WO2016140346A1 - 二次電池用セパレータおよびそれを備えた二次電池 - Google Patents

二次電池用セパレータおよびそれを備えた二次電池 Download PDF

Info

Publication number
WO2016140346A1
WO2016140346A1 PCT/JP2016/056832 JP2016056832W WO2016140346A1 WO 2016140346 A1 WO2016140346 A1 WO 2016140346A1 JP 2016056832 W JP2016056832 W JP 2016056832W WO 2016140346 A1 WO2016140346 A1 WO 2016140346A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
resin
base material
secondary battery
battery
Prior art date
Application number
PCT/JP2016/056832
Other languages
English (en)
French (fr)
Inventor
志村 健一
登 吉田
井上 和彦
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017503730A priority Critical patent/JP7148198B2/ja
Priority to US15/555,454 priority patent/US10777795B2/en
Publication of WO2016140346A1 publication Critical patent/WO2016140346A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery separator and a secondary battery including the same.
  • the present invention relates to a secondary battery separator excellent in heat resistance and difficult to penetrate lithium metal during lithium deposition and a secondary battery including the same.
  • non-woven fabrics and wet porous membranes of heat-resistant resins have been studied in order to improve battery safety.
  • the nonwoven fabric has a large porosity and void diameter because of the aggregate of fibers.
  • the wet porous film is made porous by eluting the precipitated phase and fine particles mixed in the film, it is relatively difficult to lower the porosity while maintaining communication between the holes. Further, when the porosity is lowered, the amount of expensive resin used is increased and the cost is increased.
  • a large porosity is advantageous for charging and discharging at a high rate, but on the other hand, when lithium is deposited by low-temperature high-speed charging or the like, there arises a problem that metallic lithium tends to penetrate inside.
  • a porous layer such as polypropylene (PP) is also laminated, but there are problems such as an increase in the thickness of the separator and a man-hour and cost for producing a microporous film.
  • Patent Document 1 discloses the following as a separator with low thermal shrinkage even when overheated: a porous substrate made of a material having a melting point of 180 ° C. or higher, and at least one surface thereof and / or Alternatively, a separator comprising a resin structure provided inside and having filler particles having a melting point of 180 ° C. or higher or substantially having no melting point.
  • the separator as in Patent Document 1 has the following problems. That is, when the resin structure is provided on the surface of the porous substrate, the thickness of the entire separator is larger than that of the substrate alone, and the increase in weight is large. Further, when the resin structure is provided inside the base material, the thickness is not increased but the weight is increased, and the porosity inside the base material is lowered by the resin structure. When the filler particles are contained, the weight further increases as compared with the case where only the resin structure is provided.
  • an object of the present invention is to provide a separator that is excellent in heat resistance and difficult to penetrate lithium metal during lithium deposition, and a secondary battery including the separator.
  • a separator according to an embodiment of the present invention for achieving the above object is as follows: A base material of a porous body having a melting temperature or a decomposition temperature of 200 ° C. or higher; In a planar region occupying at least a part of the surface of the base material when viewed in the thickness direction, a resin material formed at least inside the base material; Have The resin material covers the inner surface of the pores without completely closing the communication portion connecting the pores of the porous body, and the distribution density of the resin material is on the inner side of the base material. Secondary battery separators are decreasing with time.
  • the present invention it is possible to provide a separator excellent in heat resistance and difficult to penetrate lithium metal during lithium deposition, and a secondary battery including the separator.
  • FIG. 1 It is a perspective view which shows the basic structure of the film-clad battery of one form of this invention. It is sectional drawing which shows a part of cross section of the battery of FIG. It is sectional drawing which shows typically the structure of the battery element which a laminated type secondary battery has. It is sectional drawing which shows the separator of one form of this invention typically. It is sectional drawing which shows typically the separator of the other form of this invention. It is sectional drawing which shows the internal structure of a separator typically.
  • a film-clad battery 50 includes a battery element 20, a film-clad body 10 that accommodates it together with a nonaqueous electrolyte, and a battery element 20 that is connected to the outside of the film-clad body 10.
  • a positive electrode tab 21 and a negative electrode tab 25 are provided.
  • the battery element 20 is formed by alternately laminating a plurality of positive electrodes and a plurality of negative electrodes made of metal foils each coated with an electrode material on both sides (described later with reference to FIG. 3). ).
  • the overall external shape of the battery element 20 is not particularly limited, in this example, it is a flat and substantially rectangular parallelepiped.
  • the material of the film outer package 10 may be any material as long as it is stable to the electrolyte and has a sufficient water vapor barrier property.
  • a laminate film of aluminum and resin as the outer package.
  • An exterior body may be comprised with a single member and may be comprised combining several members.
  • the film exterior body 10 is comprised with the 1st film 11 and the 2nd film 12 arrange
  • the cup portion may be formed on one film 11 and the cup portion may not be formed on the other film 12, or the cup portions may be formed on both films 11 and 12. It is good also as a structure (not shown).
  • the outline shape of the film outer package 10 is not particularly limited, but may be a quadrangle, which is a rectangle in this example. Both the films 11 and 12 are heat-welded to each other around the battery element 20 and joined. Thereby, the peripheral part of the film exterior body 10 becomes the heat welding part 15. A positive electrode tab 21 and a negative electrode tab 25 are drawn from one side of the short side of the heat-welded portion 15. Various materials can be adopted as the electrode tabs 21 and 25. As an example, the positive electrode tab 21 is aluminum or an aluminum alloy, and the negative electrode tab 25 is copper or nickel. When the material of the negative electrode tab 25 is copper, the surface may be nickel-plated.
  • the tab may be pulled out from one side of the long side.
  • the positive electrode tab 21 and the negative electrode tab 25 may be pulled out from different sides. As this example, a configuration in which the positive electrode tab 21 and the negative electrode tab 25 are drawn in opposite directions from the opposite sides can be given.
  • Each of the positive electrode and the negative electrode has an extension part that partially protrudes from a part of the outer periphery (see reference numerals 31a and 35a in FIG. 2).
  • the positive electrode extension part and the negative electrode extension part are formed by laminating the positive electrode and the negative electrode. The positions are staggered so as not to interfere with each other.
  • the current collector 31a is formed by stacking and connecting the extension portions of the positive electrode, and the positive electrode tab 21 is connected to the current collector 31a.
  • the extension portions are stacked and connected to each other to form the current collecting portion 35a, and the negative electrode tab 25 is connected to the current collecting portion 35a.
  • the connection between the electrode tab and the current collector may be performed by welding, for example.
  • the present invention is applicable to any of these types.
  • the shape of the secondary battery to which the present invention is applied is preferably a laminated laminate type from the viewpoint of excellent heat dissipation when the battery element generates heat.
  • Fig. 3 shows a schematic cross-sectional view of the battery element.
  • the battery element can have a configuration in which a plurality of negative electrodes a and a plurality of positive electrodes c are alternately stacked with separators b interposed therebetween.
  • the electrolytic solution is sealed in the exterior body together with the negative electrode a, the positive electrode c, and the separator b.
  • the negative electrode a has an extension g (also called a tab) protruding from the separator b.
  • the extension portion is an end portion of the negative electrode current collector d included in the negative electrode a that is not covered with the positive electrode active material.
  • an extension (tab) f that is an end portion of the positive electrode current collector e of the positive electrode c that is not covered with the positive electrode active material protrudes from the separator b.
  • each element of the battery may employ the following. ⁇ 2-1. Separator>
  • the separator according to an embodiment of the present invention is based on a porous film, a woven fabric, or a nonwoven fabric made of a material having a melting temperature or a decomposition temperature of 200 ° C. or higher. It is preferable that a resin different from the base material is compounded inside the pores or voids opened on the surface of the base material (details will be described later).
  • the pores formed inside the porous body are expressed as “holes”, and the space inside the woven or non-woven fabric is expressed as “voids”.
  • a resin coating portion 47 may be formed inside the substrate 45 of the separator 41 (specifically, near one or both surfaces).
  • a resin layer 46 formed on the surface of the substrate 45.
  • Such a resin layer 46 and / or the resin film part 47 may be formed only on one surface of the base material 45, or may be formed on both surfaces.
  • only the inner resin coating portion 47 may be formed on one surface, and the inner resin coating portion 47 and the resin layer 46 on the surface may be formed on the other surface.
  • FIG. 5 shows a schematic diagram in which the sectional structure of the separator is further enlarged.
  • a large number of holes 45 a are formed in the base 45.
  • a high heat-resistant material having a thickness of 5 ⁇ m or more and 50 ⁇ m or less and a melting temperature or decomposition temperature of 200 ° C. or more can be used.
  • a porous film or a nonwoven fabric can be used.
  • the base material 45 preferably has a plurality of holes or voids in the thickness direction of the base material, and does not have a straight path that passes from one surface of the base material to the opposite surface.
  • the inner walls of the holes opened by the resin 48 on the substrate surface are covered as a continuous film except for the holes 48 a, but the inner walls may be partially exposed.
  • the resin coating portion 47 stays in the holes opened on the surface of the base material. However, it may extend to the inner holes 45 a that are not directly opened on the surface of the base material. However, the resin abundance in the base material 45 decreases as it advances from the surface of the base material 45 to the inside.
  • the size (average inner diameter) of the holes 45a is, for example, 1 ⁇ m or less, preferably 0.5 ⁇ m or less, and more preferably 0.1 ⁇ m or less.
  • the pore diameter is calculated as the diameter of a circle having the same area by measuring the sectional area of the pore from an image obtained by observing the cross section of the separator with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the average hole diameter is calculated for all holes in the observation image, and the upper 5% and the lower 5% are excluded.
  • the pores opened on the surface of the separator are not subject to diameter calculation.
  • the resin coating portion 47 is provided as a resin 48 formed in a region near the surface inside the substrate 45.
  • a large amount of the resin 48 exists in the voids or voids opened on the surface of the base material 45 and in the vicinity of the inside from the surface of the base material.
  • the abundance of the resin inside the substrate 45 is small or zero.
  • Resin 48 covers the inner surface of hole 45a near the surface. In order not to impede the function of the separator, the resin 48 is coated in such a manner as not to completely close the pores and the communication portion connecting the pores. This means that the resin 48 has holes 48a that connect holes or voids as schematically illustrated in FIG.
  • the shape of the hole 48a itself is not particularly limited, and any shape such as an elongated hole or an opening may be used.
  • the content of the composite resin is 10% by weight or less of the whole separator. This is because if the amount of the resin is excessive, the pores or voids are blocked, and the conduction of lithium ions between the positive electrode and the negative electrode may be hindered.
  • the resin layer 46 may be formed on the outer side of the surface of the substrate 45.
  • the thickness of the resin layer 46 is preferably 1 ⁇ m or less.
  • the surface of the base material 45 is not a structure in which a film is “laminated” on the base material, but is in-plane discontinuous. It is also preferable that it is formed.
  • the ratio (B / A) may be 90% or less, preferably 70% or less, and more preferably 50% or less.
  • the form of the resin material in the resin layer 46 is an example, and a plurality of resin materials that are present on the surface of the base material surface excluding the openings are isolated from the surroundings on the flat surface of the base material surface. It may be such that it includes a region.
  • FIG. 5 shows a state in which the resin 48 does not protrude from the substrate surface.
  • the resin 48 may slightly protrude from the substrate surface, and the protrusion amount (height from the substrate surface to the top of the resin 48) in this case is preferably 5 ⁇ m or less, and preferably 3 ⁇ m or less. More preferably, the thickness is 1 ⁇ m or less.
  • the porosity of the entire separator is preferably 55% or more and 80% or less.
  • a separator having a high porosity has advantages such as a large amount of electrolyte solution held inside and advantageous for long-term use, and a reduction in the amount of resin used for the substrate. On the other hand, when the porosity is large, the mechanical strength is lowered.
  • the Gurley value of the entire separator is preferably 100 seconds / 100 ml or more and 300 seconds / 100 ml or less.
  • a separator having a small Gurley value is advantageous for large current discharge.
  • lithium when lithium is deposited on the negative electrode surface by high-speed charging at a low temperature or the like, lithium precipitates easily enter the separator and grow, and as a result, a short circuit between the positive electrode and the negative electrode is likely to occur.
  • the Gurley value is large, the lithium ion conductivity between the positive electrode and the negative electrode is small, and it is difficult to extract a large discharge current.
  • the reduction rate of the Gurley value is 10% or more when the resin material is removed from the whole separator by solvent elution or thermal decomposition to make only the base material.
  • the present invention is not limited to this, and a planar region that occupies at least a part of the surface of the substrate viewed in the thickness direction (for example, a region having an area ratio of 30% or more with respect to the substrate surface, 50% The above region or a region of 70% or more) may be covered with a resin material.
  • the manifestation of the effect according to one embodiment of the present invention does not depend on the physical properties of the high heat resistant material itself as the base material.
  • the high heat resistant material for example, polyamide, especially fully aromatic polyamide (aramid), polyimide, polyethylene Resin materials such as terephthalate (PET), polyphenylene sulfide (PPS), and cellulose can be used.
  • the compounding of the resin to the substrate can be performed by dissolving the resin in a solvent, supplying the resin to the substrate surface, and drying.
  • a material that is resistant to the electrolytic solution and does not melt or sublime within the temperature range in which the battery is used can be used.
