WO2016180054A1 - 一种协作波束赋形的方法及装置 - Google Patents

一种协作波束赋形的方法及装置 Download PDF

Info

Publication number
WO2016180054A1
WO2016180054A1 PCT/CN2016/071990 CN2016071990W WO2016180054A1 WO 2016180054 A1 WO2016180054 A1 WO 2016180054A1 CN 2016071990 W CN2016071990 W CN 2016071990W WO 2016180054 A1 WO2016180054 A1 WO 2016180054A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
comp
cooperative
coordinated
channel correlation
Prior art date
Application number
PCT/CN2016/071990
Other languages
English (en)
French (fr)
Inventor
陈先国
蒋一鸣
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP16791904.2A priority Critical patent/EP3297180B1/en
Priority to US15/573,838 priority patent/US10439680B2/en
Publication of WO2016180054A1 publication Critical patent/WO2016180054A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming

Definitions

  • the present application relates to the field of LTE data processing technologies, and in particular, to a method for cooperative beamforming and a device for cooperative beamforming.
  • OFDM Orthogonal Frequency Division Multiplexing
  • LTE Long Term Evolution
  • OFDM Orthogonal Frequency Division Multiplexing
  • the orthogonality is limited to the users in the current cell. Because of the inter-cell frequency multiplexing, users between different cells may have interference, resulting in poor cell edge performance. Therefore, inter-cell interference becomes the main interference in the LTE system. .
  • 3GPP 3rd Generation Partnership Project
  • ICIC Inter Cell Interference Coordination
  • CoMP CoMP in the R8 version specification and the R11 version specification respectively.
  • CoMP technology cooperates with multiple neighboring base stations or nodes to provide services for a cell edge user at the same time, so as to reduce the co-channel interference received by the cell edge users and improve the service quality of the cell edge users.
  • CoMP technology is further divided into two types: JP (Joint-Processing) technology and CS/CB (Coordinated Scheduling/Beamforming) according to the degree of sharing of user data and channel state information.
  • the basic principle is that the beamforming of the PDSCH (Physical Downlink Shared Channel) needs to be coordinated for the cell edge UE (User Equipment) with poor signal quality.
  • the joint participation of the cells is completed. Specifically, the scheduling information and the channel state information of the CoMP UE and the coordinated UE are exchanged between the serving cell and the coordinated cell, and the CoMP UE and the coordinated UE adjust the respective shaped beams based on the information, so that the CoMP UE and the coordinated UE adjust the respective shaped beams according to the information. Try to stay orthogonal, thus reducing beam interference between each other.
  • the prior art mainly includes the following two schemes:
  • SLNR scheme The Signal-to-Leakage-and-Noise Ratio (SLNR) algorithm is used.
  • the CoMP UE and the cooperative UE determine the respective beamforming vectors by using the ratio of the respective useful signal strengths to the interference signal strengths of other UEs as the maximum value, so as to ensure the performance of the CoMP UE and the cooperative UE.
  • Other users have the least interference, thereby reducing the co-channel interference experienced by users at the cell edge.
  • the algorithm theory can make the CB achieve the optimal performance, but the computational complexity is very high, and the beamforming vectors of the CoMP UE and the cooperative UE need to be adjusted.
  • the bidirectional interaction scheduling information and channel state are required between the serving cell and the coordinated cell. Information, which introduces additional transmission delays, so this solution is rarely used in product implementations.
  • Beamforming orthogonalization adjustment scheme the beamforming vector of the CoMP UE is not adjusted, and the beamforming vector of the coordinated UE is adjusted based on the scheduling information and channel state information of the CoMP UE, so that the null of the beam is aligned with the channel of the CoMP UE.
  • This solution is a product implementation scheme adopted by some mainstream equipment manufacturers.
  • the main problem is that the energy and direction of the shaped beam are not optimal after the coordinated UE is adjusted by the beamforming vector, so the performance of the cooperative UE will decrease.
  • embodiments of the present application have been made in order to provide a method of cooperative beamforming that overcomes the above problems or at least partially solves the above problems, and a device for cooperative beamforming.
  • the embodiment of the present application discloses a method for cooperative beamforming, and the method includes:
  • the beamforming orthogonalization adjustment process is not performed on the target cooperative UE;
  • the channel correlation value of the target cooperative UE and the target CoMP UE is greater than or equal to a preset lower threshold of channel correlation, performing beamforming orthogonalization adjustment processing on the target cooperative UE.
  • the method further includes:
  • the cooperation request includes channel quality indication CQI data of the CoMP UE, and after receiving a cooperation request of multiple coordinated multi-point user equipment CoMP UEs, determining a target CoMP from the multiple CoMP UEs
  • the steps of the UE include:
  • the CQI data of the multiple CoMP UEs is compared, and the CoMP UE with the smallest CQI data is used as the target CoMP UE.
  • the step of separately calculating channel correlation values of the target CoMP UEs and each candidate cooperative UEs in the coordinated cell includes:
  • the step of determining the target coordinated UE based on the channel correlation value of the target CoMP UE and the candidate cooperative UEs includes:
  • a candidate cooperative UE that satisfies the following three conditions in the coordinated cell is the target coordinated UE:
  • a channel correlation value of the target CoMP UE and the candidate cooperative UE is less than or equal to Preset threshold for channel correlation
  • the difference between the number of the first PRBs and the number of the second PRBs is less than a preset PRB difference threshold.
  • the step of determining the target coordinated UE based on the channel correlation value of the target CoMP UE and the candidate cooperative UEs further includes:
  • the target coordinated UE with the smallest channel correlation value is selected from the two or more target cooperative UEs as the final target coordinated UE.
  • the embodiment of the present application further discloses a device for cooperative beamforming, the device comprising:
  • a target CoMP UE decision module configured to: after receiving a cooperation request of multiple coordinated multi-point user equipment CoMP UEs, determine a target CoMP UE from the multiple CoMP UEs;
  • a channel correlation value calculation module configured to separately calculate channel correlation values of the candidate CoMP UEs and each candidate cooperative UE in the coordinated cell
  • a target coordinated UE decision module configured to determine a target coordinated UE based on channel correlation values of the target CoMP UE and each candidate cooperative UE;
  • a first determining module configured to perform beamforming orthogonalization adjustment processing on the target cooperative UE when a channel correlation value of the target cooperative UE and the target CoMP UE is less than a preset channel correlation lower threshold;
  • a second determining module configured to perform beamforming orthogonalization adjustment on the target cooperative UE when a channel correlation value of the target cooperative UE and the target CoMP UE is greater than or equal to a preset channel correlation lower threshold deal with.
  • the device further comprises:
  • the request rejection module is configured to reject the cooperation request of the CoMP UEs other than the target CoMP UE after the target CoMP UE is selected.
  • the cooperation request includes channel quality indication CQI data of the CoMP UE
  • the target CoMP UE decision module includes:
  • a CoMP UE selecting module configured to compare CQI data of the multiple CoMP UEs, The CoMP UE with the smallest CQI data serves as the target CoMP UE.
  • the channel correlation value calculation module includes:
  • a channel information acquiring module configured to separately acquire channel information of the target CoMP UE, and channel information of each candidate cooperative UE in the coordinated cell;
  • a calculation module configured to calculate channel correlation values of the target CoMP UE and each candidate cooperative UE according to channel information of the target CoMP UE and channel information of each candidate cooperative UE, respectively.
  • the target coordinated UE decision module includes:
  • a candidate cooperative UE data acquiring module configured to separately acquire a first physical resource block PRB number allocated by the candidate coordinated UE, and CQI data of the candidate cooperative UE;
  • a target CoMP UE data obtaining module configured to acquire a second PRB number requested by the target CoMP UE
  • a difference calculation module configured to calculate a difference between the number of the first PRB and the number of the second PRBs
  • the determining module is configured to use, as the target cooperative UE, the candidate coordinated UE that satisfies the following three conditions in the coordinated cell:
  • a channel correlation value of the target CoMP UE and the candidate cooperative UE is less than or equal to a preset upper threshold of channel correlation
  • the difference between the number of the first PRBs and the number of the second PRBs is less than a preset PRB difference threshold.
  • the target cooperative UE decision module is further configured to:
  • the target coordinated UE with the smallest channel correlation value is selected from the two or more target cooperative UEs as the final target coordinated UE.
  • the embodiment of the present application also discloses a computer readable recording medium on which a program for the above method is recorded.
  • a CoMP UE is determined as the target CoMP UE from the multiple CoMP UEs, thereby preventing multiple CoMP UEs from simultaneously requesting cooperation. Conflict.
  • the embodiment of the present application determines, according to the channel correlation value of the target cooperative UE and the target CoMP UE, whether to perform beamforming orthogonalization adjustment processing on the target cooperative UE, if the target coordinated UE and If the channel correlation value of the target CoMP UE is smaller than the preset threshold of the channel correlation, the beamforming orthogonalization adjustment process is not performed on the target cooperative UE, so that the performance of the target coordinated UE does not decrease, and the target coordinated UE is greatly reduced. The probability of performance degradation.
