WO2016141579A1 - Method for manufacturing cvd-sic material - Google Patents

Method for manufacturing cvd-sic material Download PDF

Info

Publication number
WO2016141579A1
WO2016141579A1 PCT/CN2015/074065 CN2015074065W WO2016141579A1 WO 2016141579 A1 WO2016141579 A1 WO 2016141579A1 CN 2015074065 W CN2015074065 W CN 2015074065W WO 2016141579 A1 WO2016141579 A1 WO 2016141579A1
Authority
WO
WIPO (PCT)
Prior art keywords
cvd
sic
manufacturing
sic material
raw material
Prior art date
Application number
PCT/CN2015/074065
Other languages
French (fr)
Inventor
Takashi Goto
Song Zhang
Rong TU
Mingxu HAN
Original Assignee
Ibiden Co., Ltd.
Wuhan University Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co., Ltd., Wuhan University Of Technology filed Critical Ibiden Co., Ltd.
Priority to JP2017566177A priority Critical patent/JP2018511708A/en
Priority to PCT/CN2015/074065 priority patent/WO2016141579A1/en
Publication of WO2016141579A1 publication Critical patent/WO2016141579A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • C30B28/14Production of homogeneous polycrystalline material with defined structure directly from the gas state by chemical reaction of reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • the present invention relates to a method for manufacturing a CVD-SiC material.
  • SiC is excellent in heat resistance, corrosion resistance, and mechanical strength, and thus, SiC is utilized in various fields including ceramic filters and semiconductor devices.
  • SiC is manufactured in most cases by a sintering method, a precursor method, a chemical vapor deposition method (CVD method) , or the like.
  • the sintering method is a method of adding a sintering aid to a fine powder of SiC and sintering the mixture;
  • the precursor method is a method of baking a resin that is a precursor;
  • the chemical vapor deposition method (CVD method) is a method for accumulating a desired coating of SiC on a target substrate by a chemical reaction near a surface of the target substrate or in a vapor phase while feeding a raw material gas.
  • the sintering aid and the like are not necessary, and thus, there is a characteristic feature that high-purity ceramic materials can be obtained. Meanwhile, it was known that if a condition of high reaction rate is set for the purpose of increasing a coating rate, in general, a large amount of a powder is generated, and the deposition rate decreases. For this reason, the productivity was not enhanced, resulting in a cause of decreasing the utilization range of CVD.
  • Non-Patent Document 1 investigations for solving ultrafine particles (e.g., fine particles and clusters) which are formed when the deposition rate is increased in the CVD reaction were made.
  • the particle deposition aided chemical vapor deposition (PPCVD) method in which fine particles formed in the vapor phase are positively collected on a substrate to be densified while applying thermophoresis or diffusion as a driving force is investigated.
  • PPCVD particle deposition aided chemical vapor deposition
  • Non-Patent Document 1 pays attention especially to diffusion as a driving force of the particle deposition aided chemical vapor deposition.
  • the diffusion coefficient of particle increases, and the diffusion deposition rate of particle increases. Accordingly, it may be considered that it is possible to control powder and film formation by controlling the total pressure.
  • low pressure PPCVD was applied to high-speed formation of SiC using SiH 4 and C 6 H 6 as raw materials. As a result, it was elucidated that it is possible to control the reaction to suppress the formation of the powder by decreasing the total pressure of the reactor. Also, it is described that an extremely high deposition rate as 190 nm/s was realized.
  • Non-Patent Document 1 Hiroshi OYAMADA, Yukihiro SHIMOGAKI, and Hiroshi KOMIYAMA, KAGAKU KOGAKU RONBUNSHU, Vol. 16, No. 3 (Control of Particle and Film Formation by Changing the Total Pressure in LPCVD)
  • Non-Patent Document 1 is a method in which ultrafine particles are once formed in the vapor phase and then collected on the substrate, and thus, the resulting coating is accumulated in random orientation on the substrate.
  • the collected ceramic fine particles are accumulated in random orientation, and thus, it is difficult to control the directionality. For this reason, it is theoretically difficult to strongly orient the crystal orientation of a CVD-SiC material in a specified direction. For this reason, it was difficult to strictly control characteristics to be caused due to the directionality of crystal, for example, a thermal expansion coefficient, etc.
  • an object of the present invention is to provide a method for manufacturing a CVD-SiC material with uniform crystal orientation while making it possible to achieve high-speed deposition.
  • a method for manufacturing a CVD-SiC material according to the present invention, a carbon source composed of C 2 H 2 and a silicon source composed of a halogenated silane are used as a raw material gas, and polycrystalline SiC is formed by the CVD method.
  • a carbon source composed of C 2 H 2 and a silicon source composed of a halogenated silane are used as a raw material gas.
  • heat decomposition can be made hardly caused during a period when C 2 H 2 is fed into a CVD furnace and comes into contact with a substrate, and formation of a fine powder in the air can be suppressed. Then, it may be considered that disordered growth of the CVD-SiC material to be formed on the substrate surface can be suppressed.
  • the silicon source composed of a halogenated silane is a stable compound as compared with silane, and thus, similar to C 2 H 2 , heat decomposition can be made hardly caused during a period when the halogenated silane is fed into a CVD furnace and comes into contact with a substrate, and formation of a fine powder in the air can be suppressed. Accordingly, it may be considered that disordered growth of the CVD-SiC material to be formed on the substrate surface can be suppressed.
  • a combination of the carbon source composed of stable C 2 H 2 and the silicon source composed of a halogenated silane is used as a raw material gas, and thus, heat decomposition until the raw material gas comes into contact with the substrate can be suppressed, and it may be considered that even when the CVD reaction is performed under a condition capable of making the deposition rate fast, such as a high-temperature or high-concentration condition, disordered growth of the CVD-SiC material can be suppressed.
  • a combination of the carbon source composed of C 2 H 2 in which the bond is hardly broken and the silicon source composed of a halogenated silane is used as a raw material gas, and thus, heat decomposition until the raw material gas comes into contact with the substrate can be suppressed. For this reason, it may be considered that a temperature region where the heat decomposition reaction takes place can be made narrow, and thus, it may be considered that a CVD-SiC material with uniform crystal orientation is obtained.
  • the silicon source is SiCl 4 .
  • SiCl 4 contains a larger amount of the halogen, and thus, it is more stable, and it may be considered that heat decomposition until it reaches the substrate can be suppressed.
  • Cl with large bonding energy is used as the halogen atom bound to Si, and thus, it can be made more stable than H, and it may be considered that heat decomposition until it reaches the substrate can be suppressed.
