WO2016161834A1 - 通风柜 - Google Patents

通风柜 Download PDF

Info

Publication number
WO2016161834A1
WO2016161834A1 PCT/CN2016/071209 CN2016071209W WO2016161834A1 WO 2016161834 A1 WO2016161834 A1 WO 2016161834A1 CN 2016071209 W CN2016071209 W CN 2016071209W WO 2016161834 A1 WO2016161834 A1 WO 2016161834A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
exhaust
cabinet
working chamber
air supply
Prior art date
Application number
PCT/CN2016/071209
Other languages
English (en)
French (fr)
Inventor
阮红正
Original Assignee
倚世节能科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 倚世节能科技(上海)有限公司 filed Critical 倚世节能科技(上海)有限公司
Priority to EP16762722.3A priority Critical patent/EP3281714A4/en
Priority to JP2016562480A priority patent/JP2017521226A/ja
Priority to US15/309,461 priority patent/US10478873B2/en
Priority to SG11201610579XA priority patent/SG11201610579XA/en
Publication of WO2016161834A1 publication Critical patent/WO2016161834A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L1/00Enclosures; Chambers
    • B01L1/04Dust-free rooms or enclosures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B15/00Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area
    • B08B15/02Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area using chambers or hoods covering the area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B15/00Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area
    • B08B15/02Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area using chambers or hoods covering the area
    • B08B15/023Fume cabinets or cupboards, e.g. for laboratories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25HWORKSHOP EQUIPMENT, e.g. FOR MARKING-OUT WORK; STORAGE MEANS FOR WORKSHOPS
    • B25H1/00Work benches; Portable stands or supports for positioning portable tools or work to be operated on thereby
    • B25H1/20Work benches; Portable stands or supports for positioning portable tools or work to be operated on thereby with provision for shielding the work area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/16Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by purification, e.g. by filtering; by sterilisation; by ozonisation
    • F24F3/163Clean air work stations, i.e. selected areas within a space which filtered air is passed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter

Definitions

  • the utility model relates to a fume hood, in particular to a wind-filling fume hood.
  • the fume hood can generally be described as a ventilated work space for capturing, containing, and removing exhaust gases, harmful gases, and particulate matter.
  • Most of the traditional fume hoods use a large amount of ambient air from the front opening of the fume hood to the working chamber of the fume hood, while exhausting air in the working chamber with a high-powered fan to carry out the handling and disposal of harmful substances in the air.
  • the higher the air volume sent from the front opening the more effective the fume hood is to control and discharge the harmful substances in the air, so it is necessary to pass the HVAC system of the building to the space using the fume hood.
  • the laboratory fills in a large amount of air instead of the ambient air that is fed into the fume hood from the front opening. Since the air supplied to the laboratory is part of the ambient air supply to the laboratory, it must be treated to the same ambient air level to ensure the comfort and safety of the laboratory work environment, so the use of conventional fume hoods generally results in Buildings such as laboratories generate significant energy consumption. In addition, unpredictable and inconsistent air flow patterns, such as venting air structures near the vent and front opening, can occur frequently. In this case, regardless of the speed of the air fed from the front opening, if there is turbulence and vortex in the air system in the working chamber, the risk of air overflow in the working chamber will be caused, which constitutes the health and safety of the experimenter. Threat. Therefore, new fume hood design and operation techniques are needed to reduce energy consumption and reduce the risk of overflow of hazardous materials in the working chamber.
  • the new energy-saving and environment-friendly fume hoods on the fume hood market are all air-filled fume hoods.
  • the compensating airflow from the wind power system of the building is blown into the working chamber of the fume hood.
  • This design saves the air conditioning of the building due to the wind. Energy consumption.
  • the single air supply of the current new fume hood does not establish a stable air flow pattern in the working chamber of the fume hood, so the problem of air turbulence and eddy current remains unresolved, which jeopardizes the health and safety of the experimenter. The risk still exists.
  • the current fume hoods on the market rely on the unified air supply system and exhaust system of the building to obtain power. If multiple fume hoods are used in parallel at the same time, the air volume of the ventilating can not be adjusted according to the use of the individual. It also results in higher energy consumption. Moreover, during the installation and commissioning process, the fume hood and its control system are usually assembled on site by using bulk components, so there is a problem of high installation cost and poor consistency of product quality.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a fume hood which can reduce energy consumption of an air conditioner, suppress overflow of harmful substances in a working chamber, and has low installation cost and high consistency of product quality.
  • the fume hood of the present invention comprises: a cabinet body, the inner cavity of the cabinet body constitutes a working cavity, and the front wall is formed with a front opening that is open to the indoor environment; the air supply system, the air supply system and the building a supplemental air passage connecting the air to the working chamber; and an exhaust system connected to the exhaust passage of the building, the air entering the working chamber through the front opening and passing through The air entering the working chamber is filled out from the working chamber, and the air supplementing system has at least one air filling port at an upper portion and a lower portion of the cabinet body, and the air filling port supplies air into the working chamber.
  • a top module is disposed above the cabinet body, and a supplemental air fan and a supplemental air valve for the air supply system, and an air exhaust fan and an exhaust air valve for the air exhaust system are installed in the top module, and the connection device is The air supply fan and the air supply valve and the air supply passages of the air supply ports communicate with each other.
  • the fume hood itself has an exhaust fan and an exhaust valve, and a supplemental fan and a supplemental air valve, it can be based on, for example, the distance between the fume hood relative to the total power fan of the building, whether the operator is in the set area, etc. In the case, flexible design of exhaust air volume and air volume can further reduce energy consumption.
  • the left and right side walls of the cabinet have a hollow double-layer structure, and the air supply passage located at an upper portion of the cabinet body and the air supply passage at a lower portion of the cabinet body pass through the hollow of the left and right side walls. Partially connected.
  • the air supply passages located at the upper and lower portions of the cabinet communicate with each other through the hollow portions of the side walls, so that there is no need to separately provide a connecting duct, which saves space and simplifies the procedure of the user when installing the fume hood for the first time.
  • the exhaust system has an exhaust area at an upper portion of the cabinet and near a rear wall of the cabinet, the exhaust area being in the entire left and right width direction of the cabinet Extending and connecting with the exhaust fan and the exhaust valve.
  • the exhaust air region is provided at the upper portion of the cabinet and close to the rear wall of the cabinet, the formation of the push-pull air flow pattern is facilitated.
  • the exhaust area extends in the entire left-right width direction of the cabinet, it is possible to avoid the formation of an air vortex near the top exhaust vent of the working chamber, and the entire row including the bottom cabinet exhaust passage described later.
  • the connectivity of the wind system provides the possibility.
  • each of the air supply openings extends along the left and right width directions of the working cavity
  • the plurality of air supply ports include: a first air supply opening located above the front opening; a second air inlet below the front opening; and a third air inlet located at an upper portion of the cabinet and outside the front wall, the third air inlet is sent toward the working chamber and below the cabinet wind.
  • the formation of the above-described push-pull air flow mode is facilitated. Further, since the air supply opening extends in the left-right width direction of the working chamber, air can be uniformly sent to prevent the formation of turbulence. In addition, since the third air supply port is blown downward, the downward blown air is located at the operator's breathing position, thereby further reducing the risk of the operator inhaling harmful substances, and the downwardly blown wind forms an "air barrier". It can buffer the air in the working chamber and outside the cabinet, effectively preventing the risk of overflow.
  • the working chamber has a slanted top wall that extends obliquely rearward and upward from the first air supply opening toward the exhaust air area.
  • eddy current can be prevented from being formed at the top of the working chamber, and the gas in the working chamber can be slowly and evenly climbed from the first air supply port along the inclined top wall to the exhaust air area.
  • a baffle is disposed in the working cavity, the baffle is erected adjacent to the rear wall, and an upper end portion extends toward the exhausting region, at a lower portion of the baffle A plurality of through holes are provided, and the plurality of through holes are distributed in the entire left and right width directions of the deflector.
  • At least one base cabinet is disposed under the cabinet body, and an inner cavity of the bottom cabinet communicates with the air exhausting area through a bottom cabinet air exhaust passage, and the bottom cabinet air exhaust passage is disposed at the The hollow portion of at least one of the left and right side walls extends in the vertical direction adjacent to the rear wall.
  • each of the air supply openings is provided with a baffle.
  • the second air inlet is provided with a protection grille surrounding the second air inlet
  • the third air inlet is provided with a protection grille surrounding the third air inlet
  • the material consumption of the air supply port can be effectively reduced, and the bottom air supply air can be further assisted to be laminar flow into the working cavity, and the debris can be prevented from entering the air supply port.
  • the air supplement fan and the exhaust air fan are respectively power-adjustable fans
  • the air-filling valve and the air-discharging valve are respectively variable opening valves
  • the fume hood further comprises: a sliding window slidable along the front opening for adjusting an open area of the front opening; a position sensor disposed in the top module for detecting a position of the sliding window; a wind speed a sensor disposed on an inner wall of the working chamber adjacent to the front opening for detecting a velocity of air entering the working chamber from the front opening; an infrared detector disposed at the front a front wall of the top module for detecting whether the operator is in the set area; and a control unit located in the top module, the position sensor, the wind speed sensor, the infrared detector, the a supplemental air blower and the supplemental air valve, and the exhaust fan and the exhaust valve are connected, and based on the position sensor, the wind speed sensor, the infrared detection Detecting information of the auxiliary gas turbine power and the
  • the power and opening degree of the supplemental fan and the supplemental air valve, as well as the exhaust fan and the exhaust valve can be automatically adjusted according to the actual use condition of the fume hood itself, thereby not only reducing the energy consumption of the air conditioner.
  • the structure is simple, saves space, and greatly reduces the installation cost and maintenance cost of the fume hood.
  • FIG. 1 is a front elevational view of a fume hood of a preferred embodiment of the present invention.
  • FIG. 2 is a rear cross-sectional view of the fume hood of the preferred embodiment of the present invention.
  • FIG 3 is a perspective view of a fume hood of a preferred embodiment of the present invention.
  • FIG. 4 is a flow diagram of airflow of a fume hood according to a preferred embodiment of the present invention.
  • Figure 5 is a flow diagram of the air supply system of the fume hood of the preferred embodiment of the present invention.
  • FIG. 6 is a flow guiding diagram of an exhaust system of a fume hood of a preferred embodiment of the present invention.
  • the fume hood of the preferred embodiment of the present invention includes a cabinet 100.
  • the inner cavity of the cabinet 100 constitutes a working cavity 102.
  • the cabinet 100 has left and right side walls 103 and a top wall 104.
  • two base cabinets 105 are provided under the cabinet 100, and the base cabinets 105 can be used for storing reagents and materials required for experiments.
  • a top module 400 unique to the fume hood of the present invention is provided above the cabinet 100.
  • the top module 400 is internally provided with: a power adjustable air blower 211, an air inlet valve 212 with an adjustable opening degree on the downstream side of the air flow direction of the air supplement fan 211, a power adjustable air exhaust fan 311, and a row An exhaust valve 312 whose opening degree on the downstream side of the air flow direction of the air blower is adjustable.
  • the air supply fan 211, the air supply valve 212, and each of the air supply ports and the air supply passages, which will be described later, constitute a supplementary air system, and the air supply system is connected to the air supply passage of the building through the air supply total port A4 to the working chamber. 102 to fill the wind.
  • the exhaust fan 311, the exhaust valve 312, and an exhaust area, an exhaust passage, and the like, which will be described later, constitute an exhaust system, and the exhaust system is connected to the exhaust passage of the building through the exhaust main port B4, and will pass before The air entering the working chamber 102 through the opening 110 and the air entering the working chamber 102 through the above-described supplemental air system are discharged from the working chamber 102.
  • FIG. 4 is an air flow guide view of the fume hood of the present embodiment
  • FIG. 5 is a flow guide view of the air supply system of the fume hood of the present embodiment.
  • a first air supply opening A1 is provided above the front opening 110, and the first air supply opening A1 is designed to have a semi-cylindrical shape extending in the left-right width direction of the working cavity 102, and a semi-cylindrical shape thereof.
  • the face faces the working chamber 102, that is, toward the rear.
  • a plurality of guide vanes 221 shown in FIG. 5 extending in the axial direction of the semi-cylindrical surface and circumferentially arranged are provided.
  • a first air supply passage 201 is disposed at an upper portion of the cabinet body across the left and right width directions of the cabinet, and the first air supply passage 201 connects the air supply valve 212 and the first air supply opening A1.
  • the side of the first supplemental air passage 201 adjacent to the working chamber 102 is an inclined wall design. The inclined wall can evenly distribute the air moving in the first supplemental passage 201 and reduce the wind speed thereof.
  • the first air supply port A1 uniformly and slowly feeds the supplemental air into the working chamber 102 of the fume hood in the radial direction of the semi-cylindrical surface.
  • the airflow of the air inlet A1 still has a certain turbulent flow ratio (about 15% or less), but the arrangement of the baffle 221 can block the turbulence, and the airflow blown into the working chamber 102 from the first air inlet A1 is laminar.
  • a second air inlet A2 is disposed below the front opening 110, and the second air inlet A2 is designed to have a 1/4 cylindrical shape extending in the left and right width direction of the working cavity 102, and the 1/4 cylindrical surface faces the working cavity 102. That is, facing the upper rear.