  • the channel correlation values of the two or more target cooperative UEs and the target CoMP UE may be used.
  • the second decision is made to select the target coordinated UE with the smallest channel correlation value from the two or more target cooperative UEs as the final target coordinated UE, thereby improving the accuracy of the target coordinated UE decision.
  • FIG. 1 is a flow chart showing the steps of a first embodiment of a method for cooperative beamforming according to the present application
  • FIG. 2 is a flow chart of steps of a second embodiment of a method for cooperative beamforming according to the present application
  • FIG. 3 is a structural block diagram of an apparatus for cooperative beamforming of the present application.
  • One of the core concepts of the embodiments of the present application is that when multiple CoMP UEs request cooperation from the same coordinated cell, the target CoMP UE is selected from the multiple CoMP UEs, and cooperation of other CoMP UEs other than the target CoMP UE is rejected.
  • Requesting after selecting the target CoMP UE, determining the target cooperative UE according to the channel correlation value of the target CoMP UE and each candidate cooperative UE, and When the channel correlation value of the target CoMP UE and the target cooperative UE is less than a preset lower threshold of channel correlation, beamforming orthogonalization adjustment processing is not performed on the target cooperative UE, otherwise, beamforming orthogonalization is performed on the target cooperative UE. Adjustment processing. Thereby, the performance of the target cooperative UE is not degraded, and the probability of performance degradation of the target cooperative UE is reduced.
  • FIG. 1 a flow chart of a first embodiment of a method for cooperative beamforming of the present application is shown, which may specifically include the following steps:
  • Step 101 After receiving a cooperation request of multiple coordinated multi-point user equipment CoMP UEs, determine a target CoMP UE from the multiple CoMP UEs;
  • Step 102 Calculate channel correlation values of each candidate CoMP UE and each candidate cooperative UE in the coordinated cell, respectively.
  • Step 103 Determine, according to the channel correlation value of the target CoMP UE and each candidate cooperative UE, a target coordinated UE;
  • Step 104 If the channel correlation value of the target cooperative UE and the target CoMP UE is less than a preset threshold of channel correlation, the beamforming orthogonalization adjustment process is not performed on the target cooperative UE.
  • Step 105 If the channel correlation value of the target cooperative UE and the target CoMP UE is greater than or equal to a preset lower threshold of channel correlation, perform beamforming orthogonalization adjustment processing on the target cooperative UE.
  • a CoMP UE is determined as the target CoMP UE from the multiple CoMP UEs, thereby avoiding conflicts caused by multiple CoMP UEs requesting cooperation at the same time.
  • the embodiment of the present application determines, according to the channel correlation value of the target cooperative UE and the target CoMP UE, whether to perform beamforming orthogonalization adjustment processing on the target cooperative UE, if the target coordinated UE and the target If the channel correlation value of the CoMP UE is less than the preset threshold of the channel correlation, the beamforming orthogonalization adjustment process is not performed on the target cooperative UE; otherwise, the beamforming orthogonalization adjustment process is performed on the target cooperative UE. Therefore, the performance of the target cooperative UE is not degraded, and the probability of performance degradation of the target cooperative UE is greatly reduced.
  • FIG. 2 a flow chart of a second embodiment of a method for cooperative beamforming of the present application is shown. Specifically, the method may include the following steps:
  • Step 201 After receiving a cooperation request of multiple coordinated multi-point user equipment CoMP UEs, determine a target CoMP UE from the multiple CoMP UEs;
  • the UE performs an A3 event to trigger the selection of the coordinated multi-point user equipment CoMP UE, the purpose of which is to determine the location of the cell and the signal-to-interference ratio (SINR).
  • the low UE acts as a CoMP UE, enabling the UE to acquire a cooperative beamforming gain.
  • the CoMP UE is selected by the serving cell according to its own RSRP (Reference Signal Received Power) and the RSRP difference of the neighboring cell and the channel quality indicator (CQI) data criterion of the UE, that is, the report is reported to A3. Whether the CQI data of the event UE is less than a preset threshold, and if yes, determining that the UE is a CoMP UE; otherwise, determining that the UE is a normal UE.
  • CQI refers to a value (or multiple values) capable of representing the communication quality of a given wireless channel, and a higher CQI indicates a higher channel quality.
  • performance indicators such as SNR (Signal to Noise Ratio), SINR (Signal to Interference plus Noise Ratio), and SNDR (Signal to Noise Distorence Ratio) can be used.
  • signal to noise distortion ratio signal to noise distortion ratio
  • the UE may also report the RSRP value of the neighboring cells based on the A3 event. Therefore, when the serving cell of the CoMP UE determines the CoMP UE, the absolute value of the RSRP difference between the serving cell and the serving cell of the CoMP UE may be pre-determined. One or more neighboring cells with a threshold are used as candidate cooperative cells, and a plurality of coordinated cells corresponding to one CoMP UE form a candidate coordinated cell set. After the serving cell of the CoMP UE determines the coordinated cell from the candidate coordinated cell, the coordinated request may be sent to the coordinated cell to enable the CoMP UE to acquire the coordinated beamforming gain of the coordinated cell.
  • the coordinated cell and the serving cell may be a cell under the same base station, or may be a cell of a different base station, which is not limited in this embodiment of the present application.
  • the cooperation request may include CQI data, SRS configuration information, scheduling information, and the like of the CoMP UE.
  • step 201 may include the following sub-steps:
  • Sub-step S11 comparing CQI data of the multiple CoMP UEs, and using the CoMP UE with the smallest CQI data as the target CoMP UE.
  • the coordinated cell After obtaining the CQI data of the multiple CoMP UEs from the cooperation request, the coordinated cell compares the multiple CQI data, and the CQI reflects the channel quality, and the smaller the CQI, the lower the channel quality, and the greater the interference. Therefore, the CoMP UE with the smallest CQI data is used as the target CoMP UE, and the target CoMP UE is the UE that the cooperative cell accepts its cooperation request in the current subframe period.
  • Step 202 After selecting the target CoMP UE, reject a cooperation request of a CoMP UE other than the target CoMP UE.
  • Step 203 Calculate channel correlation values of each candidate CoMP UE and each candidate cooperative UE in the coordinated cell, respectively.
  • the channel correlation value between the target CoMP UE and each UE in the local cell is further calculated, where the channel correlation value is used to describe two Correlation of channel information between UEs.
  • step 203 may include the following sub-steps:
  • Sub-step S21 acquiring channel information of the target CoMP UE, and channel information of each candidate cooperative UE in the coordinated cell;
  • the coordinated cell may be based on the SRS of the target CoMP UE and each candidate cooperation in the coordinated cell
  • the SRS of the UE is used to estimate the corresponding channel information.
  • the channel information of the target CoMP UE may be calculated according to the channel reciprocity based on the channel reciprocity of the uplink SRS configuration information reported by the CoMP UE to the coordinated cell.
  • the channel information of each candidate cooperative UE in the coordinated cell may be reported by the candidate cooperative UE to report the uplink SRS corresponding to the UE, and is obtained by using a channel estimation algorithm based on channel reciprocity.
  • Sub-step S22 calculating channel correlation values of the target CoMP UE and each candidate cooperative UE according to channel information of the target CoMP UE and channel information of each candidate cooperative UE, respectively.
  • the channel correlation value of the target CoMP UE and each candidate cooperative UE may be calculated based on the two channel information.
  • the channel information may include a channel response value (ie, a channel estimation matrix), and the channel correlation value may be calculated based on the channel response value.
  • a channel response value ie, a channel estimation matrix
  • the channel correlation value of the target CoMP UE and each candidate cooperative UE may be calculated by using the following formula: (Assume that the target CoMP UE is represented by UE j and the candidate cooperative UE is represented by UE i):
  • ChCor i,j is the channel correlation value between UE i and UE j; H i,k is the channel response value of UE i on subcarrier k; H j,k is the channel of UE j on subcarrier k Response value; N SC is the number of subcarriers within the cooperative bandwidth; Is the conjugate transpose matrix of H i,k .
  • the channel correlation value may be calculated based on the beamforming vector.
  • the channel correlation value of the target CoMP UE and each candidate cooperative UE may be calculated by using the following formula (assuming that the target CoMP UE is represented by UE j, candidate cooperation The UE is represented by UE i):
  • ChCor i,j is a channel correlation value between UE i and UE j; V i is a beamforming vector value of UE i; and V j is a beamforming vector value of UE j; A conjugate transposed matrix of V i .
  • Step 204 Obtain a first physical resource block PRB number that is allocated by the candidate coordinated UE, and CQI data of the candidate coordinated UE, respectively.
  • the CQI data of the candidate cooperative UE is reported to the coordinated cell by the candidate cooperative UE.
  • the number of PRBs allocated to the candidate cooperative UE may be determined by the L2 scheduler according to the scheduling algorithm, based on the amount of data to be transmitted by the candidate cooperative UE.
  • Step 205 Acquire a second PRB number requested by the target CoMP UE.
  • the scheduling information sent by the target CoMP UE to the coordinated cell may include the number of PRBs of the target CoMP UE (ie, the number of second PRBs).