  • a compound of Cl formed by the CVD reaction is chiefly HCl, and HCl is not high in reactivity as compared with HF. Thus, it may be considered that a side-reaction relating thereto can be suppressed, and a favorable CVD-SiC material can be formed.
  • the carbon source is C 2 H 2 having a purity of 98% or more.
  • C 2 H 2 is a carbon source in which the bond is hardly broken, and thus, it may be considered that by using high-purity C 2 H 2 having a purity of 98% (% by volume) or more, a CVD-SiC material with more uniform crystal orientation is obtained.
  • the above-described CVD method is a method for manufacturing a CVD-SiC material that is oriented in the (111) plane direction in a reaction at 1,600 K or lower.
  • the deposition rate can be made fast even at a deposition temperature of 1,600 K or lower, and thus, it may be considered to improve efficiency for obtaining a polycrystalline CVD-SiC material having the crystal orientation on the (220) plane of a high-temperature type is scarce.
  • reaction is performed at from 1,450 to 1,600 K.
  • a carbon source composed of C 2 H 2 and a silicon source composed of a halogenated silane are used as a raw material gas.
  • heat decomposition can be made hardly caused during a period when C 2 H 2 is fed into a CVD furnace and comes into contact with a substrate, and formation of a fine powder in the air can be suppressed. Then, it may be considered that disordered growth of the CVD-SiC material to be formed on the substrate surface can be suppressed.
  • the halogenated silane is a stable compound as compared with silane, and thus, similar to C 2 H 2 , heat decomposition can be made hardly caused during a period when the halogenated silane is fed into a CVD furnace and comes into contact with a substrate, and formation of a fine powder in the air can be suppressed. For this reason, it may be considered that disordered growth of the CVD-SiC material to be formed on the substrate surface can be suppressed.
  • the carbon source composed of stable C 2 H 2 and the silicon source composed of a halogenated silane are used as a raw material gas, and thus, heat decomposition until the raw material gas comes into contact with the substrate can be suppressed, and it may be considered that even when the CVD reaction is performed under a condition capable of making the deposition rate fast, such as a high-temperature or high-concentration condition, disordered growth of the CVD-SiC material can be suppressed.
  • a combination of the carbon source composed of C 2 H 2 in which the bond is hardly broken and the silicon source composed of a halogenated silane is used as a raw material gas, and thus, heat decomposition until the raw material gas comes into contact with the substrate can be suppressed. For this reason, it may be considered that a temperature region where the heat decomposition reaction takes place can be made narrow, and thus, it may be considered that a CVD-SiC material with uniform crystal orientation is obtained.
  • FIG. 1 is a table showing conditions of tests expressing deposition conditions of CVD-SiC in the method for manufacturing a CVD-SiC material according to the present invention.
  • FIG. 2 is a table following FIG. 1 and is a table showing analysis results of tests of CVD-SiC in the method for manufacturing a CVD-SiC material according to the present invention.
  • FIG. 3 is a graph showing X-ray diffraction patterns of deposited surfaces of Tests 1 to 4 of CVD-SiC materials obtained in the tests expressed in FIGs. 1 and 2.
  • FIG. 4 is a graph showing X-ray diffraction patterns of deposited surfaces of Tests 5 to 8 of CVD-SiC materials obtained in the tests expressed in FIGs. 1 and 2.
  • FIG. 5 is a graph showing X-ray diffraction patterns of deposited surfaces of Tests 9 to 12 of CVD-SiC materials obtained in the tests expressed in FIGs. 1 and 2.
  • FIG. 6 is a graph showing X-ray diffraction patterns of deposited surfaces of Tests 13 to 16 of CVD-SiC materials obtained in the tests expressed in FIGs. 1 and 2.
  • FIG. 7 is a graph showing a deposition rate ( ⁇ m/h) vs. a deposition temperature (K) of Example and Comparative Examples of CVD-SiC materials obtained by the tests expressed in FIGs. 1 and 2.
  • FIG. 8 is an SEM photograph of each of the surfaces of Example and Comparative Examples of CVD-SiC materials obtained by the tests expressed in FIGs. 1 and 2.
  • FIG. 9 is a drawing showing the crystal orientation of each of CVD-SiC materials for every raw material gas and deposition temperature with respect to the diffraction patterns obtained by FIGs. 3 to 6.
  • a carbon source composed of C 2 H 2 and a silicon source composed of a halogenated silane are used as a raw material gas, and SiC is formed by the CVD method.
  • the halogenated silane as referred to herein is a compound in which at least one of four hydrogens bound to silane (SiH 4 ) is substituted with a halogen element, and the number thereof may be any one of 1 to 4, and the kind of the halogen element is not particularly limited. In addition, in the case where plural halogen elements are bound, the halogen elements may be different from each other. In addition, the halogenated silane to be used as the silicon source may be a single kind, or two or more kinds of raw material gases may be compounded and used.
  • the raw material gas as referred to herein has only to be a gas during the introduction into a CVD furnace, and it does not care about the form at ordinary temperature.
  • the raw material can be gasified by a vaporizer equipped with a heater.
  • the halogenated silane is a stable compound as compared with silane, and thus, similar to C 2 H 2 , heat decomposition can be made hardly caused during a period when the halogenated silane is fed into a CVD furnace and comes into contact with a substrate, and formation of a fine powder in the air can be suppressed. For this reason, it may be considered that disordered growth of the CVD-SiC material to be formed on the substrate surface can be suppressed.
  • the carbon source composed of C 2 H 2 in which the bond is hardly broken and the silicon source composed of a halogenated silane are used as a raw material gas, and thus, heat decomposition until the raw material gas comes into contact with the substrate can be suppressed, and it may be considered that even when the CVD reaction is performed under a condition capable of making the deposition rate fast, such as a high-temperature or high-concentration condition, disordered growth of the CVD-SiC material can be suppressed.
  • a combination of the carbon source composed of C 2 H 2 in which the bond is hardly broken and the silicon source composed of a halogenated silane is used as a raw material gas, and thus, heat decomposition until the raw material gas comes into contact with the substrate can be suppressed. For this reason, it may be considered that a temperature region where the heat decomposition reaction takes place can be made narrow, and thus, it may be considered that a CVD-SiC material with uniform crystal orientation is obtained.
  • the bonding energy of a C-C bond is 332 kJ/mol
  • the bonding energy of a C ⁇ C bond is 837 kJ/mol.
  • the bonding energy of the C ⁇ C bond is the highest.
  • the silicon source in the method for manufacturing a CVD-SiC material according to the present invention is preferably SiCl 4 .
