン剤、アフターシェーブローション、プレシェーブローション、パック料、クレンジング料、洗顔料、アクネ対策化粧料、エッセンス等の基礎化粧料、ファンデーション、白粉、マスカラ、アイシャドウ、アイライナー、アイブロー、チーク、ネイルカラー、リップクリーム、口紅等のメイクアップ化粧料、シャンプー、リンス、コンディショナー、ヘアカラー、ヘアトニック、セット剤、ボディーパウダー、育毛剤、デオドラント、脱毛剤、石鹸、ボディーシャンプー、入浴剤、ハンドソープ、香水等が挙げられる。また、製品の形態についても特に限定は無く、液状、乳液状、クリーム状、固形状、ペースト状、ゲル状、粉末状、多層状、ムース状、スプレー状等であってよい。これら化粧品の添加剤として有用な効果が期待できる。
 本発明の架橋ポリマー粒子は、スクリーン印刷、オフセット印刷、プロセス印刷、グラビア印刷、タンポ印刷、コーター、インクジェット等に用いられる印刷インク用添加剤、マーキングペン用、ボールペン用、万年筆用、筆ペン用、マジック等の筆記具インク用添加剤、クレヨン、絵の具、消しゴム等の文房具類の添加剤として利用できる。
 本発明の架橋ポリマー粒子は、刷毛塗り、スプレー塗装、静電塗装、電着塗装、流し塗り、ローラー塗り、浸漬塗装等に用いられる塗料用添加剤として好適である。例えば、自動車、電車、ヘリコプター、船、自転車、雪上車、ロープウェイ、リフト、フォバークラフト、自動二輪車等の輸送用機器、サッシュ、シャッター、貯水タンク、ドア、バルコニー、建築用外板パネル、屋根材、階段、天窓、コンクリート塀等の建築用部材、建築物屋内外の外壁や内装、ガードレール、歩道橋、防音壁、標識、高速道路側壁、鉄道高架橋、橋梁等の道路部材、タンク、パイプ、塔、煙突等のプラント部材、ビニールハウス、温室、サイロ、農業用シート等の農業用設備、電柱、送電鉄塔、パラボラアンテナ等の通信用設備、電気配線ボックス、照明器具、エアコン屋外器、洗濯機、冷蔵庫、電子レンジ等の電気機器、及びそのカバー、モニュメント、墓石、舗装材、風防シート、防水シート、建築用養生シート等の物品に用いられる塗料用添加剤として好適である。
 塗料の形態としては溶剤型塗料のほかに、水分散型塗料、非水分散型塗料、粉体塗料、電着型塗料等、必要に応じて適宜選択することができる。
 以下、合成例、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されない。なお、各実施例、比較例における評価項目は下記手法にて評価した。
(1)ポリマー粒子のアスペクト比
 走査電子顕微鏡((株)日立ハイテクノロジーズ製S-4800、以下、SEMという)を用い、測定可能な倍率(300~30,000倍)で写真を撮影し、得られた楕円状、針状又は棒状架橋ポリマー粒子を二次元化した状態(なお、通常、楕円状、針状又は棒状架橋ポリマー粒子は長軸方向を水平にした状態を保つ。)で、ランダムに100個の粒子を抽出して、各粒子の長径(L)及び短径(D)を測定し、アスペクト比(L/D)を算出し、平均アスペクト比(PAV)を算出した。
 粒子の平均長径(LAV)及び平均短径(DAV)も同様に、ランダム抽出した100個の粒子について、長径(L)及び短径(D)を測定して算出した。
(2)ポリマー粒子の体積平均粒子径(MV)
 MICROTRACK MT3000(日機装(株)製)を用いて測定した。
(3)比表面積(SB)
 自動比表面積細孔分布測定装置(BELSORP-max(日本ベル(株)製))を用い、窒素ガス吸着法により測定した。
(4)理論比表面積(SD)
 楕円状、針状又は棒状架橋ポリマー粒子の体積平均粒子径を2r(m)、その半径をr(m)、その密度をG(g/m3)とする。このとき、半径r(m)の真球状粒子の表面積S'(m2)、体積V(m3)は、それぞれ次式で表される。
   半径r(m)の真球状粒子の表面積:S'(m2)=4πr2
   半径r(m)の真球状粒子の体積:V(m3)=4πr3/3
 この場合、粒子1g当たりに含まれる粒子の個数Nは次式で表される。
   粒子1g当たりに含まれる粒子の個数:N=1/VG
 したがって、楕円状針状又は棒状ポリマー粒子から算出される真球状粒子の理論比表面積SD(m2/g)は次式で表される。
   SD(m2/g)=S'N=S'/VG=3/rG
(5)吸水量の測定
 乾燥させたポリマー粒子粉を約2質量%の濃度で水に分散させ、一日静置後、再度分散させ、ガラスフィルターを用いて、減圧濾過を行った。濾過したガラスフィルターを、遠心分離機((株)日立ハイテクノロジーズ製CR-20GII)を用いて、3,000rpmで30分間遠心を行った後、得られたポリマー粒子粉を乾燥し、乾燥させる前後の粉体の質量を測定し、その差を吸水した水分の量とした。
(6)吸油量の測定
 JIS K 5101に記される、煮あまに油法に準拠して測定した。
(7)pHの測定
 pH試験紙(Whatman社製)を用いて、色の変化を目視で判断した。
[1]架橋ポリマー粒子の合成
[実施例1]
 2,000mLフラスコに、下記に示した化合物を一括で仕込み、合成溶液を調製した。その後、室温で1時間攪拌を行った。液相は、水系相部分と乳化相部分と油系相部分の各相が交じり合う状態であった。また、pHを測定したところ7であった。次に、窒素気流下でオイルバス温度80℃に設定し、加熱・攪拌(400rpm)を開始し、8時間加熱・攪拌(400rpm)して、メタクリル酸メチル-メタクリル酸グリシジル共重合体粒子分散液を得た。なお、途中内温が40℃になった時から、合成溶液にpH調整剤として1mol/L塩酸をpHが1となるまで15分かけて滴下した。反応終了時のpHも1であった。
  水                    1054.0g