  • PVA polyvinyl alcohol
  • CMC sodium carboxymethylcellulose
  • PAA polyacrylic acid
  • SBR styrene butadiene rubber
  • PVDF polyvinylidene fluoride
  • the solvent may be either a water-based solvent or an organic solvent as long as it dissolves the resin or disperses the resin fine particles and does not attack the substrate.
  • a combination of water can be used. It is also possible to improve the affinity between the base material and the resin solution by mixing ethanol or a surfactant with pure water. Compared with non-aqueous solvents, water-based solvents have advantages such as low environmental burden, simple removal equipment, and low solvent prices.
  • Resin compounding can be performed from one or both surfaces of the substrate.
  • the resin solution may be applied or sprayed on one side surface of the substrate.
  • the resin solution can be supplied to one surface of the substrate by floating the substrate on the resin solution and pulling it up.
  • the resin solution is applied to both surfaces of the substrate by immersing the substrate in the resin solution and pulling it up. It can also be supplied.
  • the resin can be combined by removing the solvent of the resin solution supplied to the surface of the substrate. After compounding the resin, if necessary, heat treatment or chemical treatment may be applied to the compounded resin.
  • heat treatment or chemical treatment may be applied to the compounded resin.
  • PVA can improve water resistance by formalization in which an acid is used as a catalyst to react with formaldehyde.
  • the resin solution When the resin solution is supplied to the surface of the base material, the resin solution hardly penetrates into the base material because the pores of the base material and the diameter of the communication holes connecting the pores are small. For this reason, the composite resin is concentrated inside the holes opened on the surface of the base material or inside the vacancies immediately below the surface, and the abundance decreases as it goes inside the base material.
  • the permeability of the resin solution into the resin substrate can be changed by the solvent of the resin solution. For example, when ethanol is added to pure water as a solvent, the degree of penetration into the substrate increases.
  • the resin solution can easily penetrate into the inside, but it can increase the viscosity of the resin solution, increase the surface tension, By lowering the affinity, the penetration of the resin solution into the substrate can be suppressed.
  • the negative electrode has a negative electrode current collector formed of a metal foil, and a negative electrode active material coated on both surfaces of the negative electrode current collector.
  • the negative electrode active material is bound so as to cover the negative electrode current collector with a negative electrode binder.
  • the negative electrode current collector is formed to have an extension connected to the negative electrode terminal, and the negative electrode active material is not applied to the extension.
  • the negative electrode active material in the present embodiment is not particularly limited.
  • a carbon material that can occlude and release lithium ions a metal that can be alloyed with lithium, a metal oxide that can occlude and release lithium ions, and the like. Is mentioned.
  • Examples of the carbon material include carbon, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof.
  • carbon with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a negative electrode current collector made of a metal such as copper.
  • amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • a negative electrode containing a metal or metal oxide is preferable in that it can improve the energy density and increase the capacity per unit weight or unit volume of the battery.
  • the metal examples include Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, and alloys of two or more thereof. Moreover, you may use these metals or alloys in mixture of 2 or more types. These metals or alloys may contain one or more non-metallic elements.
  • the metal oxide examples include silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and composites thereof.
  • the negative electrode active material preferably contains tin oxide or silicon oxide, and more preferably contains silicon oxide. This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds. Moreover, it is preferable that the whole or one part has an amorphous structure. An amorphous structure is considered to have relatively few elements due to non-uniformity such as grain boundaries and defects. It can be confirmed by X-ray diffraction measurement (general XRD measurement) that all or part of the metal oxide has an amorphous structure. Specifically, when the metal oxide does not have an amorphous structure, a peak specific to the metal oxide is observed. However, the metal oxide may have a case where all or part of the metal oxide has an amorphous structure. Inherent peaks are broad and observed.
  • a carbon material, a metal, and a metal oxide can be mixed and used independently.
  • the same kind of materials such as graphite and amorphous carbon may be mixed, or different kinds of materials such as graphite and silicon may be mixed.
  • binder for the negative electrode examples include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene, polypropylene, polyethylene, Polyimide, polyamideimide, or the like can be used.
  • the amount of the binder for the negative electrode used is 0.5 to 25 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. Is preferred.
  • the negative electrode current collector aluminum, nickel, stainless steel, chromium, copper, silver, and alloys thereof are preferable in view of electrochemical stability.
  • the shape include foil, flat plate, and mesh.
  • the positive electrode has a positive electrode current collector formed of a metal foil, and a positive electrode active material coated on both surfaces of the positive electrode current collector.
  • the positive electrode active material is bound so as to cover the positive electrode current collector with a positive electrode binder.
  • the positive electrode current collector is formed to have an extension connected to the positive electrode terminal, and the positive electrode active material is not applied to the extension.
  • the positive electrode active material is not particularly limited as long as it is a material that can occlude and release lithium, and can be selected from several viewpoints. From the viewpoint of increasing the energy density, it is preferable to include a high-capacity compound.
  • the high-capacity compound include nickel-lithium oxide (LiNiO 2 ) or lithium-nickel composite oxide obtained by substituting a part of nickel in nickel-lithium oxide with another metal element.
  • the layered structure represented by the following formula (A) Lithium nickel composite oxide is preferred.
  • the Ni content is high, that is, in the formula (A), x is preferably less than 0.5, and more preferably 0.4 or less.
  • LiNi 0.8 Co 0.05 Mn 0.15 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2, LiNi 0.8 Co 0.1 Al can be preferably used 0.1 O 2 or the like.
  • the Ni content does not exceed 0.5, that is, in the formula (A), x is 0.5 or more. It is also preferred that the number of specific transition metals does not exceed half.
  • LiNi 0.4 Co 0.3 Mn 0.3 O 2 (abbreviated as NCM433), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 (abbreviated as NCM523), LiNi 0.5 Co 0.3 Mn 0.2 O 2 (abbreviated as NCM532), etc. (however, the content of each transition metal in these compounds varies by about 10%) Can also be included).
  • two or more compounds represented by the formula (A) may be used as a mixture.
  • NCM532 or NCM523 and NCM433 range from 9: 1 to 1: 9 (typically 2 It is also preferable to use a mixture in 1).
  • a material having a high Ni content (x is 0.4 or less) and a material having a Ni content not exceeding 0.5 (x is 0.5 or more, for example, NCM433) are mixed. As a result, a battery having a high capacity and high thermal stability can be formed.
  • the positive electrode active material for example, LiMnO 2 , Li x Mn 2 O 4 (0 ⁇ x ⁇ 2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 ⁇ x ⁇ 2) Lithium manganate having a layered structure or spinel structure such as LiCoO 2 or a part of these transition metals replaced with another metal; Li in these lithium transition metal oxides more than the stoichiometric composition And those having an olivine structure such as LiFePO 4 .
  • any of the positive electrode active materials described above can be used alone or in combination of two or more.
  • radical materials or the like can be used as the positive electrode active material.
  • the positive electrode binder the same as the negative electrode binder can be used.
  • the amount of the positive electrode binder to be used is preferably 2 to 15 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. .
  • the positive electrode current collector for example, aluminum, nickel, silver, or an alloy thereof can be used.
  • the shape of the positive electrode current collector include a foil, a flat plate, and a mesh.
  • an aluminum foil can be suitably used.
  • a conductive auxiliary material may be added to the positive electrode active material coating layer for the purpose of reducing impedance.
  • the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
  • an aprotic organic solvent such as carbonate ester (chain or cyclic carbonate), carboxylic acid ester (chain or cyclic carboxylic acid ester), and phosphate ester can be used.
  • carbonate solvents examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate. (EMC), chain carbonates such as dipropyl carbonate (DPC); and propylene carbonate derivatives.
  • PC propylene carbonate
  • EC ethylene carbonate
  • BC butylene carbonate
  • VVC vinylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DPC dipropyl carbonate
  • propylene carbonate derivatives examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate
  • ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (MEC), dipropyl carbonate Carbonate esters (cyclic or chain carbonates) such as (DPC) Is preferred.
  • phosphate ester examples include trimethyl phosphate, triethyl phosphate, tripropyl phosphate, trioctyl phosphate, triphenyl phosphate, and the like.
  • solvents that can be contained in the non-aqueous electrolyte include, for example, ethylene sulfite (ES), propane sultone (PS), butane sultone (BS), dioxathilane-2,2-dioxide (DD), and sulfolene.
  • ES ethylene sulfite
  • PS propane sultone
  • BS butane sultone
  • DD dioxathilane-2,2-dioxide
  • sulfolene sulfolene
  • LiPF 6 LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN ( CF 3 SO 2) 2 normal lithium salt which can be used in lithium ion batteries or the like can be used.
  • the supporting salt can be used alone or in combination of two or more.
  • Non-aqueous solvents can be used alone or in combination of two or more.
  • Example 1 As the substrate, an aramid microporous film having a thickness of 12 ⁇ m, a porosity of 70%, and a Gurley value of 80 seconds / 100 ml was used. The pores are distributed between a diameter of 0.1 ⁇ m and 0.5 ⁇ m.
  • PVA having a saponification degree of 95% or more and a polymerization degree of about 2000 was used as the composite resin.
  • PVA was dissolved in pure water to prepare a 0.1 wt% PVA aqueous solution.
  • the substrate was dipped in this aqueous solution for 30 seconds and then pulled up to remove excess aqueous solution and then dried at room temperature.
  • the produced separator had a Gurley value of 100 seconds / 100 ml, and the composite resin ratio in the separator was 0.5% by weight.
  • Five manufactured separators were stacked, the thickness was measured with a micrometer, and the average thickness per sheet was calculated, but there was no difference in thickness from the substrate.
  • a battery as shown below was produced using the produced separator.
  • (Positive electrode) A slurry is prepared by dispersing lithium nickelate, a carbon conductive agent, and polyvinylidene fluoride as a binder in N-methyl-2-pyrrolidone at a weight ratio of 92: 4: 4, and applied to a current collector foil made of aluminum. And dried to form a positive electrode active material layer. Similarly, after forming an active material layer on the back surface of the current collector foil made of aluminum, it was rolled to obtain a positive electrode plate.
  • Natural graphite, sodium carboxymethyl cellulose as a thickener, and styrene butadiene rubber as a binder are mixed in an aqueous solution at a weight ratio of 98: 1: 1 to prepare a slurry, which is applied to a current collector foil made of copper. It dried and the negative electrode active material layer was formed. Similarly, after forming an active material layer on the back surface of the current collector foil made of copper, a negative electrode plate was obtained by rolling.
  • Non-aqueous solvent for the electrolytic solution a non-aqueous solvent in which EC and DEC were mixed at a volume ratio of 30:70 was used. LiPF 6 was dissolved as a supporting salt to a concentration of 1M.
  • the positive electrode plate is cut to 50 mm ⁇ 52 mm, excluding the current extraction part, and the negative electrode plate is cut to 52 mm ⁇ 54 mm, excluding the current extraction part.
  • the layers were stacked so as to be about 400 mAh.
  • a current extraction terminal was connected to each of the laminated positive electrode plate and negative electrode plate, and accommodated in a laminate film outer package of aluminum and resin. After injecting the electrolyte into the outer package, the outer package was sealed under reduced pressure to obtain a battery.
  • the manufactured battery was charged and discharged for the first time and subjected to an aging process, and then charged at a constant current and a constant voltage mode at 20 ° C. to a battery voltage of 4.2V.
  • the charging current was 2 ItA.
  • the voltage of the battery increased to 4.2 V, and no decrease in battery voltage was observed during or after charging.
  • the characteristics of the separator and the results of charging are shown in the table.
  • Example 2 A separator was prepared in the same manner as in Example 1 except that the concentration of the PVA aqueous solution was 1% by weight.
  • a battery was produced in the same manner as in Example 1, and the charging characteristics were examined. As in Example 1, the voltage of the battery increased to 4.2 V, and no decrease in battery voltage was observed during or after charging. The characteristics of the separator and the results of charging are shown in the table.
  • Example 3 A separator was prepared in the same manner as in Example 1 except that the concentration of the PVA aqueous solution was 2% by weight. A battery was produced in the same manner as in Example 1, and the charging characteristics were examined. As in Example 1, the voltage of the battery increased to 4.2 V, and no decrease in battery voltage was observed during or after charging. The characteristics of the separator and the results of charging are shown in the table.
  • Example 4 The base material was the same as in Example 1, and CMC was used as the resin to be combined. A 0.01% by weight CMC aqueous solution was prepared by dissolving in pure water. The substrate was dipped in this aqueous solution for 30 seconds and then pulled up to remove excess aqueous solution and then dried at room temperature. Next, it was dried at 90 ° C. for 30 minutes to obtain a separator. The produced separator had a Gurley value of 105 seconds / 100 ml, the thickness did not change before and after the resin composite, and the ratio of the composite resin in the separator was 1% by weight.
  • Example 2 A battery was produced in the same manner as in Example 1 and the charging characteristics were examined. As in Example 1, the voltage of the battery increased to 4.2 V, and no decrease in battery voltage was observed during or after charging. The characteristics of the separator and the results of charging are shown in the table.
  • Example 5 A separator was prepared in the same manner as in Example 4 except that the concentration of the CMC aqueous solution was set to 0.1% by weight. A battery using the separator was prepared, and the charging characteristics were examined. As in Example 1, the voltage of the battery increased to 4.2 V, and no decrease in battery voltage was observed during or after charging. The characteristics of the separator and the results of charging are shown in the table.
  • Example 6 The base material was the same as in Example 1, and polyacrylic acid (PAA) was used as the resin to be combined.
  • PAA polyacrylic acid