  • SiCl 4 contains a larger amount of the halogen, and thus, it is more stable, and it may be considered that heat decomposition until it reaches the substrate can be suppressed.
  • Cl with large bonding energy is used as the halogen atom bound to Si, and thus, it can be made more stable than H, and it may be considered that heat decomposition until it reaches the substrate can be suppressed.
  • a compound of Cl formed by the CVD reaction is chiefly HCl, and HCl is not high in reactivity as compared with HF. Thus, it may be considered that a side-reaction relating thereto can be suppressed, and a favorable CVD-SiC material can be formed.
  • the carbon source in the method for manufacturing a CVD-SiC material according to the present invention is preferably C 2 H 2 having a purity of 98% or more.
  • C 2 H 2 is a carbon source in which the bond is hardly broken, and thus, it may be considered that by using high-purity C 2 H 2 having a purity of 98% or more, a CVD-SiC material with more uniform crystal orientation is obtained.
  • C 2 H 2 while the C ⁇ C bond is a strong bond, it is a gas having decomposability, and thus, in general, C 2 H 2 is fed from a dissolved acetylene cylinder in which C 2 H 2 is dissolved in acetone, or through a reaction between carbide and water.
  • the purifier for acetone include an adsorbent, activated carbon, and a cooling trap.
  • the purifier for water include a desiccating agent and a cooling trap.
  • C 2 H 2 An impurity gas contained in C 2 H 2 is apt to cause a decomposition reaction in a region other than the substrate surface on which the decomposition reaction of C 2 H 2 is caused, and thus, a decomposition product accumulates on the substrate and becomes the origin for forming CVD-SiC materials with different crystal orientations.
  • the purity of C 2 H 2 is preferably 98% or more, more preferably 99% or more, and still more preferably 99.5% or more.
  • impurities containing those other than hydrogen and carbon, which are contained in the raw material gas, such as water and acetone, and impurities having a carbon/carbon single bond or double bond, such as methane and ethane, can be decreased, and thus, it may be considered that disturbance of the crystal orientation to be caused due to these impurities can be reduced.
  • the method for manufacturing a CVD-SiC material according to the present invention is preferably a method for manufacturing a CVD-SiC material that is oriented in the (111) plane direction in the reaction at 1,600 K or lower.
  • the deposition rate can be made fast even at a deposition temperature of 1,600 K or lower, and thus, it may be considered that a polycrystalline CVD-SiC material in which the crystal orientation on the (220) plane of a high-temperature type is scarce can be efficiently obtained.
  • the reaction is preferably performed at from 1,450 to 1,600 K. It may be considered that when the reaction of the CVD method is performed at from 1,450 to 1,600 K, a polycrystalline CVD-SiC material in which the crystal orientation on the (220) plane of a high-temperature type is more scarce can be more efficiently obtained.
  • the X-ray diffraction of the deposited surface of the CVD-SiC material obtained by the method for manufacturing a CVD-SiC material according to the present invention is measured in the following manner.
  • the X-ray diffraction of the deposited surface can be measured by exposing the surface of the CVD-SiC material formed by the CVD method with X-rays from the side on which SiC is deposited. Approximate locations (2 ⁇ ) of peaks originated from SiC are as follows.
  • FIG. 1 is a table showing conditions of tests expressing deposition conditions of CVD-SiC in the method for manufacturing a CVD-SiC material according to the present invention.
  • FIG. 2 is a table following FIG. 1 and is a table showing analysis results of tests of CVD-SiC in the method for manufacturing a CVD-SiC material according to the present invention.
  • FIG. 3 is a graph showing X-ray diffraction patterns of deposited surfaces of samples obtained in Tests 1 to 4.
  • FIG. 4 is a graph showing X-ray diffraction patterns of deposited surfaces of samples obtained in Tests 5 to 8.
  • FIG. 1 is a table showing conditions of tests expressing deposition conditions of CVD-SiC in the method for manufacturing a CVD-SiC material according to the present invention.
  • FIG. 2 is a table following FIG. 1 and is a table showing analysis results of tests of CVD-SiC in the method for manufacturing a CVD-SiC material according to the present invention.
  • FIG. 5 is a graph showing X-ray diffraction patterns of deposited surfaces of samples obtained in Tests 9 to 12.
  • FIG. 6 is a graph showing X-ray diffraction patterns of deposited surfaces of samples obtained in Tests 13 to 16.
  • FIG. 7 is a graph showing a deposition rate of CVD-Si of each of Example and Comparative Examples of CVD-SiC materials obtained by Tests 1 to 12.
  • FIG. 8 is an SEM photograph of each of the surfaces of Example and Comparative Examples of CVD-SiC materials obtained by the tests expressed in FIGs. 1 and 2.
  • FIG. 9 is a drawing showing the crystal orientation of each of CVD-SiC materials for every raw material gas and deposition temperature with respect to the diffraction patterns obtained by FIGs. 3 to 6.
  • SCCM as a unit of the flow rate refers to standard cc/min (atmospheric pressure; 101.3 kPa, 0°C)
  • RC/Si refers to a molar ratio of the carbon atom of the carbon source to the silicone atom of the silicon source.
  • I 220 /I 2nd refers to a ratio of the peak intensity originated from the (220) plane of SiC to the second largest peak intensity. The case where the peak intensity originated from the (220) plane of SiC is not the largest is expressed as “-” .
  • I 111 /I 2nd refers to a ratio of the peak intensity originated from the (111) plane of SiC to the second largest peak intensity. The case where the peak intensity originated from the (111) plane of SiC is not the largest is expressed as “-” .
  • reaction temperature As for a reaction temperature (temperature level) as one of the conditions, in Example, it was set at 1,773 K in Test 1, 1,673 K in Test 2, 1,573 K in Test 3, and 1,473 K in Test 4, respectively; in Comparative Example 1, it was set at 1,773 K in Test 5, 1,673 K in Test 6, 1,573 K in Test 7, and 1,473 K in Test 8, respectively; in Comparative Example 2, it was set at 1,773 K in Test 9, 1,673 K in Test 10, 1,573 K in Test 11, and 1,473 K in Test 12, respectively; and in Comparative Example 3, it was set at 1,773 K in Test 13, 1,673 K in Test 14, 1,573 K in Test 15, and 1,473 K in Test 16, respectively.
  • a CVD furnace and a CVD reaction are as follows.
  • Graphite is used as a substrate; and the carbon source, the silicon source (by bubbling with a hydrogen carrier gas) , and a hydrogen carrier gas (from a separate system) are introduced into the furnace through respective nozzles and mixed in a mixing structure provided in a nozzle tip within the furnace; and the mixture is fed from an upper part of the substrate (substrate surface + 150 mm) .
  • purity grades of the used raw material gases and the like are as follows.
  • the deposited surface of the CVD-SiC material obtained in each of Tests 1 to 16 was analyzed by means of X-ray diffraction.
  • the method for manufacturing a CVD-SiC material according to the present invention is applicable to applications, for example, semiconductor manufacturing apparatuses, jigs, tools, heat-resistant materials, or the like.