  メタノール                 186.0g
  ポリプロピレングリコール(♯1000)    23.3g
  ポリビニルピロリドン(K-15)       28.0g
  ソルビタンモノオレエート            7.2g
  アゾビスイソブチロニトリル          28.6g
  メタクリル酸メチル             306.0g
  メタクリル酸グリシジル            54.0g
 得られた粒子分散液を別途3,000mLのフラスコに移し、合成容器内(フラスコ及び攪拌翼)の付着物を確認したところ、殆ど凝集物等は見られず、綺麗な状態であった。
 次に、別途移した粒子分散液より公知の吸引ろ過設備を使ってメタノールで5回、洗浄-ろ過を繰り返して真空乾燥し、ポリマー粒子A1を得た。ポリマー粒子A1中の各繰り返し単位の組成比(モル比)は、メタクリル酸メチル:メタクリル酸グリシジル=89:11であった。
 得られた粒子100個をランダムに抽出し、SEMにて形状を観察したところ、楕円状、針状又は棒状のポリマー粒子であり、LAVは18.2μmであり、PAVは6.5であった。
 また、異物について確認したが、凝集物やくっつき等の変形物は殆ど見られなかった。
 得られた粒子のSEM写真を図1に示す。
 なお、得られた粒子の一部をフーリエ変換赤外分光光度計((株)島津製作所製FT-IR8200PC)で測定したところ、波数910(1/cm)のエポキシ基に由来するピークが合成前に比べて減少していることを確認した。
[実施例2]
 pH調整剤を1mol/L水酸化ナトリウムに変更し、合成時のpHが12となるように調整した以外は、実施例1と同様の方法でメタクリル酸メチル-メタクリル酸グリシジル共重合体粒子分散液を得た。なお、反応終了時のpHも12であった。
 得られた粒子分散液を別途3,000mLのフラスコに移し、合成容器内(フラスコ及び攪拌翼)の付着物を確認したところ、殆ど凝集物等は見られず、綺麗な状態であった。
 次に、別途移した粒子分散液より公知の吸引ろ過設備を使ってメタノールで5回、洗浄-ろ過を繰り返して真空乾燥し、ポリマー粒子A2を得た。ポリマー粒子A2中の各繰り返し単位の組成比(モル比)は、メタクリル酸メチル:メタクリル酸グリシジル=89:11であった。
 得られた粒子100個をランダムに抽出し、SEMにて形状を観察したところ、楕円状、針状又は棒状のポリマー粒子であり、LAVは16.1μmであり、PAVは8.1であった。
 また、異物について確認したが、凝集物やくっつき等の変形物は殆ど見られなかった。
 なお、得られた粒子の一部をフーリエ変換赤外分光光度計で測定したところ、波数910(1/cm)のエポキシ基に由来するピークが合成前に比べて減少していることを確認した。
[実施例3]
 2,000mLフラスコに、下記に示した化合物を一括で仕込み、合成溶液を調製した。その後、室温で1時間攪拌を行った。液相は、水系相部分と乳化相部分と油系相部分の各相が交じり合う状態であった。次に、窒素気流下でオイルバス温度80℃に設定し、加熱・攪拌(400rpm)を開始し、8時間加熱・攪拌(400rpm)して、スチレン-メタクリル酸-メタクリル酸グリシジル共重合体粒子分散液を得た。なお、合成溶液の加熱開始前のpHは7、加熱開始2時間後のpHは2、反応終了時のpHは1であった。
  水                    1085.0g
  メタノール                 155.0g
  ポリプロピレングリコール(♯2000)    15.1g
  ポリビニルピロリドン(K-15)       25.0g
  ショ糖ラウリル酸エステル            7.2g
  過硫酸アンモニウム              28.8g
  スチレン                  144.0g
  メタクリル酸                144.0g
  メタクリル酸グリシジル            72.0g
 得られた粒子分散液を別途3,000mLのフラスコに移し、合成容器内(フラスコ及び攪拌翼)の付着物を確認したところ、殆ど凝集物等は見られず、綺麗な状態であった。
 次に、別途移した粒子分散液より公知の吸引ろ過設備を使ってメタノールで5回、洗浄-ろ過を繰り返して真空乾燥し、ポリマー粒子A3を得た。ポリマー粒子A3中の各繰り返し単位の組成比(モル比)は、スチレン:メタクリル酸:メタクリル酸グリシジル=37:44:19であった。
 得られた粒子100個をランダムに抽出し、SEMにて形状を観察したところ、楕円状、針状又は棒状のポリマー粒子であり、LAVは31.6μmであり、PAVは10.5であった。
 また、異物について確認したが、凝集物やくっつき等の変形物は殆ど見られなかった。
 なお、得られた粒子の一部をフーリエ変換赤外分光光度計で測定したところ、波数910(1/cm)のエポキシ基に由来するピークが合成前に比べて減少していることを確認した。
[実施例4]
 2,000mLフラスコに、下記に示した化合物を一括で仕込み、合成溶液を調製した。その後、室温で1時間攪拌を行った。液相は、水系相部分と乳化相部分と油系相部分の各相が交じり合う状態であった。次に、窒素気流下でオイルバス温度80℃に設定し、加熱・攪拌(400rpm)を開始し、8時間加熱・攪拌(400rpm)して、スチレン-メタクリル酸グリシジル共重合体粒子分散液を得た。なお、合成溶液の加熱開始前のpHは7、加熱開始2時間後のpHは2、反応終了時のpHは1であった。
  水                     896.0g
  メタノール                 384.0g