  • the number of second PRBs requested by the target CoMP UE may be determined by the L2 scheduler according to the scheduling algorithm, based on the amount of data to be sent by the target CoMP UE.
  • Step 206 Calculate a difference between the number of the first PRBs and the number of the second PRBs;
  • the difference between the two may be further calculated as one of the factors of the subsequent decision target cooperation UE.
  • Step 207 based on the difference, and the CQI data of the candidate cooperative UE, and the channel correlation value, the target coordinated UE is determined from the candidate cooperative UE;
  • the candidate coordinated UE that satisfies the following three conditions in the coordinated cell may be the target coordinated UE:
  • a channel correlation value of the target CoMP UE and the candidate cooperative UE is less than or equal to a preset upper threshold of channel correlation
  • the difference between the number of the first PRBs and the number of the second PRBs is less than a preset PRB difference threshold.
  • the embodiment of the present application may set three thresholds, namely, a channel correlation upper threshold, a CQI threshold, and a PRB difference threshold, when a candidate The channel correlation value of the coordinated UE and the target CoMP UE satisfies the channel phase An upper threshold, and the CQI data of the candidate cooperative UE satisfies a CQI threshold, and when the difference between the first PRB number of the candidate cooperative UE and the second PRB number of the target CoMP UE satisfies a difference threshold, the The candidate cooperative UE acts as a target cooperative UE.
  • three thresholds namely, a channel correlation upper threshold, a CQI threshold, and a PRB difference threshold
  • Step 208 If the number of the target coordinated UEs is two or more, select the target coordinated UE with the smallest channel correlation value from the two or more target coordinated UEs as the final target coordinated UE;
  • the second decision may be made according to the channel correlation values of the two or more target cooperative UEs and the target CoMP UE.
  • the target coordinated UE having the smallest channel correlation value is selected as the final target coordinated UE.
  • Step 209 Determine whether the channel correlation value of the target cooperative UE and the target CoMP UE is less than a preset channel correlation lower threshold; if yes, execute step 210; if not, execute step 211.
  • step 209 is performed to further determine whether the beamforming orthogonalization adjustment process needs to be performed according to the channel correlation value.
  • the embodiment of the present application sets The threshold under the channel correlation is used for judgment.
  • the related setting may be performed by a person skilled in the art according to the actual experience, and the embodiment of the present application does not need to be limited thereto.
  • Step 210 Perform beamforming orthogonalization adjustment processing on the target cooperative UE.
  • the channel correlation value of the target cooperative UE and the target CoMP UE is less than a preset channel correlation lower threshold, it is determined that beamforming orthogonalization adjustment processing is not required for the target cooperative UE.
  • the result data from the simulation shows that when the channel correlation between the target CoMP UE and the target cooperative UE is very low, the beam of the target coordinated UE is adjusted and compared with the beam that is not adjusted, and the performance of the target CoMP UE is found to be no significant difference. If the channel correlation between the CoMP UE and the coordinated UE is low (less than the threshold of the preset channel correlation), the embodiment of the present application does not adjust the beamforming vector of the coordinated UE, so that the performance of the target cooperative UE does not decrease.
  • Step 211 Perform beamforming orthogonalization adjustment processing on the target cooperative UE.
  • the channel correlation value of the target cooperative UE and the target CoMP UE is greater than or equal to a preset lower threshold of channel correlation, determining that beamforming orthogonalization adjustment processing needs to be performed on the target cooperative UE, so that the target coordinated UE is adjusted.
  • the shaped beam is orthogonal to the target shaped CoMP UE in the virtual shaped beam within the coordinated cell.
  • a person skilled in the art may use any existing beamforming orthogonalization adjustment algorithm, for example, a Schmidt orthogonalization algorithm or a Zero Forcing (ZF) algorithm, etc., may be adopted.
  • the embodiment does not need to be limited thereto.
  • the channel correlation values of the two or more target coordinated UEs and the target CoMP UE may be performed twice.
  • the decision is to select the target coordinated UE with the smallest channel correlation value from the two or more target cooperative UEs as the final target coordinated UE, thereby improving the accuracy of the target coordinated UE decision.
  • FIG. 3 a structural block diagram of an apparatus for cooperative beamforming of the present application is shown, which may specifically include the following modules:
  • the target CoMP UE decision module 301 is configured to: after receiving the cooperation request of the multiple coordinated multipoint user equipment CoMP UE, determine the target CoMP UE from the multiple CoMP UEs;
  • the channel correlation value calculation module 302 is configured to separately calculate channel correlation values of the candidate CoMP UEs and each candidate cooperative UE in the coordinated cell;
  • the target coordinated UE decision module 303 is configured to determine a target coordinated UE based on the channel correlation value of the target CoMP UE and each candidate cooperative UE;
  • the first determining module 304 is configured to perform beamforming orthogonalization adjustment processing on the target cooperative UE when the channel correlation value of the target cooperative UE and the target CoMP UE is less than a preset channel correlation lower threshold. ;
  • a second determining module configured to perform beamforming orthogonalization adjustment on the target cooperative UE when a channel correlation value of the target cooperative UE and the target CoMP UE is greater than or equal to a preset channel correlation lower threshold deal with.
  • the device further includes:
  • the request rejection module is configured to reject the cooperation request of the CoMP UEs other than the target CoMP UE after the target CoMP UE is selected.
  • the cooperation request includes channel quality indication CQI data of the CoMP UE
  • the target CoMP UE decision module 301 may include the following modules:
  • the CoMP UE selects a module, configured to compare CQI data of the multiple CoMP UEs, and use a CoMP UE with the smallest CQI data as the target CoMP UE.
  • the channel correlation value calculation module 302 may include the following modules:
  • a channel information acquiring module configured to separately acquire channel information of the target CoMP UE, and channel information of each candidate cooperative UE in the coordinated cell;
  • a calculation module configured to calculate channel correlation values of the target CoMP UE and each candidate cooperative UE according to channel information of the target CoMP UE and channel information of each candidate cooperative UE, respectively.
  • the target cooperative UE decision module 303 may include the following modules:
  • a candidate cooperative UE data acquiring module configured to separately acquire a first physical resource block PRB number allocated by the candidate coordinated UE, and CQI data of the candidate cooperative UE;
  • a target CoMP UE data obtaining module configured to acquire a second PRB number requested by the target CoMP UE
  • a difference calculation module configured to calculate the number of the first PRB and the number of the second PRB Difference
  • the determining module is configured to use, as the target cooperative UE, the candidate coordinated UE that satisfies the following three conditions in the coordinated cell:
  • a channel correlation value of the target CoMP UE and the candidate cooperative UE is less than or equal to a preset upper threshold of channel correlation
  • the difference between the number of the first PRBs and the number of the second PRBs is less than a preset PRB difference threshold.
  • the target cooperative UE decision module 303 is further configured to:
  • the target coordinated UE with the smallest channel correlation value is selected from the two or more target cooperative UEs as the final target coordinated UE.
  • the description is relatively simple, and the relevant parts can be referred to the description of the method embodiment.
  • the embodiment of the present application also discloses a computer readable recording medium on which a program for executing the above method is recorded.
  • the computer readable recording medium includes any mechanism for storing or transmitting information in a form readable by a computer (eg, a computer).
  • a machine-readable medium includes read only memory (ROM), random access memory (RAM), magnetic disk storage media, optical storage media, flash storage media, electrical, optical, acoustic, or other forms of propagation signals (eg, carrier waves) , infrared signals, digital signals, etc.).
  • embodiments of the embodiments of the present application can be provided as a method, apparatus, or computer program product. Therefore, the embodiments of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, the embodiment of the present application The form of a computer program product embodied on one or more computer usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code may be employed.
  • Embodiments of the present application are described with reference to flowcharts and/or block diagrams of methods, terminal devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing terminal device to produce a machine such that instructions are executed by a processor of a computer or other programmable data processing terminal device
  • Means are provided for implementing the functions specified in one or more of the flow or in one or more blocks of the flow chart.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing terminal device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the instruction device implements the functions specified in one or more blocks of the flowchart or in a flow or block of the flowchart.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种协作波束赋形的方法及装置,其中所述方法包括:当接收到多个协作多点用户设备CoMP UE的协作请求后,从所述多个CoMP UE中决策出目标CoMP UE;分别计算所述目标CoMP UE与协作小区内各候选协作UE的信道相关值;基于所述目标CoMP UE与所述各候选协作UE的信道相关值决策出目标协作UE;若所述目标协作UE与所述目标CoMP UE的信道相关值小于预设的信道相关性下门限,则不对所述目标协作UE进行波束赋形正交化调整处理;若所述目标协作UE与所述目标CoMP UE的信道相关值大于或等于预设的信道相关性下门限,则对所述目标协作UE进行波束赋形正交化调整处理。本申请可以大大降低了目标协作UE性能下降的概率。