Abstract

A method for manufacturing a CVD-SiC material using a carbon source composed of C2H2 and a silicon source composed of a halogenated silane as a raw material gas and forming polycrystalline SiC by the CVD method.

Description

METHOD FOR MANUFACTURING CVD-SiC MATERIAL Technical Field
The present invention relates to a method for manufacturing a CVD-SiC material.
Background Art
SiC is excellent in heat resistance, corrosion resistance, and mechanical strength, and thus, SiC is utilized in various fields including ceramic filters and semiconductor devices. SiC is manufactured in most cases by a sintering method, a precursor method, a chemical vapor deposition method (CVD method) , or the like. The sintering method is a method of adding a sintering aid to a fine powder of SiC and sintering the mixture; the precursor method is a method of baking a resin that is a precursor; and the chemical vapor deposition method (CVD method) is a method for accumulating a desired coating of SiC on a target substrate by a chemical reaction near a surface of the target substrate or in a vapor phase while feeding a raw material gas.
As for ceramics by the chemical vapor deposition method, different from those by the sintering method, the sintering aid and the like are not necessary, and thus, there is a characteristic feature that high-purity ceramic materials can be obtained. Meanwhile, it was known that if a condition of high reaction rate is set for the purpose of increasing a coating rate, in general, a large amount of a powder is generated, and the deposition rate decreases. For this reason, the productivity was not enhanced, resulting in a cause of decreasing the utilization range of CVD.
In the below listed Non-Patent Document 1, investigations for solving ultrafine particles (e.g., fine particles and clusters) which are formed when the deposition rate is increased in the CVD reaction were made. Here, the particle deposition aided chemical vapor deposition (PPCVD) method in which fine particles formed in the vapor phase are positively collected on a substrate to be densified while applying thermophoresis or diffusion as a driving force is investigated.
Specifically, Non-Patent Document 1 pays attention especially to diffusion as a driving force of the particle deposition aided chemical vapor deposition. By decreasing the total pressure while keeping the partial pressure of the reactant gas constant, the diffusion coefficient of particle increases, and the diffusion deposition rate of particle increases. Accordingly, it may be considered that it is possible to control powder and film formation by controlling the total pressure. On the basis of the foregoing basic concept, low pressure PPCVD was applied to high-speed formation of SiC using SiH4 and C6H6 as raw materials. As a result, it was elucidated that it is possible to control the reaction to suppress the formation of the powder by decreasing the total pressure of the reactor. Also, it is described that an extremely high deposition rate as 190 nm/s was realized.
Non-Patent Document 1: Hiroshi OYAMADA, Yukihiro SHIMOGAKI, and Hiroshi KOMIYAMA, KAGAKU KOGAKU RONBUNSHU, Vol. 16, No. 3 (Control of Particle and Film Formation by Changing the Total Pressure in LPCVD)
However, the manufacturing method described in Non-Patent Document 1 is a method in which ultrafine particles are once formed in the vapor phase and then collected on the substrate, and thus, the resulting coating is accumulated in random  orientation on the substrate. The collected ceramic fine particles are accumulated in random orientation, and thus, it is difficult to control the directionality. For this reason, it is theoretically difficult to strongly orient the crystal orientation of a CVD-SiC material in a specified direction. For this reason, it was difficult to strictly control characteristics to be caused due to the directionality of crystal, for example, a thermal expansion coefficient, etc.
Summary of the Invention
In view of the foregoing problem, an object of the present invention is to provide a method for manufacturing a CVD-SiC material with uniform crystal orientation while making it possible to achieve high-speed deposition.
According to an aspect of the present invention, there is provided a method for manufacturing a CVD-SiC material according to the present invention, a carbon source composed of C2H2 and a silicon source composed of a halogenated silane are used as a raw material gas, and polycrystalline SiC is formed by the CVD method.
In accordance with the method for manufacturing a CVD-SiC material according to the present invention, a carbon source composed of C2H2 and a silicon source composed of a halogenated silane are used as a raw material gas. C2H2 belongs to an alkyne, and carbons are bounded only via a triple bond. For that reason, different from paraffinic hydrocarbons having a lot of C-C bonds within a molecule thereof or olefinic hydrocarbons having a C=C bond, C2H2 is required to have large energy for breaking all the bonds between the carbons and separating the carbons from each other. Accordingly, heat decomposition can be made hardly caused during a period when C2H2 is fed into a CVD furnace and comes into contact with a substrate, and formation of a fine powder in the air can be suppressed. Then, it may be  considered that disordered growth of the CVD-SiC material to be formed on the substrate surface can be suppressed.
Furthermore, the silicon source composed of a halogenated silane is a stable compound as compared with silane, and thus, similar to C2H2, heat decomposition can be made hardly caused during a period when the halogenated silane is fed into a CVD furnace and comes into contact with a substrate, and formation of a fine powder in the air can be suppressed. Accordingly, it may be considered that disordered growth of the CVD-SiC material to be formed on the substrate surface can be suppressed.
In accordance with the method for manufacturing a CVD-SiC material according to the present invention, a combination of the carbon source composed of stable C2H2 and the silicon source composed of a halogenated silane is used as a raw material gas, and thus, heat decomposition until the raw material gas comes into contact with the substrate can be suppressed, and it may be considered that even when the CVD reaction is performed under a condition capable of making the deposition rate fast, such as a high-temperature or high-concentration condition, disordered growth of the CVD-SiC material can be suppressed.
In addition, in accordance with the method for manufacturing a CVD-SiC material according to the present invention, a combination of the carbon source composed of C2H2 in which the bond is hardly broken and the silicon source composed of a halogenated silane is used as a raw material gas, and thus, heat decomposition until the raw material gas comes into contact with the substrate can be suppressed. For this reason, it may be considered that a temperature region where the heat decomposition reaction takes place can be made narrow, and thus, it may be considered that a CVD-SiC material with uniform crystal orientation is obtained.
Furthermore, in the method for manufacturing a CVD-SiC material according  to the present invention, the following embodiments are preferred.
(A1) The silicon source is SiCl4.