  • PAA was dissolved in a mixed solvent of 70% by volume of pure water and 30% by volume of ethanol to prepare a 0.05% by weight PAA solution.
  • the substrate was immersed in this aqueous solution for 30 seconds and then pulled up to remove excess solution, and then dried at room temperature. Next, it was dried at 90 ° C. for 30 minutes to obtain a separator.
  • the produced separator had a Gurley value of 100 seconds / 100 ml, the thickness did not change before and after the resin composite, and the ratio of the composite resin in the separator was 0.5% by weight.
  • Example 2 A battery was produced in the same manner as in Example 1 and the charging characteristics were examined. As in Example 1, the voltage of the battery increased to 4.2 V, and no decrease in battery voltage was observed during or after charging. The characteristics of the separator and the results of charging are shown in the table.
  • Example 7 A separator was prepared in the same manner as in Example 6 except that the concentration of the PAA solution was set to 0.1% by weight, and a battery using this separator was prepared to examine the charging characteristics. As in Example 1, the voltage of the battery increased to 4.2 V, and no decrease in battery voltage was observed during or after charging. The characteristics of the separator and the results of charging are shown in the table.
  • Example 8 A separator was prepared in the same manner as in Example 6 except that the concentration of the PAA solution was set to 0.2% by weight. A battery using the separator was prepared, and the charging characteristics were examined. As in Example 1, the voltage of the battery increased to 4.2 V, and no decrease in battery voltage was observed during or after charging. The characteristics of the separator and the results of charging are shown in the table.
  • Example 9 The base material was the same as in Example 1, and SBR was used as the resin to be combined.
  • SBR was used as the resin to be combined.
  • a dispersion in which SBR fine particles having a particle diameter of 50 nm to 100 nm were dispersed was diluted with pure water.
  • the SBR particle content in the diluted dispersion was 1% by weight.
  • the substrate was immersed in this SBR dispersion for 30 seconds and then pulled up to remove excess solution, and then dried at room temperature. Next, it was dried at 90 ° C. for 30 minutes to obtain a separator.
  • the produced separator had a Gurley value of 150 seconds / 100 ml, the thickness did not change before and after the resin composite, and the ratio of the composite resin in the separator was 3% by weight.
  • Example 2 A battery was produced in the same manner as in Example 1 and the charging characteristics were examined. As in Example 1, the voltage of the battery increased to 4.2 V, and no decrease in battery voltage was observed during or after charging. The characteristics of the separator and the results of charging are shown in the table.
  • Example 10 The same base material and PVA aqueous solution as Example 2 were used.
  • the substrate was floated on the PVA aqueous solution placed in the container so that only the surface on one side was in contact with the PVA aqueous solution, and the substrate was pulled up after 30 seconds to supply the PVA aqueous solution only to the one side surface of the substrate.
  • the surface of the substrate in contact with the PVA aqueous solution was uniformly wetted with the PVA aqueous solution, but there was no leaching of the aqueous solution to the opposite surface of the substrate.
  • Example 1 After removing the excess aqueous solution, it was dried at room temperature. Next, it was dried at 150 ° C. for 10 minutes to obtain a separator. In the same manner as in Example 1, a battery using this separator was produced and the charging characteristics were examined. In the separator, the PVA composite surface was opposed to the negative electrode. As in Example 1, the voltage of the battery increased to 4.2 V, and no decrease in battery voltage was observed during or after charging. The characteristics of the separator and the results of charging are shown in the table.
  • Example 11 The same substrate and CMC aqueous solution as in Example 5 were used, and the CMC aqueous solution was supplied only to one surface of the substrate in the same manner as in Example 9. After removing the excess aqueous solution, it was dried at room temperature. Next, it was dried at 90 ° C. for 30 minutes to obtain a separator. In the same manner as in Example 1, a battery using this separator was produced and the charging characteristics were examined. In the separator, the CMC composite surface was opposed to the negative electrode. As in Example 1, the voltage of the battery increased to 4.2 V, and no decrease in battery voltage was observed during or after charging. The characteristics of the separator and the results of charging are shown in the table.
  • Example 12 The same substrate and PAA solution as in Example 7 were used, and the PAA solution was supplied only to one surface of the substrate in the same manner as in Example 9. After removing the excess solution, it was dried at room temperature. Next, it was dried at 90 ° C. for 30 minutes to obtain a separator. In the same manner as in Example 1, a battery using this separator was produced and the charging characteristics were examined. In the separator, the PAA composite surface was opposed to the negative electrode. As in Example 1, the voltage of the battery increased to 4.2 V, and no decrease in battery voltage was observed during or after charging. The characteristics of the separator and the results of charging are shown in the table.
  • Example 13 A polyimide microporous film having a thickness of 17 ⁇ m, a porosity of 75%, and a Gurley value of 75 seconds / 100 ml was used as the substrate. The pores are distributed between a diameter of 0.1 ⁇ m and 1 ⁇ m.
  • PAA was used as the resin to be combined. PAA was dissolved in a mixed solvent of 70% by volume of pure water and 30% by volume of ethanol to prepare a 0.05% by weight PAA solution. The substrate was immersed in this aqueous solution for 30 seconds and then pulled up to remove excess solution, and then dried at room temperature. Next, it was dried at 90 ° C. for 30 minutes to obtain a separator. The manufactured separator had a Gurley value of 105 seconds / 100 ml, the thickness did not change before and after the resin composite, and the ratio of the composite resin in the separator was 0.5% by weight.
  • Example 2 A battery was produced in the same manner as in Example 1 and the charging characteristics were examined. As in Example 1, the voltage of the battery increased to 4.2 V, and no decrease in battery voltage was observed during or after charging. The characteristics of the separator and the results of charging are shown in the table.
  • Example 14 A separator was prepared and battery characteristics were evaluated in the same manner as in Example 12 except that the concentration of the PAA solution was 0.2% by weight. As in Example 1, the voltage of the battery increased to 4.2 V, and no decrease in battery voltage was observed during or after charging. The characteristics of the separator and the results of charging are shown in the table.
  • Example 15 A PPS nonwoven fabric having a thickness of 20 ⁇ m, a porosity of 55%, and a Gurley value of 5 seconds / 100 ml was used as the substrate.
  • CMC was used as the resin to be combined.
  • CMC was dissolved in pure water to prepare a 1% by weight CMC aqueous solution. This CMC aqueous solution was dropped onto the upper side surface of the horizontally held PPS nonwoven fabric and held for 1 minute, but there was no penetration into the back side of the PPS nonwoven fabric.
  • the PPS nonwoven fabric substrate was dipped in this CMC aqueous solution for 30 seconds and then pulled up to remove excess solution, and then dried at room temperature. Next, it was dried at 90 ° C. for 30 minutes to obtain a separator.
  • the manufactured separator had a Gurley value of 200 seconds / 100 ml.
  • the thickness increased by 1 ⁇ m per side due to the resin composition.
  • the ratio of the composite resin in the separator was 8% by weight
  • Example 2 A battery was produced in the same manner as in Example 1 and the charging characteristics were examined. As in Example 1, the voltage of the battery increased to 4.2 V, and no decrease in battery voltage was observed during or after charging. The characteristics of the separator and the results of charging are shown in the table.
  • Example 1 A base material made of an aramid porous film was used as a separator without compounding the resin.
  • a battery was produced in the same manner as in Example 1, and was charged in constant current and constant voltage mode up to a battery voltage of 4.2 V at 20 ° C. below zero as in Example 1.
  • the charging current was 2 ItA as in Example 1. After the battery voltage rose to around 4.0 V, the battery voltage stopped increasing and the battery voltage began to drop despite continuing charging current.
  • Comparative Example 2 A separator was produced in the same manner as in Example 1 except that the concentration of the aqueous PVA solution was 0.05% by weight. Using this separator, a battery was produced in the same manner as in Example 1, and the charging characteristics were examined. Similar to Comparative Example 1, after the battery voltage rose to around 4.0 V, the battery voltage increase stopped and the battery voltage began to drop despite continuing charging current. The characteristics of the separator and the results of charging are shown in the table.
  • Example 3 A separator was produced in the same manner as in Example 1 except that the concentration of the PVA aqueous solution was 3% by weight. Using this separator, a battery was produced in the same manner as in Example 1, and the charging characteristics were examined. When charging was started, the voltage of the battery suddenly increased and reached 4.2 V in a state where it did not reach 10% of the specified charging amount. When charging was stopped, the battery voltage dropped significantly. The characteristics of the separator and the results of charging are shown in the table.
  • Comparative Example 4 A separator was prepared in the same manner as in Example 4 except that the concentration of the CMC aqueous solution was changed to 0.005% by weight. Using this separator, a battery was prepared in the same manner as in Example 1, and the charging characteristics were examined. Similar to Comparative Example 1, after the battery voltage rose to around 4.0 V, the battery voltage increase stopped and the battery voltage began to drop despite continuing charging current. The characteristics of the separator and the results of charging are shown in the table.
  • Example 5 A separator was produced in the same manner as in Example 4 except that the concentration of the CMC aqueous solution was changed to 0.25% by weight. Using this separator, a battery was produced in the same manner as in Example 1, and the charging characteristics were examined. When charging was started, the voltage of the battery suddenly increased and reached 4.2 V in a state where it did not reach 10% of the specified charging amount. When charging was stopped, the battery voltage dropped significantly. The characteristics of the separator and the results of charging are shown in the table.
  • Comparative Example 6 A separator was produced in the same manner as in Example 6 except that the concentration of the PAA solution was 0.01% by weight.
  • a battery was produced in the same manner as in Example 1 using this separator, and the charging characteristics were examined. Similar to Comparative Example 1, after the battery voltage rose to around 4.0 V, the battery voltage increase stopped and the battery voltage began to drop despite continuing charging current. The characteristics of the separator and the results of charging are shown in the table.
  • Example 7 A separator was prepared in the same manner as in Example 6 except that the concentration of the PAA solution was set to 0.3% by weight. Using this separator, a battery was prepared in the same manner as in Example 1, and the charging characteristics were examined. When charging was started, the voltage of the battery suddenly increased and reached 4.2 V in a state where it did not reach 10% of the specified charging amount. When charging was stopped, the battery voltage dropped significantly. The characteristics of the separator and the results of charging are shown in the table.
  • Example 8 A separator was prepared in the same manner as in Example 10 except that the concentration of the CMC aqueous solution was set to 0.01% by weight. Using this separator, a battery was prepared in the same manner as in Example 1, and the charging characteristics were examined. In the separator, the CMC composite surface was opposed to the negative electrode. Similar to Comparative Example 1, after the battery voltage rose to around 4.0 V, the battery voltage increase stopped and the battery voltage began to drop despite continuing charging current. The characteristics of the separator and the results of charging are shown in the table.
  • Example 9 A separator was prepared in the same manner as in Example 12 except that the concentration of the PAA solution was 0.01% by weight.
  • a battery was prepared in the same manner as in Example 1 using this separator, and the charging characteristics were examined. Similar to Comparative Example 1, after the battery voltage rose to around 4.0 V, the battery voltage increase stopped and the battery voltage began to drop despite continuing charging current. The characteristics of the separator and the results of charging are shown in the table.
  • Example 10 A separator was prepared in the same manner as in Example 12 except that the concentration of the PAA solution was set to 0.3% by weight. Using this separator, a battery was prepared in the same manner as in Example 1, and the charging characteristics were examined. When charging was started, the voltage of the battery suddenly increased and reached 4.2 V in a state where it did not reach 10% of the specified charging amount. When charging was stopped, the battery voltage dropped significantly. The characteristics of the separator and the results of charging are shown in the table.
  • a1 a base material (45) of a porous body having a melting temperature or decomposition temperature of 200 ° C. or higher;
  • b1 In the plane area which occupies at least a part of the surface of the base material when viewed in the thickness direction thereof, a communicating portion that connects the pores (45a) of the porous body is formed inside the base material (45).
  • a secondary battery separator A secondary battery separator.
  • the distribution density of the resin material in the thickness direction of the base material decreases as it goes to the inner side of the base material means that the surface of the base material in a planar region when the base material is viewed in the thickness direction.
  • the side (the outermost side of the resin material when the resin material is also present on the substrate surface as described below) exists in the pores with respect to the cross-sectional area of the pores surrounded by the substrate. It means that the ratio of the cross-sectional area of the resin material is large, and the smaller the inner side of the substrate.
  • the surface which looked at the base material in the thickness direction intends the cross section perpendicular
  • the area of the base material surface excluding the opening is A, and the area of the resin material existing on the base surface excluding the opening is B, and the ratio is 90% or less, 2 or 3.
  • a2 a base material of a woven or non-woven fabric having a melting temperature or a decomposition temperature of 200 ° C. or higher; b2: The woven fabric or the non-woven fabric in the planar region occupying at least a part of the plane of the substrate viewed in the thickness direction without completely closing the voids in the substrate inside the substrate.
  • a secondary battery separator A secondary battery separator.
  • the distribution density of the resin material in the thickness direction of the base material decreases as it goes to the inner side of the base material means that the surface of the base material in a planar region when the base material is viewed in the thickness direction.
  • the ratio of the cross-sectional area of the resin material to the cross-sectional area of the fibers of the woven or non-woven fabric is larger toward the side (the outermost side of the resin material when the resin material is also present on the substrate surface), It means that the smaller the inner side of the substrate.
  • a secondary battery (50) comprising:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