  • a second air supply passage 202 is disposed at a lower portion of the cabinet in a width direction of the left and right sides of the cabinet, and the second air supply passage 202 conveys air from the air supplement fan 211 to the second air supply port A2, thereby compensating The air flow is evenly blown into the working chamber along the radial direction of the 1/4 cylindrical surface.
  • the baffles in this area may be at risk of being worn out due to frequent use. Therefore, in the present embodiment, a protective grille (not shown) surrounding the second air inlet A2 is provided outside the second air inlet A2 to prevent the risk of the deflector 222 being worn out.
  • the protection grille can also help guide the air supply flow of the second air supply port A2, and help the gas sent from the second air supply port A2 to be laminar and be filled into the working cavity 102.
  • the protection grille can also be It acts to prevent debris from entering the second air inlet A2.
  • a third air inlet A3 is provided on an upper portion of the cabinet 100 and on a front side of the front wall, and the third air inlet A3 is designed to have a 1/4 cylindrical shape extending in the left and right width direction of the working chamber 102, and 1/1 thereof 4
  • the cylindrical surface faces the working chamber 102, that is, faces the lower rear.
  • a third air supply passage 203 is disposed in an upper portion of the cabinet body in a width direction of the cabinet, and a sliding window 804 to be described later is inserted between the third air supply passage 203 and the first air supply passage 201.
  • the third air supply passage 203 bypasses the sliding window 804 to communicate with the first air supply passage 201, and further conveys air from the air supplement fan 211 to the third air supply port A3.
  • the side of the third supplemental air passage 203 away from the cabinet is designed as an inclined wall, which evenly distributes the air moving in the third supplemental passage 203 and reduces the wind speed. Under the action of the makeup blower 211, the supplementary air can be uniformly and slowly blown out in the radial direction of the third air supply port A3.
  • the third air inlet A3 not only blows air toward the working chamber 102 of the cabinet 100, but also blows air toward the lower side of the cabinet 100, and the downwardly blown wind is located at the breathing position of the experimenter, thereby further reducing the inhalation of harmful substances by the experimenter. risks of. Moreover, the wind blown downward from the third air inlet A3 forms an "air barrier", which acts to buffer the ambient air inside the working chamber 102 and outside the cabinet, thereby effectively preventing the risk of overflow.
  • a protective grille surrounding the third air-filling port A3 is also provided outside the third air-filling port A3, and the protective grille also prevents the deflector from being worn, guides the airflow, and prevents miscellaneous The role of the object into the air vent.
  • the left and right side walls 103 of the cabinet 100 have a hollow double-layer structure, and the first air supply passage 201 located at the upper portion of the cabinet body and the second air supply passage 202 located at the lower portion of the cabinet body pass through the left and right side walls 103.
  • the hollow portions 225 are connected, thereby making all the air supply passages of the present embodiment communicate with each other, so that the air supply volume of the fume hood can be supplemented by the air blower 211
  • the power and the opening of the supplemental air valve 212 are uniformly regulated.
  • a gas collecting cover 313 is provided across the entire left and right width direction of the cabinet 100 at a position above the cabinet and near the rear wall 106.
  • the upper end of the air collecting hood 313 is connected to the exhaust fan 311, and the inside thereof constitutes an exhaust area 335 extending in the entire left-right width direction of the cabinet 100.
  • the working chamber 102 further includes an inclined top wall 109 extending obliquely rearward and upward from the first air supply opening A1 toward the exhaust air area 335, and the inclined top wall 109 is opposite.
  • the working chamber 102 is partially surrounded, and the two sides of the inclined top wall 109 are connected to the left and right side walls 103 of the cabinet.
  • the bottom end is connected to the upper edge of the first air inlet A1, and the top end is connected to the top wall 104. Due to the high exhaust air volume of the exhaust fan, the inner top of the working chamber of the conventional fume hood often forms an air vortex, so that the toxic and harmful gas cannot be discharged.
  • the design of the inclined top wall can break the expansion of the vortex, and match the top of the cabinet.
  • the laminar wind sent by the first air inlet A1 can slowly and evenly climb the gas in the cabinet along the inclined wall to the exhaust area.
  • the angle and shape of the sloping top wall 109 is designed to help control and prevent the overflow of harmful materials in the air within the working chamber 102 and to reduce the likelihood of air forming vortices near the top venting region 335.
  • a deflector 314 is further disposed at a position close to the rear wall 106, and an upper end portion of the deflector 314 extends toward the exhaust region 335.
  • a plurality of through holes are formed in a lower portion of the baffle 314.
  • the plurality of through holes are distributed in the entire left and right width direction of the baffle 314, and a flow is left between the baffle 314 and the bottom wall 108. Slot 315.
  • the arrows in Figure 4 show the flow of air as it enters, passes through, and exits the cabinet of the fume hood.
  • the supplemental airflow enters the air supply system of the fume hood from the total air supply port A4, flows to the air supply ports A1, A2 and A3, and then enters the working cavity 102 evenly and slowly.
  • a portion of the ambient air also enters the working chamber 102 from the front opening 110 at an angle perpendicular to the front opening 110.
  • the air is substantially evenly pulled and passed through the top exhaust region 335, the baffle 314 and the diversion channel 315 as indicated by the arrow, and then from the total exhaust vent at the top of the cabinet.
  • the push-pull system and the sloping top wall 109 employed in the present embodiment minimize the risk of turbulence and vortex formation within the cabinet, particularly air organization above the working chamber 102 and the front opening 110. Therefore, the displacement air moving system generated by the push-pull system can more effectively control the possibility that the harmful substances in the air in the cabinet overflow from the front opening.
  • Fig. 6 is a flow guide diagram of the exhaust system of the fume hood of the present embodiment.
  • the rear portions of the two base cabinets 105 of the fume hood of the present embodiment are respectively provided with Base cabinet exhaust passages B1 and B2.
  • the bottom cabinet exhaust passages B1 and B2 are respectively disposed in the hollow portions of the corresponding left and right side walls 103, and extend in the up and down direction near the rear wall 106, and the inner chamber of the corresponding bottom cabinet 105 and the gas collecting cover at the top of the cabinet body
  • the respective side of the exhaust area 335 in 313 is in communication.
  • the gas in the bottom cabinet 105 can be drawn into the bottom cabinet exhaust passages B1 and B2, and pushed in the exhaust region 335 and the working chamber 102 to the exhaust region 335.
  • the air streams are mixed and discharged together from the total exhaust vent B4 into the exhaust passage of the building.
  • the fume hood of the present embodiment can be used as a variable air volume fume hood in conjunction with the control system, and the amount of air entering at the front opening can be flexibly changed over a wide range by changing the position of the sliding window.
  • the fume hood further includes a sliding window 804 that is slidable along the front opening 110 for adjusting the open area of the front opening 110.
  • a position sensor 802 the position sensor 802 is disposed in the top module 400 for detecting the position of the sliding window 804, and the wind speed sensor 801 is disposed in the left and right side walls 103 adjacent to the front opening 110.
  • the surface wind speed On the inner surface of one side, the speed of the air entering the working chamber 102 from the front opening 110 (hereinafter referred to as the surface wind speed); the infrared detector 803 disposed on the front wall of the top module 400 For detecting whether the experimenter is in the set area; and a control unit (not shown), the control unit is located in the top module 400, and the position sensor 802, the wind speed sensor 801, the infrared detector 803, and the above-mentioned air supplement fan
  • the 211 is connected to the supplemental air valve 212, and the exhaust fan 311 and the exhaust valve 312, and based on the position sensor 802, the wind speed sensor 801, and the infrared detector 803 described above.
  • the above measurement information 211 and the auxiliary gas turbine auxiliary gas valve 212 and exhaust fan 311 and the exhaust valve and the opening degree of the respective power 312 is adjusted.
  • the infrared detector 803 can sense whether the experimenter is in the set working area. If it is detected that the unmanned person is in the working area and the sliding window 804 of the fume hood is not in the closed state, the control unit will give the driving device of the sliding window 804 ( The signal is sent, the sliding window 804 is closed, the air entering the working chamber from the indoor environment is reduced, and the laboratory energy consumption is reduced. In addition, after the sliding window 804 is closed, the air inlet volume of the fume hood is provided only by the respective air supply ports A1 to A3. , fume hood The exhaust air volume is also reduced at the same time, so the system energy consumption of the fume hood is also reduced.
  • the control unit receives the sliding window opening value sent by the position sensor 802, and calculates the ventilation fan exhaust required to maintain the surface wind speed to a preset value according to the following formula. the amount:
  • Q is the exhaust air volume of the working chamber 102 of the fume hood, and the unit is m 3 /h;
  • V is a preset value of the surface wind speed, and the unit is m/s;
  • S is the ventilation cross-sectional area of the sliding window 804, that is, the area of the front opening 110 , the unit is m 2 , where
  • L is a width of the sliding window 804 (when the sliding window 804 is moved up and down) or a height (when the sliding window 804 is moving left and right) is a fixed value; and H is an opening value of the sliding window 804 detected by the position sensor 802.
  • the control unit adjusts the exhaust air volume of the working chamber 102 of the fume hood according to the calculation, and combines the exhaust air volume values of the bottom cabinet exhaust passages B1 and B2 of the bottom cabinet 105 under the preset surface wind speed to adjust the exhaust fan 311.
  • each fume hood can only achieve the individual adjustment according to the use condition by the total power fan.
  • most of the new environmentally-friendly variable air volume fume hoods on the market are equipped with expensive venturi valves.
  • the top module 400 is provided with an exhaust fan 311 and an exhaust valve 312 that can adjust the power and opening according to actual conditions, and
  • the air blower 211 and the air supply valve 212 adjust the power and opening of the fan and the valve through an automatic control system, thereby achieving the same function as the venturi valve, and the structure is simple, space saving, and ventilation is greatly reduced. Cabinet installation costs and maintenance costs.
  • two air inlets are provided in the upper part of the cabinet, and one air supply port is arranged in the lower part of the cabinet body, and an air exhausting area is arranged in the upper part of the cabinet body and close to the rear wall of the cabinet body, but
  • the position and number of the tuyere and the exhaust area are not limited to this, as long as a push-pull air flow mode can be formed in the working chamber.
  • the supplemental fan and the exhaust fan are respectively power-adjustable fans, and the supplemental valve and the exhaust valve are respectively variable opening valves, but the utility model is not limited thereto, as long as the fan is And at least one of the valves
  • the square is set to be adjustable.
  • the supplemental air valve and the exhaust valve are respectively disposed on the downstream side of the air flow direction of the supplemental fan and the exhaust fan, but the present invention is not limited thereto, and the supplemental valve and the exhaust valve may also be They are respectively disposed on the upstream side of the air flow direction of the supplemental fan and the exhaust fan.
  • the sliding window is provided to adjust the amount of entering the air at the front opening of the fume hood, but the present invention is not limited thereto, and the sliding may not be provided without adjusting the amount of air entering. Window to reduce costs.
  • two base cabinets are provided under the cabinet for storing reagents and materials required for the experiment, but the utility model is not limited thereto, and the number of the bottom cabinets may be appropriately set as needed, or Set the base cabinet.
  • the number and position of the exhaust ducts of the base cabinet may be appropriately set corresponding to the number and position of the cabinet.
  • the wind speed sensor for measuring the surface wind speed is disposed on the inner surface of the side wall, but the present invention is not limited thereto, and the wind speed sensor may be disposed on the inner wall of the working chamber such as the bottom wall or the top wall. As long as the surface wind speed can be detected without hindering the experimental operation.
  • the fume hood is a fume hood for laboratory use, but in addition, the fume hood of the present invention can be applied to any work that requires control and discharge of harmful substances in the air, such as the semiconductor industry. The required wet etching cleaning system, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
  • Ventilation (AREA)
  • Prevention Of Fouling (AREA)