Among halogenated silanes, SiCl4 contains a larger amount of the halogen, and thus, it is more stable, and it may be considered that heat decomposition until it reaches the substrate can be suppressed. In addition, Cl with large bonding energy is used as the halogen atom bound to Si, and thus, it can be made more stable than H, and it may be considered that heat decomposition until it reaches the substrate can be suppressed. Furthermore, a compound of Cl formed by the CVD reaction is chiefly HCl, and HCl is not high in reactivity as compared with HF. Thus, it may be considered that a side-reaction relating thereto can be suppressed, and a favorable CVD-SiC material can be formed.
(A2) The carbon source is C2H2 having a purity of 98% or more.
Among carbon sources for the CVD-SiC material, C2H2 is a carbon source in which the bond is hardly broken, and thus, it may be considered that by using high-purity C2H2 having a purity of 98% (% by volume) or more, a CVD-SiC material with more uniform crystal orientation is obtained.
(A3) The above-described CVD method is a method for manufacturing a CVD-SiC material that is oriented in the (111) plane direction in a reaction at 1,600 K or lower.
In accordance with the method for manufacturing a CVD-SiC material according to the present invention, by selecting a raw material gas, the deposition rate can be made fast even at a deposition temperature of 1,600 K or lower, and thus, it may be considered to improve efficiency for obtaining a polycrystalline CVD-SiC material having the crystal orientation on the (220) plane of a high-temperature type is scarce.
(A4) In the above-described CVD method, the reaction is performed at from  1,450 to 1,600 K.
In the CVD method in the present invention, it may be considered that when the reaction is performed at from 1,450 to 1,600 K, a polycrystalline CVD-SiC material in which the crystal orientation on the (220) plane of a high-temperature type is more scarce can be efficiently obtained.
In accordance with the method for manufacturing a CVD-SiC material according to the present invention, a carbon source composed of C2H2 and a silicon source composed of a halogenated silane are used as a raw material gas. C2H2 belongs to an alkyne, and carbons are bounded only via a triple bond. For that reason, different from paraffinic hydrocarbons having a lot of C-C bonds within a molecule thereof or olefinic hydrocarbons having a C=C bond, C2H2 is required to have large energy for breaking all the bonds between the carbons and separating the carbons from each other. Accordingly, heat decomposition can be made hardly caused during a period when C2H2 is fed into a CVD furnace and comes into contact with a substrate, and formation of a fine powder in the air can be suppressed. Then, it may be considered that disordered growth of the CVD-SiC material to be formed on the substrate surface can be suppressed.
Furthermore, the halogenated silane is a stable compound as compared with silane, and thus, similar to C2H2, heat decomposition can be made hardly caused during a period when the halogenated silane is fed into a CVD furnace and comes into contact with a substrate, and formation of a fine powder in the air can be suppressed. For this reason, it may be considered that disordered growth of the CVD-SiC material to be formed on the substrate surface can be suppressed.
In accordance with the method for manufacturing a CVD-SiC material according to the present invention, the carbon source composed of stable C2H2 and the  silicon source composed of a halogenated silane are used as a raw material gas, and thus, heat decomposition until the raw material gas comes into contact with the substrate can be suppressed, and it may be considered that even when the CVD reaction is performed under a condition capable of making the deposition rate fast, such as a high-temperature or high-concentration condition, disordered growth of the CVD-SiC material can be suppressed.
In addition, in accordance with the method for manufacturing a CVD-SiC material according to the present invention, a combination of the carbon source composed of C2H2 in which the bond is hardly broken and the silicon source composed of a halogenated silane is used as a raw material gas, and thus, heat decomposition until the raw material gas comes into contact with the substrate can be suppressed. For this reason, it may be considered that a temperature region where the heat decomposition reaction takes place can be made narrow, and thus, it may be considered that a CVD-SiC material with uniform crystal orientation is obtained.
Brief Description of Drawings
FIG. 1 is a table showing conditions of tests expressing deposition conditions of CVD-SiC in the method for manufacturing a CVD-SiC material according to the present invention.
FIG. 2 is a table following FIG. 1 and is a table showing analysis results of tests of CVD-SiC in the method for manufacturing a CVD-SiC material according to the present invention.
FIG. 3 is a graph showing X-ray diffraction patterns of deposited surfaces of Tests 1 to 4 of CVD-SiC materials obtained in the tests expressed in FIGs. 1 and 2.
FIG. 4 is a graph showing X-ray diffraction patterns of deposited surfaces of  Tests 5 to 8 of CVD-SiC materials obtained in the tests expressed in FIGs. 1 and 2.
FIG. 5 is a graph showing X-ray diffraction patterns of deposited surfaces of Tests 9 to 12 of CVD-SiC materials obtained in the tests expressed in FIGs. 1 and 2.
FIG. 6 is a graph showing X-ray diffraction patterns of deposited surfaces of Tests 13 to 16 of CVD-SiC materials obtained in the tests expressed in FIGs. 1 and 2.
FIG. 7 is a graph showing a deposition rate (μm/h) vs. a deposition temperature (K) of Example and Comparative Examples of CVD-SiC materials obtained by the tests expressed in FIGs. 1 and 2.
FIG. 8 is an SEM photograph of each of the surfaces of Example and Comparative Examples of CVD-SiC materials obtained by the tests expressed in FIGs. 1 and 2.
FIG. 9 is a drawing showing the crystal orientation of each of CVD-SiC materials for every raw material gas and deposition temperature with respect to the diffraction patterns obtained by FIGs. 3 to 6.
Description of Embodiments
Hereinafter, an embodiment of the method for manufacturing a CVD-SiC material according to the present invention is described in detail.
In accordance with the method for manufacturing a CVD-SiC material according to the present invention, a carbon source composed of C2H2 and a silicon source composed of a halogenated silane are used as a raw material gas, and SiC is formed by the CVD method.
The halogenated silane as referred to herein is a compound in which at least one of four hydrogens bound to silane (SiH4) is substituted with a halogen element, and the number thereof may be any one of 1 to 4, and the kind of the halogen element  is not particularly limited. In addition, in the case where plural halogen elements are bound, the halogen elements may be different from each other. In addition, the halogenated silane to be used as the silicon source may be a single kind, or two or more kinds of raw material gases may be compounded and used.
The raw material gas as referred to herein has only to be a gas during the introduction into a CVD furnace, and it does not care about the form at ordinary temperature. In the case where the raw material is a liquid or a solid at ordinary temperature, the raw material can be gasified by a vaporizer equipped with a heater.