 この二次電池用セパレータは、溶融温度または分解温度が200℃以上で多孔質体の基材と、前記基材をその厚さ方向に見た面内の少なくとも一部を占める平面領域において、前記基材の少なくとも内部に形成された樹脂材料と、を有し、上記樹脂材料は、前記多孔質体の空孔を繋ぐ連通部を完全に閉塞することなく、空孔内面を被覆しており、かつ、樹脂材料の分布密度は前記基材の内部側にいくにつれて減少している。

Description

二次電池用セパレータおよびそれを備えた二次電池
 本発明は、二次電池用セパレータおよびそれを備えた二次電池に関する。特に、耐熱性に優れ、かつ、リチウム析出時にはリチウム金属が貫通しにくい二次電池用セパレータおよびそれを備えた二次電池に関する。
 電池の安全性向上のため、近年、耐熱性樹脂の不織布や湿式多孔膜が検討されている。不織布は、繊維の集合体のため空隙率および空隙径は大きい。しかしながら、湿式多孔膜は、析出相や膜中に混合した微粒子を溶出させることで多孔化されるものであるので、孔同士の連通を維持しながら空孔率を下げることが比較的難しい。また、空孔率を下げると、高価な樹脂の使用量が増え、コストが高くなる。さらに、大きな空孔率は高レートでの充放電に有利であるが、一方で、低温高速充電などでリチウムが析出してしまうと、金属リチウムが内部を貫通しやすいという問題が生じる。対策として、ポリプロピレン(PP)などの多孔質層を積層することも行われているが、セパレータの厚さが増える、微多孔膜を作製する工数とコストがかかる、などの課題がある。
 セパレータに関しては、例えば特許文献1に、過熱時にも熱収縮が少ないセパレータとして次のようなものが開示されている:融点が180℃以上の物質からなる多孔質基材と、その少なくとも一面及び/又は内部に設けられた樹脂構造体とよりなり、180℃以上の融点を有するか、または実質的に融点を有しないフィラー粒子を含有することを特徴とするセパレータ。
特開2005-302341
 特許文献1のようなセパレータでは、以下のような問題がある。すなわち、多孔質基材の面に樹脂構造体を設ける場合には、セパレータ全体の厚さが基材単独と比べて大きくなることや、重量の増加が大きい。また、基材内部に樹脂構造体を設ける場合には、厚さの増加は無いが重量が増加し、また、樹脂構造体により基材内部の空孔率が下がる。フィラー粒子を含有する場合には、樹脂構造体のみを設ける場合よりも、さらに重量が増加する。
 そこで本発明は、耐熱性に優れ、かつ、リチウム析出時にはリチウム金属が貫通しにくいセパレータおよびそれを備えた二次電池を提供することを目的とする。
 上記目的を達成するための本発明の一形態に係るセパレータは、次のとおりである:
 溶融温度または分解温度が200℃以上で多孔質体の基材と、
 前記基材をその厚さ方向に見た面内の少なくとも一部を占める平面領域において、前記基材の少なくとも内部に形成された樹脂材料と、
 を有し、
 前記樹脂材料は、前記多孔質体の空孔どうしを繋ぐ連通部を完全に閉塞することなく、空孔内面を被覆しており、かつ、前記樹脂材料の分布密度は前記基材の内部側にいくにつれて減少している、二次電池用セパレータ。
 本発明によれば、耐熱性に優れ、かつ、リチウム析出時にはリチウム金属が貫通しにくいセパレータおよびそれを備えた二次電池を提供することができる。
本発明の一形態のフィルム外装電池の基本的構造を示す斜視図である。 図1の電池の断面の一部を示す断面図である。 積層型の二次電池が有する電池要素の構造を模式的に示す断面図である。 本発明の一形態のセパレータを模式的に示す断面図である。 本発明の他の形態のセパレータを模式的に示す断面図である。 セパレータの内部構造を模式的に示す断面図である。
1.フィルム外装電池の基本的な構成
 本発明の一形態に係るフィルム外装電池50の基本的構成について図1、図2を参照して説明する。図1、図2に示すように、フィルム外装電池50は、電池要素20と、それを非水電解質とともに収容するフィルム外装体10と、電池要素20に接続されるとともにフィルム外装体10の外部に引き出された正極タブ21および負極タブ25(以下、これらを単に「電極タブ」ともいう)とを備えている。
 電池要素20は、それぞれ電極材料が両面に塗布された金属箔からなる複数の正極と複数の負極とがセパレータを間に挟んで交互に積層されたものである(図3を参照して後述する)。電池要素20の全体的な外形は、特に限定されるものではないが、この例では偏平な略直方体である。
 フィルム外装体10の材質としては、電解液に安定で、かつ十分な水蒸気バリア性を持つものであれば、どのような材質であっても構わない。例えば、積層ラミネート型の二次電池の場合、外装体としては、アルミニウムと樹脂のラミネートフィルムを用いることが一例として好ましい。外装体は、単一の部材で構成してもよいし、複数の部材を組み合わせて構成してもよい。本実施形態では、図1に示すように、フィルム外装体10は、第1のフィルム11とそれに対向配置された第2のフィルム12とで構成されている。図示されているように、一方のフィルム11にカップ部が形成されるとともに他方のフィルム12にはカップ部が形成されていない構成としてもよいし、両方のフィルム11、12にカップ部を形成する構成(不図示)としてもよい。
 フィルム外装体10の輪郭形状は特に限定されるものではないが、四角形であってもよく、この例では長方形となっている。両フィルム11、12は、電池要素20の周囲で互いに熱溶着されて接合されている。これにより、フィルム外装体10の周縁部が熱溶着部15となっている。熱溶着部15のうち短辺側の一辺から、正極タブ21および負極タブ25が引き出されている。電極タブ21、25としては種々の材質を採用しうるが、一例として、正極タブ21がアルミニウムまたはアルミニウム合金で、負極タブ25が銅またはニッケルである。負極タブ25の材質が銅の場合、表面にニッケルめっきが施されてもよい。
 なお、電極タブ21、25の引出し位置について、タブが長辺側の一辺から引き出されていてもよい。また、正極タブ21と負極タブ25とが別々の辺から引き出されていてもよい。この例としては、正極タブ21と負極タブ25とが対向する辺から逆方向に引き出される構成が挙げられる。
 正極および負極はそれぞれ外周の一部に部分的に突出した延長部を有しており(図2の符号31a、35a参照)、正極の延長部と負極の延長部とは、正極および負極を積層したときに互いに干渉しないように位置をずらして互い違いに配置されている。正極の延長部が積層され互いに接続されることで集電部31aが形成され、その集電部31aに正極タブ21が接続される。同様に、負極の関しても、延長部が積層され互いに接続されることで集電部35aが形成され、その集電部35aに負極タブ25が接続される。電極タブと集電部との接続は例えば溶接によって行なわれてもよい。
 なお、二次電池は、電極の構造や形状等により、円筒型、扁平捲回角型、積層角型、コイン型、扁平捲回ラミネート型および積層ラミネート型等、種々のタイプがある。本発明はこれらの何れのタイプにも適用可能である。これらのうち、本発明が適用される二次電池の形状は、電池要素が発熱したときの放熱性に優れている観点から、積層ラミネート型であることが好ましい。
 電池要素の断面模式図を図3に示す。なお、図2の電池要素の形状と図3の電池要素の形状は異なっているが、このような形状の相違は本願における本質的な事項ではない。図3に示すように、電池要素は、複数の負極aと複数の正極cとを、セパレータbを間に挟んで交互に積層した構成を有することができる。電解液は、これら負極a、正極cおよびセパレータbとともに、外装体内に封止される。負極aは、セパレータbから突き出ている延長部(タブともいう)gを有している。延長部は、負極aが有する負極集電体dの正極活物質に覆われていない端部である。正極cも同様、正極cの正極集電体eの正極活物質に覆われていない端部である延長部(タブ)fがセパレータbから突き出ている。
2.各要素の具体的構成
 電池の各要素は、具体的には以下のようなものを採用してもよい。
<2-1.セパレータ>
 本発明の一形態によるセパレータは、溶融温度または分解温度が200℃以上の材料による多孔膜、織布または不織布を基材とするものである。基材の表面に開口した空孔または空隙の内側に、基材とは異なる樹脂が複合化されていることが好ましい(詳細後述)。
 なお、本明細書において、多孔質体の内部に形成された細孔のことを「空孔」と表現し、織布または不織布の内部の空間のことを「空隙」と表現している。
 複合化の態様としては、図4Aに示すように、セパレータ41の基材45の内部(具体的には一方または両方の表面近傍)に樹脂被覆部47が形成されたものであってもよい。他の例としては、図4Bに示すように、樹脂被覆部47に加え、基材45の表面上に形成された樹脂層46を有するものあってもよい。このような樹脂層46および/または樹脂皮膜部47は、基材45の一方の表面のみに形成されていてもよいし、両面に形成されていてもよい。また、一方の表面には内部の樹脂被覆部47のみが形成され、他方の表面は内部の樹脂被覆部47および表面上の樹脂層46が形成された構成としてもよい。
 図5にセパレータの断面構造をより拡大した模式図を示す。基材に45には、多数の空孔45aが形成されている。基材45には、厚さ5μm以上50μm以下の、溶融温度または分解温度が200℃以上の高耐熱性材料を用いることができる。多孔膜または不織布等を用いることができる。基材45は、基材の厚さ方向に空孔または空隙が複数存在し、かつ、基材の片面から反対側の面へ直線で通過する経路が存在しないものが好ましい。
 図5では、樹脂48が基材表面に開口した空孔の内壁を、孔48aを除いて、連続膜として被覆しているが、内壁が一部露出していても構わない。
 また、図5では、樹脂被覆部47が基材表面に開口した空孔に留まっているが、基材表面に直接開口していないより内側の空孔45aまで広がっていても構わない。ただし、基材45中の樹脂存在量は、基材45の表面から内部に進むと減少していく。
 空孔45aのサイズ(平均内径)は一例で1μm以下、好ましくは0.5μm以下、さらに好ましくは0.1μm以下である。
 空孔径は、セパレータの断面を走査型電子顕微鏡(SEM)で観察した画像から空孔の断面積を計測し、同一の面積を持つ円の直径として算出する。平均空孔径は、観察画像内のすべての空孔に対して直径を算出し、上位5%と下位5%を除いて算出する。ただし、セパレータの表面に開口した空孔については、直径を算出する対象としない。
 樹脂被覆部47は、この例では、基材45の内部の表面近傍の領域に形成された樹脂48として設けられている。樹脂48は、基材45の表面に開口した空孔または空隙内と、基材の表面から内側の近傍に多く存在する。一方、基材45の内部における樹脂の存在量は少ないか、または、ゼロである。
 樹脂48は、表面付近の空孔45aの内面を被覆している。セパレータの機能を阻害しないように、樹脂48は、空孔や、空孔どうしを繋ぐ連通部を完全に閉塞しないような態様で被覆されている。これは、図5に模式的に描かれているように、樹脂48が空孔または空隙どうしを繋ぐ孔48aを有していることを意味する。なお、孔48aそのものの形状は特に限定されるものではなく、細長い孔や開口などどのようなものであっても構わない。
 複合した樹脂の含有量は、セパレータ全体の10重量%以下である。樹脂の量が過剰になると、空孔または空隙を閉塞して、正極と負極の間の、リチウムイオンの伝導を阻害するおそれがあるためである。
 基材45の表面より外側に樹脂層46が形成されていてもよいことは前述した通りであるが、この場合、樹脂層46の厚さは好ましくは1μm以下である。このような樹脂層46は「層」と表現しているものの、基材45の表面において、基材の上に膜が「積層」されたような構造ではなく、面内不連続となるように形成されていることも好ましい。
 例えば、基材表面の開口部を除いた領域の面積(平面視)をAとし、樹脂層の基材表面の開口部を除いた領域上に存在する面積(平面視)をBとして、その比率(B/A)が、90%以下、好ましくは70%以下、さらに好ましくは50%以下となるようなものであってもよい。