Description

一种协作波束赋形的方法及装置 技术领域
本申请涉及LTE数据处理技术领域,特别是涉及一种协作波束赋形的方法和一种协作波束赋形的装置。
背景技术
在LTE(Long Term Evolution,长期演进)***中,由于采用OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用技术),将高速数据调制到各个正交的子信道上,可以有效减少信道之间的相互干扰。但是这种正交只限于当前小区内的用户,由于小区间频率复用,不同小区之间的用户会存在干扰,导致小区边缘性能较差,因此,小区间的干扰成为LTE***中的主要干扰。
为了解决小区边缘性能差的问题,3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)分别在R8版本规范和R11版本规范引入了ICIC(Inter Cell Interference Coordination,小区间干扰协调)技术和CoMP(Coordinated Multiple Points,多点协作传输)技术,以提升小区边缘用户性能。其中,CoMP技术通过多个相邻的基站或节点协作,同时为一个小区边缘用户提供服务,以降低小区边缘用户受到的同频干扰,提高小区边缘用户的服务质量。根据用户数据和信道状态信息共享程度的不同,CoMP技术进一步分为JP(Joint-Processing,联合处理)技术和CS/CB(Coordinated Scheduling/Beamforming,协作调度/波束赋形)技术两类。
对于协作波束赋形CB传输技术,其基本原理为:对于信号质量较差的小区边缘UE(User Equipment,用户设备),其PDSCH(Physical Downlink Shared Channel,物理下行共享信道)的波束赋形需要协作小区的联合参与来完成,具体来说,在服务小区与协作小区之间交互CoMP UE和协作UE的调度信息和信道状态信息,CoMP UE和协作UE基于该信息调整各自的赋形波束,使其尽量保持正交,从而减小彼此之间的波束干扰。
对于协作波束赋形的实现方案,现有技术主要包括如下两种方案:
SLNR方案:采用信漏噪比(Signal-to-Leakage-and-Noise Ratio,SLNR)算法。CoMP UE和协作UE以各自的有用信号强度与对其他UE的干扰信号强度之比为最大值作为准则,来确定各自的波束赋形向量,达到在保证CoMP UE和协作UE自身性能的前提下对其他用户干扰最小的目的,从而降低小区边缘用户受到的同频干扰。该算法理论可以使CB达到最优性能,但是计算复杂度非常高,而且要求CoMP UE和协作UE的波束赋形向量都需要做调整,服务小区和协作小区之间需要双向交互调度信息和信道状态信息,这会带来额外的传输时延,因此该方案在产品实现中很少采用。
波束赋形正交化调整方案:不调整CoMP UE的波束赋形向量,基于CoMP UE的调度信息和信道状态信息调整协作UE的波束赋形向量,使其波束的零陷对准CoMP UE的信道方向,从而减小对CoMP UE的干扰。该方案是一些主流设备厂商采用的产品实现方案,但其主要问题是由于协作UE经过波束赋形向量调整后,赋形波束的能量和方向不是最优的,因此协作UE的性能会下降。
另外,对于多个CoMP UE向同一个协作小区请求协作的场景,存在多个CoMP UE同时请求协作的冲突问题,现有技术没有提出有效的解决方案。
发明内容
鉴于上述问题,提出了本申请实施例以便提供一种克服上述问题或者至少部分地解决上述问题的一种协作波束赋形的方法和一种协作波束赋形的装置。
为了解决上述问题,本申请实施例公开了一种协作波束赋形的方法,所述方法包括:
当接收到多个协作多点用户设备CoMP UE的协作请求后,从所述多个CoMP UE中决策出目标CoMP UE;
分别计算所述目标CoMP UE与协作小区内各候选协作UE的信道相关值;
基于所述目标CoMP UE与所述各候选协作UE的信道相关值决策出目 标协作UE;
若所述目标协作UE与所述目标CoMP UE的信道相关值小于预设的信道相关性下门限,则不对所述目标协作UE进行波束赋形正交化调整处理;
若所述目标协作UE与所述目标CoMP UE的信道相关值大于或等于预设的信道相关性下门限,则对所述目标协作UE进行波束赋形正交化调整处理。
优选地,所述方法还包括:
当选定所述目标CoMP UE以后,拒绝除所述目标CoMP UE以外的其他CoMP UE的协作请求。
优选地,所述协作请求包括所述CoMP UE的信道质量指示CQI数据,所述当接收到多个协作多点用户设备CoMP UE的协作请求后,从所述多个CoMP UE中决策出目标CoMP UE的步骤包括:
比较所述多个CoMP UE的CQI数据,将CQI数据最小的CoMP UE作为目标CoMP UE。
优选地,所述分别计算所述目标CoMP UE与协作小区内各候选协作UE的信道相关值的步骤包括:
分别获取所述目标CoMP UE的信道信息,以及,协作小区内各候选协作UE的信道信息;
分别依据所述目标CoMP UE的信道信息与所述各候选协作UE的信道信息计算所述目标CoMP UE与各候选协作UE的信道相关值。
优选地,所述基于所述目标CoMP UE与所述各候选协作UE的信道相关值决策出目标协作UE的步骤包括:
分别获取所述候选协作UE被分配的第一物理资源块PRB数目,以及,所述候选协作UE的CQI数据;
获取所述目标CoMP UE请求的第二PRB数目;
计算所述第一PRB数目与所述第二PRB数目的差值;
将协作小区中同时满足下述三个条件的候选协作UE作为目标协作UE:
(1)所述目标CoMP UE与所述候选协作UE的信道相关值小于或等于 预设的信道相关性上门限;
(2)所述候选协作UE的CQI数据大于或等于预设的CQI门限;
(3)所述第一PRB数目与所述第二PRB数目的差值小于预设的PRB差值门限。
优选地,所述基于所述目标CoMP UE与所述各候选协作UE的信道相关值决策出目标协作UE的步骤还包括:
若所述目标协作UE的数量为两个以上时,则从所述两个以上的目标协作UE中选择信道相关值最小的目标协作UE作为最终的目标协作UE。
本申请实施例还公开了一种协作波束赋形的装置,所述装置包括:
目标CoMP UE决策模块,设置为在接收到多个协作多点用户设备CoMP UE的协作请求后,从所述多个CoMP UE中决策出目标CoMP UE;
信道相关值计算模块,设置为分别计算所述目标CoMP UE与协作小区内各候选协作UE的信道相关值;
目标协作UE决策模块,设置为基于所述目标CoMP UE与所述各候选协作UE的信道相关值决策出目标协作UE;
第一判定模块,设置为在所述目标协作UE与所述目标CoMP UE的信道相关值小于预设的信道相关性下门限时,不对所述目标协作UE进行波束赋形正交化调整处理;
第二判定模块,设置为在所述目标协作UE与所述目标CoMP UE的信道相关值大于或等于预设的信道相关性下门限时,对所述目标协作UE进行波束赋形正交化调整处理。
优选地,所述装置还包括:
请求拒绝模块,设置为在选定所述目标CoMP UE以后,拒绝除所述目标CoMP UE以外的其他CoMP UE的协作请求。
优选地,所述协作请求包括所述CoMP UE的信道质量指示CQI数据,所述目标CoMP UE决策模块包括:
CoMP UE选定模块,设置为比较所述多个CoMP UE的CQI数据,将 CQI数据最小的CoMP UE作为目标CoMP UE。
优选地,所述信道相关值计算模块包括:
信道信息获取模块,设置为分别获取所述目标CoMP UE的信道信息,以及,协作小区内各候选协作UE的信道信息;
计算模块,设置为分别依据所述目标CoMP UE的信道信息与所述各候选协作UE的信道信息计算所述目标CoMP UE与各候选协作UE的信道相关值。
优选地,所述目标协作UE决策模块包括:
候选协作UE数据获取模块,设置为分别获取所述候选协作UE被分配的第一物理资源块PRB数目,以及,所述候选协作UE的CQI数据;
目标CoMP UE数据获取模块,设置为获取所述目标CoMP UE请求的第二PRB数目;
差值计算模块,设置为计算所述第一PRB数目与所述第二PRB数目的差值;
判定模块,设置为将协作小区中同时满足下述三个条件的候选协作UE作为目标协作UE:
(1)所述目标CoMP UE与所述候选协作UE的信道相关值小于或等于预设的信道相关性上门限;
(2)所述候选协作UE的CQI数据大于或等于预设的CQI门限;
(3)所述第一PRB数目与所述第二PRB数目的差值小于预设的PRB差值门限。
优选地,所述目标协作UE决策模块还设置为:
若所述目标协作UE的数量为两个以上时,则从所述两个以上的目标协作UE中选择信道相关值最小的目标协作UE作为最终的目标协作UE。
本申请实施例还公开了一种在其上记录有用于上述方法的程序的计算机可读记录介质。
本申请实施例包括以下优点:
第一、在本申请实施例中,当协作小区接收到多个CoMP UE协作请求后,从该多个CoMP UE中决策出一个CoMP UE作为目标CoMP UE,从而避免多个CoMP UE同时请求协作造成的冲突。