C2H2 belongs to an alkyne, and carbons are bounded only via a triple bond. For that reason, different from paraffinic hydrocarbons having a lot of C-C bonds within a molecule thereof or olefinic hydrocarbons having a C=C bond, C2H2 is required to have large energy for breaking all the bonds between the carbons and separating the carbons from each other. Accordingly, heat decomposition can be made hardly caused during a period when C2H2 is fed into a CVD furnace and comes into contact with a substrate, and formation of a fine powder in the air can be suppressed. Then, it may be considered that disordered growth of the CVD-SiC material to be formed on the substrate surface can be suppressed.
Furthermore, the halogenated silane is a stable compound as compared with silane, and thus, similar to C2H2, heat decomposition can be made hardly caused during a period when the halogenated silane is fed into a CVD furnace and comes into contact with a substrate, and formation of a fine powder in the air can be suppressed. For this reason, it may be considered that disordered growth of the CVD-SiC material to be formed on the substrate surface can be suppressed.
In a manufacturing method of polycrystalline SiC by the CVD method, since the deposition proceeds regardless of the crystal orientation of the substrate, the crystal  orientation is apt to vary depending upon a deposition condition, and it is difficult to obtain a CVD-SiC material having single crystal orientation.
In accordance with the method for manufacturing a CVD-SiC material according to the present invention, the carbon source composed of C2H2 in which the bond is hardly broken and the silicon source composed of a halogenated silane are used as a raw material gas, and thus, heat decomposition until the raw material gas comes into contact with the substrate can be suppressed, and it may be considered that even when the CVD reaction is performed under a condition capable of making the deposition rate fast, such as a high-temperature or high-concentration condition, disordered growth of the CVD-SiC material can be suppressed.
In addition, in accordance with the method for manufacturing a CVD-SiC material according to the present invention, a combination of the carbon source composed of C2H2 in which the bond is hardly broken and the silicon source composed of a halogenated silane is used as a raw material gas, and thus, heat decomposition until the raw material gas comes into contact with the substrate can be suppressed. For this reason, it may be considered that a temperature region where the heat decomposition reaction takes place can be made narrow, and thus, it may be considered that a CVD-SiC material with uniform crystal orientation is obtained.
Incidentally, the bonding energy of a C-C bond is 332 kJ/mol, the bonding energy of a C=C bond is 611 kJ/mol, and the bonding energy of a C≡C bond is 837 kJ/mol. Thus, among the carbon/carbon bonds, the bonding energy of the C≡C bond is the highest.
The silicon source in the method for manufacturing a CVD-SiC material according to the present invention is preferably SiCl4.
Among halogenated silanes, SiCl4 contains a larger amount of the halogen,  and thus, it is more stable, and it may be considered that heat decomposition until it reaches the substrate can be suppressed. In addition, Cl with large bonding energy is used as the halogen atom bound to Si, and thus, it can be made more stable than H, and it may be considered that heat decomposition until it reaches the substrate can be suppressed. Furthermore, a compound of Cl formed by the CVD reaction is chiefly HCl, and HCl is not high in reactivity as compared with HF. Thus, it may be considered that a side-reaction relating thereto can be suppressed, and a favorable CVD-SiC material can be formed.
The carbon source in the method for manufacturing a CVD-SiC material according to the present invention is preferably C2H2 having a purity of 98% or more.
Among carbon sources for the CVD-SiC material, C2H2 is a carbon source in which the bond is hardly broken, and thus, it may be considered that by using high-purity C2H2 having a purity of 98% or more, a CVD-SiC material with more uniform crystal orientation is obtained. As for C2H2, while the C≡C bond is a strong bond, it is a gas having decomposability, and thus, in general, C2H2 is fed from a dissolved acetylene cylinder in which C2H2 is dissolved in acetone, or through a reaction between carbide and water. For this reason, in order to obtain high-purity C2H2, it is preferred to use it after removing impurities such as acetone and water by using a purifier. Examples of the purifier for acetone include an adsorbent, activated carbon, and a cooling trap. Examples of the purifier for water include a desiccating agent and a cooling trap.
An impurity gas contained in C2H2 is apt to cause a decomposition reaction in a region other than the substrate surface on which the decomposition reaction of C2H2 is caused, and thus, a decomposition product accumulates on the substrate and becomes the origin for forming CVD-SiC materials with different crystal orientations.  For this reason, the purity of C2H2 is preferably 98% or more, more preferably 99% or more, and still more preferably 99.5% or more. By using high-purity C2H2, impurities containing those other than hydrogen and carbon, which are contained in the raw material gas, such as water and acetone, and impurities having a carbon/carbon single bond or double bond, such as methane and ethane, can be decreased, and thus, it may be considered that disturbance of the crystal orientation to be caused due to these impurities can be reduced.
The method for manufacturing a CVD-SiC material according to the present invention is preferably a method for manufacturing a CVD-SiC material that is oriented in the (111) plane direction in the reaction at 1,600 K or lower.
In accordance with the method for manufacturing a CVD-SiC material according to the present invention, by selecting a raw material gas, the deposition rate can be made fast even at a deposition temperature of 1,600 K or lower, and thus, it may be considered that a polycrystalline CVD-SiC material in which the crystal orientation on the (220) plane of a high-temperature type is scarce can be efficiently obtained.
In the method for manufacturing a CVD-SiC material according to the present invention, the reaction is preferably performed at from 1,450 to 1,600 K. It may be considered that when the reaction of the CVD method is performed at from 1,450 to 1,600 K, a polycrystalline CVD-SiC material in which the crystal orientation on the (220) plane of a high-temperature type is more scarce can be more efficiently obtained.
The X-ray diffraction of the deposited surface of the CVD-SiC material obtained by the method for manufacturing a CVD-SiC material according to the present invention is measured in the following manner.
X-ray source: Cu-Kα (40kV–40mA)
Atmosphere: Air
Measurement range: 10° ≤ 2θ ≤ 90°
Step: 0.02
Cumulative time: 0.15 seconds
In addition, the X-ray diffraction of the deposited surface can be measured by exposing the surface of the CVD-SiC material formed by the CVD method with X-rays from the side on which SiC is deposited. Approximate locations (2θ) of peaks originated from SiC are as follows.
35.60°: SiC (111) plane
41.38°: SiC (200) plane
59.97°: SiC (220) plane
71.78°: SiC (311) plane
75.49°: SiC (222) plane
Incidentally, in the case where the CVD-SiC material is extremely thin, there is a concern that diffraction peaks of substrate material appear. In addition, in the case where free Si or free carbon is present, there is a concern that peaks of Si or C appear. Main peaks of C and approximate locations thereof are as follows.
26.4°: Graphite (002) plane