 また、樹脂層46における樹脂材料の形態は、一例で、基材表面の開口部を除いた領域の上に、存在する樹脂材料が基材表面の高さの平面で、周囲とから孤立した複数の領域を含んでいるようなものであってもよい。
 図5では樹脂48が基材表面よりも突出しないような状態が描かれている。しかしながら、樹脂48が基材表面よりも僅かに突出していてもよく、この場合の突出量(基材表面から樹脂48上部までの高さ)が、5μm以下であることが好ましく、3μm以下であることがさらに好ましく、1μm以下であることが特に好ましい。
 セパレータ全体の空孔率は55%以上80%以下が好ましい。空孔率が大きいセパレータは内部に保持する電解液の量が多く長期使用に有利であること、基材に使用する樹脂の量が減ること、などの有利な点がある。一方、空孔率が大きいと、機械的な強度が低下する。
 セパレータ全体のガーレー値は、100秒/100ml以上300秒/100ml以下が好ましい。ガーレー値が小さいセパレータは、大電流放電に有利である。しかし、低温での高速充電などで負極表面にリチウムが析出すると、セパレータの内部にリチウム析出物が入り込んで成長しやすく、その結果、正極と負極の短絡が起きやすい。一方、ガーレー値が大きいと、正極と負極の間のリチウムイオンの伝導度が小さくなり、大きな放電電流が取り出し難くなる。
 セパレータ全体から溶媒による溶出または熱分解により樹脂材料を除去し、基材のみにしたときのガーレー値の減少率が10%以上であることも、一形態において、好ましい。
 図4A、図4B、図5では基本的に基材45の表面全体に樹脂被覆部47や樹脂層46が形成されることを想定している。しかしながら、本発明はこれに限らず、基材をその厚さ方向に見た面内の少なくとも一部を占める平面領域(例えば、基材表面に対して面積比で30%以上の領域、50%以上の領域、または70%以上の領域など)に樹脂材料が被覆されているものであってもよい。
 本発明の一形態による効果の発現は、基材となる高耐熱材料自体の物性には依存しないが、高耐熱性材料として、例えば、ポリアミド、なかでも全芳香族ポリアミド(アラミド)、ポリイミド、ポリエチレンテレフタラート(PET)、ポリフェニレンサルファイド(PPS)、セルロース、等の樹脂材料を用いることができる。
 基材への樹脂の複合化は、樹脂を溶媒に溶解し、基材表面に供給、乾燥することで行うことができる。基材と複合化する樹脂材料としては、電解液に対する耐性があり、電池を使用する温度範囲で溶融や昇華しない材料を用いることができる。例えば、ポリビニルアルコール(PVA)、カルボキシメチルセルロースナトリウム(CMC)、ポリアクリル酸(PAA)、スチレンブタジエンゴム(SBR)、ポリフッ化ビニリデン(PVDF)などがある。
 溶媒は、樹脂を溶解、あるいは樹脂の微粒子を分散させ、基材を侵さない液体であれば、水系溶媒、有機系溶媒のいずれでも構わないが、例えば、水溶性、あるいは水分散性樹脂と純水の組み合わせを用いることができる。純水に、エタノールや界面活性剤を混合して、基材材料と、樹脂溶液の親和性を向上させることもできる。非水溶媒と比べて、水を主体とした溶媒は、環境負荷が小さく、除害設備も簡単で済むこと、溶媒の価格が低いこと、などの利点がある。
 樹脂の複合化は、基材の片側表面または両側表面から行うことができる。片側表面から複合化する場合、樹脂の溶液を基材の片側表面に塗布や噴霧してもよい。あるいは、基材を樹脂溶液の上に浮かべて引きあげることで、樹脂溶液を基材の片側表面に供給することもできる。基材の両側表面から複合化する場合、基材の両側表面に塗布や噴霧してもよいあるいは、上記同様、基材を樹脂溶液に浸して引き上げることで、樹脂溶液を基材の両側表面に供給することもできる。
 基材の表面に供給した樹脂溶液の溶媒を除去することで、樹脂を複合化することができる。樹脂の複合化後、必要に応じて、熱処理や化学処理を複合化した樹脂に施してもよい。例えば、PVAは、熱処理の他に、酸を触媒としてホルムアルデヒドと反応させるホルマール化によって、耐水性を上げることができる。
 基材の表面に樹脂の溶液を供給したとき、基材の空孔、さらには、空孔どうしを繋いでいる連通孔の径が小さいため、樹脂溶液は基材の内部まで浸透しにくい。そのため、複合化した樹脂は、基材表面に開口した孔の内部に、あるいは表面直下の空孔の内部に集中して存在し、基材の内側に進むと存在量は少なくなる。
 樹脂基材への樹脂溶液の浸透性は、樹脂溶液の溶媒によっても変えることができる。例えば、溶媒として純水にエタノールを加えると、基材への浸透度が高くなる。また、不織布は空孔と連通孔による構造を持たないため、樹脂溶液が内部まで浸透しやすいが、樹脂溶液の粘度を大きくすることや、表面張力を大きくすることや、基材と樹脂溶液との親和性を下げることによって、樹脂溶液の基材内部への浸透を抑えることができる。
<2-2.負極>
 負極は、金属箔で形成される負極集電体と、負極集電体の両面に塗工された負極活物質とを有する。負極活物質は負極用結着材によって負極集電体を覆うように結着される。負極集電体は、負極端子と接続する延長部を有して形成され、この延長部には負極活物質は塗工されない。
 本実施形態における負極活物質は、特に制限されるものではなく、例えば、リチウムイオンを吸蔵、放出し得る炭素材料、リチウムと合金可能な金属、およびリチウムイオンを吸蔵、放出し得る金属酸化物等が挙げられる。
 炭素材料としては、例えば、炭素、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの複合物等が挙げられる。ここで、結晶性の高い炭素は、電気伝導性が高く、銅などの金属からなる負極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。
 金属や金属酸化物を含有する負極は、エネルギー密度を向上でき、電池の単位重量あたり、あるいは単位体積あたりの容量を増やすことができる点で好ましい。
 金属としては、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、またはこれらの2種以上の合金等が挙げられる。また、これらの金属又は合金は2種以上混合して用いてもよい。また、これらの金属又は合金は1種以上の非金属元素を含んでもよい。
 金属酸化物としては、例えば、酸化シリコン、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの複合物等が挙げられる。負極活物質として酸化スズ若しくは酸化シリコンを含むことが好ましく、酸化シリコンを含むことがより好ましい。これは、酸化シリコンは、比較的安定で他の化合物との反応を引き起こしにくいからである。また、その全部または一部がアモルファス構造を有することが好ましい。アモルファス構造は、結晶粒界や欠陥といった不均一性に起因する要素が比較的少ないと考えられる。なお、金属酸化物の全部または一部がアモルファス構造を有することは、エックス線回折測定(一般的なXRD測定)にて確認することができる。具体的には、金属酸化物がアモルファス構造を有しない場合には、金属酸化物に固有のピークが観測されるが、金属酸化物の全部または一部がアモルファス構造を有する場合が、金属酸化物に固有ピークがブロードとなって観測される。
 なお、炭素材料、金属、金属酸化物を単独で用いずに、混合して用いることもできる。例えば、黒鉛と非晶質炭素のように、同種の材料同士を混合しても良いし、黒鉛とシリコンのように、異種の材料を混合しても構わない。
 負極用結着剤としては、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等を用いることができる。使用する負極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、負極活物質100質量部に対して、0.5~25質量部が好ましい。
 負極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、ステンレス、クロム、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。
<2-3.正極>
 正極は、金属箔で形成される正極集電体と、正極集電体の両面に塗工された正極活物質とを有する。正極活物質は正極用結着剤によって正極集電体を覆うように結着される。正極集電体は、正極端子と接続する延長部を有して形成され、この延長部には正極活物質は塗工されない。
 正極活物質としては、リチウムを吸蔵放出し得る材料であれば特に限定されず、いくつかの観点から選ぶことができる。高エネルギー密度化の観点からは、高容量の化合物を含むことが好ましい。高容量の化合物としては、リチウム酸ニッケル(LiNiO)またはリチウム酸ニッケルのNiの一部を他の金属元素で置換したリチウムニッケル複合酸化物が挙げられ、下式(A)で表される層状リチウムニッケル複合酸化物が好ましい。
 LiNi(1-x)   (A)
(但し、0≦x<1、0<y≦1.2、MはCo、Al、Mn、Fe、Ti及びBからなる群より選ばれる少なくとも1種の元素である。)
 高容量の観点では、Niの含有量が高いこと、即ち式(A)において、xが0.5未満が好ましく、さらに0.4以下が好ましい。このような化合物としては、例えば、LiαNiβCoγMnδ(0≦α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、LiαNiβCoγAlδ(0≦α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.6好ましくはβ≧0.7、γ≦0.2)などが挙げられ、特に、LiNiβCoγMnδ(0.75≦β≦0.85、0.05≦γ≦0.15、0.10≦δ≦0.20)が挙げられる。より具体的には、例えば、LiNi0.8Co0.05Mn0.15、LiNi0.8Co0.1Mn0.1、LiNi0.8Co0.15Al0.05、LiNi0.8Co0.1Al0.1等を好ましく用いることができる。
 また、熱安定性の観点では、Niの含有量が0.5を超えないこと、即ち、式(A)において、xが0.5以上であることも好ましい。また特定の遷移金属が半数を超えないことも好ましい。このような化合物としては、LiαNiβCoγMnδ(0≦α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、0.2≦β≦0.5、0.1≦γ≦0.4、0.1≦δ≦0.4)が挙げられる。より具体的には、LiNi0.4Co0.3Mn0.3(NCM433と略記)、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3(NCM523と略記)、LiNi0.5Co0.3Mn0.2(NCM532と略記)など(但し、これらの化合物においてそれぞれの遷移金属の含有量が10%程度変動したものも含む)を挙げることができる。
 また、式(A)で表される化合物を2種以上混合して使用してもよく、例えば、NCM532またはNCM523とNCM433とを9:1~1:9の範囲(典型的な例として、2:1)で混合して使用することも好ましい。さらに、式(A)においてNiの含有量が高い材料(xが0.4以下)と、Niの含有量が0.5を超えない材料(xが0.5以上、例えばNCM433)とを混合することで、高容量で熱安定性の高い電池を構成することもできる。
 上記以外にも正極活物質として、例えば、LiMnO、LiMn(0<x<2)、LiMnO、LiMn1.5Ni0.5(0<x<2)等の層状構造またはスピネル構造を有するマンガン酸リチウム;LiCoOまたはこれらの遷移金属の一部を他の金属で置き換えたもの;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの;及びLiFePOなどのオリビン構造を有するもの等が挙げられる。さらに、これらの金属酸化物をAl、Fe、P、Ti、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La等により一部置換した材料も使用することができる。上記に記載した正極活物質はいずれも、1種を単独で、または2種以上を組合せて用いることができる。