  ポリプロピレングリコール(♯1000)    25.5g
  ポリビニルピロリドン(K-30)       10.5g
  ポリエチレンオキシド(M.W. 100,000)      8.0g
  過硫酸アンモニウム              25.7g
  スチレン                  171.0g
  メタクリル酸グリシジル           114.0g
 得られた粒子分散液を別途3,000mLのフラスコに移し、合成容器内(フラスコ及び攪拌翼)の付着物を確認したところ、殆ど凝集物等は見られず、綺麗な状態であった。
 次に、別途移した粒子分散液より公知の吸引ろ過設備を使ってメタノールで5回、洗浄-ろ過を繰り返して真空乾燥し、ポリマー粒子A4を得た。ポリマー粒子A4中の各繰り返し単位の組成比(モル比)は、スチレン:メタクリル酸グリシジル=67:33であった。
 得られた粒子100個をランダムに抽出し、SEMにて形状を観察したところ、楕円状、針状又は棒状のポリマー粒子であり、LAVは12.4μmであり、PAVは8.7であった。
 また、異物について確認したが、凝集物やくっつき等の変形物は殆ど見られなかった。
 なお、得られた粒子の一部をフーリエ変換赤外分光光度計で測定したところ、波数910(1/cm)のエポキシ基に由来するピークが合成前に比べて減少していることを確認した。
[実施例5]
 2,000mLフラスコに、下記に示した化合物を一括で仕込み、合成溶液を調製した。その後、室温で1時間攪拌を行った。液相は、水系相部分と乳化相部分と油系相部分の各相が交じり合う状態であった。また、合成溶液のpHを測定したところ8であった。次に、窒素気流下でオイルバス温度85℃に設定し、加熱・攪拌(400rpm)を開始し、15時間加熱・攪拌(400rpm)して、スチレン-メタクリルアミド-メタクリル酸グリシジル共重合体粒子分散液を得た。なお、途中内温が40℃になった時から、合成溶液にpH調整剤としてトリエチルアミンをpHが12となるまで15分かけて滴下した。反応終了時のpHも12であった。
  水                    1273.0g
  エタノール                  67.0g
  ポリプロピレングリコール(♯3000)    12.0g
  ポリビニルピロリドン(K-15)       25.0g
  ポリエチレングリコール(PEG20000)  12.5g
  ソルビタンモノオレエート           14.5g
  アゾビスイソブチロニトリル          12.6g
  スチレン                  105.0g
  メタクリルアミド               63.0g
  メタクリル酸グリシジル            42.0g
 得られた粒子分散液を別途3,000mLのフラスコに移し、合成容器内(フラスコ及び攪拌翼)の付着物を確認したところ、殆ど凝集物等は見られず、綺麗な状態であった。
 次に、別途移した粒子分散液より公知の吸引ろ過設備を使ってメタノールで5回、洗浄-ろ過を繰り返して真空乾燥し、ポリマー粒子A5を得た。ポリマー粒子A5中の各繰り返し単位の組成比(モル比)は、スチレン:メタクリルアミド:メタクリル酸グリシジル=49:36:15であった。
 得られた粒子100個をランダムに抽出し、SEMにて形状を観察したところ、楕円状、針状又は棒状のポリマー粒子であり、LAVは24.8μmであり、PAVは7.2であった。
 また、異物について確認したが、凝集物やくっつき等の変形物は殆ど見られなかった。
 なお、得られた粒子の一部をフーリエ変換赤外分光光度計で測定したところ、波数910(1/cm)のエポキシ基に由来するピークが合成前に比べて減少していることを確認した。
[実施例6]
 2,000mLフラスコに、下記に示した化合物を一括で仕込み、合成溶液を調製した。その後、室温で1時間攪拌を行った。液相は水系相部分と乳化相部分と油系相部分の各相が交じり合う状態であった。次に窒素気流下でオイルバス温度80℃に設定し、加熱・攪拌(300rpm)を開始し、8時間加熱・攪拌(300rpm)してメタクリル酸メチル-メタクリル酸グリシジル共重合体粒子分散液を得た。なお、合成溶液の加熱開始前のpHは7、加熱開始2時間後のpHは2、反応終了時のpHは1であった。
  水                    1254.0g
  メタノール                  66.0g
  ポリプロピレングリコール(♯1000)    18.0g
  ポリビニルピロリドン(K-15)       25.0g
  ショ糖ラウリン酸エステル            6.5g
  過硫酸アンモニウム              27.1g
  メタクリル酸メチル             255.0g
  メタクリル酸グリシジル            63.9g
 得られた粒子分散液を別途3,000mLのフラスコに移し、合成容器内(フラスコ及び攪拌翼)の付着物を確認したところ、殆ど凝集物等は見られず、綺麗な状態であった。
 次に、別途移した粒子分散液より公知の吸引ろ過設備を使ってメタノールで5回、洗浄-ろ過を繰り返して真空乾燥し、ポリマー粒子A6を得た。ポリマー粒子A6中の各繰り返し単位の組成比(モル比)は、メタクリル酸メチル:メタクリル酸グリシジル=85:15であった。
 得られた粒子100個をランダムに抽出し、SEMにて形状を観察したところ、楕円状、針状又は棒状のポリマー粒子であり、LAVは16.8μmであり、PAVは1.9であった。
 また、異物について確認したが、凝集物やくっつき等の変形物は殆ど見られなかった。