44.0°: Graphite (101) plane
53.8°: Graphite (004) plane
77.6°: Graphite (110) plane
Next, tests of the present invention are explained by reference to FIGs. 1 to 6. FIG. 1 is a table showing conditions of tests expressing deposition conditions of CVD-SiC in the method for manufacturing a CVD-SiC material according to the present invention. FIG. 2 is a table following FIG. 1 and is a table showing analysis results of tests of CVD-SiC in the method for manufacturing a CVD-SiC material according to  the present invention. FIG. 3 is a graph showing X-ray diffraction patterns of deposited surfaces of samples obtained in Tests 1 to 4. FIG. 4 is a graph showing X-ray diffraction patterns of deposited surfaces of samples obtained in Tests 5 to 8. FIG. 5 is a graph showing X-ray diffraction patterns of deposited surfaces of samples obtained in Tests 9 to 12. FIG. 6 is a graph showing X-ray diffraction patterns of deposited surfaces of samples obtained in Tests 13 to 16. FIG. 7 is a graph showing a deposition rate of CVD-Si of each of Example and Comparative Examples of CVD-SiC materials obtained by Tests 1 to 12. FIG. 8 is an SEM photograph of each of the surfaces of Example and Comparative Examples of CVD-SiC materials obtained by the tests expressed in FIGs. 1 and 2. FIG. 9 is a drawing showing the crystal orientation of each of CVD-SiC materials for every raw material gas and deposition temperature with respect to the diffraction patterns obtained by FIGs. 3 to 6.
In FIG. 1, SCCM as a unit of the flow rate refers to standard cc/min (atmospheric pressure; 101.3 kPa, 0℃) , and RC/Si refers to a molar ratio of the carbon atom of the carbon source to the silicone atom of the silicon source.
In FIG. 2, I220/I2nd refers to a ratio of the peak intensity originated from the (220) plane of SiC to the second largest peak intensity. The case where the peak intensity originated from the (220) plane of SiC is not the largest is expressed as “-” . In addition, I111/I2nd refers to a ratio of the peak intensity originated from the (111) plane of SiC to the second largest peak intensity. The case where the peak intensity originated from the (111) plane of SiC is not the largest is expressed as “-” .
16 types of tests were performed, and SiCl4 was used as a raw material gas working as the silicon source (Si source in the drawings) . As for a raw material gas working as the carbon source (C source in the drawings) , in Tests 1 to 4, C2H4 according to the present invention was used and summarized as Example; in Tests 5 to  8, CH4 according to the conventional technology was used and summarized as Comparative Example 1; in Tests 9 to 12, C3H8 according to the conventional technology was used and summarized as Comparative Example 2; and in Tests 13 to 16, liquefied petroleum gas (LPG) according to the conventional technology was used and summarized as Comparative Example 3.
As for a reaction temperature (temperature level) as one of the conditions, in Example, it was set at 1,773 K in Test 1, 1,673 K in Test 2, 1,573 K in Test 3, and 1,473 K in Test 4, respectively; in Comparative Example 1, it was set at 1,773 K in Test 5, 1,673 K in Test 6, 1,573 K in Test 7, and 1,473 K in Test 8, respectively; in Comparative Example 2, it was set at 1,773 K in Test 9, 1,673 K in Test 10, 1,573 K in Test 11, and 1,473 K in Test 12, respectively; and in Comparative Example 3, it was set at 1,773 K in Test 13, 1,673 K in Test 14, 1,573 K in Test 15, and 1,473 K in Test 16, respectively.
A CVD furnace and a CVD reaction are as follows.
<CVD furnace>
Internal volume of CVD furnace: φ650 mm (inner diameter) x 615 mmh
Internal volume of hot zone: φ110 mm (inner diameter) x 100 mmh
Reaction time: 2 hours
<CVD reaction>
Graphite is used as a substrate; and the carbon source, the silicon source (by bubbling with a hydrogen carrier gas) , and a hydrogen carrier gas (from a separate system) are introduced into the furnace through respective nozzles and mixed in a mixing structure provided in a nozzle tip within the furnace; and the mixture is fed from an upper part of the substrate (substrate surface + 150 mm) . Incidentally, purity grades of the used raw material gases and the like are as follows.
H2: 99.999%
CH4: 99.9%
C3H8: 99.9%
C2H2: 98.0%
SiCl4: 99.50%
LPG: Mixture
The deposited surface of the CVD-SiC material obtained in each of Tests 1 to 16 was analyzed by means of X-ray diffraction.
In the analytical contents, peak intensities originated from SiC in the locations on the (111) plane, the (200) plane, the (220) plane, the (311) plane, and the (222) plane and the presence or absence of any peak other than those of SiC were confirmed with respect to Tests 1 to 16. In addition, an intensity ratio of the largest peak to the second largest peak was calculated, and the case where the (111) plane is the largest is described in the column of I111/I2nd, whereas the case where the (220) plane is the largest is described in the column of I220/I2nd.
Furthermore, with respect to the level of each of Test 1, Test 5, Test 9, and Test 13 where the reaction temperature is 1,773 K, a half-width value (°) in the location of the (220) plane was read out, and with respect to the level of each of Test 4, Test 8, Test 12, and Test 16 where the reaction temperature is 1,473 K, a half-width value (°) in the location of the (111) plane was read out.
As shown in FIGs. 3 to 6 and FIG. 9, in Tests 1 to 4 using C2H2 as the raw material gas, even by changing the deposition temperature, the CVD-SiC material could be obtained without causing interminglement of the (111) and (220) planes. Furthermore, as shown in FIG. 7, in Tests 1 to 4 using C2H2 as the raw material gas, the decomposition rate was fast, and it could be confirmed that polycrystalline SiC was  efficiently obtained from the raw material gas, as compared with Tests 5 to 16.
In addition, as shown in FIG. 7, when using, as the raw material gas, LPG that is a mixture, it could be confirmed that the crystal orientation on either the (111) plane or the (220) plane is hardly obtained. In the light of above, by using a mixed gas of high-purity C2H2 and halogenated silane as the raw material gas, it could be confirmed that a method for manufacturing a CVD-SiC material with uniform crystal orientation and a CVD-SiC material are obtained while making it possible to perform deposition at a high speed. In addition, as shown in FIG. 8, it could be confirmed in the SEM photographs of the surfaces that in Tests 1 to 4 using C2H2 as the raw material gas, even by performing deposition at a high speed, CVD-SiC materials having a fine structure were obtained without causing roughening of the structure, as compared with Tests 5 to 16 obtained using other raw material gas. For this reason, it could be confirmed that by using C2H2 as the raw material, even when deposited at a high speed, a favorable CVD-SiC material is obtained.
Incidentally, it should not be construed that the present invention is limited to the above-described embodiments, and it is possible to properly make deformation, improvement, and the like. Besides, the materials, shapes, dimensions, numerical values, forms, numbers, disposition places, and the like of the respective constitutional elements in the above-described embodiments are arbitrary and not limited at all.
The method for manufacturing a CVD-SiC material according to the present invention is applicable to applications, for example, semiconductor manufacturing apparatuses, jigs, tools, heat-resistant materials, or the like.