 また、ラジカル材料等を正極活物質として用いることも可能である。
 正極用結着剤としては、負極用結着剤と同様のものと用いることができる。使用する正極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、正極活物質100質量部に対して、2~15質量部が好ましい。
 正極集電体としては、例えば、アルミニウム、ニッケル、銀、又はそれらの合金を用いることができる。正極集電体の形状としては、例えば、箔、平板状、メッシュ状が挙げられる。正極集電体としては、アルミニウム箔を好適に用いることができる。
 正極活物質の塗工層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。
<2-4.電解液>
 本実施形態で用いる電解液は、リチウム塩(支持塩)と、この支持塩を溶解する非水溶媒を含む非水電解液を用いることができる。
 非水溶媒としては、炭酸エステル(鎖状又は環状カーボネート)、カルボン酸エステル(鎖状又は環状カルボン酸エステル)、リン酸エステル等の非プロトン性有機溶媒を用いることができる。
 炭酸エステル溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;プロピレンカーボネート誘導体が挙げられる。
 これらの中でも、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(MEC)、ジプロピルカーボネート(DPC)等の炭酸エステル(環状または鎖状カーボネート類)
が好ましい。
 リン酸エステルとしては、例えば、リン酸トリメチル、リン酸トリエチル、リン酸トリプロピル、リン酸トリオクチル、リン酸トリフェニル等が挙げられる。
 また、非水電解液に含有できる溶媒としては、その他にも、例えば、エチレンサルファイト(ES)、プロパンサルトン(PS)、ブタンスルトン(BS)、Dioxathiolane-2,2-dioxide(DD)、スルホレン、3-メチルスルホレン、スルホラン(SL)、無水コハク酸(SUCAH)、無水プロピオン酸、無水酢酸、無水マレイン酸、ジアリルカーボネート(DAC)、2,5-ジオキサヘキサンニ酸ジメチル、2,5-ジオキサヘキサンニ酸ジメチル、フラン、2,5-ジメチルフラン、ジフェニルジサルファイド(DPS)、ジメトキシエタン(DME)、ジメトキシメタン(DMM)、ジエトキシエタン(DEE)、エトキシメトキシエタン、クロロエチレンカーボネート、ジメチルエーテル、メチルエチルエーテル、メチルプロピルエーテル、エチルプロピルエーテル、ジプロピルエーテル、メチルブチルエーテル、ジエチルエーテル、フェニルメチルエーテル、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2-MeTHF)、テトラヒドロピラン(THP)、1,4-ジオキサン(DIOX)、1,3-ジオキソラン(DOL)、メチルアセテート、エチルアセテート、プロピルアセテート、イソプロピルアセテート、ブチルアセテート、メチルジフルオロアセテート、メチルプロピオネート、エチルプロピオネート、プロピルプロピオネート、メチルフォルメイト、エチルフォルメイト、エチルブチレート、イソプロピルブチレート、メチルイソブチレート、メチルシアノアセテート、ビニルアセテート、ジフェニルジスルフィド、ジメチルスルフィド、ジエチルスルフィド、アジポニトリル、バレロニトリル、グルタロニトリル、マロノニトリル、スクシノニトリル、ピメロニトリル、スベロニトリル、イソブチロニトリル、ビフェニル、チオフェン、メチルエチルケトン、フルオロベンゼン、ヘキサフルオロベンゼン、カーボネート電解液、グライム、エーテル、アセトニトリル、プロピオンニトリル、γ-ブチロラクトン、γ-バレロラクトン、ジメチルスルホキシド(DMSO)イオン液体、ホスファゼン、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、又は、これらの化合物の一部の水素原子がフッ素原子で置換されたものが挙げられる。
 本実施形態における支持塩としては、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、LiC(CFSO、LiN(CFSO等の通常のリチウムイオン電池に使用可能なリチウム塩を用いることができる。支持塩は、一種を単独で、または二種以上を組み合わせて使用することができる。
 非水溶媒は、一種を単独で、または二種以上を組み合わせて使用することができる。
 以下、本実施形態を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 基材には、厚さ12μm、空孔率70%、ガーレー値80秒/100mlのアラミド微多孔膜を用いた。空孔は、直径0.1μmから0.5μmの間で分布している。
 複合化する樹脂には、けん化度95%以上、重合度約2000のPVAを用いた。PVAを純水に溶解して、0.1重量%のPVA水溶液を作製した。この水溶液中に基材を30秒間浸したあと引き上げて、余分な水溶液を除去した後、常温で乾燥させた。
 次に、150℃で10分間乾燥させて、セパレータとした。作製したセパレータのガーレー値は100秒/100ml、複合化した樹脂のセパレータ中の比率は0.5重量%であった。作製したセパレータを5枚重ねて、マイクロメータで厚さを測定し、1枚当たりの平均厚さを算出したが、基材との厚さの差は無かった。
 作製したセパレータを用いて、以下に示すような電池を作製した。
(正極)
 ニッケル酸リチウムと、炭素導電剤と、結着材としてポリフッ化ビニリデンとを重量比92:4:4でN-メチル-2-ピロリドンに分散させてスラリーを作製し、アルミニウムによる集電箔に塗布、乾燥して正極活物質層を形成した。同様にしてアルミニウムによる集電箔の裏面にも活物質層を形成したあと、圧延して正極電極板を得た。
(負極)
 天然黒鉛と、増粘剤のカルボキシメチルセルロースナトリウムと、結着材のスチレンブタジエンゴムとを、重量比98:1:1で水溶液中に混合してスラリーを作製し、銅による集電箔に塗布、乾燥して負極活物質層を形成した。同様にして、銅による集電箔の裏面にも活物質層を形成したあと、圧延して負極電極板を得た。
(電解液)
 電解液の非水溶媒には、ECとDECを、体積比30:70で混合した非水溶媒を用いた。支持塩として、1Mの濃度になるようにLiPFを溶解した。
(電池の作製)
 正極電極板を、電流取り出し部を除いた寸法として50mm×52mmに切断し、負極電極板を、電流取り出し部を除いた寸法として52mm×54mmに切断して、セパレータを介して、電池の容量が約400mAhとなるように積層した。積層した正極板と負極板それぞれに電流取り出し端子を接続し、アルミニウムと樹脂のラミネートフィルム外装体に、収容した。電解液を外装体内に注入した後、外装体を減圧封止して電池とした。
(電池の特性評価)
 作製した電池に、初回の充放電とエージング工程を施した後、零下20℃で、電池電圧4.2Vまで定電流定電圧モードで充電した。充電電流は、2ItAとした。充電により、電池の電圧は4.2Vまで上昇し、充電中や充電終了後に電池電圧の低下は見られなかった。セパレータの特性と充電の結果を表に示す。
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 PVA水溶液の濃度を、1重量%とした他は、実施例1と同様にセパレータを作製した。実施例1と同様にして電池を作製して、充電特性を調べた。実施例1と同様に、電池の電圧は、4.2Vまで上昇し、充電中や充電終了後に電池電圧の低下は見られなかった。セパレータの特性と充電の結果を表に示す。
(実施例3)
 PVA水溶液の濃度を、2重量%とした他は、実施例1と同様にセパレータを作製した。実施例1と同様にして電池を作製して、充電特性を調べた。実施例1と同様に、電池の電圧は、4.2Vまで上昇し、充電中や充電終了後に電池電圧の低下は見られなかった。セパレータの特性と充電の結果を表に示す。
(実施例4)
 基材は実施例1と同一とし、複合化する樹脂として、CMCを用いた。純水に溶解して、0.01重量%のCMC水溶液を作製した。この水溶液中に基材を30秒間浸したあと引き上げて、余分な水溶液を除去した後、常温で乾燥させた。次に、90℃で30分間乾燥させて、セパレータとした。作製したセパレータのガーレー値は105秒/100ml、樹脂複合化前後で厚さは変わらず、複合化した樹脂のセパレータ中の比率は1重量%であった。
 実施例1と同様にして電池を作製して、充電特性を調べた。実施例1と同様に、電池の電圧は、4.2Vまで上昇し、充電中や充電終了後に電池電圧の低下は見られなかった。セパレータの特性と充電の結果を表に示す。
(実施例5)
 CMC水溶液の濃度を、0.1重量%とした他は、実施例4と同様にセパレータを作製し、このセパレータを用いた電池を作製して充電特性を調べた。実施例1と同様に、電池の電圧は、4.2Vまで上昇し、充電中や充電終了後に電池電圧の低下は見られなかった。セパレータの特性と充電の結果を表に示す。
(実施例6)
 基材は実施例1と同一とし、複合化する樹脂として、ポリアクリル酸(PAA)を用いた。純水70体積%、エタノール30体積%の混合溶媒にPAAを溶解して、0.05重量%のPAA溶液を作製した。この水溶液中に基材を30秒間浸したあと引き上げて、余分な溶液を除去した後、常温で乾燥させた。次に、90℃で30分間乾燥させて、セパレータとした。作製したセパレータのガーレー値は100秒/100ml、樹脂複合化前後で厚さは変わらず、複合化した樹脂のセパレータ中の比率は0.5重量%であった。
 実施例1と同様にして電池を作製して、充電特性を調べた。実施例1と同様に、電池の電圧は、4.2Vまで上昇し、充電中や充電終了後に電池電圧の低下は見られなかった。セパレータの特性と充電の結果を表に示す。
(実施例7)
 PAA溶液の濃度を、0.1重量%とした他は、実施例6と同様にセパレータを作製し、このセパレータを用いた電池を作製して充電特性を調べた。実施例1と同様に、電池の電圧は、4.2Vまで上昇し、充電中や充電終了後に電池電圧の低下は見られなかった。セパレータの特性と充電の結果を表に示す。
(実施例8)
 PAA溶液の濃度を、0.2重量%とした他は、実施例6と同様にセパレータを作製し、このセパレータを用いた電池を作製して充電特性を調べた。実施例1と同様に、電池の電圧は、4.2Vまで上昇し、充電中や充電終了後に電池電圧の低下は見られなかった。セパレータの特性と充電の結果を表に示す。
(実施例9)
 基材は実施例1と同一とし、複合化する樹脂としてSBRを用いた。複合化には、粒径が50nmから100nmのSBR微粒子を分散させた分散液を、純水で希釈して用いた。希釈した分散液中のSBR粒子含有量は、1重量%とした。このSBR分散液に基材を30秒間浸したあと引き上げて、余分な溶液を除去した後、常温で乾燥させた。次に、90℃で30分間乾燥させて、セパレータとした。作製したセパレータのガーレー値は150秒/100ml、樹脂複合化前後で厚さは変わらず、複合化した樹脂のセパレータ中の比率は3重量%であった。
 実施例1と同様にして電池を作製して、充電特性を調べた。実施例1と同様に、電池の電圧は、4.2Vまで上昇し、充電中や充電終了後に電池電圧の低下は見られなかった。セパレータの特性と充電の結果を表に示す。
(実施例10)
 実施例2と同一の基材、PVA水溶液を用いた。容器に入れたPVA水溶液に、基材を片側表面のみがPVA水溶液に触れるように浮かべ、30秒後に基材を引き上げることで、基材の片側表面にのみPVA水溶液を供給した。PVA水溶液に基材を浮かべることで、PVA水溶液に接した基材表面が均一にPVA水溶液で濡れたが、基材の反対側の面への水溶液の浸み出しは無かった。