 なお、得られた粒子の一部をフーリエ変換赤外分光光度計で測定したところ、波数910(1/cm)のエポキシ基に由来するピークが合成前に比べて減少していることを確認した。
[比較例1]
 pH調整を行わなかった以外は、実施例1と同じ方法でメタクリル酸メチル-メタクリル酸グリシジル共重合体粒子分散液を得た。なお、合成溶液の加熱開始前のpHは7、加熱開始2時間後のpHは7、反応終了時のpHは7であった。
 得られた粒子分散液を別途3,000mLのフラスコに移し、合成容器内(フラスコ及び攪拌翼)の付着物を確認したところ、フラスコ周り及び攪拌翼に若干ポリマーが析出した凝集物の塊が見られた。
 次に、別途移した粒子分散液より公知の吸引ろ過設備を使ってメタノールで5回、洗浄-ろ過-分級を繰り返して真空乾燥し、ポリマー粒子B1を得た。ポリマー粒子B1中の各繰り返し単位の組成比(モル比)は、メタクリル酸メチル:メタクリル酸グリシジル=89:11であった。
 得られた粒子100個をランダムに抽出し、SEMにて形状を観察したところ、大半が楕円状、針状又は棒状のポリマー粒子であり、LAVは14.5μmであり、PAVは5.5であった。
 なお、得られた粒子の一部をフーリエ変換赤外分光光度計で測定したところ、波数910(1/cm)のエポキシ基に由来するピークは、合成前に比べて変化が無かった。
[比較例2]
 2,000mLフラスコに、下記に示した化合物を各相でそれぞれ溶解した後、水系相及び油系相を混合して仕込み、合成溶液を調製した。その後、合成溶液を1時間攪拌した後、窒素気流下でオイルバス温度80℃、約12時間加熱・攪拌して、メタクリル酸メチル-メタクリル酸グリシジル共重合体粒子分散液を得た。なお、合成溶液の加熱開始前のpHは7、加熱開始2時間後のpHは6、反応終了時のpHは6であった。
  水系相  水                 1280.0g
       ポリビニルピロリドン(K-15)     8.0g
       過硫酸アンモニウム            4.8g
  油系相  トルエン                80.0g
       ポリスチレン(Mw45,000)     16.0g
       メタクリル酸メチル          128.0g
       メタクリル酸グリシジル         32.0g
(ポリスチレン:アルドリッチ製Polystyrene、average Mw ca. 45,000)
 得られた粒子分散液を別途3,000mLのフラスコに移し、合成容器内(フラスコ及び攪拌翼)の付着物を確認したところ、フラスコ周り及び攪拌翼にポリマーが析出した凝集物の塊が見られた。
 次に、別途移した粒子分散液より公知の吸引ろ過設備を使ってメタノールで5回、洗浄-ろ過-分級を繰り返し、真空乾燥し、ポリマー粒子B2を得た。ポリマー粒子B2中の各繰り返し単位の組成比(モル比)は、メタクリル酸メチル:メタクリル酸グリシジル=85:15であった。
 得られた粒子100個をランダムに抽出し、SEMにて形状を観察したところ、大半が楕円状、針状又は棒状のポリマー粒子であり、LAVは21.6μmであり、PAVは5.9であった。
 なお、得られた粒子の一部をフーリエ変換赤外分光光度計で測定したところ、波数910(1/cm)のエポキシ基に由来するピークは、合成前に比べて変化が無かった。
[比較例3]
 2,000mLフラスコに、下記に示した化合物を一括して仕込み、ディスパー分散翼で1,000rpmで懸濁液を調整した。その後、窒素気流下でオイルバス温度80℃、8時間加熱・攪拌し、メタクリル酸メチル-メタクリル酸グリシジル共重合体粒子分散液を得た。
  水                     1325.0g
  メタクリル酸メチル              134.4g
  メタクリル酸グリシジル             33.6g
  ラウリルパーオキサイド              8.3g
  ポリビニルピロリドン(K-30)        17.0g
 得られた粒子分散液を別途3,000mLのフラスコに移した。なお、使用したフラスコ、攪拌翼の付着物を確認したところ、フラスコ周り及び攪拌翼に若干ポリマーが析出した凝集物の塊が見られた。
 次に、別途移した粒子分散液より遠心分離を5回繰り返し分級・洗浄操作を行い、平均粒子径が5μmのポリメタクリル酸メチル単一の球状ポリマー粒子B3を得た。ポリマー粒子B3中の各繰り返し単位の組成比(モル比)は、メタクリル酸メチル:メタクリル酸グリシジル=85:15であった。
 得られた粒子の形状をSEMにて観察したところ、体積平均粒子径が5μm球状のポリマー粒子であった。
 なお、得られた粒子の一部をフーリエ変換赤外分光光度計で測定したところ、波数910(1/cm)のエポキシ基に由来するピークは、合成前に比べて変化が無かった。
 前記実施例1~6、比較例1~3で得られた粒子のMV、LAV、DAV、PAV、粒子成分、形状についてのまとめを表1に示す。
Figure JPOXMLDOC01-appb-T000001
 前記実施例1~6、比較例1~3で得られた粒子のSB、SD、吸水量、吸油量についてのまとめを表2に示す。
Figure JPOXMLDOC01-appb-T000002
[2]耐薬品性試験
 300mLフラスコに、実施例1~6又は比較例1~3で得られた各粒子1gと下記表に記載の溶媒99gとを入れ(1質量%)、27℃で30分間攪拌した後、目視によって粒子の分散状態の確認を行った。
 次に吸引濾過器にて濾過を行い、再度使用溶媒と水で洗い流した後、固形分を乾燥させ得られた粒子をもとに、重量減少率の測定とSEMにて形状確認を行った。