Abstract

一种通风柜,包括:柜体(100),该柜体(100)的内腔构成工作腔(102),且前壁形成有向室内环境敞开的前开口(110);补风***,该补风***与建筑物的补风通道连接,向工作腔补风;以及排风***,该排风***与建筑物的排风通道连接,将经过前开口进入工作腔的空气和经过补风***进入工作腔的空气从工作腔排出,补风***在柜体的上部和下部各具有至少一个补风口,该补风口朝向工作腔内送风,柜体上方设有顶部模块(400),顶部模块内安装有补风***用的补风风机(211)和补风阀门(212)、以及排风***用的排风风机(311)和排风阀门(312),连接补风风机和补风阀门与各补风口的各补风通道彼此连通。该通风柜能够降低空调能耗、抑制工作腔内有害物质的溢流,还具有安装成本低且产品质量的一致性高的优点。

Description

通风柜 技术领域
本实用新型涉及一种通风柜,尤其涉及一种补风型通风柜。
背景技术
通风柜一般可以被描述为一个用于捕捉、容纳、和排除废气、有害气体及颗粒物的通风工作空间。大部分传统的通风柜采用从通风柜的前开口处向通风柜的工作腔送入大量的环境空气,同时用大功率的风机在工作腔内排风来进行空气中有害物质的容纳和处理。在传统通风柜的设计理念下,从前开口送入的风量越高,通风柜对空气中有害物质的控制和排出功能越有效,因此需要通过建筑物的暖通空调***向使用该通风柜的空间例如实验室补入大量空气来代替从前开口送入通风柜的环境空气。由于补入实验室的空气属于供给为实验室环境空气的一部分,它必须被处理到相同的环境空气程度以确保实验室工作环境的舒适性和安全性,因此,传统通风柜的使用一般都导致实验室等所在的建筑物产生很大的能耗。此外,不可预知的和不一致的空气流动模式,如排气口和前开口附近的旋涡型空气组织会经常发生。在这种情况下,不管从前开口送入的空气速度是多少,工作腔内的空气体系若有乱流和旋涡就会造成工作腔内的空气溢流的风险,对实验人员的健康和安全构成威胁。因此,极需新的通风柜设计结构和运行技术来减少能耗和降低工作腔内有害物质的溢流风险。
目前通风柜市场上的新型节能环保型通风柜均为补风型通风柜。通过在柜体的上方或下方设置一个补风口,从建筑物的补风动力***中获取补偿气流吹入通风柜的工作腔,这样的设计一定程度上节约了由于补风造成的建筑物的空调能耗。然而,现行的新型通风柜的单一的补风气流并不能在通风柜的工作腔内建立起稳定的空气流动模式,所以空气乱流和涡流问题仍未解决,危害实验人员健康和安全的溢流风险依旧存在。另外,目前市场上的通风柜均依靠建筑物统一的补风***和排风***获取动力,若出现多个通风柜同时并行使用,其排补风量不能实现依使用情况所需的个性调节,如此也会造成能耗较高的结果。并且,在安装调试过程中,通风柜及其控制***通常是采用散装零部件在现场临时拼装,因此存在安装成本高、产品质量的一致性较差的问题。
实用新型内容
实用新型所要解决的问题
本实用新型鉴于上述问题而做成,其目的在于,提供一种能够降低空调能耗、抑制工作腔内有害物质的溢流、且安装成本低而产品质量的一致性高的通风柜。
用于解决问题的手段
为了解决上述问题,本实用新型的通风柜,包括:柜体,该柜体的内腔构成工作腔,且前壁形成有向室内环境敞开的前开口;补风***,该补风***与建筑物的补风通道连接,向所述工作腔补风;以及排风***,该排风***与建筑物的排风通道连接,将经过所述前开口进入所述工作腔的空气和经过所述补风***进入所述工作腔的空气从所述工作腔排出,所述补风***在所述柜体的上部和下部各具有至少一个补风口,该补风口朝向所述工作腔内送风,所述柜体上方设有顶部模块,所述顶部模块内安装有所述补风***用的补风风机和补风阀门、以及所述排风***用的排风风机和排风阀门,连接所述补风风机和所述补风阀门与各所述补风口的各补风通道彼此连通。
采用上述结构,由于在柜体的上下部各具有至少一个补风口,因此,不但可以减少从前开口送入的风量,从而减少空调能耗,而且由于多个补风口的设置能够在工作腔内建立稳定的推拉式空气流动模式,因此大大降低了工作腔内的空气溢流的风险。另外,由于通风柜自身具有排风风机和排风阀门、以及补风风机和补风阀门,因此能够根据例如通风柜相对于建筑物的总动力风机的远近、操作人员是否位于设定区域等实际情况,灵活设计排风风量和补风风量,进一步有助于降低能耗。并且,由于上述风机和阀门等都集成在通风柜所具有的顶部模块上,因此无需进行现场拼装或对建筑物的通风***进行二次设计,由此能够实现安装成本的降低。进一步,由于是高度集成的模块化设计,因此能够保证产品质量的一致性。
另外,较佳的是,所述柜体的左右侧壁为中空双层结构,位于柜体上部的所述补风通道与位于柜体下部的所述补风通道通过所述左右侧壁的中空部分连通。
采用上述结构,使位于柜体上下部的补风通道通过侧壁的中空部分彼此连通,因此无需另外设置连接管道,既节约了空间,又简化了使用者在初次安装通风柜时的工序。
另外,较佳的是,所述排风***在所述柜体的上部且靠近所述柜体的后壁的位置具有排风区域,该排风区域在所述柜体的整个左右宽度方向上延伸,且与所述排风风机和所述排风阀门连接。
采用上述结构,由于排风区域设在柜体上部且靠近柜体后壁的位置,因此有利于上述推拉式空气流动模式的形成。另外,由于排风区域在柜体的整个左右宽度方向上延伸,因此可以避免在工作腔的顶部排风口附近形成空气涡旋,并为包括后述的底柜排风通道在内的整个排风***的连通提供了可能性。
另外,较佳的是,各所述补风口分别沿着所述工作腔的左右宽度方向延伸,多个所述补风口中包括:位于所述前开口的上方的第一补风口;位于所述前开口的下方的第二补风口;以及位于所述柜体的上部且所述前壁的外侧的第三补风口,该第三补风口朝向所述工作腔内和所述柜体的下方送风。
采用上述结构,有利于上述推拉式空气流动模式的形成。并且,由于补风口沿着工作腔的左右宽度方向延伸,因此能够均匀地送出空气,防止湍流的形成。另外,由于第三补风口向下吹风,该向下吹出的风刚好位于操作人员的呼吸位置,因此会进一步减低操作人员吸入有害物质的风险,并且该向下吹出的风形成了“空气屏障”,能够起到缓冲工作腔内和柜外环境空气的作用,有效防止溢流风险。
另外,较佳的是,所述工作腔具有从所述第一补风口朝所述排风区域向后上方倾斜地延伸的倾斜顶壁。
采用上述结构,可防止在工作腔的顶部形成涡流,可使工作腔内气体从上述第一补气口沿倾斜顶壁缓慢均匀攀爬至上述排风区域。
另外,较佳的是,在所述工作腔内设有导流板,该导流板靠近所述后壁直立设置,且上端部朝向所述排风区域延伸,在所述导流板的下部设有多个贯穿孔,该多个贯穿孔在所述导流板的整个左右宽度方向上分布。
采用上述结构,有利于将工作腔内的气体导向上述排气区域而避免空气涡流的产生,并且,由于导流板上的贯穿孔在导流板的整个左右宽度方向上分布,因此有助于提供整个工作腔的宽面基本一致的连续排风。
另外,较佳的是,在所述柜体的下方设有至少一个底柜,该底柜的内腔通过底柜排风通道与所述排风区域连通,该底柜排风通道设在所述左右侧壁中的至少一方侧壁的中空部分内,且靠近所述后壁沿上下方向延伸。
采用上述结构,可以将底柜中由于存放挥发性试剂或有毒材料而产生的有害气体排出室外。并且,由于底柜排风通道布置在侧壁的中空部分中,因此,既节约了空间,又简化了使用者在初次安装通风柜时的工序。
另外,较佳的是,各所述补风口上分别设有导流片。
采用上述结构,能够使湍流最小化,确保补风气流沿设定方向均匀缓慢地吹出。
另外,较佳的是,所述第二补风口外设有包围该第二补风口的保护格栅,所述第三补风口外设有包围该第三补风口的保护格栅。
采用上述结构,既可有效降低补风口材料耗损,又可进一步助于底部补风空气成为层流补入工作腔,还可以防止杂物进入补风口。
另外,较佳的是,所述补风风机和排风风机分别为功率可调型风机,所述补风阀门和排风阀门分别为开度可变式阀门,所述通风柜还设有:滑动窗,该滑动窗可沿所述前开口滑动,用于调节所述前开口的敞开面积;位置传感器,该位置传感器设在所述顶部模块内,用于检测所述滑动窗的位置;风速传感器,该风速传感器靠近所述前开口地设置在所述工作腔的内壁上,用于检测从所述前开口进入所述工作腔的空气的速度;红外探测器,该红外探测器设置于所述顶部模块的前壁,用于检测操作人员是否处于设定区域;以及控制单元,该控制单元位于所述顶部模块内,与所述位置传感器、所述风速传感器、所述红外探测器、所述补风风机和所述补风阀门、以及所述排风风机和所述排风阀门连接,并且基于所述位置传感器、所述风速传感器、所述红外探测器的检测信息对所述补风风机的功率和所述补风阀门的开度、以及所述排风风机的功率和所述排风阀门的开度进行调节。