Claims (5)

  1. A method for manufacturing a CVD-SiC material using a carbon source composed of C2H2 and a silicon source composed of a halogenated silane as a raw material gas and forming polycrystalline SiC by CVD method.
  2. The method for manufacturing a CVD-SiC material according to claim 1,
    wherein the silicon source is SiCl4.
  3. The method for manufacturing a CVD-SiC material according to claim 1 or 2,
    wherein the carbon source is C2H2 having a purity of 98%or more.
  4. The method for manufacturing a CVD-SiC material according to claim 1,
    wherein in the CVD method, the CVD-SiC material is oriented in (111) plane direction in a reaction at 1, 600 K or lower.
  5. The method for manufacturing a CVD-SiC material according to claim 4,
    wherein the reaction is performed at from 1, 450 to 1, 600 K in the CVD method.
PCT/CN2015/074065 2015-03-12 2015-03-12 Method for manufacturing cvd-sic material WO2016141579A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017566177A JP2018511708A (en) 2015-03-12 2015-03-12 Method for producing CVD-SiC material
PCT/CN2015/074065 WO2016141579A1 (en) 2015-03-12 2015-03-12 Method for manufacturing cvd-sic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/074065 WO2016141579A1 (en) 2015-03-12 2015-03-12 Method for manufacturing cvd-sic material

Publications (1)

Publication Number Publication Date
WO2016141579A1 true WO2016141579A1 (en) 2016-09-15

Family

ID=56878754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074065 WO2016141579A1 (en) 2015-03-12 2015-03-12 Method for manufacturing cvd-sic material

Country Status (2)

Country Link
JP (1) JP2018511708A (en)
WO (1) WO2016141579A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020215755A1 (en) 2020-11-19 2022-05-19 Zadient Technologies SAS Process and apparatus for producing a SiC solid material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804113B (en) * 2022-05-26 2024-02-02 哈尔滨晶彩材料科技有限公司 Method for preparing high-purity SiC polycrystalline source powder by hybrid functionality silane non-initiation suspension polymerization

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262324A (en) * 1989-03-31 1990-10-25 Hoya Corp X-ray transmitting film and its manufacture
US5254370A (en) * 1991-06-24 1993-10-19 Hoya Corporation Method for forming a silicon carbide film
JPH07118854A (en) * 1993-10-22 1995-05-09 Hoya Corp Formation of silicon carbide film
CN1906735A (en) * 2003-11-18 2007-01-31 卡斯西部储备大学 Method for depositing silicon carbide and ceramic films
WO2013115711A2 (en) * 2012-01-30 2013-08-08 Janzen Erik Silicon carbide crystal growth in a cvd reactor using chlorinated chemistry

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3261687B2 (en) * 1994-06-09 2002-03-04 日本電信電話株式会社 Pad conditioner and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262324A (en) * 1989-03-31 1990-10-25 Hoya Corp X-ray transmitting film and its manufacture
US5254370A (en) * 1991-06-24 1993-10-19 Hoya Corporation Method for forming a silicon carbide film
JPH07118854A (en) * 1993-10-22 1995-05-09 Hoya Corp Formation of silicon carbide film
CN1906735A (en) * 2003-11-18 2007-01-31 卡斯西部储备大学 Method for depositing silicon carbide and ceramic films
WO2013115711A2 (en) * 2012-01-30 2013-08-08 Janzen Erik Silicon carbide crystal growth in a cvd reactor using chlorinated chemistry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020215755A1 (en) 2020-11-19 2022-05-19 Zadient Technologies SAS Process and apparatus for producing a SiC solid material

Also Published As

Publication number Publication date
JP2018511708A (en) 2018-04-26

Similar Documents

Publication Publication Date Title
US8414855B2 (en) Spherical boron nitride nanoparticles and synthetic method thereof
US9353459B2 (en) Method and apparatus capable of synthesizing high-density wires in pores and on surface of porous material
JP2001316821A (en) Low resistivity silicon carbide
JP2004084057A (en) Carbon composite material
KR101928159B1 (en) REDUCTION OF SiCl4 IN THE PRESENCE OF BCl3
JP6609300B2 (en) Equipment for growing silicon carbide of specific shape
WO2016141579A1 (en) Method for manufacturing cvd-sic material
US4613490A (en) Process for preparing silicon nitride, silicon carbide or fine powdery mixture thereof
KR102178936B1 (en) Chemical vapor deposition silicon carbide bulk with improved etching characteristics
KR20210003709A (en) Chemical vapor deposition silicon carbide bulk with enhanced etching properties
CN104891456B (en) A kind of one-dimensional α Si3N4Nano material and preparation method thereof
CN1193929C (en) One-dimension nano structure of silicon nitride and silicon carbide and its preparing method
JP3882077B2 (en) Method for producing boron nitride nanotubes using gallium oxide as a catalyst
JP2018052765A (en) Trichlorosilane purification system and polycrystalline silicon production process
Yan et al. Kinetic and microstructure of SiC deposited from SiCl4-CH4-H2
KR102218433B1 (en) Semiconductor manufacturing equipment with showerhead using SiC with improved etching properties
CN1032679C (en) Method for preparing superfines
RU2199608C2 (en) Method of preparation of carbon-containing coats
RU2617495C1 (en) Method for producing aluminium nitride whiskers
KR101151299B1 (en) Synthesis of SiC powder with carbon deposition on the silicon powder
Venugopalan et al. Morphological study of SiC coating developed on 2D carbon composites using MTS precursor in a hot-wall vertical reactor
KR102525767B1 (en) A method of manufacturing high-purity SiC crystal
Salles et al. Synthesis of SiCNAl (O) pre-alloyed nanopowders by pyrolysis of an aluminosilazane aerosol
KR102265920B1 (en) Method for manufacturing gamma-aluminium oxide using spray pyrolysis
CN101279723B (en) In situ template method for preparing AlN nano-hollow sphere

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884262

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017566177

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884262

Country of ref document: EP

Kind code of ref document: A1