  重量減少率(%)=(1-(試験後の粒子質量)/(試験前の粒子質量))×100
 目視及びSEMによる形状の確認の結果を表3に示す。また、重量減少率を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本結果より、本発明の楕円状、針状又は棒状架橋ポリマー粒子は、耐薬品性に優れていることを確認した。
[3]耐熱性試験
 アルミシャーレに、実施例1~6又は比較例1~3の各粒子0.5gを入れ、乾燥機で表5に記載の温度で2時間熱を加えた後、目視による粒子の溶融を確認した。また、SEMにより形状の確認を行った。それらの評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 本結果より、本発明の楕円状、針状又は棒状架橋ポリマー粒子は、耐熱性に優れていることを確認した。
[4]耐熱薬品性試験
 300mLフラスコに、実施例1~6又は比較例1~3の各粒子1gと下記表に記載の溶媒99gとを入れ(1質量%)、70℃で30分間攪拌した後、目視による粒子の分散状態の確認を行った。
 次に吸引濾過器にて濾過を行い、再度使用溶媒と水で洗い流した後、固形分を乾燥させ、得られた粒子をもとに、重量減少率の測定とSEMにて形状確認を行った。
  重量減少率(%)=(1-(試験後の粒子質量)/(試験前の粒子質量))×100
 目視及びSEMによる形状の確認の結果を表6に示す。また、重量減少率を表7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 本結果より、本発明の楕円状、針状又は棒状架橋ポリマー粒子は、耐熱薬品性に優れていることを確認した。
[5]光学測定シートの作製及びその評価
 アクリル樹脂成型用樹脂(旭化成ケミカルズ(株)製:デルペット80NB)に、基準となる体積粒子径が類似するポリマー粒子A1(実施例1)、ポリマー粒子B1(比較例1)又はポリマー粒子B3(比較例3)を各15質量%拡散剤として加え、マスターペレット化、乾燥工程を経てから二軸の押出機を用いて230℃で溶融混練し、Tダイを用いて膜厚2mmとなる評価シートを作製した。得られたシートをそれぞれ光学シート1~3とした。
[実施例7、比較例4、5]
 得られた光学シート1~3について、目視にて光学シートの外観、及びSEMにて粒子形状を確認した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
[実施例8、比較例6、7]
 ヘーズメーターNDH-5000(日本電色工業(株)製)を用いて、光学シート1~3について、全光線透過率、ヘーズの測定を行った。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 本発明の楕円状、針状又は棒状架橋ポリマー粒子を用いて耐熱性を有する光拡散シートを得られることが確認された。
[6]反射散乱性の評価
[実施例9、比較例8]
 体積粒子径が類似するポリマー粒子A2(実施例9)又はポリマー粒子B3(比較例8)を黒色の合成皮革(5cm×8cm)に、化粧用パフでパッティングしながら均一に塗布し(0.24mg/cm2)、評価用シートを作製した。次いで、自動変角光度計((株)村上色彩技術研究所製Gonio Photometer GP-200)を用い、評価用シートに入射角45°で光を一定量照射し、反射光の光散乱分布を測定した。結果を図2に示す。
 図2に示した結果より、本発明の楕円状、針状又は棒状架橋ポリマー粒子は、反射散乱性に優れていることから、楕円状特有の光学特性を維持できていることを確認した。
[7]紫外線透過光の評価
[実施例10、比較例9]
 体積粒子径が類似するポリマー粒子A2(実施例10)又はポリマー粒子B3(比較例9)と、バインダー樹脂((株)クラレ製PVA樹脂)及び精製水とを下記表10に示す割合で混合して組成物を調製し、厚み100μmのPETフィルム(東洋紡(株)製E-5000)の片面に市販のバーコーターを使用しコーティングした。コーティング後、乾燥機を60℃に設定し20分間熱風乾燥を行い、光学シート4、5を作製した。光学シート4、5の塗工層の厚みは、40μmであった。
Figure JPOXMLDOC01-appb-T000010
 光学シート4、5について、紫外可視分光光度計(日本分光(株)製UV-2450)を用いて、波長320nm、360nm、400nmにおけるUVの透過光分析を行った。結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 紫外線透過光分析の結果、本発明の楕円状、針状又は棒状架橋ポリマー粒子は、UV領域(特にUV-A)において透過光が低下していることから明らかにUV散乱効果が高く、楕円状特有の光学特性を維持できていることを確認した。
 反射散乱性及び紫外線透過光の評価結果より、本発明の楕円状、針状又は棒状架橋ポリマー粒子は、可視光、UV光の領域において散乱効果が高いことから、隠蔽性も高いことが確認された。
[8]官能試験及び付着力評価
[実施例11、比較例10]
 体積粒子径が類似するポリマー粒子A2(実施例11)、ポリマー粒子B3(比較例10)について、下記に示す方法で評価した。結果を表12に示す。
<評価項目>
・肌触り:各粒子を皮膚上に伸ばした際の感触を評価。
・滑り性:黒色合皮上に各粒子を1gのせて、指で伸ばした際の長さを評価。
・粒子付着力:黒色合皮上に各粒子を1gのせて、パフで均等に伸ばした後、合皮を3回たたき、粒子の残存量をデジタルマイクロスコープ(VHX200、キーエンス社製)で観察し評価。
<評価詳細>
肌触り:○感触を感じ、塗心地感が良い。△触感を感じるがふつう。×触感を感じるが不快。