 余分な水溶液を除去した後、常温で乾燥させた。次に、150℃で10分間乾燥させて、セパレータとした。実施例1と同様に、このセパレータを用いた電池を作製して充電特性を調べた。セパレータは、PVA複合化面を、負極と対向させた。実施例1と同様に、電池の電圧は、4.2Vまで上昇し、充電中や充電終了後に電池電圧の低下は見られなかった。セパレータの特性と充電の結果を表に示す。
(実施例11)
 実施例5と同一の基材、CMC水溶液を用い、実施例9と同様にして、基材の片側表面にのみCMC水溶液を供給した。余分な水溶液を除去した後、常温で乾燥させた。次に、90℃で30分間乾燥させて、セパレータとした。実施例1と同様に、このセパレータを用いた電池を作製して充電特性を調べた。セパレータは、CMC複合化面を、負極と対向させた。実施例1と同様に、電池の電圧は、4.2Vまで上昇し、充電中や充電終了後に電池電圧の低下は見られなかった。セパレータの特性と充電の結果を表に示す。
(実施例12)
 実施例7と同一の基材、PAA溶液を用い、実施例9と同様にして、基材の片側表面にのみPAA溶液を供給した。余分な溶液を除去した後、常温で乾燥させた。次に、90℃で30分間乾燥させて、セパレータとした。実施例1と同様に、このセパレータを用いた電池を作製して充電特性を調べた。セパレータは、PAA複合化面を、負極と対向させた。実施例1と同様に、電池の電圧は、4.2Vまで上昇し、充電中や充電終了後に電池電圧の低下は見られなかった。セパレータの特性と充電の結果を表に示す。
(実施例13)
 基材には、厚さ17μm、空孔率75%、ガーレー値75秒/100mlのポリイミド微多孔膜を用いた。空孔は、直径0.1μmから1μmの間で分布している。複合化する樹脂として、PAAを用いた。純水70体積%、エタノール30体積%の混合溶媒にPAAを溶解して、0.05重量%のPAA溶液を作製した。この水溶液中に基材を30秒間浸したあと引き上げて、余分な溶液を除去した後、常温で乾燥させた。次に、90℃で30分間乾燥させて、セパレータとした。作製したセパレータのガーレー値は105秒/100ml、樹脂複合化前後で厚さは変わらず、複合化した樹脂のセパレータ中の比率は0.5重量%であった。
 実施例1と同様にして電池を作製して、充電特性を調べた。実施例1と同様に、電池の電圧は、4.2Vまで上昇し、充電中や充電終了後に電池電圧の低下は見られなかった。セパレータの特性と充電の結果を表に示す。
(実施例14)
 PAA溶液の濃度を0.2重量%とした他は、実施例12と同様に、セパレータの作製と電池特性の評価を行った。実施例1と同様に、電池の電圧は、4.2Vまで上昇し、充電中や充電終了後に電池電圧の低下は見られなかった。セパレータの特性と充電の結果を表に示す。
(実施例15)
 基材には、厚さ20μm、空隙率55%、ガーレー値5秒/100mlのPPS不織布を用いた。複合化する樹脂として、CMCを用いた。純水にCMCを溶解して、1重量%のCMC水溶液を作製した。このCMC水溶液を、水平に保持したPPS不織布基材の上側面に滴下して1分間保持したが、PPS不織布裏面への浸透は無かった。PPS不織布基材を、このCMC水溶液中に30秒間浸したあと引き上げて、余分な溶液を除去した後、常温で乾燥させた。次に、90℃で30分間乾燥させて、セパレータとした。作製したセパレータのガーレー値は200秒/100mlであった。樹脂の複合化により厚さは片面あたり1μm増加した。複合化した樹脂の、セパレータ中の比率は8重量%であった。
 実施例1と同様にして電池を作製して、充電特性を調べた。実施例1と同様に、電池の電圧は、4.2Vまで上昇し、充電中や充電終了後に電池電圧の低下は見られなかった。セパレータの特性と充電の結果を表に示す。
(比較例1)
 アラミド多孔膜による基材を、樹脂を複合化せずにセパレータとして用いた。電池を実施例1と同様に作製し、実施例1と同様に、零下20℃で、電池電圧4.2Vまで定電流定電圧モードで充電した。充電電流は、実施例1と同じく、2ItAとした。電池の電圧が、4.0V付近まで上昇した後、電池の電圧上昇が止まり、充電電流を流し続けているのにも関わらず、電池の電圧が低下し始めた。
(比較例2)
 PVA水溶液の濃度を0.05重量%とした他は、実施例1と同様にセパレータを作製した。このセパレータを用いて実施例1と同様に電池を作製して、充電特性を調べた。比較例1と同様に、電池の電圧が、4.0V付近まで上昇した後、電池の電圧上昇が止まり、充電電流を流し続けているのにも関わらず、電池の電圧が低下し始めた。セパレータの特性と充電の結果を表に示す。
(比較例3)
 PVA水溶液の濃度を3重量%とした他は、実施例1と同様にセパレータを作製した。このセパレータを用いて実施例1と同様に電池を作製して、充電特性を調べた。充電を開始すると電池の電圧が急劇に上昇し、規定の充電量の10%に満たない状態で、4.2Vに到達した。充電を停止すると、電池電圧が大きく低下した。セパレータの特性と充電の結果を表に示す。
(比較例4)
 CMC水溶液の濃度を、0.005重量%とした他は、実施例4と同様にセパレータを作製し、このセパレータを用いて実施例1と同様に電池を作製して、充電特性を調べた。比較例1と同様に、電池の電圧が、4.0V付近まで上昇した後、電池の電圧上昇が止まり、充電電流を流し続けているのにも関わらず、電池の電圧が低下し始めた。セパレータの特性と充電の結果を表に示す。
(比較例5)
 CMC水溶液の濃度を、0.25重量%とした他は、実施例4と同様にセパレータを作製し、このセパレータを用いて実施例1と同様に電池を作製して、充電特性を調べた。充電を開始すると電池の電圧が急劇に上昇し、規定の充電量の10%に満たない状態で、4.2Vに到達した。充電を停止すると、電池電圧が大きく低下した。セパレータの特性と充電の結果を表に示す。
(比較例6)
 PAA溶液の濃度を、0.01重量%とした他は、実施例6と同様にセパレータを作製し、このセパレータを用いて実施例1と同様に電池を作製して、充電特性を調べた。比較例1と同様に、電池の電圧が、4.0V付近まで上昇した後、電池の電圧上昇が止まり、充電電流を流し続けているのにも関わらず、電池の電圧が低下し始めた。セパレータの特性と充電の結果を表に示す。
(比較例7)
 PAA溶液の濃度を、0.3重量%とした他は、実施例6と同様にセパレータを作製し、このセパレータを用いて実施例1と同様に電池を作製して、充電特性を調べた。充電を開始すると電池の電圧が急劇に上昇し、規定の充電量の10%に満たない状態で、4.2Vに到達した。充電を停止すると、電池電圧が大きく低下した。セパレータの特性と充電の結果を表に示す。
(比較例8)
 CMC水溶液の濃度を、0.01重量%とした他は、実施例10と同様にセパレータを作製し、このセパレータを用いて実施例1と同様に電池を作製して、充電特性を調べた。セパレータは、CMC複合化面を、負極と対向させた。比較例1と同様に、電池の電圧が、4.0V付近まで上昇した後、電池の電圧上昇が止まり、充電電流を流し続けているのにも関わらず、電池の電圧が低下し始めた。セパレータの特性と充電の結果を表に示す。
(比較例9)
 PAA溶液の濃度を、0.01重量%とした他は、実施例12と同様にセパレータを作製し、このセパレータを用いて実施例1と同様に電池を作製して、充電特性を調べた。比較例1と同様に、電池の電圧が、4.0V付近まで上昇した後、電池の電圧上昇が止まり、充電電流を流し続けているのにも関わらず、電池の電圧が低下し始めた。セパレータの特性と充電の結果を表に示す。
(比較例10)
 PAA溶液の濃度を、0.3重量%とした他は、実施例12と同様にセパレータを作製し、このセパレータを用いて実施例1と同様に電池を作製して、充電特性を調べた。充電を開始すると電池の電圧が急劇に上昇し、規定の充電量の10%に満たない状態で、4.2Vに到達した。充電を停止すると、電池電圧が大きく低下した。セパレータの特性と充電の結果を表に示す。
(付記)
 本出願は以下の発明を開示する(なお、括弧内の符号は本発明を何ら限定するものではない):
1-1.a1:溶融温度または分解温度が200℃以上で多孔質体の基材(45)と、
b1:前記基材をその厚さ方向に見た面内の少なくとも一部を占める平面領域において、前記基材(45)の内部に、前記多孔質体の空孔(45a)を繋ぐ連通部を完全に閉塞することなく被覆された樹脂材料(48)であって、当該樹脂材料の前記基材の厚さ方向の分布密度が前記基材の内部側にいくにつれて減少する樹脂材料(48)と、
 を有する二次電池用セパレータ。
「当該樹脂材料の前記基材の厚さ方向の分布密度が前記基材の内部側にいくにつれて減少する」とは、前記基材をその厚さ方向に見た平面領域において、基材の表面側(下記するように基材表面上にも樹脂材料が存在する場合には、その樹脂材料の最外部側)ほど、基材によって囲まれた空孔の断面積に対する、空孔内に存在する樹脂材料の断面積の割合が大きく、基材内部側ほど小さいことをいう。基材の表面に開口する空孔については、基材表面より内側の基材の輪郭線と、基材表面を外挿した直線とで囲まれた領域の面積を断面積とする。
 なお、「基材をその厚さ方向に見た面」とは、基材の表面に対して垂直な断面あるいは交差する断面のことを意図する(下記の付記9の発明においても同じ)。
1-2.溶融温度または分解温度が200℃以上で多孔質体の基材と、
 前記基材をその厚さ方向に見た面内の少なくとも一部を占める平面領域において、前記基材の少なくとも内部に形成された樹脂材料と、
 を有し、
 前記樹脂材料は、前記多孔質体の空孔を繋ぐ連通部を完全に閉塞することなく、空孔内面を被覆しており、かつ、前記樹脂材料の分布密度は前記基材の内部側にいくにつれて減少している、二次電池用セパレータ。
2.前記樹脂材料が前記基材の表面上にも被覆され、表面樹脂層(46)が形成されている、上記1に記載の二次電池用セパレータ。
3.前記表面樹脂層(46)内において、前記樹脂材料の厚さが1μm以下である、上記2に記載の二次電池用セパレータ。
4.基材表面の開口部を除いた領域の面積をAとし、基材表面の開口部を除いた領域上に存在する樹脂材料の面積をBとして、その比率が90%以下である、上記2または3に記載の二次電池用セパレータ。
5.前記基材の内部に、前記樹脂材料が存在しない領域が存在する、上記1~4のいずれかに記載の二次電池用セパレータ。
6.前記樹脂材料が、セパレータ全体の10重量%以下である、上記1~5のいずれかに記載の二次電池用セパレータ。
7.セパレータ全体の空孔率が55%以上80%以下である、上記1~6のいずれかに記載の二次電池用セパレータ。
8.セパレータ全体のガーレー値が100秒以上300秒以下である、上記1~7のいずれかに記載の二次電池用セパレータ。
9.a2:溶融温度または分解温度が200℃以上で織布または不織布の基材と、
b2:前記基材をその厚さ方向に見た面内の少なくとも一部を占める平面領域において、前記基材の内部で、前記基材内の空隙を完全に閉塞することなく前記織布または不織布の繊維表面に被覆された樹脂材料であって、当該樹脂材料の前記基材の厚さ方向の分布密度が前記基材の内部側にいくにつれて減少する樹脂材料と、
 を有する二次電池用セパレータ。
「当該樹脂材料の前記基材の厚さ方向の分布密度が前記基材の内部側にいくにつれて減少する」とは、前記基材をその厚さ方向に見た平面領域において、基材の表面側(基材表面上にも樹脂材料が存在する場合には、その樹脂材料の最外部側)ほど、前記織布または不織布の繊維の断面積に対する、前記樹脂材料の断面積の割合が大きく、基材内部側ほど小さいことをいう。
なお、上記2.~8.に記載の技術的事項は上記9.の発明にも組み合わせ得る。
10.上記1~9のいずれかに記載の二次電池用セパレータ、正極、および負極を有する電池要素(20)と、
 前記電池要素を電解質とともに封入する外装体(10)と、
 を備える二次電池(50)。
10 外装体
11、12 フィルム
20 電池要素
21、25 電極タブ
41 セパレータ
45 基材
45a 空孔
46 樹脂層(基材外側)
47 樹脂被覆部(基材内側)
48 樹脂
48a 孔
50 フィルム外装電池