第二,本申请实施例在决策出目标协作UE以后,根据目标协作UE与目标CoMP UE的信道相关值来确定是否需要对目标协作UE进行波束赋形正交化调整处理,若目标协作UE与目标CoMP UE的信道相关值小于预设的信道相关性下门限,则不对目标协作UE进行波束赋形正交化调整处理,从而使得该目标协作UE的性能不会下降,大大降低了目标协作UE性能下降的概率。
第三、在本申请实施例中,当协作小区从多个候选协作UE中决策出的目标协作UE有两个以上时,可以依据该两个以上的目标协作UE与目标CoMP UE的信道相关值进行二次决策,从该两个以上的目标协作UE中选择信道相关值最小的目标协作UE作为最终的目标协作UE,从而提高了目标协作UE决策的准确性。
附图说明
图1是本申请的一种协作波束赋形的方法实施例一的步骤流程图;
图2是本申请的一种协作波束赋形的方法实施例二的步骤流程图;
图3是本申请的一种协作波束赋形的装置实施例的结构框图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请作进一步详细的说明。
本申请实施例的核心构思之一在于,当有多个CoMP UE向同一协作小区请求协作时,从该多个CoMP UE中选择目标CoMP UE,并拒绝除目标CoMP UE以外的其他CoMP UE的协作请求;在选定目标CoMP UE以后,根据目标CoMP UE与各候选协作UE的信道相关值决策出目标协作UE,并 在目标CoMP UE与目标协作UE的信道相关值小于预设的信道相关性下门限时,不对目标协作UE进行波束赋形正交化调整处理,否则,对目标协作UE进行波束赋形正交化调整处理。从而使得该目标协作UE的性能不会下降,降低了目标协作UE的性能下降的概率。
参照图1,示出了本申请的一种协作波束赋形的方法实施例一的步骤流程图,具体可以包括如下步骤:
步骤101,当接收到多个协作多点用户设备CoMP UE的协作请求后,从所述多个CoMP UE中决策出目标CoMP UE;
步骤102,分别计算所述目标CoMP UE与协作小区内各候选协作UE的信道相关值;
步骤103,基于所述目标CoMP UE与所述各候选协作UE的信道相关值决策出目标协作UE;
步骤104,若所述目标协作UE与所述目标CoMP UE的信道相关值小于预设的信道相关性下门限,则不对所述目标协作UE进行波束赋形正交化调整处理;
步骤105,若所述目标协作UE与所述目标CoMP UE的信道相关值大于或等于预设的信道相关性下门限,则对所述目标协作UE进行波束赋形正交化调整处理。
在本申请实施例中,当协作小区接收到多个CoMP UE的协作请求后,从该多个CoMP UE中决策出一个CoMP UE作为目标CoMP UE,从而避免多个CoMP UE同时请求协作造成的冲突。
另外,本申请实施例在决策出目标协作UE以后,根据目标协作UE与目标CoMP UE的信道相关值来确定是否需要对目标协作UE进行波束赋形正交化调整处理,若目标协作UE与目标CoMP UE的信道相关值小于预设的信道相关性下门限,则不对目标协作UE进行波束赋形正交化调整处理,否则,则对目标协作UE进行波束赋形正交化调整处理。从而使得该目标协作UE的性能不会下降,大大降低了目标协作UE性能下降的概率。
参照图2,示出了本申请的一种协作波束赋形的方法实施例二的步骤流程图,具体可以包括如下步骤:
步骤201,当接收到多个协作多点用户设备CoMP UE的协作请求后,从所述多个CoMP UE中决策出目标CoMP UE;
在协作波束赋形技术中,UE执行A3事件触发协作多点用户设备CoMP UE的选择,其目的是决策出位于小区边缘,并且信号与干扰加噪声比(Signal-to-Interference Ratio,SINR)较低的UE作为CoMP UE,使得该UE获取协作波束赋形增益。
CoMP UE是服务小区根据自身的RSRP(Reference Signal Received Power,参考信号接收功率)与邻小区的RSRP的差值和UE的信道质量指示(Channel Quality Indicator,CQI)数据准则选择的,即判断上报A3事件UE的CQI数据是否小于预设的门限,若是,则判定该UE为CoMP UE,否则,判定该UE为普通UE。其中,CQI是指能够表示给定无线信道通信质量的一个值(或多个值),CQI越高表明信道质量越高。对一个信道的CQI数据能够通过使用性能指标,例如,SNR(Signal to Noise Ratio,信噪比)、SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比)、SNDR(Signal to Noise Distorsion Ratio,信号与噪声失真比)等信道的性能指标计算出来。
由于UE基于A3事件还会上报若干邻小区的RSRP值,因此,CoMP UE所在服务小区在决策出CoMP UE时,还可以将和该CoMP UE的服务小区之间的RSRP差值的绝对值达到预设门限值的1个或多个邻区作为候选协作小区,一个CoMP UE对应的若干协作小区组成一个候选协作小区集。CoMP UE所在服务小区从候选协作小区集中决策出协作小区以后,可以向该协作小区发出协作请求,以使得该CoMP UE获取协作小区的协作波束赋形增益。
需要说明的是,协作小区与服务小区可以为同一个基站下的小区,也可以为不同基站的小区,本申请实施例对此无需加以限制。
作为本申请实施例的一种优选示例,协作请求可以包括CoMP UE的CQI数据,SRS配置信息和调度信息等。
对于协作小区而言,其可能在同一子帧周期内接收到来自多个不同服务小区发出的对应的多个CoMP UE的协作请求,且该多个CoMP UE请求的PRB(physical resource block,物理资源块)资源重叠,则协作小区可以从该多个CoMP UE中选定一个目标CoMP UE。在本申请实施例的一种优选实施例中,步骤201可以包括如下子步骤:
子步骤S11,比较所述多个CoMP UE的CQI数据,将CQI数据最小的CoMP UE作为目标CoMP UE。
协作小区从协作请求中分别获得上述多个CoMP UE的CQI数据以后,将该多个CQI数据进行比较,由于CQI反映的是信道质量,CQI越小,说明信道质量越低,受到的干扰越大,对协作的需求越大,因此,本申请实施例将CQI数据最小的CoMP UE作为目标CoMP UE,目标CoMP UE即为协作小区在当前子帧周期内接受其协作请求的UE。
步骤202,当选定所述目标CoMP UE以后,拒绝除所述目标CoMP UE以外的其他CoMP UE的协作请求;
应用于本申请实施例,为了避免多个CoMP UE同时请求协作造成的冲突,当选定了目标CoMP UE以后,除该目标CoMP UE以外的其他CoMP UE发出的协作请求均被拒绝。
步骤203,分别计算所述目标CoMP UE与协作小区内各候选协作UE的信道相关值;
当协作小区从多个CoMP UE中选定目标CoMP UE以后,进一步计算该目标CoMP UE与本小区内各UE(即候选协作UE)之间的信道相关值,其中,信道相关值用来描述两个UE之间的信道信息的相关性。
在本申请实施例的一种优选实施例中,步骤203可以包括如下子步骤:
子步骤S21,分别获取所述目标CoMP UE的信道信息,以及,协作小区内各候选协作UE的信道信息;
协作小区可以根据目标CoMP UE的SRS以及协作小区内各候选协作 UE的SRS估计对应的信道信息,具体的,目标CoMP UE的信道信息可以根据该CoMP UE向协作小区上报的该CoMP UE的上行SRS配置信息,基于信道互易性,采用信道估计算法计算获得;协作小区内各候选协作UE的信道信息可以根据各候选协作UE上报该UE对应的上行SRS,基于信道互易性,采用信道估计算法计算获得。
子步骤S22,分别依据所述目标CoMP UE的信道信息与所述各候选协作UE的信道信息计算所述目标CoMP UE与各候选协作UE的信道相关值。
得到目标CoMP UE的信道信息,以及,协作小区内各候选协作UE的信道信息以后,可以基于这两种信道信息,计算目标CoMP UE与各候选协作UE的信道相关值。
在一种实施方式中,信道信息可以包括信道响应值(即信道估计矩阵),可以基于信道响应值计算信道相关值,例如,可以采用如下公式计算目标CoMP UE与各候选协作UE的信道相关值(假设目标CoMP UE用UE j表示,候选协作UE用UE i表示):
Figure PCTCN2016071990-appb-000001
其中,ChCori,j为UE i与UE j之间的信道相关值;Hi,k为UE i在子载波k上的信道响应值;Hj,k为UE j在子载波k上的信道响应值;NSC为协作带宽内的子载波数目;
Figure PCTCN2016071990-appb-000002
为Hi,k的共轭转置矩阵。
在另一种实施方式中,可以基于波束赋形向量计算信道相关值,例如,可以采用如下公式计算目标CoMP UE与各候选协作UE的信道相关值(假设目标CoMP UE用UE j表示,候选协作UE用UE i表示):
Figure PCTCN2016071990-appb-000003
其中,ChCori,j为UE i与UE j之间的信道相关值;Vi为UE i的波束赋形向量值;Vj为UE j的波束赋形向量值;
Figure PCTCN2016071990-appb-000004
为Vi的共轭转置矩阵。
需要说明的是,上述两种计算信道相关值的方法仅仅是本申请实施例的 一种示例,本领域技术人员采用其他方式计算两个UE的信道相关值均是可以的,本申请实施例对此无需加以限制。
步骤204,分别获取所述候选协作UE被分配的第一物理资源块PRB数目,以及,所述候选协作UE的CQI数据;
具体来说,候选协作UE的CQI数据是候选协作UE上报给协作小区的。而分配给候选协作UE的PRB数目可以采用L2调度器根据调度算法,基于候选协作UE待发送的数据量来确定。
步骤205,获取所述目标CoMP UE请求的第二PRB数目;
在实际中,目标CoMP UE向协作小区发送的调度信息可以包括目标CoMP UE的PRB数目(即第二PRB数目)。而在服务小区内,目标CoMP UE请求的第二PRB数目可以由L2调度器根据调度算法,基于目标CoMP UE待发送的数据量来确定。
步骤206,计算所述第一PRB数目与所述第二PRB数目的差值;
协作小区获得本小区内各候选协作UE的第一PRB数目,以及,目标CoMP UE的第二PRB数目以后,可以进一步计算两者的差值,以作为后续决策目标协作UE的因素之一。
步骤207,基于所述差值,以及,所述候选协作UE的CQI数据,以及,所述信道相关值从候选协作UE中决策出目标协作UE;
应用于本申请实施例,可以将协作小区中同时满足下述三个条件的候选协作UE作为目标协作UE:
(1)所述目标CoMP UE与所述候选协作UE的信道相关值小于或等于预设的信道相关性上门限;
(2)所述候选协作UE的CQI数据大于或等于预设的CQI门限;
(3)所述第一PRB数目与所述第二PRB数目的差值小于预设的PRB差值门限。
具体来说,为了从多个候选协作UE中决策出目标协作UE,本申请实施例可以设置三个门限值,分别为信道相关性上门限、CQI门限以及PRB差值门限,当某个候选协作UE与目标CoMP UE的信道相关值满足信道相 关性上门限,以及,该候选协作UE的CQI数据满足CQI门限,以及,该候选协作UE的第一PRB数目与目标CoMP UE的第二PRB数目的差值满足差值门限时,则将该候选协作UE作为目标协作UE。
需要说明的是,对于上述三个门限值的具体取值,本领域技术人员根据实际经验进行相关设置即可,本申请实施例对此无需加以限制。
步骤208,若所述目标协作UE的数量为两个以上时,则从所述两个以上的目标协作UE中选择信道相关值最小的目标协作UE作为最终的目标协作UE;
应用于本申请实施例,当步骤207决策出的目标协作UE的个数不止一个时,则可以依据该两个以上的目标协作UE与目标CoMP UE的信道相关值进行二次决策,从该两个以上的目标协作UE中选择信道相关值最小的目标协作UE作为最终的目标协作UE。
步骤209,判断所述目标协作UE与所述目标CoMP UE的信道相关值是否小于预设的信道相关性下门限;若是,则执行步骤210;若否,则执行步骤211。
应用于本申请实施例,当协作小区决策出目标协作UE时,执行步骤209,进一步依据信道相关值来判断是否需要进行波束赋形正交化调整处理,此处,本申请实施例设定了信道相关性下门限来进行判断。
需要说明的是,对于信道相关性下门限的具体取值,本领域技术人员根据实际经验进行相关设置即可,本申请实施例对此无需加以限制。
步骤210,不对所述目标协作UE进行波束赋形正交化调整处理;
如果目标协作UE与目标CoMP UE的信道相关值小于预设的信道相关性下门限,则判定不需要对所述目标协作UE进行波束赋形正交化调整处理。
从仿真的结果数据显示,当目标CoMP UE与目标协作UE的信道相关性很低时,将调整目标协作UE的波束和不调整其波束相比较后,发现目标CoMP UE性能无明显差别,因此,如果CoMP UE与协作UE的信道相关性很低(小于预设的信道相关性下门限),本申请实施例不调整协作UE的波束赋形向量,这样,目标协作UE的性能便不会下降。
步骤211,对所述目标协作UE进行波束赋形正交化调整处理。
如果目标协作UE与目标CoMP UE的信道相关值大于或等于预设的信道相关性下门限,则判定需要对所述目标协作UE进行波束赋形正交化调整处理,使目标协作UE调整后的赋形波束与目标CoMP UE在协作小区内的虚拟赋形波束保持正交。
在具体实现中,本领域技术人员可以采用现有的任何波束赋形正交化调整算法,例如,可以采用施密特正交化算法或联合迫零(Zero Forcing,ZF)算法等,本申请实施例对此无需加以限制。
在本申请实施例中,当协作小区从多个候选协作UE中决策出的目标协作UE有两个以上时,可以依据该两个以上的目标协作UE与目标CoMP UE的信道相关值进行二次决策,从该两个以上的目标协作UE中选择信道相关值最小的目标协作UE作为最终的目标协作UE,从而提高了目标协作UE决策的准确性。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请实施例并不受所描述的动作顺序的限制,因为依据本申请实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本申请实施例所必须的。
参照图3,示出了本申请的一种协作波束赋形的装置实施例的结构框图,具体可以包括如下模块:
目标CoMP UE决策模块301,设置为在接收到多个协作多点用户设备CoMP UE的协作请求后,从所述多个CoMP UE中决策出目标CoMP UE;
信道相关值计算模块302,设置为分别计算所述目标CoMP UE与协作小区内各候选协作UE的信道相关值;
目标协作UE决策模块303,设置为基于所述目标CoMP UE与所述各候选协作UE的信道相关值决策出目标协作UE;
第一判定模块304,设置为在所述目标协作UE与所述目标CoMP UE的信道相关值小于预设的信道相关性下门限时,不对所述目标协作UE进行波束赋形正交化调整处理;
第二判定模块,设置为在所述目标协作UE与所述目标CoMP UE的信道相关值大于或等于预设的信道相关性下门限时,对所述目标协作UE进行波束赋形正交化调整处理。
在本申请实施例的一种优选实施例中,所述装置还包括:
请求拒绝模块,设置为在选定所述目标CoMP UE以后,拒绝除所述目标CoMP UE以外的其他CoMP UE的协作请求。
在本申请实施例的一种优选实施例中,所述协作请求包括所述CoMP UE的信道质量指示CQI数据,所述目标CoMP UE决策模块301可以包括如下模块:
CoMP UE选定模块,设置为比较所述多个CoMP UE的CQI数据,将CQI数据最小的CoMP UE作为目标CoMP UE。
在本申请实施例的一种优选实施例中,所述信道相关值计算模块302可以包括如下模块:
信道信息获取模块,设置为分别获取所述目标CoMP UE的信道信息,以及,协作小区内各候选协作UE的信道信息;
计算模块,设置为分别依据所述目标CoMP UE的信道信息与所述各候选协作UE的信道信息计算所述目标CoMP UE与各候选协作UE的信道相关值。
在本申请实施例的一种优选实施例中,所述目标协作UE决策模块303可以包括如下模块:
候选协作UE数据获取模块,设置为分别获取所述候选协作UE被分配的第一物理资源块PRB数目,以及,所述候选协作UE的CQI数据;
目标CoMP UE数据获取模块,设置为获取所述目标CoMP UE请求的第二PRB数目;
差值计算模块,设置为计算所述第一PRB数目与所述第二PRB数目的 差值;
判定模块,设置为将协作小区中同时满足下述三个条件的候选协作UE作为目标协作UE:
(1)所述目标CoMP UE与所述候选协作UE的信道相关值小于或等于预设的信道相关性上门限;
(2)所述候选协作UE的CQI数据大于或等于预设的CQI门限;
(3)所述第一PRB数目与所述第二PRB数目的差值小于预设的PRB差值门限。
在本申请实施例的一种优选实施例中,所述目标协作UE决策模块303还设置为:
若所述目标协作UE的数量为两个以上时,则从所述两个以上的目标协作UE中选择信道相关值最小的目标协作UE作为最终的目标协作UE。
对于装置实施例而言,由于其与上述的方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本申请实施例还公开了一种在其上记录有用于执行上述方法的程序的计算机可读记录介质。
所述计算机可读记录介质包括用于以计算机(例如计算机)可读的形式存储或传送信息的任何机制。例如,机器可读介质包括只读存储器(ROM)、随机存取存储器(RAM)、磁盘存储介质、光存储介质、闪速存储介质、电、光、声或其他形式的传播信号(例如,载波、红外信号、数字信号等)等。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本申请实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例 可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、终端设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得 包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本申请所提供的一种协作波束赋形的方法及装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (13)

  1. 一种协作波束赋形的方法,其特征在于,所述方法包括:
    当接收到多个协作多点用户设备CoMP UE的协作请求后,从所述多个CoMP UE中决策出目标CoMP UE;
    分别计算所述目标CoMP UE与协作小区内各候选协作UE的信道相关值;
    基于所述目标CoMP UE与所述各候选协作UE的信道相关值决策出目标协作UE;
    若所述目标协作UE与所述目标CoMP UE的信道相关值小于预设的信道相关性下门限,则不对所述目标协作UE进行波束赋形正交化调整处理;
    若所述目标协作UE与所述目标CoMP UE的信道相关值大于或等于预设的信道相关性下门限,则对所述目标协作UE进行波束赋形正交化调整处理。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    当选定所述目标CoMP UE以后,拒绝除所述目标CoMP UE以外的其他CoMP UE的协作请求。
  3. 根据权利要求1或2所述的方法,其特征在于,所述协作请求包括所述CoMP UE的信道质量指示CQI数据,所述当接收到多个协作多点用户设备CoMP UE的协作请求后,从所述多个CoMP UE中决策出目标CoMP UE的步骤包括:
    比较所述多个CoMP UE的CQI数据,将CQI数据最小的CoMP UE作为目标CoMP UE。
  4. 根据权利要求1所述的方法,其特征在于,所述分别计算所述目标CoMP UE与协作小区内各候选协作UE的信道相关值的步骤包括:
    分别获取所述目标CoMP UE的信道信息,以及,协作小区内各候选协作UE的信道信息;
    分别依据所述目标CoMP UE的信道信息与所述各候选协作UE的信道信息计算所述目标CoMP UE与各候选协作UE的信道相关值。
  5. 根据权利要求1或4所述的方法,其特征在于,所述基于所述目标 CoMP UE与所述各候选协作UE的信道相关值决策出目标协作UE的步骤包括:
    分别获取所述候选协作UE被分配的第一物理资源块PRB数目,以及,所述候选协作UE的CQI数据;
    获取所述目标CoMP UE请求的第二PRB数目;
    计算所述第一PRB数目与所述第二PRB数目的差值;
    将协作小区中同时满足下述三个条件的候选协作UE作为目标协作UE:
    (1)所述目标CoMP UE与所述候选协作UE的信道相关值小于或等于预设的信道相关性上门限;
    (2)所述候选协作UE的CQI数据大于或等于预设的CQI门限;
    (3)所述第一PRB数目与所述第二PRB数目的差值小于预设的PRB差值门限。
  6. 根据权利要求5所述的方法,其特征在于,所述基于所述目标CoMP UE与所述各候选协作UE的信道相关值决策出目标协作UE的步骤还包括:
    若所述目标协作UE的数量为两个以上时,则从所述两个以上的目标协作UE中选择信道相关值最小的目标协作UE作为最终的目标协作UE。
  7. 一种协作波束赋形的装置,其特征在于,所述装置包括:
    目标CoMP UE决策模块,设置为在接收到多个协作多点用户设备CoMP UE的协作请求后,从所述多个CoMP UE中决策出目标CoMP UE;
    信道相关值计算模块,设置为分别计算所述目标CoMP UE与协作小区内各候选协作UE的信道相关值;
    目标协作UE决策模块,设置为基于所述目标CoMP UE与所述各候选协作UE的信道相关值决策出目标协作UE;
    第一判定模块,设置为在所述目标协作UE与所述目标CoMP UE的信道相关值小于预设的信道相关性下门限时,不对所述目标协作UE进行波束赋形正交化调整处理;
    第二判定模块,设置为在所述目标协作UE与所述目标CoMP UE的信 道相关值大于或等于预设的信道相关性下门限时,对所述目标协作UE进行波束赋形正交化调整处理。
  8. 根据权利要求7所述的装置,其特征在于,还包括:
    请求拒绝模块,设置为在选定所述目标CoMP UE以后,拒绝除所述目标CoMP UE以外的其他CoMP UE的协作请求。
  9. 根据权利要求7或8所述的装置,其特征在于,所述协作请求包括所述CoMP UE的信道质量指示CQI数据,所述目标CoMP UE决策模块包括:
    CoMP UE选定模块,设置为比较所述多个CoMP UE的CQI数据,将CQI数据最小的CoMP UE作为目标CoMP UE。
  10. 根据权利要求7所述的装置,其特征在于,所述信道相关值计算模块包括:
    信道信息获取模块,设置为分别获取所述目标CoMP UE的信道信息,以及,协作小区内各候选协作UE的信道信息;
    计算模块,设置为分别依据所述目标CoMP UE的信道信息与所述各候选协作UE的信道信息计算所述目标CoMP UE与各候选协作UE的信道相关值。
  11. 根据权利要求7或10所述的装置,其特征在于,所述目标协作UE决策模块包括:
    候选协作UE数据获取模块,设置为分别获取所述候选协作UE被分配的第一物理资源块PRB数目,以及,所述候选协作UE的CQI数据;
    目标CoMP UE数据获取模块,设置为获取所述目标CoMP UE请求的第二PRB数目;
    差值计算模块,设置为计算所述第一PRB数目与所述第二PRB数目的差值;
    判定模块,设置为将协作小区中同时满足下述三个条件的候选协作UE作为目标协作UE:
    (1)所述目标CoMP UE与所述候选协作UE的信道相关值小于或等于 预设的信道相关性上门限;
    (2)所述候选协作UE的CQI数据大于或等于预设的CQI门限;
    (3)所述第一PRB数目与所述第二PRB数目的差值小于预设的PRB差值门限。
  12. 根据权利要求11所述的装置,其特征在于,所述目标协作UE决策模块还设置为:
    若所述目标协作UE的数量为两个以上时,则从所述两个以上的目标协作UE中选择信道相关值最小的目标协作UE作为最终的目标协作UE。
  13. 一种在其上记录有用于执行权利要求1所述方法的程序的计算机可读记录介质。
PCT/CN2016/071990 2015-05-14 2016-01-25 一种协作波束赋形的方法及装置 WO2016180054A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16791904.2A EP3297180B1 (en) 2015-05-14 2016-01-25 Coordinated beamforming method and device
US15/573,838 US10439680B2 (en) 2015-05-14 2016-01-25 Coordinated beamforming method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510246663.6 2015-05-14
CN201510246663.6A CN104993857B (zh) 2015-05-14 2015-05-14 一种协作波束赋形的方法及装置

Publications (1)

Publication Number Publication Date
WO2016180054A1 true WO2016180054A1 (zh) 2016-11-17

Family

ID=54305619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071990 WO2016180054A1 (zh) 2015-05-14 2016-01-25 一种协作波束赋形的方法及装置

Country Status (4)

Country Link
US (1) US10439680B2 (zh)
EP (1) EP3297180B1 (zh)
CN (1) CN104993857B (zh)
WO (1) WO2016180054A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200336178A1 (en) * 2019-04-18 2020-10-22 Huawei Technologies Co., Ltd. Uplink multi-user equipment (ue) cooperative transmission

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993857B (zh) 2015-05-14 2018-12-18 大唐移动通信设备有限公司 一种协作波束赋形的方法及装置
CN107154904B (zh) * 2016-03-04 2020-02-14 中兴通讯股份有限公司 终端间相关性的计算方法和装置
CN108124266B (zh) * 2016-11-28 2021-11-19 ***通信有限公司研究院 一种上行联合接收方法及基站
EP3589012B1 (en) * 2017-03-23 2021-05-05 Huawei Technologies Co., Ltd. Beam interference avoidance method and base station
KR102351542B1 (ko) * 2017-06-23 2022-01-17 삼성전자주식회사 시차 보상 기능을 갖는 애플리케이션 프로세서, 및 이를 구비하는 디지털 촬영 장치
CN109120314B (zh) 2017-06-23 2021-09-21 华为技术有限公司 一种数据传输方法、通信设备和数据传输***
WO2022093988A1 (en) * 2020-10-30 2022-05-05 XCOM Labs, Inc. Clustering and/or rate selection in multiple-input multiple-output communication systems
US11924124B2 (en) * 2021-05-24 2024-03-05 Samsung Electronics Co., Ltd. Set of rules for triggering coordinated beamforming

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011157104A1 (en) * 2010-06-15 2011-12-22 Huawei Technologies Co., Ltd. System and method for transparent coordinated beam-forming
KR20120049732A (ko) * 2010-11-09 2012-05-17 서울대학교산학협력단 다중안테나 무선 시스템에서 협력 전송 방법 및 장치
CN102870340A (zh) * 2010-05-03 2013-01-09 Lg电子株式会社 用于确定协作终端的方法和设备
CN103281792A (zh) * 2013-05-10 2013-09-04 华为技术有限公司 一种协作波束赋形方法及装置
CN104993857A (zh) * 2015-05-14 2015-10-21 大唐移动通信设备有限公司 一种协作波束赋形的方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110255526A1 (en) * 2008-12-25 2011-10-20 Shoji Kaneko Cellular mobile communication system, base station control device, and interstation-cooperated communication control method
KR101567370B1 (ko) * 2009-10-22 2015-11-23 삼성전자주식회사 광대역 무선통신 시스템에서 협력적 송수신 장치 및 방법
US9077413B2 (en) * 2010-06-15 2015-07-07 Futurewei Technologies, Inc. System and method for transparent coordinated beam-forming
EP2681951B1 (en) * 2011-03-03 2018-06-13 Nokia Solutions and Networks Oy Scheduling in coordinated multi-point transmission scheme
US20150098444A1 (en) * 2013-10-08 2015-04-09 Alcatel-Lucent Usa Inc Large scale antenna system with overlaying small cells
KR102034591B1 (ko) * 2014-05-13 2019-10-21 엘지전자 주식회사 Mimo 송신기가 사용자를 위한 자원을 할당하는 방법 및 자원을 이용해 데이터를 전송할 사용자를 스케쥴링하는 방법
EP3152849B1 (en) * 2014-06-24 2018-08-08 Huawei Technologies Co. Ltd. Method and apparatus for multiple access in a wireless communication system
EP3284197B1 (en) * 2015-05-08 2019-02-27 Huawei Technologies Co., Ltd. Apparatus and method for controlling resource allocation in a wireless communication network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102870340A (zh) * 2010-05-03 2013-01-09 Lg电子株式会社 用于确定协作终端的方法和设备
WO2011157104A1 (en) * 2010-06-15 2011-12-22 Huawei Technologies Co., Ltd. System and method for transparent coordinated beam-forming
KR20120049732A (ko) * 2010-11-09 2012-05-17 서울대학교산학협력단 다중안테나 무선 시스템에서 협력 전송 방법 및 장치
CN103281792A (zh) * 2013-05-10 2013-09-04 华为技术有限公司 一种协作波束赋形方法及装置
CN104993857A (zh) * 2015-05-14 2015-10-21 大唐移动通信设备有限公司 一种协作波束赋形的方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200336178A1 (en) * 2019-04-18 2020-10-22 Huawei Technologies Co., Ltd. Uplink multi-user equipment (ue) cooperative transmission
US11476899B2 (en) * 2019-04-18 2022-10-18 Huawei Technologies Co., Ltd. Uplink multi-user equipment (UE) cooperative transmission

Also Published As

Publication number Publication date
EP3297180A1 (en) 2018-03-21
US20180262237A1 (en) 2018-09-13
EP3297180B1 (en) 2019-11-27
EP3297180A4 (en) 2018-06-06
CN104993857B (zh) 2018-12-18
CN104993857A (zh) 2015-10-21
US10439680B2 (en) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2016180054A1 (zh) 一种协作波束赋形的方法及装置
JP6978432B2 (ja) マッシブmimoのための基準信号およびリンク適応
JP6381680B2 (ja) 物理ランダムアクセスチャネル(prach)のチャネル周波数領域オフセットを調整するための方法及び装置
JP5918680B2 (ja) 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法
TWI759404B (zh) 用於追蹤參考信號配置設計的方法、裝置及電腦可讀取媒體
JPWO2016199768A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2019080119A1 (zh) 一种广播波束域调整方法及装置
JP6438597B2 (ja) アダプティヴダウンリンクCoMP伝送方法及び装置
KR20140039905A (ko) 분산 안테나 시스템에서 간섭 측정 방법 및 장치
JP2013516150A (ja) UE主導周波数分割に基づくダウンリンクセルラー通信用CoMPスキーム
WO2018098701A1 (zh) 一种波束合成方法及装置
JP2013110671A (ja) 無線通信システム、無線基地局装置及び無線通信方法
JP2013511864A (ja) アップリンク送信電力制御パラメータを取得するための方法
WO2016000491A1 (zh) 确定拉远射频单元rru的方法与设备
JP5911320B2 (ja) 無線通信システム、ユーザ端末、無線基地局装置及び無線通信方法
JP6274220B2 (ja) 無線通信方法と無線通信デバイス
WO2011157110A2 (zh) 一种协作多点传输方法、设备以及***
US20140185565A1 (en) Scheduling allocation method and apparatus in coordinated multiple points system
WO2017092383A1 (zh) 一种共小区网络下的多天线传输方法及基站
JP5918505B2 (ja) 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
JP5948099B2 (ja) 無線基地局、ユーザ端末、無線通信方法及び無線通信システム
CN105450562B (zh) 用于联合均衡的均衡器
EP3211952B1 (en) Joint interference rejection method and device, and method and device for realizing uplink comp
US20180167831A1 (en) Data transmission method, base station device and non-transitory computer-readable medium
WO2016019750A1 (zh) 网络辅助终端盲检的方法、装置、***及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16791904

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15573838

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016791904

Country of ref document: EP