滑り性:○よく伸びる。△ふつう。×伸びない。
粒子付着力:○殆ど付着状態を維持。△部分的に剥がれ散見。×大部分が剥がれ落ちた。
Figure JPOXMLDOC01-appb-T000012
 前記結果より、実施例11は肌触り、滑り性、粒子付着力の特性に優れていることから楕円形状ならではの特徴が発揮されることが確認された。
 以上のことより、本発明により得られる楕円状、針状又は棒状架橋ポリマー粒子は、耐熱性、耐薬品性を有しているとともに、従来有している楕円状から得られる特性を十分保持しているため、耐熱性、耐薬品性及び耐熱薬品性が必要とされる用途への応用展開が可能であり、塗料、インク、成形品、化粧品、光拡散シート等の光学材料、焼成空孔化成形物等の用途へ有効的に活用できることが期待される。

Claims (18)

  1.  エポキシ基、カルボキシル基、アミド基、ヒドロキシ基、アミノ基及びチオール基から選ばれる官能基を有する不飽和単量体に由来する繰り返し単位を全繰り返し単位中5~100モル%含む楕円状、針状又は棒状架橋ポリマー粒子であって、
    (1)長軸方向と直交する方向から光を照射して得られる投影二次元図の長径(L)の平均(LAV)が0.1~80μm、
    (2)長軸方向と直交する方向から光を照射して得られる投影二次元図の短径(D)の平均(DAV)が0.05~40μm、及び
    (3)前記長径(L)と短径(D)とから算出されるアスペクト比(L/D)の平均(PAV)が1.5~30
    である楕円状、針状又は棒状架橋ポリマー粒子。
  2.  前記官能基が、エポキシ基、カルボキシル基、アミノ基又はアミド基である請求項1記載の楕円状、針状又は棒状架橋ポリマー粒子。
  3.  更に、スチレン系単量体、(メタ)アクリル酸エステル系単量体及びカルボン酸ビニルエステル系単量体より選ばれる少なくとも1種の不飽和単量体に由来する繰り返し単位を含む請求項1又は2記載の楕円状、針状又は棒状架橋ポリマー粒子。
  4.  楕円状、針状又は棒状架橋ポリマー粒子の実際の比表面積SB及び体積平均粒子径から算出される真球状粒子の理論比表面積SDの比(SB/SD)が、SB/SD≧1.2を満たす請求項1~3のいずれか1項記載の楕円状、針状又は棒状架橋ポリマー粒子。
  5.  前記架橋ポリマー粒子をエタノール、トルエン、酢酸エチル、メチルエチルケトン、ジメチルホルムアミド及びジプロピレングリコールから選ばれる少なくとも1種の溶媒に添加して27℃で30分間攪拌したとき、重量減少率が10質量%以下である請求項1~4のいずれか1項記載の楕円状、針状又は棒状架橋ポリマー粒子。
  6.  前記架橋ポリマー粒子をエタノール、トルエン、酢酸エチル、メチルエチルケトン、ジメチルホルムアミド及びジプロピレングリコールから選ばれる少なくとも1種の溶媒に添加して70℃で30分間加熱攪拌したとき、重量減少率が10質量%以下であることを特徴とする請求項1~5のいずれか1項記載の楕円状、針状又は棒状架橋ポリマー粒子。
  7.  請求項1~6のいずれか1項記載の楕円状、針状又は棒状架橋ポリマー粒子を用いてなる樹脂組成物。
  8.  請求項1~6のいずれか1項記載の楕円状、針状又は棒状架橋ポリマー粒子を用いてなる光拡散シート。
  9.  請求項1~6のいずれか1項記載の楕円状、針状又は棒状架橋ポリマー粒子を用いてなる塗料組成物。
  10.  請求項1~6のいずれか1項記載の楕円状、針状又は棒状架橋ポリマー粒子を用いてなるインク組成物。
  11.  請求項1~6のいずれか1項記載の楕円状、針状又は棒状架橋ポリマー粒子を用いてなる化粧料。
  12.  請求項1~6のいずれか1項記載の楕円状、針状又は棒状架橋ポリマー粒子を用いてなる電気・電子工業材料。
  13.  請求項1~6のいずれか1項記載の楕円状、針状又は棒状架橋ポリマー粒子を用いてなる接着剤。
  14.  請求項1~6のいずれか1項記載の楕円状、針状又は棒状架橋ポリマー粒子を用いて得られる焼成空孔化成形物。
  15.  請求項1~6のいずれか1項記載の楕円状、針状又は棒状架橋ポリマー粒子を用いてなる医療用検査薬。
  16.  請求項1~6のいずれか1項記載の楕円状、針状又は棒状架橋ポリマー粒子の製造方法であって、
     水、親水性有機溶媒及び疎水性有機溶媒の混合溶媒、高分子安定剤、重合開始剤及び前記不飽和単量体を含む合成溶液を加熱し、少なくとも加熱開始後に合成溶液のpHを5以下又は9以上に調整して溶液重合を行うことを特徴とする楕円状、針状又は棒状架橋ポリマー粒子の製造方法。
  17.  前記水、親水性有機溶媒及び疎水性有機溶媒の混合比が、質量比で、99:0.5:0.5~25:55:20である請求項16記載の楕円状、針状又は棒状架橋ポリマー粒子の製造方法。
  18.  前記疎水性有機溶媒が、分子量が200以上の有機化合物である請求項16又は17記載の楕円状、針状又は棒状架橋ポリマー粒子の製造方法。
PCT/JP2016/063543 2015-05-08 2016-05-02 楕円状、針状又は棒状架橋ポリマー粒子及びその用途 WO2016181876A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/571,907 US20180118867A1 (en) 2015-05-08 2016-05-02 Elliptical, needle-shaped, or rod-shaped crosslinked polymer particles, and use thereof
JP2016553487A JP6164376B2 (ja) 2015-05-08 2016-05-02 架橋ポリマー粒子及びその用途