Claims (10)

  1.  溶融温度または分解温度が200℃以上で多孔質体の基材と、
     前記基材をその厚さ方向に見た面内の少なくとも一部を占める平面領域において、前記基材の少なくとも内部に形成された樹脂材料と、
     を有し、
     前記樹脂材料は、前記多孔質体の空孔を繋ぐ連通部を完全に閉塞することなく、空孔内面を被覆しており、かつ、前記樹脂材料の分布密度は前記基材の内部側にいくにつれて減少している、二次電池用セパレータ。
  2.  前記樹脂材料が前記基材の表面上にも被覆され、表面樹脂層が形成されている、請求項1に記載の二次電池用セパレータ。
  3.  前記表面樹脂層内において、前記樹脂材料の厚さが1μm以下である、請求項2に記載の二次電池用セパレータ。
  4.  基材表面の開口部を除いた領域の面積と、基材表面の開口部を除いた領域上に存在する樹脂材料の面積との比率が90%以下である、請求項2または3に記載の二次電池用セパレータ。
  5.  前記基材の内部に、前記樹脂材料が存在しない領域が存在する、請求項1~4のいずれか一項に記載の二次電池用セパレータ。
  6.  前記樹脂材料が、セパレータ全体の10重量%以下である、請求項1~5のいずれか一項に記載の二次電池用セパレータ。
  7.  セパレータ全体の空孔率が55%以上80%以下である、請求項1~6のいずれか一項に記載の二次電池用セパレータ。
  8.  セパレータ全体のガーレー値が100秒以上300秒以下である、請求項1~7のいずれか一項に記載の二次電池用セパレータ。
  9.  溶融温度または分解温度が200℃以上で織布または不織布の基材と、
     前記基材をその厚さ方向に見た面内の少なくとも一部を占める平面領域において、前記基材の少なくとも内部に形成された樹脂材料と、
     を有し、
     前記樹脂材料は、前記基材内の空隙を完全に閉塞することなく、空隙の内面を被覆しており、かつ、前記樹脂材料の分布密度は前記基材の内部側にいくにつれて減少している、二次電池用セパレータ。
     
  10.  請求項1~9のいずれか一項に記載の二次電池用セパレータ、正極、および負極を有する電池要素と、
     前記電池要素を電解質とともに封入する外装体と、
     を備える二次電池。
PCT/JP2016/056832 2015-03-05 2016-03-04 二次電池用セパレータおよびそれを備えた二次電池 WO2016140346A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017503730A JP7148198B2 (ja) 2015-03-05 2016-03-04 二次電池用セパレータおよびそれを備えた二次電池
US15/555,454 US10777795B2 (en) 2015-03-05 2016-03-04 Separator including resin member formed inside porous substrate, and secondary battery equipped therewith

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015044088 2015-03-05
JP2015-044088 2015-03-05

Publications (1)

Publication Number Publication Date
WO2016140346A1 true WO2016140346A1 (ja) 2016-09-09

Family

ID=56848962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056832 WO2016140346A1 (ja) 2015-03-05 2016-03-04 二次電池用セパレータおよびそれを備えた二次電池

Country Status (3)

Country Link
US (1) US10777795B2 (ja)
JP (1) JP7148198B2 (ja)
WO (1) WO2016140346A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007790A1 (ja) * 2021-07-30 2023-02-02 イビデン株式会社 断熱シート、断熱シートの製造方法及び組電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302115A (ja) * 1996-05-14 1997-11-25 Sumitomo Chem Co Ltd 高分子電解質複合膜及びその製造方法
JPH11250890A (ja) * 1998-02-27 1999-09-17 Toray Ind Inc 電池セパレータ用多孔性高分子フィルム
JP2005302341A (ja) * 2004-04-07 2005-10-27 Tomoegawa Paper Co Ltd 電子部品用セパレータ及びその製造方法
JP2013211155A (ja) * 2012-03-30 2013-10-10 Tdk Corp リチウムイオン二次電池用セパレータ及び、それを用いたリチウムイオン二次電池

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177840A (ja) 1974-12-28 1976-07-06 Tokyo Shibaura Electric Co
JPH1140130A (ja) 1997-07-18 1999-02-12 Oji Paper Co Ltd 二次電池用セパレータ
JPH11213981A (ja) * 1998-01-27 1999-08-06 Sumitomo Bakelite Co Ltd 電池用セパレーター及び電池
JP4052495B2 (ja) 1998-07-29 2008-02-27 日東電工株式会社 熱閉塞性多孔質体
JP4588136B2 (ja) 1999-07-13 2010-11-24 帝人株式会社 電池用セパレーター及びその製造方法
US6881438B2 (en) * 2000-03-07 2005-04-19 Teijin Limited Process for production of composite porous film
JP4350953B2 (ja) 2003-01-07 2009-10-28 日本バイリーン株式会社 リチウム二次電池用セパレータ及びリチウム二次電池
JP4792688B2 (ja) 2003-01-24 2011-10-12 住友化学株式会社 非水電解液二次電池用セパレータの製造方法
JP2005183594A (ja) 2003-12-18 2005-07-07 Japan Vilene Co Ltd 非水系電気化学素子
KR100971109B1 (ko) 2006-11-20 2010-07-20 데이진 가부시키가이샤 비수계 이차 전지용 세퍼레이터, 및 비수계 이차 전지
JP5177840B2 (ja) 2007-08-23 2013-04-10 Necカシオモバイルコミュニケーションズ株式会社 携帯端末装置及びプログラム
DK2272119T3 (da) * 2008-03-27 2014-07-07 Zpower Llc Elektrodeseparator
US8669010B2 (en) 2008-04-24 2014-03-11 Sharp Kabushiki Kaisha Nonaqueous secondary battery
KR101117126B1 (ko) * 2010-04-19 2012-02-24 한국과학기술연구원 금속산화물 초극세 섬유-기반 내열성 복합 분리막 및 이를 이용한 이차전지
CN103155218B (zh) * 2011-04-08 2016-01-20 帝人株式会社 非水系二次电池用隔膜及非水系二次电池
EP2696391B1 (en) * 2011-04-08 2016-03-30 Teijin Limited Nonaqueous secondary battery separator and nonaqueous secondary battery
JP5837437B2 (ja) 2012-02-07 2015-12-24 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
US10153473B2 (en) * 2012-07-26 2018-12-11 Asahi Kasei E-Materials Corporation Separator for electricity storage device, laminate and porous film
JP6265759B2 (ja) 2013-02-01 2018-01-24 日本バイリーン株式会社 電気化学素子用セパレータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302115A (ja) * 1996-05-14 1997-11-25 Sumitomo Chem Co Ltd 高分子電解質複合膜及びその製造方法
JPH11250890A (ja) * 1998-02-27 1999-09-17 Toray Ind Inc 電池セパレータ用多孔性高分子フィルム
JP2005302341A (ja) * 2004-04-07 2005-10-27 Tomoegawa Paper Co Ltd 電子部品用セパレータ及びその製造方法
JP2013211155A (ja) * 2012-03-30 2013-10-10 Tdk Corp リチウムイオン二次電池用セパレータ及び、それを用いたリチウムイオン二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007790A1 (ja) * 2021-07-30 2023-02-02 イビデン株式会社 断熱シート、断熱シートの製造方法及び組電池

Also Published As

Publication number Publication date
JP7148198B2 (ja) 2022-10-05
JPWO2016140346A1 (ja) 2017-12-14
US10777795B2 (en) 2020-09-15
US20180040867A1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
US10361432B2 (en) Non-aqueous secondary battery
US8920960B2 (en) Porous film for separator, battery separator, battery electrode, and manufacturing methods therefor, and lithium secondary battery
US8486566B2 (en) Positive electrode for lithium-ion secondary battery, manufacturing method thereof, and lithium-ion secondary battery
WO2010090029A1 (ja) リチウムイオン二次電池およびリチウムイオン二次電池の製造方法
WO2010090028A1 (ja) リチウムイオン二次電池およびリチウムイオン二次電池の製造方法
WO2012014998A1 (ja) リチウム二次電池
KR20120129926A (ko) 정극 재료, 그 제조 방법, 비수 이차 전지용 정극 및 비수 이차 전지
US20180287146A1 (en) Lithium powder, lithium ion secondary battery negative electrode using the same, and lithium ion secondary battery using the lithium ion secondary battery negative electrode
JP6601065B2 (ja) 二次電池
KR20190039425A (ko) 리튬 이온 이차 전지 및 그 제조 방법
JPWO2017217407A1 (ja) リチウムイオン二次電池
JP7321932B2 (ja) 電力機器を始動するためのバッテリーモジュール
EP2333881B1 (en) Positive electrode active material for lithium battery and lithium battery using the same
JP7148198B2 (ja) 二次電池用セパレータおよびそれを備えた二次電池
CN113491032B (zh) 非水电解质二次电池
US20220223840A1 (en) Lithium secondary battery
JP6973621B2 (ja) リチウムイオン二次電池
CN111033820B (zh) 非水电解质二次电池用正极及非水电解质二次电池
JP6819571B2 (ja) セパレータ、その製造方法、およびそれを用いたリチウムイオン二次電池
JP2019160613A (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
US20220209218A1 (en) Negative electrode and lithium ion battery employing the same
JP2017139086A (ja) 電池用セパレータ、その製造方法及び二次電池
JP2024071816A (ja) リチウムイオン二次電池の製造方法及びリチウムイオン二次電池
KR20240086585A (ko) 음극 집전체 및 그 제조 방법
CN116724435A (zh) 电化学装置及包含该电化学装置的电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16759038

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503730

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15555454

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16759038

Country of ref document: EP

Kind code of ref document: A1