采用上述结构,可根据通风柜自身的实际使用情况,利用自动控制***对补风风机和补风阀门、以及排风风机和排风阀门的功率和开度进行自动调整,不但能够降低空调能耗,而且结构简便,节约空间,并大大降低了通风柜的安装成本和维修成本。
附图说明
图1是本实用新型的较佳实施方式的通风柜的主视图。
图2是本实用新型的较佳实施方式的通风柜的后视剖视图。
图3是本实用新型的较佳实施方式的通风柜的立体图。
图4是本实用新型的较佳实施方式的通风柜的气流导向图。
图5是本实用新型的较佳实施方式的通风柜的补风***的气流导向图。
图6是本实用新型的较佳实施方式的通风柜的排风***的气流导向图。
符号说明
100 柜体
102 工作腔
103 左右侧壁
104 顶壁
105 底柜
106 后壁
108 底壁
109 倾斜顶壁
110 前开口
201 第一补风通道
202 第二补风通道
203 第三补风通道
211 补风风机
212 补风阀门
311 排风风机
312 排风阀门
313 集气罩
314 导流板
315 导流槽
335 排风区域
400 顶部模块
801 风速传感器
802 位置传感器
803 红外探测器
804 滑动窗
A1 第一补风口
A2 第二补风口
A3 第三补风口
A4 补风总口
B1、B2 底柜排风通道
B4 排风总口
具体实施方式
现在结合附图,详细介绍本实用新型的较佳实施方式。虽然本实用新型的描述将结合此较佳实施方式一起介绍,但这并不代表此实用新型的特征仅限于该实施方式。恰恰相反,结合实施方式作实用新型介绍的目的是为了覆盖基于本实用新型的权利要求而有可能延伸出的其它选择或改造。为了提供对本实用新型的深度了解,以下描述中将包含许多具体的细节。本实用新型也可以不使用这些细节实施。此外,为了避免混乱或模糊本实用新型的重点,有些具体细节将在描述中被省略。
另外,在以下的说明中所使用的“上”、“下”、“左”、“右”、“顶”、“底”,是基于该通风柜被实验室的实验人员使用时的空间位置而定义的,不应理解为对本实用新型的限制。
如图1至4所示,本实用新型的较佳实施方式的通风柜包括柜体100,该柜体100的内腔构成工作腔102,该柜体100具有:左右侧壁103、顶壁104,后壁106、底壁108、以及形成在前壁的向室内环境敞开的前开口110。在本实施方式中,柜体100的下方设有两个底柜105,该底柜105可以用于储藏实验所需的试剂及材料。
在柜体100的上方设有本实用新型通风柜特有的顶部模块400。顶部模块400内部安装有:功率可调节的补风风机211、处于补风风机211的空气流动方向下游侧的开度可调节的补风阀门212、功率可调节的排风风机311、以及处于排风风机的空气流动方向下游侧的开度可调节的排风阀门312。上述补风风机211、补风阀门212、以及后述的各补风口、补风通道等构成补风***,该补风***通过补风总口A4与建筑物的补风通道连接,向工作腔102内补风。上述排风风机311、排风阀门312、以及后述的排风区域、排风通道等构成排风***,该排风***通过排风总口B4与建筑物的排风通道连接,将经过前开口110进入工作腔102的空气和经过上述补风***进入工作腔102的空气从工作腔102排出。
图4是本实施方式的通风柜的气流导向图,图5是本实施方式的通风柜的补风***的气流导向图。如图4、5所示,在上述前开口110的上方设有第一补风口A1,该第一补风口A1被设计成沿工作腔102的左右宽度方向延伸的半圆柱面形状,其半圆柱面朝向工作腔102即朝向后方。在该第一补风口A1上,设有多个沿半圆柱面的轴向延伸且沿周向排列的导流片221(如图5中示意)。在柜体的上部设有横跨柜体左右宽度方向的第一补风通道201,该第一补风通道201将上述补风阀门212和上述第一补风口A1连接起来。第一补风通道201靠近工作腔102的一面为斜壁设计。此斜壁可均匀分布在第一补风通道201内移动的空气,并将其风速降低。这样,通过运转补风风机211,第一补风口A1沿半圆柱面的径向将补充空气均匀缓慢地送入通风柜的工作腔102内。虽然从补风风机211送至第一 补风口A1的气流仍有一定湍流的比例(约为15%以下),但导流片221的设置可将湍流隔断,确保从第一补风口A1吹入工作腔102的气流为层流状态。
在前开口110的下方设有第二补风口A2,该第二补风口A2被设计成沿工作腔102的左右宽度方向延伸的1/4圆柱面形状,其1/4圆柱面朝向工作腔102即朝向后上方。在该第二补风口A2上,设有多个沿1/4圆柱面的轴向延伸且沿周向排列的导流片222(如图5中示意)。在柜体的下部设有横跨柜体左右宽度方向的第二补风通道202,该第二补风通道202将来自补风风机211的空气向该第二补风口A2输送,因此可使补偿气流沿1/4圆柱面的径向均匀吹入工作腔。另外,由于第二补风口A2位于通风柜的工作区,这个区域的导流片会有因为频繁使用而造成的耗损风险。因此,在本实施方式中,在第二补风口A2外设有包围该第二补风口A2的保护格栅(未图示)来防止导流片222耗损的风险。同时保护格栅也可以帮助引导第二补风口A2的补风气流,并有助于从第二补风口A2送出的气体成为层流状态而被补入工作腔102,另外,保护格栅还能起到防止杂物进入第二补风口A2的作用。
在柜体100的上部且上述前壁的前侧设有第三补风口A3,该第三补风口A3被设计成沿工作腔102的左右宽度方向延伸的1/4圆柱面形状,其1/4圆柱面朝向工作腔102即朝向后下方。在该第三补风口A3上,设有多个1/4沿圆柱面的轴向延伸且沿周向排列的导流片223(如图5中示意)。在柜体的上部设有横跨柜体左右宽度方向的第三补风通道203,在该第三补风通道203与上述第一补风通道201之间可插装后述的滑动窗804,该第三补风通道203绕过该滑动窗804而与上述第一补风通道201连通,进而将来自补风风机211的空气向该第三补风口A3输送。该第三补风通道203远离柜体的一面为斜壁设计,既均匀分布了该第三补风通道203内移动的空气,又降低了风速。在补风机211作用下,补充空气可沿第三补风口A3的径向均匀缓慢地吹出。第三补风口A3不但朝向柜体100的工作腔102送风,而且朝向柜体100的下方送风,该向下吹出的风刚好位于实验人员的呼吸位置,因此会进一步减低实验人员吸入有害物质的风险。并且,从第三补风口A3向下吹出的风形成了“空气屏障”,起到了缓冲工作腔102内和柜外环境空气的作用,有效防止溢流风险。在本实施方式中,在该第三补风口A3外也设有包围该第三补风口A3的保护格栅,该保护格栅同样起到防止导流片耗损、引导补风气流、以及防止杂物进入补风口的作用。
如图5所示,柜体100的左右侧壁103为中空双层结构,位于柜体上部的上述第一补风通道201与位于柜体下部的第二补风通道202通过左右侧壁103的中空部分225连通,由此,使得本实施方式的所有补风通道彼此连通,从而通风柜的补风量可由补风风机211 的功率和补风阀门212的开度统一调控。
如图2、4所示,在柜体的上部且靠近上述后壁106的位置设有横跨柜体100的整个左右宽度方向的集气罩313。该集气罩313的上端与排风风机311连接,其内部构成在柜体100的整个左右宽度方向上延伸的排风区域335。通过设置这样的排风区域335,可以避免在工作腔102的顶部排风口附近形成空气涡旋,并为包括后述的底柜排风通道在内的整个排风***的连通提供了可能性。
如图4所示,在本实施方式中,上述工作腔102内还具有从上述第一补风口A1朝上述排风区域335向后上方倾斜地延伸的倾斜顶壁109,该倾斜顶壁109对工作腔102而言形成了部分包围,倾斜顶壁109的两侧和柜体的左右侧壁103连接,底端和第一补风口A1上缘连接,顶端和顶壁104连接。由于排风机高排风量的工作,传统的通风柜工作腔的内顶部经常会形成空气涡流,使有毒有害气体无法被排出,倾斜顶壁的设计可打破涡流的扩大化,配合柜内顶部的第一补风口A1送出的层流风,可使柜内气体沿斜壁缓慢均匀攀爬至排风区域。这个倾斜顶壁109的角度和形状设计是为了有助于控制和防止工作腔102内空气中有害物质的溢流,并降低在顶部的排风区域335附近空气形成旋涡的可能性。另外,如图1、4所述,在上述工作腔102内,在靠近上述后壁106的位置,还立设有导流板314,该导流板314的上端部朝向上述排风区域335延伸,在该导流板314的下部设有多个贯穿孔,该多个贯穿孔在导流板314的整个左右宽度方向上分布,在导流板314与上述底壁108之间留有导流槽315。通过带有贯穿孔的导流板314的设置,可以将工作腔102内的空气稳定地导向顶部排风区域335而避免空气涡流的产生,并且能够进行整个工作腔102的宽面基本一致的连续排风。
图4中的箭头显示了空气在进入、通过和排出通风柜的柜体时的流动方式。在补风风机211和补风阀门212的作用下,补风气流从总补风口A4进入通风柜的补风***,流动至各补风口A1,A2和A3,进而均匀缓慢进入工作腔102,同时,一部分环境空气也会以垂直于前开口110的角度从前开口110进入工作腔102。这些空气进入工作腔102后,如箭头所示,基本上会被均匀的拉向和通过顶部的排风区域335、导流板314和导流槽315,随后从柜体顶部的总排风口B4随箭头方向排出。本领域技术人员会很清楚:空气流动面积的改变会造成空气流动速度的波动。因此,从前开口110进入的空气在进入工作腔102的大区域时,风速会有所降低;当这些空气继续流到顶部的排风区域335附近时,风速会增加。这种风速的波动有助于维持一个一致的、稳定的补风和排风推拉体系。这个推拉式***可以将柜内的空气以同步位移的方式移动,这样可以把所需补风量和柜内空气的湍流 风险大量减低。此外,本实施方式采用的推拉式***和倾斜顶壁109的设置可以把柜内空气乱流和旋涡的形成的风险最小化,特别是位于工作腔102上方和前开口110的空气组织。因此,由此推拉式***所产生的位移空气移动体系可以更有效地控制柜内空气中有害物质从前开口溢流的可能性。
图6是本实施方式的通风柜的排风***的气流导向图。为排出通风柜的两个底柜105中由于放置工作试剂或材料而产生的有毒有害气体,如图2、6所示,本实施方式的通风柜的两个底柜105的后部分别设置有底柜排风通道B1和B2。底柜排风通道B1和B2分别设在相应的左右侧壁103的中空部分内,且靠近上述后壁106沿上下方向延伸,将相应底柜105的内腔与上述柜体顶部的集气罩313内的排风区域335的相应一侧连通。这样,在排风风机311的作用下,底柜105内的气体可被抽入底柜排风通道B1和B2,并在排风区域335与工作腔102内的被推拉至排风区域335的气流混合,一起从总排风口B4排出到建筑物的排风通道中。由此可见,类似补风***,本实用新型通风柜的各个排风通道也彼此关联,则总排风量可由排风风机311的功率和排风阀门312的开度控制。
进一步地,本实施方式的通风柜可以配合控制***作为变风量通风柜使用,其前开口处的空气的进入量可通过滑动窗位置的改变而在很大范围内灵活改变。具体地说,如图3、4所示,在本实施方式中,通风柜还设有:滑动窗804,该滑动窗804可沿上述前开口110滑动,用于调节该前开口110的敞开面积;位置传感器802,该位置传感器802设在上述顶部模块400内,用于检测上述滑动窗804的位置;风速传感器801,该风速传感器801靠近上述前开口110地设置在上述左右侧壁103中的一方的内表面上,用于检测从上述前开口110进入上述工作腔102的空气的速度(以下简称为面风速);红外探测器803,该红外探测器803设置于上述顶部模块400的前壁,用于检测实验人员是否处于设定区域;以及控制单元(未图示),该控制单元位于上述顶部模块400内,与上述位置传感器802、风速传感器801、红外探测器803、上述补风风机211和补风阀门212、以及排风风机311和排风阀门312连接,并且基于上述位置传感器802、风速传感器801以及红外探测器803的检测信息对上述补风风机211和补风阀门212、以及排风风机311和排风阀门312的各自的功率和开度进行调节。
上述红外探测器803可以感知实验人员是否处于设定的工作区域,若检测到无人处于工作区而通风柜的滑动窗804又未处于关闭状态,则控制单元会给滑动窗804的驱动装置(未图示)发送信号,关闭滑动窗804,减少从室内环境进入工作腔的空气,降低实验室能耗;另外,滑动窗804关闭后,通风柜的入风量仅由各个补风口A1~A3提供,通风柜 的排风量同时降低,因此通风柜的***能耗也随之降低。
另一方面,当滑动窗804的开度有变化时,上述控制单元接收到位置传感器802发送的滑动窗开度值,根据以下公式计算出维持面风速为预设值所需要的通风柜排风量:
Q=V*S*3600  (1)
Q为通风柜的工作腔102的排风量,单位为m3/h;V为面风速的预设值,单位为m/s;S为滑动窗804的通风截面积即前开口110的面积,单位为m2,其中,
S=L*H  (2)
L为滑动窗804的宽度(滑动窗804为上下移动时)或高度(滑动窗804为左右移动时)为固定值;而H为上述位置传感器802检测到的滑动窗804的开度值。
然后,控制单元根据计算得到的通风柜的工作腔102的排风量,并结合预设面风速下底柜105的底柜排风通道B1和B2的排风量数值,调整排风风机311的功率和排风阀门312的开度,从而改变整个通风柜的排风量。也可以根据上述各检测值和计算值,调整补风风机211的功率和补风阀门212的开度,从而改变补风***的补风量。
当多个通风柜并行连接于建筑通风***中时,各个通风柜依据自身的使用情况所需的补排风量也会不尽相同。在并行的气流***中,距离***总动力风机越近,可补充或排出的气流量越大;距离***总动力风机越远,由于压降和损耗,可补充或排出的气流量越小。因此若无阀门控制,各个通风柜仅靠总动力风机并不能实现依使用情况而定的个性调节。为实现上述目标,现市场上的新型环保变风量通风柜多数安装有价格昂贵的文丘里阀。在本实施方式中,如上所述,由于通风柜自身集成有顶部模块400,而该顶部模块400中安装有可根据实际情况调整功率和开度的排风风机311和排风阀门312、以及补风风机211和补风阀门212,并通过自动控制***对上述风机和阀门的功率和开度进行调整,因此能够达到与文丘里阀相同的作用,且结构简便,节约空间,并大大降低了通风柜安装成本和维修成本。
以上,对本实用新型的较佳实施方式进行了说明,但本实用新型不限于此,在不脱离其宗旨的范围内,可以进行各种变形来实施。
例如,在上述实施方式中,在柜体上部设有两个补风口,在柜体下部设有一个补风口,在柜体上部且靠近柜体后壁的位置设有一个排风区域,但补风口和排风区域的设置位置和数量不限于此,只要能在工作腔内形成推拉式的空气流动模式即可。
又,在上述实施方式中,补风风机和排风风机分别为功率可调型风机,补风阀门和排风阀门分别为开度可变式阀门,但是本实用新型不限于此,只要将风机和阀门中的至少一 方设置成可调即可。另外,在不需调节风量的情况下,只要根据通风柜距离***总动力风机的远近来设置风机的固定功率和阀门的固定开度即可。
又,在上述实施方式中,补风阀门和排风阀门分别设置在补风风机和排风风机的空气流动方向的下游侧,但是本实用新型不限于此,补风阀门和排风阀门也可分别设置在补风风机和排风风机的空气流动方向的上游侧。
又,在上述实施方式中,设有滑动窗来调节通风柜的前开口处的空气的进入量,但是本实用新型不限于此,在不需要调节空气进入量的情况下,也可以不设置滑动窗以降低成本。
又,在上述实施方式中,在柜体的下方设有两个底柜用于储藏实验所需的试剂及材料,但是本实用新型不限于此,底柜的数量可以根据需要适当设置,或者不设置底柜。另外,底柜排风通道的数量和位置只要对应于底柜的数量和位置适当设置既可。
又,在上述实施方式中,用于测量面风速的风速传感器设置在侧壁的内表面上,但本实用新型不限于此,风速传感器也可以设置在底壁或顶壁等工作腔的内壁上,只要能够检测面风速又不会妨碍实验操作即可。
又,在上述实施方式中,通风柜为实验室用的通风柜,但除此以外,本实用新型的通风柜可适用于任何需要对空气中有害物质有所控制和排出的工作,例如半导体行业内所需的湿式蚀刻清洗***等。

Claims (10)

  1. 一种通风柜,包括:柜体,该柜体的内腔构成工作腔,且前壁形成有向室内环境敞开的前开口;补风***,该补风***与建筑物的补风通道连接,向所述工作腔补风;以及排风***,该排风***与建筑物的排风通道连接,将经过所述前开口进入所述工作腔的空气和经过所述补风***进入所述工作腔的空气从所述工作腔排出,其特征在于,
    所述补风***在所述柜体的上部和下部各具有至少一个补风口,该补风口朝向所述工作腔内送风,
    所述柜体上方设有顶部模块,所述顶部模块内安装有所述补风***用的补风风机和补风阀门、以及所述排风***用的排风风机和排风阀门,
    连接所述补风风机和所述补风阀门与各所述补风口的各补风通道彼此连通。
  2. 如权利要求1所述的通风柜,其特征在于,
    所述柜体的左右侧壁为中空双层结构,位于柜体上部的所述补风通道与位于柜体下部的所述补风通道通过所述左右侧壁的中空部分连通。
  3. 如权利要求2所述的通风柜,其特征在于,
    所述排风***在所述柜体的上部且靠近所述柜体的后壁的位置具有排风区域,该排风区域在所述柜体的整个左右宽度方向上延伸,且与所述排风风机和所述排风阀门连接。
  4. 如权利要求3所述的通风柜,其特征在于,
    各所述补风口分别沿着所述工作腔的左右宽度方向延伸,
    多个所述补风口中包括:
    位于所述前开口的上方的第一补风口;
    位于所述前开口的下方的第二补风口;以及
    位于所述柜体的上部且所述前壁的外侧的第三补风口,该第三补风口朝向所述工作腔内和所述柜体的下方送风。
  5. 如权利要求4所述的通风柜,其特征在于,
    所述工作腔具有从所述第一补风口朝所述排风区域向后上方倾斜地延伸的倾斜顶壁。
  6. 如权利要求3所述的通风柜,其特征在于,
    在所述工作腔内设有导流板,该导流板靠近所述后壁直立设置,且上端部朝向所述排风区域延伸,
    在所述导流板的下部设有多个贯穿孔,该多个贯穿孔在所述导流板的整个左右宽度方向上分布。
  7. 如权利要求3所述的通风柜,其特征在于,
    在所述柜体的下方设有至少一个底柜,该底柜的内腔通过底柜排风通道与所述排风区域连通,该底柜排风通道设在所述左右侧壁中的至少一方侧壁的中空部分内,且靠近所述后壁沿上下方向延伸。
  8. 如权利要求4所述的通风柜,其特征在于,
    各所述补风口上分别设有导流片。
  9. 如权利要求4所述的通风柜,其特征在于,
    所述第二补风口外设有包围该第二补风口的保护格栅,
    所述第三补风口外设有包围该第三补风口的保护格栅。
  10. 如权利要求1所述的通风柜,其特征在于,
    所述补风风机和排风风机分别为功率可调型风机,
    所述补风阀门和排风阀门分别为开度可变式阀门,
    所述通风柜还设有:
    滑动窗,该滑动窗可沿所述前开口滑动,用于调节所述前开口的敞开面积;
    位置传感器,该位置传感器设在所述顶部模块内,用于检测所述滑动窗的位置;
    风速传感器,该风速传感器靠近所述前开口地设置在所述工作腔的内壁上,用于检测从所述前开口进入所述工作腔的空气的速度;
    红外探测器,该红外探测器设置于所述顶部模块的前壁,用于检测操作人员是否处于设定区域;以及
    控制单元,该控制单元位于所述顶部模块内,与所述位置传感器、所述风速传感器、 所述红外探测器、所述补风风机和所述补风阀门、以及所述排风风机和所述排风阀门连接,并且基于所述位置传感器、所述风速传感器、所述红外探测器的检测信息对所述补风风机的功率和所述补风阀门的开度、以及所述排风风机的功率和所述排风阀门的开度进行调节。
PCT/CN2016/071209 2015-04-10 2016-01-18 通风柜 WO2016161834A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16762722.3A EP3281714A4 (en) 2015-04-10 2016-01-18 Ventilating cabinet
JP2016562480A JP2017521226A (ja) 2015-04-10 2016-01-18 ヒュームフード
US15/309,461 US10478873B2 (en) 2015-04-10 2016-01-18 Ventilation cabinet
SG11201610579XA SG11201610579XA (en) 2015-04-10 2016-01-18 Fume hood

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520216778.6U CN204710833U (zh) 2015-04-10 2015-04-10 通风柜
CN201520216778.6 2015-04-10

Publications (1)

Publication Number Publication Date
WO2016161834A1 true WO2016161834A1 (zh) 2016-10-13

Family

ID=54309863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071209 WO2016161834A1 (zh) 2015-04-10 2016-01-18 通风柜

Country Status (6)

Country Link
US (1) US10478873B2 (zh)
EP (1) EP3281714A4 (zh)
JP (1) JP2017521226A (zh)
CN (1) CN204710833U (zh)
SG (1) SG11201610579XA (zh)
WO (1) WO2016161834A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10357810B2 (en) 2016-03-17 2019-07-23 E3 Green Technology Co., Ltd. Steady flow structure and a ventilation apparatus having said steady flow structure
CN113333050A (zh) * 2020-03-02 2021-09-03 中清睿(厦门)环境科技有限公司 一种集中型vav变风量中央实验台
CN114247722A (zh) * 2021-11-19 2022-03-29 北京戴纳实验科技有限公司 一种可调节温度和风量的通风实验柜
CN114260277A (zh) * 2021-12-06 2022-04-01 北京戴纳实验科技有限公司 一种实验室用通风装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204710833U (zh) * 2015-04-10 2015-10-21 阮红正 通风柜
CN106140769B (zh) * 2015-04-10 2021-05-18 倚世节能科技(上海)有限公司 通风柜
CN106814213A (zh) * 2015-11-27 2017-06-09 上海卓思智能科技股份有限公司 一种通风柜及通风柜面风速测量方法及装置
CN105382010B (zh) * 2015-12-21 2017-07-11 天津春城实验仪器制造有限公司 变风量控制***
JP6490016B2 (ja) * 2016-01-15 2019-03-27 株式会社ウエックス 排気フード
CN105798040A (zh) * 2016-04-14 2016-07-27 天津龙川鑫汇实验设备制造有限公司 补风型通风柜
CN106563684A (zh) * 2016-10-17 2017-04-19 天津商业大学 可调导流板角度的水平式输送机高效除尘排风罩
DE102017103945A1 (de) * 2017-02-24 2018-08-30 M. Braun Inertgas-Systeme Gmbh Vorrichtung und Verfahren zum Austausch eines Gases aus einem Arbeitsraum eines begehbaren Inertgas-Gehäuses
CN107309237A (zh) * 2017-06-21 2017-11-03 巴斯夫上海涂料有限公司 挥发性溶剂排出方法及其设备
CN107282583A (zh) * 2017-08-08 2017-10-24 倚世节能科技(上海)有限公司 一种通风设备的补风通道
IT201700102432A1 (it) * 2017-09-13 2019-03-13 Asem S R L Cappa aspirante migliorata per l'aspirazione di vapori prodotti da reazioni chimiche
CN107931247A (zh) * 2017-11-23 2018-04-20 中山市君禾机电设备有限公司 一种喷房翻板结构
JP7185869B2 (ja) * 2018-09-04 2022-12-08 国立大学法人大阪大学 処理装置
CN109047259A (zh) * 2018-10-26 2018-12-21 北京佰安智能科技有限公司 一种实验室节能型通风橱
CN109529956A (zh) * 2018-11-28 2019-03-29 苏州安泰空气技术有限公司 一种带有可全幅清洁移动窗结构的洁净设备
KR102285046B1 (ko) * 2019-03-29 2021-08-02 최진선 오염공기의 외부 배출을 방지하는 시약장
CN110090670B (zh) * 2019-06-05 2024-02-20 江苏拓米洛高端装备股份有限公司 具有顶部吸风式风道结构的环境试验箱
EP3919195B1 (en) * 2020-06-03 2023-08-09 InnoGUARD UtvecklingsGrupp AB A fume cupboard and a method for controlling such fume cupboard
WO2022064078A1 (es) * 2020-09-22 2022-03-31 Grifols, S.A. Dispositivo para la preparación de productos farmacéuticos
KR102283938B1 (ko) 2020-10-07 2021-07-30 (주)유나 실험용 유니버설 공기정화장치
CN112297483B (zh) * 2020-10-09 2021-09-14 江苏诚泰车辆有限公司 一种避免废气污染的轮胎加工用硫化机
CN112958967B (zh) * 2021-03-25 2022-12-02 机械工业第九设计研究院股份有限公司 一种焊装车间机器人自动工位焊接烟尘处理***的双层风罩
KR102459540B1 (ko) 2022-06-15 2022-10-27 (주)유나 유해가스 정화가 가능한 순환식 흄후드
CN115672918A (zh) * 2022-11-16 2023-02-03 福建鼎盛钢铁有限公司 一种除尘节能控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101274327A (zh) * 2006-12-28 2008-10-01 亚申科技研发中心(上海)有限公司 通风橱和通风橱的操作方法
CN103272818A (zh) * 2013-06-05 2013-09-04 广州穗剑实验室科技有限公司 一种新型节能环保实验室数控通风柜
DE102013000768A1 (de) * 2013-01-18 2014-07-24 Berner International Gmbh Sicherheitswerkbank mit einer Anzeige des Betriebszustandes durch unterschiedliche Beleuchtung einer Frontscheibe und/oder von Lichtbändern
CN203972435U (zh) * 2014-03-06 2014-12-03 中石化上海工程有限公司 一种补风型通风柜
CN204710833U (zh) * 2015-04-10 2015-10-21 阮红正 通风柜

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3237548A (en) * 1964-01-23 1966-03-01 Bayern Joseph Fumehood with auxiliary air supply
US3318076A (en) * 1964-08-14 1967-05-09 Arthur K Baker Dust-free bench
US3747505A (en) * 1972-02-18 1973-07-24 American Hospital Supply Corp Air flow system for fume hood
US3895570A (en) * 1973-09-27 1975-07-22 Baker Company Inc Air-insulated work station
GB2064100B (en) * 1979-11-28 1984-02-15 Jennings H G F Fume cupboard
JPS61957Y2 (zh) * 1980-11-12 1986-01-13
US4528898A (en) * 1984-03-05 1985-07-16 Imec Corporation Fume hood controller
US4741257A (en) * 1985-01-09 1988-05-03 Air Monitor Corporation Fume hood air flow control
JPH0220041Y2 (zh) * 1985-02-27 1990-06-01
US5240455A (en) * 1991-08-23 1993-08-31 Phoenix Controls Corporation Method and apparatus for controlling a fume hood
JPH08294638A (ja) * 1995-04-26 1996-11-12 Itoki Crebio Corp ドラフトチャンバーにおける排気制御装置
JP3326298B2 (ja) * 1995-04-26 2002-09-17 株式会社イトーキクレビオ ドラフトチャンバーにおける排気制御装置
US6154686A (en) * 1996-07-18 2000-11-28 Innovex Technologies Distributed architecture
JP3358969B2 (ja) * 1997-05-20 2002-12-24 株式会社イトーキクレビオ ドラフトチャンバー
US6089970A (en) * 1997-11-24 2000-07-18 The Regents Of The University Of California Energy efficient laboratory fume hood
US6302779B1 (en) * 2000-03-14 2001-10-16 Flow Sciences, Inc. Fume hood
US6428408B1 (en) * 2000-05-18 2002-08-06 The Regents Of The University Of California Low flow fume hood
JP3076991U (ja) * 2000-10-13 2001-04-27 株式会社ダルトン ドラフトチャンバ
DE10146000A1 (de) * 2001-09-18 2003-01-16 Waldner Laboreinrichtungen Abzug
JP2003269763A (ja) * 2002-03-12 2003-09-25 Shimazu Rika Kikai Kk 局所排気装置
JP5215629B2 (ja) * 2007-10-17 2013-06-19 オリエンタル技研工業株式会社 ヒュームフード
JP2013134015A (ja) * 2011-12-27 2013-07-08 Hitachi Plant Technologies Ltd クリーンルーム設備、風量制御装置及び風量制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101274327A (zh) * 2006-12-28 2008-10-01 亚申科技研发中心(上海)有限公司 通风橱和通风橱的操作方法
DE102013000768A1 (de) * 2013-01-18 2014-07-24 Berner International Gmbh Sicherheitswerkbank mit einer Anzeige des Betriebszustandes durch unterschiedliche Beleuchtung einer Frontscheibe und/oder von Lichtbändern
CN103272818A (zh) * 2013-06-05 2013-09-04 广州穗剑实验室科技有限公司 一种新型节能环保实验室数控通风柜
CN203972435U (zh) * 2014-03-06 2014-12-03 中石化上海工程有限公司 一种补风型通风柜
CN204710833U (zh) * 2015-04-10 2015-10-21 阮红正 通风柜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3281714A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10357810B2 (en) 2016-03-17 2019-07-23 E3 Green Technology Co., Ltd. Steady flow structure and a ventilation apparatus having said steady flow structure
CN113333050A (zh) * 2020-03-02 2021-09-03 中清睿(厦门)环境科技有限公司 一种集中型vav变风量中央实验台
CN114247722A (zh) * 2021-11-19 2022-03-29 北京戴纳实验科技有限公司 一种可调节温度和风量的通风实验柜
CN114247722B (zh) * 2021-11-19 2022-11-08 北京戴纳实验科技有限公司 一种可调节温度和风量的通风实验柜
CN114260277A (zh) * 2021-12-06 2022-04-01 北京戴纳实验科技有限公司 一种实验室用通风装置
CN114260277B (zh) * 2021-12-06 2022-11-08 北京戴纳实验科技有限公司 一种实验室用通风装置

Also Published As

Publication number Publication date
CN204710833U (zh) 2015-10-21
SG11201610579XA (en) 2017-01-27
JP2017521226A (ja) 2017-08-03
US20170182527A1 (en) 2017-06-29
EP3281714A1 (en) 2018-02-14
US10478873B2 (en) 2019-11-19
EP3281714A4 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
WO2016161834A1 (zh) 通风柜
CN106140769B (zh) 通风柜
CN107497815B (zh) 通风柜
EP2014365B1 (en) Air curtain-isolated biosafety cabinet
CN102395433A (zh) 实验室通风柜
CN108679815A (zh) 智能均匀送风装置及方法
GB2064100A (en) Fume cupboards
CN111482205A (zh) 一种多功能生物安全柜
US20100267321A1 (en) Air curtain-isolated biosafety cabinet
CN109477647A (zh) 空调***的施工方法以及空调***的设计方法
KR100907307B1 (ko) 외기 직접 도입형 냉난방 환기유닛 및 그 제어방법
CN214235511U (zh) 一种通风箱、补风装置及通风柜
CN211488985U (zh) 一种用于排风柜的多方向补风装置
KR102068698B1 (ko) 건물의 실내압 조정장치
CN207463783U (zh) 通风柜
CN208567024U (zh) 智能均匀送风装置
CN111059677A (zh) 一种可调节增速稳流型节能理化安全柜
CN214406420U (zh) 用于餐厨垃圾处理的房门侧吹式风幕机***
CN117225855A (zh) 一种通风柜
CN112827992A (zh) 侧过风式通风柜
CN104315688A (zh) 一种用于睡姿的个性化节能送风装置
CN104315691A (zh) 一种用于跑动状态的个性化节能送风装置
KR100485000B1 (ko) 청정실 천정 설치용 공조관 연결형 송풍 장치
CN218574559U (zh) 一种带补风的通风柜
CN208587944U (zh) 补风装置和送排风灶台***

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016762722

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016562480

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15309461

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16762722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016762722

Country of ref document: EP