EP16792601.3A EP3296325A4 (en) 2015-05-08 2016-05-02 Elliptical, needle-shaped, or rod-shaped crosslinked polymer particles, and use thereof
CN201680026779.1A CN107614540B (zh) 2015-05-08 2016-05-02 椭圆状、针状或棒状交联聚合物粒子及其用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-095685 2015-05-08
JP2015095685 2015-05-08

Publications (1)

Publication Number Publication Date
WO2016181876A1 true WO2016181876A1 (ja) 2016-11-17

Family

ID=57247996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063543 WO2016181876A1 (ja) 2015-05-08 2016-05-02 楕円状、針状又は棒状架橋ポリマー粒子及びその用途

Country Status (5)

Country Link
US (1) US20180118867A1 (ja)
EP (1) EP3296325A4 (ja)
JP (1) JP6164376B2 (ja)
CN (1) CN107614540B (ja)
WO (1) WO2016181876A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016181878A1 (ja) * 2015-05-08 2018-03-01 日清紡ホールディングス株式会社 楕円状、針状又は棒状ポリマー粒子の製造方法
WO2018155470A1 (ja) 2017-02-22 2018-08-30 日清紡ホールディングス株式会社 皮膚化粧料
WO2022259872A1 (ja) * 2021-06-10 2022-12-15 綜研化学株式会社 重合体粒子およびその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10584193B2 (en) * 2015-05-08 2020-03-10 Nisshinbo Holdings Inc. Flat elliptical polymer particles, and use thereof
JP6617789B2 (ja) * 2018-05-09 2019-12-11 日清紡ホールディングス株式会社 円盤状ポリマー粒子群の製造方法
CN110950989B (zh) * 2019-11-05 2023-01-10 N科研中心私人投资有限公司 用于制备单分散颗粒的方法
CN110835846B (zh) * 2019-12-06 2022-03-29 郑州大学 一种维持线性聚苯乙烯材料原始形貌的交联改性方法
US11434334B2 (en) 2019-12-31 2022-09-06 Industrial Technology Research Institute Composite material and foam prepared from the same
CN114214021B (zh) * 2022-01-14 2023-04-14 宁波惠之星新材料科技股份有限公司 一种用于制备光学胶的原料组合物、光学胶和光学胶膜
CN114805971A (zh) * 2022-04-25 2022-07-29 中山大学 一种高填充动态键交联聚合物磁性复合材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326904A (ja) * 2006-06-06 2007-12-20 Fujifilm Corp 非真球高分子微粒子、その製造方法、該微粒子を含有するインクジェットインク組成物、これを用いた平版印刷版およびその製造方法、該微粒子を含有する電気泳動粒子組成物
JP2008111132A (ja) * 2007-12-11 2008-05-15 Soken Chem & Eng Co Ltd アクリル系アンチブロッキング粒子群の製造法
JP2009235355A (ja) * 2008-03-28 2009-10-15 Nisshinbo Holdings Inc 楕円状または針状ポリマー粒子およびその製造方法
JP2009237507A (ja) * 2008-03-28 2009-10-15 Nisshinbo Holdings Inc 拡散シート
JP2010518208A (ja) * 2007-02-06 2010-05-27 ビーエーエスエフ ソシエタス・ヨーロピア モノマー溶液の液滴の重合による吸水性ポリマー粒子の製造法
JP2015093973A (ja) * 2013-11-14 2015-05-18 日清紡ホールディングス株式会社 紫外線散乱剤及びその用途
JP2016017048A (ja) * 2014-07-08 2016-02-01 日清紡ホールディングス株式会社 スクラブ剤及びその用途

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036453A (ja) * 1996-07-26 1998-02-10 Asahi Chem Ind Co Ltd 押出発泡用スチレンー(メタ)アクリル酸共重合体粒子
JP2005029665A (ja) * 2003-07-10 2005-02-03 Fuji Xerox Co Ltd 高分子ゲル及びその製造方法、並びに高分子ゲルを用いた高分子ゲル組成物、光学素子、樹脂組成物及び光学フィルム
JP4517083B2 (ja) * 2003-07-11 2010-08-04 綜研化学株式会社 機能性アクリル系ポリマー定形粒子及びその用途
US8815984B2 (en) * 2008-09-12 2014-08-26 Lanxess Inc. Elastomeric compositions with improved heat resistance, compression set, and processability
US8383689B2 (en) * 2009-04-29 2013-02-26 Aica Kogyo Co., Ltd. Skin cosmetics comprising cocoon-shaped polymer fine particles
CN102603966B (zh) * 2012-03-12 2014-01-22 里群 用于油田调驱的交联聚合物微球及其制备方法
CN103012699A (zh) * 2012-12-05 2013-04-03 常州大学 一种凹凸棒土接枝聚甲基丙烯酸甲酯杂化粒子及其制备方法
JP5456198B1 (ja) * 2012-12-27 2014-03-26 日本ビー・ケミカル株式会社 架橋重合体の製造方法、架橋重合体及びこれを含有する塗料組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326904A (ja) * 2006-06-06 2007-12-20 Fujifilm Corp 非真球高分子微粒子、その製造方法、該微粒子を含有するインクジェットインク組成物、これを用いた平版印刷版およびその製造方法、該微粒子を含有する電気泳動粒子組成物
JP2010518208A (ja) * 2007-02-06 2010-05-27 ビーエーエスエフ ソシエタス・ヨーロピア モノマー溶液の液滴の重合による吸水性ポリマー粒子の製造法
JP2008111132A (ja) * 2007-12-11 2008-05-15 Soken Chem & Eng Co Ltd アクリル系アンチブロッキング粒子群の製造法
JP2009235355A (ja) * 2008-03-28 2009-10-15 Nisshinbo Holdings Inc 楕円状または針状ポリマー粒子およびその製造方法
JP2009237507A (ja) * 2008-03-28 2009-10-15 Nisshinbo Holdings Inc 拡散シート
JP2015093973A (ja) * 2013-11-14 2015-05-18 日清紡ホールディングス株式会社 紫外線散乱剤及びその用途
JP2016017048A (ja) * 2014-07-08 2016-02-01 日清紡ホールディングス株式会社 スクラブ剤及びその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3296325A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016181878A1 (ja) * 2015-05-08 2018-03-01 日清紡ホールディングス株式会社 楕円状、針状又は棒状ポリマー粒子の製造方法
WO2018155470A1 (ja) 2017-02-22 2018-08-30 日清紡ホールディングス株式会社 皮膚化粧料
WO2022259872A1 (ja) * 2021-06-10 2022-12-15 綜研化学株式会社 重合体粒子およびその製造方法

Also Published As

Publication number Publication date
EP3296325A4 (en) 2018-12-19
CN107614540A (zh) 2018-01-19
US20180118867A1 (en) 2018-05-03
EP3296325A1 (en) 2018-03-21
JPWO2016181876A1 (ja) 2017-05-25
JP6164376B2 (ja) 2017-07-19
CN107614540B (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
JP6164376B2 (ja) 架橋ポリマー粒子及びその用途
JP6168239B2 (ja) 扁平楕円状ポリマー粒子及びその用途
WO2016181878A1 (ja) 楕円状、針状又は棒状ポリマー粒子の製造方法
JP5780285B2 (ja) 紫外線散乱剤及びその用途
JP5889633B2 (ja) 異形粒子の製造法
US20120149814A1 (en) Ultrahydrophobic coating and method for making the same
JP6617789B2 (ja) 円盤状ポリマー粒子群の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016553487

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792601

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15571907

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE