WO2016140201A1 - Method for manufacturing substrate into which organic group including fluorine atom and carbon-carbon double bond is introduced - Google Patents

Method for manufacturing substrate into which organic group including fluorine atom and carbon-carbon double bond is introduced Download PDF

Info

Publication number
WO2016140201A1
WO2016140201A1 PCT/JP2016/056122 JP2016056122W WO2016140201A1 WO 2016140201 A1 WO2016140201 A1 WO 2016140201A1 JP 2016056122 W JP2016056122 W JP 2016056122W WO 2016140201 A1 WO2016140201 A1 WO 2016140201A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon
carbon atoms
double bond
atom
Prior art date
Application number
PCT/JP2016/056122
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 ▲高▼平
大輔 上牟田
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2017503651A priority Critical patent/JP6593433B2/en
Publication of WO2016140201A1 publication Critical patent/WO2016140201A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a novel method for producing a base material into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced by a metathesis reaction.
  • a base material having an organic group containing a fluorine atom in its surface layer is industrially useful in applications where water repellency, oil repellency and antifouling properties are required, such as displays, glasses and touch panels.
  • the organic group containing a fluorine atom exhibits high lubricity, water / oil repellency, and the like, and thus is suitably used as a surface treatment agent for a substrate.
  • the surface treatment agent imparts water and oil repellency to the surface of the base material, it becomes easy to wipe off the dirt on the surface of the base material, and the dirt removability is improved.
  • Patent Document 1 discloses a surface treating agent that uses a compound having two or more silicon atoms in the molecule as the fluorine-containing silane compound.
  • olefin metathesis reaction which is a double bond recombination reaction using a metal catalyst
  • metal catalyst a metal catalyst
  • olefin metathesis reaction which is a double bond recombination reaction using a metal catalyst
  • olefin metathesis is widely used as a method for producing olefins having various substituents.
  • an electron-deficient olefin having an electron-withdrawing substituent has low reactivity, it is not easy to use it for olefin metathesis.
  • Non-Patent Document 1 examines the reactivity of olefins having various substituents, and describes that the reactivity of electron-deficient olefins is low.
  • the conventional surface treatment agent containing a fluorine-containing silane compound has a possibility of deterioration in performance due to long-term use, and there is room for improvement such as insufficient friction durability. Therefore, if a substrate having an organic group containing a fluorine atom on the surface layer using another fluorine-containing compound that is not a fluorine-containing silane compound and is easily available industrially can be easily and efficiently produced under mild conditions. It can be a highly durable base material compared to existing methods. On the other hand, it is not practical to use an olefin having a halogen atom for olefin metathesis.
  • tetrafluoroethylene and hexafluoropropylene are industrially easily available and useful compounds from the viewpoint of commercialization, but they are not only olefins that are extremely deficient in electrons, but are also olefins because of their difficulty in handling. No reports have been used for metathesis.
  • an organic group containing a fluorine atom and a carbon-carbon double bond is introduced by performing a metathesis reaction using another fluorine-containing compound that is industrially easily available as a raw material. It is an object of the present invention to easily and efficiently produce a base material under mild conditions.
  • the inventors of the present invention have developed a olefin containing a fluorine atom (fluorine-containing olefin) in the presence of a metal-carbene complex compound on the surface of a base material into which an organic group containing a carbon-carbon double bond has been introduced. And a metathesis reaction under mild conditions, it was found that a substrate into which an organic group containing a fluorine atom and a carbon-carbon double bond was introduced could be produced, and the present invention was completed.
  • the present invention relates to the following ⁇ 1> to ⁇ 11>.
  • ⁇ 1> In the presence of a metal-carbene complex compound (10) having an olefin metathesis reaction activity on the surface of a base material into which an organic group containing a carbon-carbon double bond has been introduced, the carbon-carbon double bond is represented by the following formula: A method for producing a base material into which an organic group containing a fluorine atom and a carbon-carbon double bond has been introduced by subjecting the olefin compound represented by (21) to a metathesis reaction.
  • R F is a fluorine atom, a (per) fluoroalkyl group having 1 to 12 carbon atoms, a (per) fluoroalkoxy group having 1 to 12 carbon atoms, or a (per) fluoroalkyl group having 1 to 200 carbon atoms containing an etheric oxygen atom. And a group selected from the group consisting of (per) fluoroalkoxy groups having 2 to 200 carbon atoms and containing an etheric oxygen atom.
  • X 11 to X 13 are each independently a group selected from the group consisting of the following group (i), group (ii), group (v) and group (vi).
  • ⁇ 2> The production method according to ⁇ 1>, wherein the substrate is glass or resin.
  • ⁇ 3> The production method according to ⁇ 1> or ⁇ 2>, wherein a carbon-carbon double bond introducing agent is reacted with the surface of the base material to introduce a carbon-carbon double bond onto the surface of the base material.
  • ⁇ 4> The production method according to ⁇ 3>, wherein the carbon-carbon double bond introducing agent is a silane coupling agent having a carbon-carbon double bond in the molecule.
  • ⁇ 5> The production method according to ⁇ 3> or ⁇ 4>, wherein the base material is a resin film, and the carbon-carbon double bond introducer is a polyfunctional (meth) acrylate.
  • ⁇ 6> The production method according to any one of ⁇ 1> to ⁇ 5>, wherein the metal of the metal-carbene complex compound (10) is ruthenium.
  • the metal of the metal-carbene complex compound (10) is molybdenum or tungsten, and the metal-carbene complex compound (10) is used as a ligand [L] as an imide ligand and an oxygen atom.
  • ⁇ 8> The production method according to any one of ⁇ 1> to ⁇ 7>, wherein the olefin compound represented by the formula (21) is a 1,1-difluoroolefin.
  • R F of the olefin compound represented by the formula (21) is a (per) fluoroalkyl group having 1 to 200 carbon atoms containing an etheric oxygen atom, and 2 to 200 carbon atoms having an etheric oxygen atom (
  • ⁇ 10> The production method according to any one of ⁇ 1> to ⁇ 9>, wherein the temperature of the metathesis reaction is 0 to 150 ° C.
  • ⁇ 11> The production method according to any one of ⁇ 1> to ⁇ 10>, wherein no solvent is used in the metathesis reaction.
  • a substrate into which an organic group containing a fluorine atom and a carbon-carbon double bond has been introduced is produced simply and efficiently by a metathesis reaction using a fluorine-containing olefin.
  • the base material can be a highly durable base material compared to a conventional base material.
  • the present invention relates to a metathesis by a metal catalyst, and description of general features common to the prior art may be omitted.
  • the “compound represented by the formula (X)” may be simply referred to as “compound (X)”.
  • the perhalogenated alkyl group means a group in which all hydrogen atoms of the alkyl group are substituted with halogen atoms. The same applies to perhalogenated alkoxy groups, perhalogenated aryl groups, and perhalogenated aryloxy groups.
  • (per) halogenated alkyl group is used as a general term that combines a halogenated alkyl group and a perhalogenated alkyl group. That is, the group is an alkyl group having one or more halogen atoms.
  • the term “(per) fluoroalkyl group” is used as a general term that combines a fluoroalkyl group and a perfluoroalkyl group. That is, the group is an alkyl group having one or more fluorine atoms.
  • An aryl group means a monovalent group corresponding to a residue obtained by removing one hydrogen atom bonded to any one of carbon atoms forming an aromatic ring in an aromatic compound, and a carbocyclic compound
  • the aryl group derived from is combined with the heteroaryl group derived from a heterocyclic compound.
  • the number of carbon atoms of the hydrocarbon group means the total number of carbon atoms contained in the whole hydrocarbon group, and when the group has no substituent, the number of carbon atoms forming the hydrocarbon group skeleton is When the group has a substituent, the total number is obtained by adding the number of carbon atoms in the substituent to the number of carbon atoms forming the hydrocarbon group skeleton.
  • bonding in a chemical formula means that it is any one or a mixture of both among the isomers of E / Z.
  • the wavy line crossing the bond connecting the substrate and the atom means that the detailed bond from the substrate surface to the atom is omitted.
  • the heteroatom means an atom other than a carbon atom and a hydrogen atom, preferably one or more atoms selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, and a halogen atom. More preferably an oxygen atom or a nitrogen atom.
  • the present invention relates to a method for producing a base material into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced by a metathesis reaction.
  • the following schemes (a) to (d) show the procedures for producing a substrate into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced when the substrate is glass.
  • each X is independently a group selected from the group consisting of a halogen atom, an alkoxy group having 1 to 12 carbon atoms, and an aryl group having 5 to 20 carbon atoms
  • R F is a fluorine atom, 12 (per) fluoroalkyl groups, (per) fluoroalkoxy groups having 1 to 12 carbon atoms, (per) fluoroalkyl groups having 1 to 200 carbon atoms containing an etheric oxygen atom, and carbon atoms containing an etheric oxygen atom
  • a carbon-carbon double bond is introduced by reacting a silane coupling agent or the like there.
  • a base material into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced by subjecting the introduced carbon-carbon double bond portion to a metathesis reaction with a fluorine-containing olefin compound in the presence of a specific metal catalyst. Can be obtained.
  • the substrate in the present invention is not particularly limited. Specifically, glass, resin (natural or synthetic), metal, ceramic, semiconductor (silicon, germanium, etc.), fiber (woven fabric, non-woven fabric, etc.), fur, leather, wood, ceramics, stone, building material, or a composite thereof A base material etc. are mentioned and it is comprised with arbitrary appropriate materials.
  • a glass substrate or a resin substrate is preferable.
  • soda lime glass, alkali aluminosilicate glass, borosilicate glass, alkali-free glass, crystal glass, quartz glass, or chemically strengthened glass thereof is preferable, chemically strengthened soda lime glass, chemically strengthened Alkali aluminosilicate glass or chemically strengthened borosilicate glass is particularly preferred.
  • the material of the resin base material an acrylic resin or a polycarbonate resin is preferable. Among them, those having a hydroxyl group on the surface are preferable because they can easily introduce a carbon-carbon double bond.
  • the shape of the substrate is not particularly limited.
  • the surface region of the base material on which the surface treatment layer is to be formed may be at least part of the surface of the base material, and can be appropriately determined according to the use and specific specifications of the article to be manufactured.
  • the base material is an insulating layer, an adhesive layer, a protective layer, a decorative frame layer (I-CON), an atomized film layer, a hard coating film layer, a polarizing film, a retardation film, or the like, depending on the specific specifications thereof. You may have a liquid crystal display module.
  • Carbon-carbon double bond introducing agent In order to introduce a carbon-carbon double bond to the substrate surface in the present invention, a known method can be used. Specifically, a method of introducing a carbon-carbon double bond to the substrate surface by reacting a carbon-carbon double bond introducing agent on the substrate surface is preferable.
  • the carbon-carbon double bond introducing agent is a functional group (having a carbon-carbon double bond) that has one or more carbon-carbon double bonds in the molecule and can react with a specific reaction site on the substrate surface. It may be a functional group).
  • a silane coupling agent having a carbon-carbon double bond in the molecule is preferably used as the carbon-carbon double bond introducing agent.
  • the silane coupling agent include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrichlorosilane, and allyltrimethoxysilane.
  • a polyfunctional acrylate or polyfunctional methacrylate (hereinafter, the acrylate and methacrylate are also collectively referred to as “(meth) acrylate”) or the like as a carbon-carbon double bond introducing agent.
  • (meth) acrylate a polyfunctional acrylate or polyfunctional methacrylate
  • Polyfunctional (meth) acrylates include polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, and ethoxylated glycerin.
  • Examples include tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, and trimethylolpropane tri (meth) acrylate.
  • a thiol compound having a carbon-carbon double bond is preferably used as the carbon-carbon double bond introducing agent.
  • the reaction conditions for introducing the carbon-carbon double bond on the surface of the substrate may be any known conditions, and are not particularly limited.
  • a 11 to A 13 in the formula are each independently a group selected from the group consisting of the following group (i), group (ii), group (iii), and group (iv).
  • group (i) a hydrogen atom
  • group (ii) a halogen atom
  • Group (iii) a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • [L] is a ligand
  • M is ruthenium, molybdenum or tungsten.
  • R F is a fluorine atom, a (per) fluoroalkyl group having 1 to 12 carbon atoms, a (per) fluoroalkoxy group having 1 to 12 carbon atoms, or a (per) fluoroalkyl group having 1 to 200 carbon atoms containing an etheric oxygen atom.
  • X 11 to X 13 are each independently a group selected from the group consisting of the following group (i), group (ii), group (v) and group (vi). X 12 and X 13 may combine with each other to form a ring.
  • the compound (11) is described as a representative example of the metal-carbene complex compound (10).
  • the specific metal-carbene complex compound (10) include a ruthenium-carbene complex, a molybdenum-carbene complex, or a tungsten-carbene complex (hereinafter also collectively referred to as “metal-carbene complex”).
  • Metal-carbene complex compound (10) As the metal-carbene complex compound (10), the compound (11) is shown as an example in the above scheme (f), but the two groups bonded to the carbon atom forming a double bond with the metal are independent of each other. And a carbon number containing at least one atom selected from the group consisting of a hydrogen atom, a halogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms, or an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom. Any monovalent hydrocarbon group of 1 to 20 may be used.
  • the compound (10) plays a role as a catalyst in the production method according to the present invention, it means both a substance to be charged as a reagent and a substance generated during the reaction (catalytically active species).
  • the compound (10) is known to show catalytic activity when some of the ligands dissociate under the reaction conditions, and to show catalytic activity without dissociation of the ligands.
  • any of them is not limited in the present invention.
  • the compound whose metal is ruthenium is generally referred to as “ruthenium-carbene complex”, for example, Vougioukalakis, G., et al. C. et al. Chem. Rev. , 2010, 110, 1746-1787.
  • the ruthenium-carbene complex described in 1) can be used.
  • a ruthenium-carbene complex commercially available from Aldrich or Umicore can be used.
  • the metal of the metal carbene complex compound is preferably ruthenium.
  • ruthenium-carbene complex examples include bis (triphenylphosphine) benzylidene ruthenium dichloride, bis (tricyclohexylphosphine) benzylidene ruthenium dichloride, bis (tricyclohexylphosphine) -3-methyl-2-butenylidene ruthenium dichloride, ( 1,3-diisopropylimidazol-2-ylidene) (tricyclohexylphosphine) benzylideneruthenium dichloride, (1,3-dicyclohexylimidazole-2-ylidene) (tricyclohexylphosphine) benzylideneruthenium dichloride, (1,3-dimesitylimidazole) -2-ylidene) (tricyclohexylphosphine) benzylideneruthenium dichloride, (1,3-dimesitylimidazole
  • the ruthenium-carbene complex may be used alone or in combination of two or more. Further, if necessary, it may be supported on a carrier such as silica gel, alumina or polymer.
  • molybdenum-carbene complex compounds in which the metal is molybdenum or tungsten are generally referred to as “molybdenum-carbene complex” or “tungsten-carbene complex”.
  • the molybdenum-carbene complex or tungsten-carbene complex described in 1) can be used.
  • a molybdenum-carbene complex or a tungsten-carbene complex commercially available from Aldrich, Strem, and Ximo can be used.
  • the metal of the metal carbene complex compound is preferably molybdenum or tungsten from the viewpoint of availability of the catalyst.
  • the molybdenum-carbene complex or the tungsten-carbene complex may be used alone or in combination of two or more. Further, if necessary, it may be supported on a carrier such as silica gel, alumina or polymer.
  • R 1 include an alkyl group and an aryl group.
  • the ligand [L] of the metal catalyst preferably has a ligand in which an oxygen atom is bidentately coordinated.
  • the ligand in which the oxygen atom is bidentate is a ligand having two or more oxygen atoms in a ligand having two or more oxygen atoms, and oxygen This includes both cases where two monodentate ligands having atoms are coordinated (in this case, the monodentate ligands may be the same or different).
  • Me represents a methyl group
  • i-Pr represents an isopropyl group
  • t-Bu represents a tertiary butyl group
  • Ph represents a phenyl group.
  • tungsten-carbene complex examples include the following compounds.
  • ⁇ Olefin compound (21)> In the presence of the metal-carbene complex compound (10) having an olefin metathesis reaction activity on the surface of the base material into which an organic group containing a carbon-carbon double bond is introduced, the carbon-carbon double bond is converted into the olefin compound (21). And a metathesis reaction can produce a base material into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced.
  • X 11 to X 13 and R F in the compound (21) are as defined above. That is, X 11 to X 13 in the compound (21) are each independently a hydrogen atom; a halogen atom; an alkyl group having 1 to 12 carbon atoms; an alkoxy group having 1 to 12 carbon atoms; an aryl group having 5 to 20 carbon atoms; An aryloxy group having 5 to 20 carbon atoms; a (per) halogenated alkyl group having 1 to 12 carbon atoms; a (per) halogenated alkoxy group having 1 to 12 carbon atoms; a (per) halogenated aryl group having 5 to 20 carbon atoms And a (per) halogenated aryloxy group having 5 to 20 carbon atoms; a group selected from the group consisting of the alkyl group, alkoxy group, aryl group, aryloxy group, and (per) halogenated alkyl group.
  • a (per) halogenated alkoxy group, a (per) halogenated aryl group, and a (per) halogenated aryloxy group are oxygen atoms
  • Nitrogen atom, sulfur atom, phosphorus atom, and the atom selected from the group consisting of silicon atoms may have 1 or more containing substituent.
  • X 12 and X 13 may be bonded to each other as a divalent group in which one hydrogen atom or halogen atom is removed to form a ring.
  • a ring consisting of only a carbon atom or a ring consisting of a carbon atom and a hetero atom is preferable.
  • Examples of the ring size include a 3-membered ring to a 10-membered ring.
  • Examples of the ring partial structure include the following structures.
  • the group having a carbon atom may have an etheric oxygen atom between the carbon atoms as described later.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom or a chlorine atom is preferable from the viewpoint of availability.
  • the alkyl group having 1 to 12 carbon atoms the group having 1 to 8 carbon atoms is preferable, and specifically, a methyl group, an ethyl group, or a propyl group is preferable from the viewpoint of easy availability.
  • the alkyl group chain may be linear, branched or cyclic.
  • the alkoxy group having 1 to 12 carbon atoms the group having 1 to 8 carbon atoms is preferable, and specifically, a methoxy group, an ethoxy group, or a propoxy group is preferable from the viewpoint of availability.
  • the alkoxy group chain may be linear, branched or cyclic.
  • the aryl group having 5 to 20 carbon atoms the group having 5 to 12 carbon atoms is preferable, and specifically, a phenyl group is preferable from the viewpoint of availability.
  • the aryloxy group having 5 to 20 carbon atoms the group having 5 to 12 carbon atoms is preferable. Specifically, a phenyloxy group is preferable from the viewpoint of availability.
  • the (per) halogenated alkyl group having 1 to 12 carbon atoms is preferably the group having 1 to 8 carbon atoms, particularly preferably a (per) fluoroalkyl group having 1 to 8 carbon atoms.
  • a trifluoromethyl group, a pentafluoroethyl group, or a heptafluoropropyl group is preferable from the viewpoint of availability.
  • the alkyl group chain may be linear, branched or cyclic.
  • the (per) halogenated alkoxy group having 1 to 12 carbon atoms is preferably the group having 1 to 8 carbon atoms, particularly preferably a (per) fluoroalkoxy group having 1 to 8 carbon atoms.
  • a trifluoromethoxy group, a pentafluoroethoxy group, a heptafluoropropoxy group, a perfluoro (methoxymethoxy) group, or a perfluoro (propoxypropoxy) group is preferable, and in particular, a trifluoromethoxy group or a perfluoro (propoxypropoxy) group is available. It is preferable from the viewpoint of ease.
  • the alkoxy group chain may be linear, branched or cyclic.
  • the (per) halogenated aryl group having 5 to 20 carbon atoms is preferably the group having 5 to 12 carbon atoms, and particularly preferably a (per) fluoroaryl group having 5 to 12 carbon atoms.
  • a monofluorophenyl group or a pentafluorophenyl group is preferable, and a pentafluorophenyl group is particularly preferable from the viewpoint of availability.
  • the (per) halogenated aryloxy group having 5 to 20 carbon atoms is preferably the group having 5 to 12 carbon atoms, particularly preferably the (per) fluoroaryloxy group having 5 to 12 carbon atoms.
  • a monofluorophenyloxy group or a pentafluorophenyloxy group is preferable, and a pentafluorophenyloxy group is particularly preferable from the viewpoint of availability.
  • Examples of the substituent containing at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom include a nitrile group, a carboxyl group, and an ester group (acyloxy group or alkoxycarbonyl group). .
  • the total number of carbon atoms of the alkyl group, alkoxy group, (per) halogenated alkyl group, and (per) halogenated alkoxy group is 1 to 12
  • the aryl group, aryloxy group The total number of carbon atoms in the (per) halogenated aryl group and (per) halogenated aryloxy group is 5 to 20.
  • the alkyl group, alkoxy group, aryl group, aryloxy group, (per) halogenated alkyl group, (per) halogenated alkoxy group, (per) halogenated aryl group, or (per) halogenated aryloxy group are:
  • An etheric oxygen atom may be present between the carbon atoms. That is, the group (vi) is preferably a group (v) further containing one or more oxygen atoms, and the oxygen atom is more preferably an etheric oxygen atom. That is, the group (vi) is preferably the following group (vii).
  • Group (vii) Group (v) having an etheric oxygen atom between carbon atoms.
  • X 12 is preferably group (i), group (ii), group (v), or group (vii), and X 13 is group (ii) or group (v). Or a combination that is a group (vii). More preferably, X 12 is a hydrogen atom, a halogen atom, a (per) halogenated alkyl group having 1 to 12 carbon atoms, or a (per) halogen having 1 to 12 carbon atoms having an etheric oxygen atom between the carbon atoms.
  • Alkyl group (per) halogenated alkoxy group having 1 to 12 carbon atoms, (per) halogenated alkoxy group having 2 to 12 carbon atoms having an etheric oxygen atom between carbon atoms, carbon number 5 to 20 (per) halogenated aryl groups, 5 to 20 (per) halogenated aryl groups having an etheric oxygen atom between carbon atoms, (per) halogenated aryl having 5 to 20 carbon atoms oxy group, or a 5 to 20 carbon atoms having a carbon atom and an ether oxygen atom between carbon atoms (per) halogenated aryloxy group;
  • X 13 is a halogen atom, a carbon number 1 12 alkyl groups, an alkyl group having 2 to 12 carbon atoms having an etheric oxygen atom between carbon atoms, an alkoxy group having 1 to 12 carbon atoms, and an etheric oxygen atom between carbon atoms.
  • alkoxy group having 2 to 12 carbon atoms an aryl group having 5 to 20 carbon atoms, an aryl group having 5 to 20 carbon atoms having an etheric oxygen atom between the carbon atoms, ) Halogenated alkyl group, (per) halogenated alkyl group having 2 to 12 carbon atoms having an etheric oxygen atom between carbon atoms, (per) halogenated alkoxy group having 1 to 12 carbon atoms, carbon atom (Per) halogenated alkoxy group having 1 to 12 carbon atoms having an etheric oxygen atom between carbon atom and carbon atom, (per) halogenated aryl group having 5 to 20 carbon atoms, carbon atom and carbon atom A (per) halogenated aryl group having 5 to 20 carbon atoms having an etheric oxygen atom in between, a (per) halogenated aryloxy group having 5 to 20 carbon atoms, or an etheric oxygen atom between carbon atoms A
  • R F in the compound (21) is a fluorine atom, a (per) fluoroalkyl group having 1 to 12 carbon atoms, a (per) fluoroalkoxy group having 1 to 12 carbon atoms, or 1 to 200 carbon atoms containing an etheric oxygen atom ( It is a group selected from the group consisting of a per) fluoroalkyl group and a (per) fluoroalkoxy group having 2 to 200 carbon atoms containing an etheric oxygen atom.
  • the compound (21) is preferably 1,1-difluoroolefin or 1,2-difluoroolefin, more preferably 1,1-difluoroolefin or 1,2-difluoroolefin having 3 or more carbon atoms, particularly 1,1-difluoroolefin. Difluoroolefin is preferred.
  • R 2 F is derived from a (per) fluoroalkyl group having 1 to 200 carbon atoms containing an etheric oxygen atom, and a (per) fluoroalkoxy group having 2 to 200 carbon atoms containing an etheric oxygen atom.
  • Olefin which is a group selected from the group consisting of
  • an organic group containing a carbon-carbon double bond is introduced into the surface of the substrate, and the organic group containing a fluorine atom and a carbon-carbon double bond is further obtained by subjecting the carbon-carbon double bond to a metathesis reaction.
  • the present invention relates to a method for producing an introduced substrate.
  • a carbon-carbon double bond is introduced into the surface of the substrate by a known method.
  • a carbon-carbon double bond can be introduced by applying a silane coupling agent having an organic group containing a carbon-carbon double bond.
  • a coating method a known method can be appropriately used. Examples of the coating method include spin coating method, wipe coating method, spray coating method, squeegee coating method, dip coating method, die coating method, ink jet method, flow coating method, roll coating method, casting method, Langmuir-Blodgett method, gravure Examples thereof include a coating method.
  • a carbon-carbon double bond can be introduced under the conditions of heat curing or photocuring using polyfunctional (meth) acrylate or the like.
  • Photocuring is performed by irradiating active energy rays.
  • active energy rays include ultraviolet rays, electron beams, X-rays, radiation, high-frequency rays, etc., and ultraviolet rays having a wavelength of 180 to 500 nm are economically preferable.
  • Active energy ray sources include ultraviolet irradiation devices (xenon lamps, low-pressure mercury lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, carbon arc lamps, tungsten lamps, ultraviolet LEDs, etc.), electron beam irradiation devices, X-ray irradiation devices, and high frequencies.
  • a generator or the like can be used.
  • heating may be performed after irradiation with active energy rays.
  • the heating temperature is preferably 50 to 120 ° C.
  • an appropriate pretreatment may be applied to the surface of the substrate.
  • Specific examples include a method of pouring a solvent over the surface of the substrate, a method of wiping with a cloth soaked with a solvent, a corona treatment, a UV-ozone treatment, and the like.
  • compounds in the surface layer that are not chemically bonded to other compounds or the substrate may be removed as necessary.
  • Specific methods include, for example, a method of pouring a solvent over the surface layer and a method of wiping with a cloth soaked with a solvent.
  • An olefin containing a fluorine atom is used as the compound (21) for causing a metathesis reaction to a substrate having a carbon-carbon double bond introduced on the surface, and the compound can utilize both an internal olefin and a terminal olefin. it can.
  • a degassed and dehydrated compound (21) is used as a raw material.
  • the deaeration operation There is no particular limitation on the deaeration operation, but freeze deaeration and the like may be performed. Although there is no restriction
  • the degassing and dehydration operations are usually performed before contacting with the metal-carbene complex compound.
  • the compound (21) used as a raw material may contain a trace amount impurity (for example, hydrogen fluoride etc.), you may refine
  • the purification method There is no particular limitation on the purification method. For example, it can be carried out according to the method described in the literature (Armarego, WLF et al., Purification of Laboratory Chemicals (Sixth Edition), 2009, Elsevier).
  • C ⁇ C base material the base material into which the carbon-carbon double bond as a raw material is introduced
  • the other compound (21) or the C ⁇ C substrate may be contacted.
  • the compound (21) is used in an amount of about 0.01 to 100 mol, preferably about 0.1 to 10 mol, per 1 mol of the olefin moiety on the surface of the C ⁇ C substrate.
  • the metal-carbene complex compound may be added as a reagent or generated in the system.
  • a commercially available metal-carbene complex compound may be used as it is, or a commercially available metal-carbene complex compound synthesized by a known method from a commercially available reagent may be used.
  • a metal-carbene complex compound prepared from a metal complex as a precursor by a known method can be used in the present invention.
  • the metal-carbene complex compound to be used is usually charged into the reaction vessel as a solid, but may be charged after dissolving or suspending in a solvent.
  • the solvent used at this time is not particularly limited as long as it does not adversely affect the reaction, and an organic solvent, a fluorine-containing organic solvent, an ionic liquid, water and the like can be used alone or in combination. In these solvent molecules, some or all of the hydrogen atoms may be substituted with deuterium atoms.
  • the compound (21) is liquid (including the case where it is liquefied by heating), it is preferable not to use a solvent for the metathesis reaction. In this case, the metal-carbene complex compound is preferably dissolved in the compound (21).
  • organic solvent examples include aromatic hydrocarbon solvents such as benzene, toluene, o-, m-, p-xylene and mesitylene; aliphatic hydrocarbon solvents such as hexane and cyclohexane; dichloromethane, chloroform, 1, 2 -Halogen solvents such as dichloroethane, chlorobenzene and o-dichlorobenzene; ether solvents such as tetrahydrofuran, dioxane, diethyl ether, glyme and diglyme can be used.
  • aromatic hydrocarbon solvents such as benzene, toluene, o-, m-, p-xylene and mesitylene
  • aliphatic hydrocarbon solvents such as hexane and cyclohexane
  • dichloromethane, chloroform, 1, 2 -Halogen solvents such as dichloroethane, chlorobenzene and o-
  • fluorine-containing organic solvent examples include hexafluorobenzene, m-bis (trifluoromethyl) benzene, p-bis (trifluoromethyl) benzene, ⁇ , ⁇ , ⁇ -trifluoromethylbenzene, dichloropentafluoropropane, and the like.
  • hexafluorobenzene examples include hexafluorobenzene, m-bis (trifluoromethyl) benzene, p-bis (trifluoromethyl) benzene, ⁇ , ⁇ , ⁇ -trifluoromethylbenzene, dichloropentafluoropropane, and the like.
  • ionic liquid for example, various pyridinium salts, various imidazolium salts and the like can be used.
  • benzene, toluene, o-, m-, p-xylene, mesitylene, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, diethyl ether, dioxane, THF in terms of solubility of the metal-carbene complex, etc. Tetrahydrofuran
  • hexafluorobenzene, m-bis (trifluoromethyl) benzene, p-bis (trifluoromethyl) benzene, ⁇ , ⁇ , ⁇ -trifluoromethylbenzene, and mixtures thereof are preferred.
  • a degassed and dehydrated solvent for improving the yield of the target product.
  • the deaeration operation freeze deaeration and the like may be performed.
  • dehydration operation Usually, it is made to contact with a molecular sieve etc.
  • the degassing and dehydration operations are usually performed before contacting with the metal-carbene complex compound.
  • the same solvents as those used for dissolving or suspending the metal-carbene complex compound can be used.
  • the same solvents as those used for dissolving or suspending the metal-carbene complex compound can be used.
  • the same solvents as those used for dissolving or suspending the metal-carbene complex compound can be used.
  • two or more compounds (21) as a raw material and at least one of these compounds is liquid under the reaction conditions, it may be carried out without a solvent.
  • a metal container or a glass container can be used.
  • the cross metathesis concerning this invention may handle the olefin in a gaseous state on reaction conditions, the pressure-resistant container in which high airtightness is possible is preferable.
  • the target olefin portion on the substrate surface is usually obtained as a mixture of a plurality of olefins.
  • compounds in the surface layer that are not chemically bonded to other compounds or the substrate may be removed as necessary. Specific methods include, for example, a method of pouring a solvent over the surface layer and a method of wiping with a cloth soaked with a solvent.
  • the surface of the substrate obtained by this reaction can be identified by a known method similar to a normal organic compound. For example, 1 H-, 19 F-, 13 C-NMR, GC-MS and the like can be mentioned, and these can be used alone or in combination.
  • Example 1 Manufacture of a glass substrate into which an organic group containing fluorine atoms and carbon-carbon double bonds has been introduced by cross-metathesis. A clean glass substrate is obtained by washing a 60 ⁇ 60 mm glass substrate in the order of dilute hydrochloric acid and ion-exchanged water. Obtained (base material A1). Next, a dimethylacetamide solution of allyltrichlorosilane was applied to the substrate A1 by spin coating.
  • Example 2 Manufacture of glass substrate introduced with organic group containing fluorine atom and carbon-carbon double bond by ring-opening cross metathesis Clean glass substrate by washing 60 ⁇ 60mm glass substrate in order of dilute hydrochloric acid and ion-exchanged water A material is obtained (base material A2). Next, a dimethylacetamide solution of 5-[(2-trimethoxysilyl) ethyl] bicyclo [2.2.1] -2-heptene is applied to the substrate A2 by spin coating. This is dried in a desiccator and the surface is washed with methanol to obtain a glass substrate (substrate B2) having a carbon-carbon double bond introduced on the surface.
  • Example 3 Production of glass substrate into which organic group containing fluorine atom and carbon-carbon double bond is introduced by ring-opening metathesis polymerization. Clean glass substrate by washing 60 ⁇ 60mm glass substrate in order of dilute hydrochloric acid and ion-exchanged water. A material is obtained (base material A3). Next, a dimethylacetamide solution of 5-[(2-trimethoxysilyl) ethyl] bicyclo [2.2.1] -2-heptene is applied to the substrate A3 by spin coating. This is dried in a desiccator and the surface is washed with methanol to obtain a glass substrate (substrate B3) having a carbon-carbon double bond introduced on the surface.
  • n is a positive integer representing a repeating unit.
  • Example 4 Manufacture of glass substrate into which organic group containing fluorine atom and carbon-carbon double bond is introduced by chain diene metathesis polymerization Clean glass by washing 60 ⁇ 60mm glass substrate in order of dilute hydrochloric acid and ion-exchanged water A base material is obtained (base material A4). Next, a dimethylacetamide solution of allyltrichlorosilane is applied to the substrate A4 by spin coating. This is dried in a desiccator, and the surface is washed with methanol to obtain a glass substrate (substrate B4) having a carbon-carbon double bond introduced on the surface.
  • Grubbs second generation catalyst (0.01 mmol) similar to Example 1 and 10 mL of methylene chloride are weighed into a pressure-tight airtight container, and the substrate B4 is submerged in the resulting solution, and the inside of the pressure-tight airtight container is replaced with hexafluorobutadiene. To do. After leaving at room temperature for 24 hours, the substrate is taken out and washed with methanol to obtain a glass substrate (substrate C4) into which an organic group containing fluorine atoms and carbon-carbon double bonds has been introduced. A series of reactions is shown below. In the formula, n is a positive integer representing a repeating unit.
  • Example 5 Production of Glass Substrates Introduced Organic Groups Containing Fluorine Atoms and Carbon-Carbon Double Bonds by Molybdenum Catalyst Cross-Metathesis
  • Examples of known molybdenum catalysts DG represented by the following formulas as Grubbs second generation catalyst of Example 1 The glass substrate (C1) in which an organic group containing the same fluorine atom and carbon-carbon double bond as in Example 1 was introduced was obtained by changing to
  • Example 9 Production of glass substrate into which organic group containing fluorine atom and carbon-carbon double bond is introduced by tungsten catalyst cross metathesis.
  • Grubbs second generation catalyst in Example 1 is changed to known tungsten catalyst H represented by the following formula Then, the same reaction is performed to obtain a glass substrate (C1) into which an organic group containing the same fluorine atom and carbon-carbon double bond as in Example 1 is introduced.
  • Example 10 Production of glass base material into which organic group containing fluorine atom and carbon-carbon double bond is introduced by cross-metathesis
  • Glass base material B1 obtained in the same manner as Example 1 in a pressure-resistant container, same as Example 1 Of Grubbs second generation catalyst (0.01 mmol) and 10 mL of methylene chloride. After replacing the inside of the pressure vessel with tetrafluoroethylene (1 mmol), after leaving it to stand at room temperature for 24 hours, the base material is taken out and washed with methanol to introduce organic groups containing fluorine atoms and carbon-carbon double bonds. A glass substrate (substrate C10) is obtained. A series of reactions are shown below.
  • Examples 11 to 14 Production of Glass Substrate Introduced Organic Group Containing Fluorine Atom and Carbon-Carbon Double Bond by Cross-Metathesis Reaction was carried out by changing the tetrafluoroethylene of Example 10 to the compound (21) shown in the following table. carry out. As a product, glass substrates (substrates C11 to C14) into which organic groups containing fluorine atoms and carbon-carbon double bonds shown in Table 4 are introduced are obtained.
  • Examples 15 to 18 Production of glass base material into which organic group containing fluorine atom and carbon-carbon double bond is introduced by molybdenum catalyst cross metathesis.
  • the Grubbs second generation catalyst of Example 10 was changed to molybdenum catalysts D to G, and similarly Reaction is performed to obtain glass substrates (C15 to C18) into which organic groups containing the same fluorine atom and carbon-carbon double bond as in Example 10 are introduced.
  • Example 19 Production of a glass substrate into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced by tungsten catalyst cross-metathesis.
  • the Grubbs second generation catalyst of Example 10 is changed to tungsten catalyst H, and the reaction is similarly performed.
  • the glass substrate (C19) having the same fluorine atom and carbon-carbon double bond as in Example 10 introduced therein is obtained.
  • Example 20 Production of glass substrate into which organic group containing fluorine atom and carbon-carbon double bond is introduced by ring-opening metathesis polymerization
  • Glass substrate B3 obtained by the same method as Example 3, Grubbs similar to Example 1
  • a second generation catalyst (0.01 mmol), perfluoro-2,2-dimethyl-1,3-dioxole (1 mmol), and 10 mL of methylene chloride are metered in to proceed with the desired ring-opening metathesis polymerization.
  • the substrate is taken out and washed with methanol to obtain a glass substrate (substrate C20) into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced.
  • a series of reactions are shown below.
  • n is a positive integer indicating a repeating unit.
  • Example 21 Production of gold base material into which organic groups including fluorine atoms and carbon-carbon double bonds are introduced by cross-metathesis
  • Gold base material is first deposited on a clean silicon wafer washed with ethanol and ion-exchanged water under reduced pressure. Next, by treatment with an ethanol solution of 4-mercapto-1-butanol, a gold substrate having a hydroxyl group terminal is obtained (A21).
  • a dimethylacetamide solution of allyltrichlorosilane is applied to the substrate A21 by spin coating. This is dried in a desiccator and the surface is washed with methanol to obtain a gold base material (base material B21) having a carbon-carbon double bond introduced on the surface.
  • a base material into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced can be easily and efficiently produced by a metathesis reaction using a fluorine-containing olefin.

Abstract

The present invention addresses the problem of easily and efficiently manufacturing, under mild conditions, a substrate into which an organic group including a fluorine atom and a carbon-carbon double bond is introduced using, as a feedstock, a fluorine-containing compound that is industrially readily available. The present invention relates to the method of manufacturing a substrate into which an organic group including a fluorine atom and a carbon-carbon double bond is introduced by metathesizing, on a surface of a substrate into which an organic group including a carbon-carbon double bond is introduced, the carbon-carbon double bond with an olefin compound represented by the formula (21) under the presence of a metal-carbene complex compound.

Description

フッ素原子と炭素-炭素二重結合とを含む有機基が導入された基材の製造方法Method for producing a base material into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced
 本発明は、メタセシス反応によりフッ素原子と炭素-炭素二重結合とを含む有機基が導入された基材を製造する新規な方法に関する。 The present invention relates to a novel method for producing a base material into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced by a metathesis reaction.
 フッ素原子を含む有機基を表面層に有する基材は、ディスプレイやメガネ、タッチパネルなど、撥水、撥油、防汚性が求められる用途において産業上有用である。ここでフッ素原子を含む有機基は、高い潤滑性、撥水撥油性等を示すため、基材の表面処理剤に好適に用いられる。該表面処理剤によって基材の表面に撥水撥油性を付与すると、基材の表面の汚れを拭き取りやすくなり、汚れの除去性が向上する。 A base material having an organic group containing a fluorine atom in its surface layer is industrially useful in applications where water repellency, oil repellency and antifouling properties are required, such as displays, glasses and touch panels. Here, the organic group containing a fluorine atom exhibits high lubricity, water / oil repellency, and the like, and thus is suitably used as a surface treatment agent for a substrate. When the surface treatment agent imparts water and oil repellency to the surface of the base material, it becomes easy to wipe off the dirt on the surface of the base material, and the dirt removability is improved.
 基材の表面に含フッ素化合物を導入する方法としては、含フッ素シラン化合物を含む表面処理剤を用いる方法などが知られている。特許文献1には含フッ素シラン化合物として、分子内に2つ以上のケイ素原子を有する化合物を用いる表面処理剤が開示されている。 As a method for introducing a fluorine-containing compound into the surface of a substrate, a method using a surface treatment agent containing a fluorine-containing silane compound is known. Patent Document 1 discloses a surface treating agent that uses a compound having two or more silicon atoms in the molecule as the fluorine-containing silane compound.
 一方、金属触媒による二重結合組み換え反応であるオレフィンメタセシス反応(以下、単に、「オレフィンメタセシス」又は「メタセシス」ということもある。)は多彩な置換基を有するオレフィンの製造方法として広く利用されている。しかし、電子求引性置換基を有する電子不足オレフィンは反応性が低いため、オレフィンメタセシスに利用することは容易ではない。例えば非特許文献1では、種々の置換基を有するオレフィンの反応性が調べられており、電子不足オレフィンの反応性が低いと記載されている。実際、フッ素原子や塩素原子等、ハロゲン原子を有するオレフィンも電子不足オレフィンであるため、オレフィンメタセシスに用いた報告はほとんどない。例えば、非特許文献2において、ルテニウム錯体とフッ化ビニリデン(すなわち、1,1-ジフルオロエチレン)のオレフィンメタセシスが検討されたが、期待した生成物すなわちエチレン及びテトラフルオロエチレンは全く得られなかったと述べられている。 On the other hand, the olefin metathesis reaction (hereinafter sometimes simply referred to as “olefin metathesis” or “metathesis”), which is a double bond recombination reaction using a metal catalyst, is widely used as a method for producing olefins having various substituents. Yes. However, since an electron-deficient olefin having an electron-withdrawing substituent has low reactivity, it is not easy to use it for olefin metathesis. For example, Non-Patent Document 1 examines the reactivity of olefins having various substituents, and describes that the reactivity of electron-deficient olefins is low. In fact, since olefins having halogen atoms such as fluorine atoms and chlorine atoms are also electron-deficient olefins, there are few reports used for olefin metathesis. For example, in Non-Patent Document 2, olefin metathesis of a ruthenium complex and vinylidene fluoride (ie, 1,1-difluoroethylene) was studied, but the expected products, ie, ethylene and tetrafluoroethylene, were not obtained at all. It has been.
国際公開第2014/069592号International Publication No. 2014/069592
 しかしながら、従来の含フッ素シラン化合物を含む表面処理剤は長期の使用による性能の低下が懸念され、例えば摩擦耐久性が充分でない等改善の余地があった。そのため、含フッ素シラン化合物ではない、工業的に入手容易な別の含フッ素化合物を用いてフッ素原子を含む有機基を表面層に有する基材を、温和な条件下で簡便かつ効率的に製造できれば、既存手法と比較して耐久性の高い基材となり得る。
 一方、ハロゲン原子を有するオレフィンをオレフィンメタセシスに利用することは実用的ではない。中でも、テトラフルオロエチレンやヘキサフルオロプロピレンは、工業的に入手容易で事業化の観点から有用な化合物であるが、極めて電子不足なオレフィンであるだけでなく、その取扱いの難しさ等のため、オレフィンメタセシスに利用した報告はこれまでなかった。
However, the conventional surface treatment agent containing a fluorine-containing silane compound has a possibility of deterioration in performance due to long-term use, and there is room for improvement such as insufficient friction durability. Therefore, if a substrate having an organic group containing a fluorine atom on the surface layer using another fluorine-containing compound that is not a fluorine-containing silane compound and is easily available industrially can be easily and efficiently produced under mild conditions. It can be a highly durable base material compared to existing methods.
On the other hand, it is not practical to use an olefin having a halogen atom for olefin metathesis. Among these, tetrafluoroethylene and hexafluoropropylene are industrially easily available and useful compounds from the viewpoint of commercialization, but they are not only olefins that are extremely deficient in electrons, but are also olefins because of their difficulty in handling. No reports have been used for metathesis.
 そこで本発明では、含フッ素シラン化合物に代えて、工業的に入手容易な別の含フッ素化合物を原料としてメタセシス反応させることにより、フッ素原子と炭素-炭素二重結合とを含む有機基が導入された基材を、温和な条件下で簡便かつ効率的に製造することを課題とする。 Therefore, in the present invention, instead of the fluorine-containing silane compound, an organic group containing a fluorine atom and a carbon-carbon double bond is introduced by performing a metathesis reaction using another fluorine-containing compound that is industrially easily available as a raw material. It is an object of the present invention to easily and efficiently produce a base material under mild conditions.
 本発明者らは、鋭意研鑽を積んだ結果、炭素-炭素二重結合を含む有機基が導入された基材表面において、金属-カルベン錯体化合物の存在下、フッ素原子を含むオレフィン(含フッ素オレフィン)と温和な条件下でメタセシス反応をさせることにより、フッ素原子と炭素-炭素二重結合とを含む有機基が導入された基材を製造できることを見出し、本発明を完成するに至った。 As a result of earnest study, the inventors of the present invention have developed a olefin containing a fluorine atom (fluorine-containing olefin) in the presence of a metal-carbene complex compound on the surface of a base material into which an organic group containing a carbon-carbon double bond has been introduced. And a metathesis reaction under mild conditions, it was found that a substrate into which an organic group containing a fluorine atom and a carbon-carbon double bond was introduced could be produced, and the present invention was completed.
 すなわち、本発明は下記<1>~<11>に関するものである。
<1>炭素-炭素二重結合を含む有機基が導入された基材表面において、オレフィンメタセシス反応活性を有する金属-カルベン錯体化合物(10)の存在下、前記炭素-炭素二重結合を下記式(21)で表されるオレフィン化合物とメタセシス反応させることにより、フッ素原子と炭素-炭素二重結合とを含む有機基が導入された基材を製造する方法。
That is, the present invention relates to the following <1> to <11>.
<1> In the presence of a metal-carbene complex compound (10) having an olefin metathesis reaction activity on the surface of a base material into which an organic group containing a carbon-carbon double bond has been introduced, the carbon-carbon double bond is represented by the following formula: A method for producing a base material into which an organic group containing a fluorine atom and a carbon-carbon double bond has been introduced by subjecting the olefin compound represented by (21) to a metathesis reaction.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 ただし、式中の記号は以下の意味を表す。
 Rはフッ素原子、炭素数1~12の(ペル)フルオロアルキル基、炭素数1~12の(ペル)フルオロアルコキシ基、エーテル性酸素原子を含む炭素数1~200の(ペル)フルオロアルキル基、及びエーテル性酸素原子を含む炭素数2~200の(ペル)フルオロアルコキシ基からなる群から選ばれる基である。
 X11~X13はそれぞれ独立して、下記基(i)、基(ii)、基(v)及び基(vi)からなる群から選ばれる基である。X12及びX13は互いに結合して環を形成してもよい。
基(i):水素原子。
基(ii):ハロゲン原子。
基(v):炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数5~20のアリール基、炭素数5~20のアリールオキシ基、炭素数1~12の(ペル)ハロゲン化アルキル基、炭素数1~12の(ペル)ハロゲン化アルコキシ基、炭素数5~20の(ペル)ハロゲン化アリール基、及び炭素数5~20の(ペル)ハロゲン化アリールオキシ基からなる群から選ばれる基。
基(vi):さらに、酸素原子、窒素原子、イオウ原子、リン原子、及びケイ素原子からなる群から選ばれる原子を1以上含む前記基(v)。
<2>前記基材がガラス又は樹脂である前記<1>に記載製造方法。
<3>前記基材表面に炭素-炭素二重結合導入剤を反応させて基材表面に炭素-炭素二重結合を導入する前記<1>または<2>に記載の製造方法。
<4>前記炭素-炭素二重結合導入剤が、分子内に炭素-炭素二重結合を有するシランカップリング剤である前記<3>に記載の製造方法。
<5>前記基材が樹脂フィルムであり、かつ、前記炭素-炭素二重結合導入剤が、多官能(メタ)アクリレートである前記<3>または<4>に記載の製造方法。
<6>前記金属-カルベン錯体化合物(10)の金属がルテニウムである前記<1>~<5>のいずれか一に記載の製造方法。
<7>前記金属-カルベン錯体化合物(10)の金属がモリブデンまたはタングステンであり、かつ、前記金属-カルベン錯体化合物(10)が配位子[L]として、イミド配位子、および、酸素原子が二座配位した配位子を有する前記<1>~<5>のいずれか一に記載の製造方法。
<8>前記式(21)で表わされるオレフィン化合物が、1,1-ジフルオロオレフィンである前記<1>~<7>のいずれか一に記載の製造方法。
<9>前記式(21)で表わされるオレフィン化合物のRがエーテル性酸素原子を含む炭素数1~200の(ペル)フルオロアルキル基、及びエーテル性酸素原子を含む炭素数2~200の(ペル)フルオロアルコキシ基からなる群から選ばれる基である前記<1>~<8>のいずれか一に記載の製造方法。
<10>前記メタセシス反応の温度が0~150℃である、前記<1>~<9>のいずれか一に記載の製造方法。
<11>前記メタセシス反応に溶媒を用いない前記<1>~<10>のいずれか一に記載の製造方法。
However, the symbol in a formula represents the following meaning.
R F is a fluorine atom, a (per) fluoroalkyl group having 1 to 12 carbon atoms, a (per) fluoroalkoxy group having 1 to 12 carbon atoms, or a (per) fluoroalkyl group having 1 to 200 carbon atoms containing an etheric oxygen atom. And a group selected from the group consisting of (per) fluoroalkoxy groups having 2 to 200 carbon atoms and containing an etheric oxygen atom.
X 11 to X 13 are each independently a group selected from the group consisting of the following group (i), group (ii), group (v) and group (vi). X 12 and X 13 may combine with each other to form a ring.
Group (i): a hydrogen atom.
Group (ii): a halogen atom.
Group (v): an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryl group having 5 to 20 carbon atoms, an aryloxy group having 5 to 20 carbon atoms, ) A halogenated alkyl group, a (per) halogenated alkoxy group having 1 to 12 carbon atoms, a (per) halogenated aryl group having 5 to 20 carbon atoms, and a (per) halogenated aryloxy group having 5 to 20 carbon atoms A group selected from the group consisting of
Group (vi): The group (v) further containing one or more atoms selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom.
<2> The production method according to <1>, wherein the substrate is glass or resin.
<3> The production method according to <1> or <2>, wherein a carbon-carbon double bond introducing agent is reacted with the surface of the base material to introduce a carbon-carbon double bond onto the surface of the base material.
<4> The production method according to <3>, wherein the carbon-carbon double bond introducing agent is a silane coupling agent having a carbon-carbon double bond in the molecule.
<5> The production method according to <3> or <4>, wherein the base material is a resin film, and the carbon-carbon double bond introducer is a polyfunctional (meth) acrylate.
<6> The production method according to any one of <1> to <5>, wherein the metal of the metal-carbene complex compound (10) is ruthenium.
<7> The metal of the metal-carbene complex compound (10) is molybdenum or tungsten, and the metal-carbene complex compound (10) is used as a ligand [L] as an imide ligand and an oxygen atom. The production method according to any one of <1> to <5>, wherein has a bidentate ligand.
<8> The production method according to any one of <1> to <7>, wherein the olefin compound represented by the formula (21) is a 1,1-difluoroolefin.
<9> R F of the olefin compound represented by the formula (21) is a (per) fluoroalkyl group having 1 to 200 carbon atoms containing an etheric oxygen atom, and 2 to 200 carbon atoms having an etheric oxygen atom ( The production method according to any one of <1> to <8>, which is a group selected from the group consisting of per) fluoroalkoxy groups.
<10> The production method according to any one of <1> to <9>, wherein the temperature of the metathesis reaction is 0 to 150 ° C.
<11> The production method according to any one of <1> to <10>, wherein no solvent is used in the metathesis reaction.
 本発明に係る基材を製造する方法によれば、含フッ素オレフィンを用いたメタセシス反応によって簡便かつ効率的にフッ素原子と炭素-炭素二重結合とを含む有機基が導入された基材を製造することができ、当該基材は従来の基材と比較して耐久性の高い基材となり得る。 According to the method for producing a substrate according to the present invention, a substrate into which an organic group containing a fluorine atom and a carbon-carbon double bond has been introduced is produced simply and efficiently by a metathesis reaction using a fluorine-containing olefin. The base material can be a highly durable base material compared to a conventional base material.
 以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。また、本発明は金属触媒によるメタセシスに関するものであり、従来技術と共通する一般的特徴については記載を省略することがある。
 なお本明細書において、「式(X)で表される化合物」のことを、単に「化合物(X)」と称する場合がある。
 また、本明細書において、ペルハロゲン化アルキル基とは、アルキル基の水素原子が全てハロゲン原子で置換された基を意味する。ペルハロゲン化アルコキシ基、ペルハロゲン化アリール基及びペルハロゲン化アリールオキシ基についても同様である。
 (ペル)ハロゲン化アルキル基とは、ハロゲン化アルキル基とペルハロゲン化アルキル基とを合わせた総称で用いる。すなわち該基は1個以上のハロゲン原子を有するアルキル基である。(ペル)ハロゲン化アルコキシ基、(ペル)ハロゲン化アリール基、及び(ペル)ハロゲン化アリールオキシ基についても同様である。
 (ペル)フルオロアルキル基とは、フルオロアルキル基とペルフルオロアルキル基とを合わせた総称で用いる。すなわち該基は1個以上のフッ素原子を有するアルキル基である。(ペル)フルオロアルコキシ基についても同様である。
 アリール基とは、芳香族化合物において芳香環を形成する炭素原子の内いずれか1つの炭素原子に結合した1つの水素原子を取り去った残基に相当する一価の基を意味し、炭素環化合物から誘導されるアリール基と、ヘテロ環化合物から誘導されるヘテロアリール基とを合わせた総称で用いる。
 炭化水素基の炭素数とは、ある炭化水素基全体に含まれる炭素原子の総数を意味し、該基が置換基を有さない場合は炭化水素基骨格を形成する炭素原子の数を、該基が置換基を有する場合は炭化水素基骨格を形成する炭素原子の数に置換基中の炭素原子の数を加えた総数を表す。
 なお化学式中の結合を示す波線はE/Zの異性体のうち、いずれか一方または両方の混合物であることを意味する。また基材と原子を結ぶ結合を横切る波線は、基材表面から当該原子に至る詳細な結合を省略して図示していることを意味する。
 ヘテロ原子とは、炭素原子と水素原子以外の原子を意味し、好ましくは、酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、及びハロゲン原子からなる群から選ばれる1種以上の原子であり、より好ましくは、酸素原子または窒素原子である。
Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be arbitrarily modified without departing from the gist of the present invention. In addition, the present invention relates to a metathesis by a metal catalyst, and description of general features common to the prior art may be omitted.
In the present specification, the “compound represented by the formula (X)” may be simply referred to as “compound (X)”.
In the present specification, the perhalogenated alkyl group means a group in which all hydrogen atoms of the alkyl group are substituted with halogen atoms. The same applies to perhalogenated alkoxy groups, perhalogenated aryl groups, and perhalogenated aryloxy groups.
The term “(per) halogenated alkyl group” is used as a general term that combines a halogenated alkyl group and a perhalogenated alkyl group. That is, the group is an alkyl group having one or more halogen atoms. The same applies to (per) halogenated alkoxy groups, (per) halogenated aryl groups, and (per) halogenated aryloxy groups.
The term “(per) fluoroalkyl group” is used as a general term that combines a fluoroalkyl group and a perfluoroalkyl group. That is, the group is an alkyl group having one or more fluorine atoms. The same applies to the (per) fluoroalkoxy group.
An aryl group means a monovalent group corresponding to a residue obtained by removing one hydrogen atom bonded to any one of carbon atoms forming an aromatic ring in an aromatic compound, and a carbocyclic compound The aryl group derived from is combined with the heteroaryl group derived from a heterocyclic compound.
The number of carbon atoms of the hydrocarbon group means the total number of carbon atoms contained in the whole hydrocarbon group, and when the group has no substituent, the number of carbon atoms forming the hydrocarbon group skeleton is When the group has a substituent, the total number is obtained by adding the number of carbon atoms in the substituent to the number of carbon atoms forming the hydrocarbon group skeleton.
In addition, the wavy line which shows the coupling | bonding in a chemical formula means that it is any one or a mixture of both among the isomers of E / Z. Moreover, the wavy line crossing the bond connecting the substrate and the atom means that the detailed bond from the substrate surface to the atom is omitted.
The heteroatom means an atom other than a carbon atom and a hydrogen atom, preferably one or more atoms selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, and a halogen atom. More preferably an oxygen atom or a nitrogen atom.
 本発明はメタセシス反応による、フッ素原子と炭素-炭素二重結合とを含む有機基が導入された基材の製造方法に関するものである。例えば下記スキーム(a)~(d)に基材をガラスとした場合の、前記フッ素原子と炭素-炭素二重結合とを含む有機基が導入された基材の製造手順をそれぞれ表す。
 式中Xはそれぞれ独立して、ハロゲン原子、炭素数1~12のアルコキシ基、及び炭素数5~20のアリール基からなる群から選ばれる基であり、Rはフッ素原子、炭素数1~12の(ペル)フルオロアルキル基、炭素数1~12の(ペル)フルオロアルコキシ基、エーテル性酸素原子を含む炭素数1~200の(ペル)フルオロアルキル基、及びエーテル性酸素原子を含む炭素数2~200の(ペル)フルオロアルコキシ基からなる群から選ばれる基である。
The present invention relates to a method for producing a base material into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced by a metathesis reaction. For example, the following schemes (a) to (d) show the procedures for producing a substrate into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced when the substrate is glass.
In the formula, each X is independently a group selected from the group consisting of a halogen atom, an alkoxy group having 1 to 12 carbon atoms, and an aryl group having 5 to 20 carbon atoms, and R F is a fluorine atom, 12 (per) fluoroalkyl groups, (per) fluoroalkoxy groups having 1 to 12 carbon atoms, (per) fluoroalkyl groups having 1 to 200 carbon atoms containing an etheric oxygen atom, and carbon atoms containing an etheric oxygen atom A group selected from the group consisting of 2 to 200 (per) fluoroalkoxy groups.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 例えば、基材をガラスとした場合、未処理である基材表面にはシラノール基が多く存在している。そこへシランカップリング剤等を反応させることにより炭素-炭素二重結合を導入する。導入された炭素-炭素二重結合部分を、特定の金属触媒存在下で含フッ素オレフィン化合物とメタセシス反応させることにより、フッ素原子と炭素-炭素二重結合とを含む有機基が導入された基材を得ることができる。 For example, when the substrate is made of glass, many silanol groups are present on the untreated substrate surface. A carbon-carbon double bond is introduced by reacting a silane coupling agent or the like there. A base material into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced by subjecting the introduced carbon-carbon double bond portion to a metathesis reaction with a fluorine-containing olefin compound in the presence of a specific metal catalyst. Can be obtained.
<基材>
 本発明における基材は特に限定されない。具体的にはガラス、樹脂(天然又は合成)、金属、セラミック、半導体(シリコン、ゲルマニウム等)、繊維(織物、不織布等)、毛皮、皮革、木材、陶磁器、石材、建築部材、又はこれらの複合基材等が挙げられ、任意の適切な材料で構成される。光学レンズ、ディスプレイ、光記録媒体における基材の表面材料としては、ガラス基材又は樹脂基材が好ましい。
<Base material>
The substrate in the present invention is not particularly limited. Specifically, glass, resin (natural or synthetic), metal, ceramic, semiconductor (silicon, germanium, etc.), fiber (woven fabric, non-woven fabric, etc.), fur, leather, wood, ceramics, stone, building material, or a composite thereof A base material etc. are mentioned and it is comprised with arbitrary appropriate materials. As the surface material of the substrate in the optical lens, display, or optical recording medium, a glass substrate or a resin substrate is preferable.
 ガラス基材としては、ソーダライムガラス、アルカリアルミノケイ酸塩ガラス、ホウ珪酸ガラス、無アルカリガラス、クリスタルガラス、石英ガラス、又はこれらの化学強化したガラスが好ましく、化学強化したソーダライムガラス、化学強化したアルカリアルミノケイ酸塩ガラス、又は化学強化したホウ珪酸ガラスが特に好ましい。
 樹脂基材の材料としては、アクリル樹脂又はポリカーボネート樹脂が好ましい。中でも表面にヒドロキシル基を有するものが炭素-炭素二重結合を導入しやすいことから好ましい。
As the glass substrate, soda lime glass, alkali aluminosilicate glass, borosilicate glass, alkali-free glass, crystal glass, quartz glass, or chemically strengthened glass thereof is preferable, chemically strengthened soda lime glass, chemically strengthened Alkali aluminosilicate glass or chemically strengthened borosilicate glass is particularly preferred.
As the material of the resin base material, an acrylic resin or a polycarbonate resin is preferable. Among them, those having a hydroxyl group on the surface are preferable because they can easily introduce a carbon-carbon double bond.
 基材の形状は特に限定されない。また、表面処理層を形成すべき基材の表面領域は、基材表面の少なくとも一部であればよく、製造すべき物品の用途および具体的仕様等に応じて適宜決定され得る。また、基材はその具体的仕様等に応じて、絶縁層、粘着層、保護層、装飾枠層(I-CON)、霧化膜層、ハードコーティング膜層、偏光フィルム、位相差フィルム、又は液晶表示モジュールなどを有していてもよい。 The shape of the substrate is not particularly limited. In addition, the surface region of the base material on which the surface treatment layer is to be formed may be at least part of the surface of the base material, and can be appropriately determined according to the use and specific specifications of the article to be manufactured. In addition, the base material is an insulating layer, an adhesive layer, a protective layer, a decorative frame layer (I-CON), an atomized film layer, a hard coating film layer, a polarizing film, a retardation film, or the like, depending on the specific specifications thereof. You may have a liquid crystal display module.
<炭素-炭素二重結合導入剤>
 本発明における基材表面に炭素-炭素二重結合を導入するには、公知の方法を用いることができる。具体的には、基材表面に炭素-炭素二重結合導入剤を反応させて基材表面に炭素-炭素二重結合を導入する方法が好ましい。炭素-炭素二重結合導入剤とは、分子内に炭素-炭素二重結合を1以上有し、かつ、基材表面の特定反応部位と反応しうる官能基(炭素-炭素二重結合を有する官能基であってもよい)を有する化合物である。
<Carbon-carbon double bond introducing agent>
In order to introduce a carbon-carbon double bond to the substrate surface in the present invention, a known method can be used. Specifically, a method of introducing a carbon-carbon double bond to the substrate surface by reacting a carbon-carbon double bond introducing agent on the substrate surface is preferable. The carbon-carbon double bond introducing agent is a functional group (having a carbon-carbon double bond) that has one or more carbon-carbon double bonds in the molecule and can react with a specific reaction site on the substrate surface. It may be a functional group).
 例えば、基材がガラス又は樹脂である場合には、炭素-炭素二重結合導入剤として、分子内に炭素-炭素二重結合を有するシランカップリング剤等が好ましく用いられる。該シランカップリング剤として具体的には、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリクロルシラン、アリルトリメトキシシラン等が挙げられる。 For example, when the substrate is glass or resin, a silane coupling agent having a carbon-carbon double bond in the molecule is preferably used as the carbon-carbon double bond introducing agent. Specific examples of the silane coupling agent include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrichlorosilane, and allyltrimethoxysilane.
 また基材が樹脂フィルムである場合には、炭素-炭素二重結合導入剤として、多官能アクリレート又は多官能メタクリレート(以下、アクリレートおよびメタクリレートを合わせて、「(メタ)アクリレート」とも言う。)等が好ましく用いられる。多官能(メタ)アクリレートとしては、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、エトキシ化グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等が挙げられる。 When the substrate is a resin film, a polyfunctional acrylate or polyfunctional methacrylate (hereinafter, the acrylate and methacrylate are also collectively referred to as “(meth) acrylate”) or the like as a carbon-carbon double bond introducing agent. Is preferably used. Polyfunctional (meth) acrylates include polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, and ethoxylated glycerin. Examples include tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, and trimethylolpropane tri (meth) acrylate.
 基材が金である場合には、炭素-炭素二重結合導入剤として、炭素-炭素二重結合を有するチオール化合物等が好ましく用いられる。
 基材表面に炭素-炭素二重結合を導入する際の反応条件も公知の条件で行えばよく、特に制限されない。
When the substrate is gold, a thiol compound having a carbon-carbon double bond is preferably used as the carbon-carbon double bond introducing agent.
The reaction conditions for introducing the carbon-carbon double bond on the surface of the substrate may be any known conditions, and are not particularly limited.
 炭素-炭素二重結合導入後の基材表面は、例えば下記式で表される。
 本明細書において、式中A11~A13はそれぞれ独立して、下記基(i)、基(ii)、基(iii)、及び基(iv)からなる群から選ばれる基である。ただし、A12及びA13の一方がハロゲン原子である場合、他方は基(i)、基(iii)、及び基(iv)からなる群から選ばれる基である。中でも、A11~A13がいずれも水素原子であることが好ましい。
基(i):水素原子。
基(ii):ハロゲン原子。
基(iii):炭素数1~20の一価炭化水素基。
基(iv):ハロゲン原子、酸素原子、窒素原子、イオウ原子、リン原子、及びケイ素原子からなる群から選ばれる原子を1以上含む炭素数1~20の一価炭化水素基。
The substrate surface after the introduction of the carbon-carbon double bond is represented, for example, by the following formula.
In the present specification, A 11 to A 13 in the formula are each independently a group selected from the group consisting of the following group (i), group (ii), group (iii), and group (iv). However, when one of A 12 and A 13 is a halogen atom, the other is a group selected from the group consisting of group (i), group (iii), and group (iv). In particular, it is preferable that all of A 11 to A 13 are hydrogen atoms.
Group (i): a hydrogen atom.
Group (ii): a halogen atom.
Group (iii): a monovalent hydrocarbon group having 1 to 20 carbon atoms.
Group (iv): a monovalent hydrocarbon group having 1 to 20 carbon atoms containing at least one atom selected from the group consisting of a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
<メタセシス反応>
(反応機構)
 基材表面に炭素-炭素二重結合が導入された後、金属触媒(金属-カルベン錯体化合物(10))の存在下、前記炭素-炭素二重結合と含フッ素オレフィン化合物とをメタセシス反応させることにより、フッ素原子と炭素-炭素二重結合とを含む有機基が導入された基材となる。下記スキーム(e)にクロスメタセシス反応の反応機構の例を表すが、金属触媒に由来する中間体(Metal I)及び中間体(Metal II)を反応機構の一部として含むことを特徴とする。
<Metathesis reaction>
(Reaction mechanism)
After the carbon-carbon double bond is introduced on the surface of the substrate, the carbon-carbon double bond and the fluorinated olefin compound are subjected to a metathesis reaction in the presence of a metal catalyst (metal-carbene complex compound (10)). Thus, a base material into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced is obtained. An example of the reaction mechanism of the cross metathesis reaction is shown in the following scheme (e), which is characterized by including an intermediate (Metal I) and intermediate (Metal II) derived from a metal catalyst as a part of the reaction mechanism.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 本明細書中、式中の記号は下記意味を表す。
 [L]は配位子であり、Mはルテニウム、モリブデン又はタングステンである。
 Rはフッ素原子、炭素数1~12の(ペル)フルオロアルキル基、炭素数1~12の(ペル)フルオロアルコキシ基、エーテル性酸素原子を含む炭素数1~200の(ペル)フルオロアルキル基、及びエーテル性酸素原子を含む炭素数2~200の(ペル)フルオロアルコキシ基からなる群から選ばれる基である。
 X11~X13はそれぞれ独立して、下記基(i)、基(ii)、基(v)及び基(vi)からなる群から選ばれる基である。X12及びX13は互いに結合して環を形成してもよい。
基(i):水素原子。
基(ii):ハロゲン原子。
基(v):炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数5~20のアリール基、炭素数5~20のアリールオキシ基、炭素数1~12の(ペル)ハロゲン化アルキル基、炭素数1~12の(ペル)ハロゲン化アルコキシ基、炭素数5~20の(ペル)ハロゲン化アリール基、及び炭素数5~20の(ペル)ハロゲン化アリールオキシ基からなる群から選ばれる基。
基(vi):さらに、酸素原子、窒素原子、イオウ原子、リン原子、及びケイ素原子からなる群から選ばれる原子を1以上含む前記基(v)。
 ただし、前記基(vi)は、前記基(v)である場合を除く。
In the present specification, symbols in the formulas have the following meanings.
[L] is a ligand, and M is ruthenium, molybdenum or tungsten.
R F is a fluorine atom, a (per) fluoroalkyl group having 1 to 12 carbon atoms, a (per) fluoroalkoxy group having 1 to 12 carbon atoms, or a (per) fluoroalkyl group having 1 to 200 carbon atoms containing an etheric oxygen atom. And a group selected from the group consisting of (per) fluoroalkoxy groups having 2 to 200 carbon atoms and containing an etheric oxygen atom.
X 11 to X 13 are each independently a group selected from the group consisting of the following group (i), group (ii), group (v) and group (vi). X 12 and X 13 may combine with each other to form a ring.
Group (i): a hydrogen atom.
Group (ii): a halogen atom.
Group (v): an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryl group having 5 to 20 carbon atoms, an aryloxy group having 5 to 20 carbon atoms, ) A halogenated alkyl group, a (per) halogenated alkoxy group having 1 to 12 carbon atoms, a (per) halogenated aryl group having 5 to 20 carbon atoms, and a (per) halogenated aryloxy group having 5 to 20 carbon atoms A group selected from the group consisting of
Group (vi): The group (v) further containing one or more atoms selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom.
However, the case where the group (vi) is the group (v) is excluded.
 またメタセシス反応は可逆である。すなわちスキーム(e)において逆向きの反応(逆向きの方向の矢印で表わされる反応)が存在する。しかしこの点についての詳細は説明を省略する。また導入されたフッ素原子を含む炭素-炭素二重結合部分については幾何異性体が存在する可能性がある。しかしこの点の詳細については、個々の反応に強く依存するので、説明を省略する。 Also, the metathesis reaction is reversible. That is, in scheme (e), there is a reverse reaction (reaction represented by an arrow in the reverse direction). However, the details of this point will not be described. In addition, geometric isomers may exist for the carbon-carbon double bond portion containing the introduced fluorine atom. However, the details of this point are strongly dependent on the individual reactions, and the explanation is omitted.
 本発明は、下記スキーム(f)に表すように、例えば化合物(11)の存在下、炭素-炭素二重結合が導入された基材表面とオレフィン化合物(21)とを反応させることにより、表面にフッ素原子と炭素-炭素二重結合とを含む有機基が導入された基材を得ることができる。 In the present invention, as shown in the following scheme (f), for example, in the presence of the compound (11), the surface of the substrate into which the carbon-carbon double bond has been introduced is reacted with the olefin compound (21). A base material into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced can be obtained.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記スキーム(f)において、化合物(11)は、金属-カルベン錯体化合物(10)の代表例として記載する。特定の金属-カルベン錯体化合物(10)としては、ルテニウム-カルベン錯体、モリブデン-カルベン錯体、又はタングステン-カルベン錯体(以下、「金属-カルベン錯体」とも総称する。)が例示できる。 In the above scheme (f), the compound (11) is described as a representative example of the metal-carbene complex compound (10). Examples of the specific metal-carbene complex compound (10) include a ruthenium-carbene complex, a molybdenum-carbene complex, or a tungsten-carbene complex (hereinafter also collectively referred to as “metal-carbene complex”).
<金属-カルベン錯体化合物(10)>
 金属-カルベン錯体化合物(10)として、上記スキーム(f)では化合物(11)を例に示したが、金属と二重結合を形成している炭素原子に結合する2つの基は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20の一価炭化水素基、又は、酸素原子、窒素原子、イオウ原子、リン原子、及びケイ素原子からなる群から選ばれる原子を1以上含む炭素数1~20の一価炭化水素基であればよい。また、これら2つの基は水素原子がひとつ取れた二価の基として互いに結合し、環を形成してもよい。
 化合物(10)は本発明に係る製造方法において触媒としての役割を果たすが、試薬として投入するもの及び反応中で生成するもの(触媒活性種)の両方を意味する。ここで、化合物(10)は反応条件下、配位子のいくつかが解離することで触媒活性を示すようになるものと、配位子の解離なしで触媒活性を示すものが知られているが、本発明ではいずれでもよく限定されない。また一般に、オレフィンメタセシスは触媒へのオレフィンの配位と解離を繰り返しながら進行するため、反応中、触媒上にオレフィン以外の配位子がいくつ配位しているかは必ずしも明確でない。したがって本明細書中、[L]は配位子の数や種類を特定するものではない。
<Metal-carbene complex compound (10)>
As the metal-carbene complex compound (10), the compound (11) is shown as an example in the above scheme (f), but the two groups bonded to the carbon atom forming a double bond with the metal are independent of each other. And a carbon number containing at least one atom selected from the group consisting of a hydrogen atom, a halogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms, or an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom. Any monovalent hydrocarbon group of 1 to 20 may be used. Further, these two groups may be bonded to each other as a divalent group in which one hydrogen atom is removed to form a ring.
Although the compound (10) plays a role as a catalyst in the production method according to the present invention, it means both a substance to be charged as a reagent and a substance generated during the reaction (catalytically active species). Here, the compound (10) is known to show catalytic activity when some of the ligands dissociate under the reaction conditions, and to show catalytic activity without dissociation of the ligands. However, any of them is not limited in the present invention. In general, since olefin metathesis proceeds while repeating coordination and dissociation of olefin to the catalyst, it is not always clear how many ligands other than olefin are coordinated on the catalyst during the reaction. Therefore, in this specification, [L] does not specify the number or type of ligands.
 上記触媒のうち金属がルテニウムである化合物は一般的に「ルテニウム-カルベン錯体」と称されるものであり、例えばVougioukalakis,G.C.et al.Chem.Rev.,2010,110,1746-1787.に記載されているルテニウム-カルベン錯体を利用することができる。また、例えばAldrich社やUmicore社から市販されているルテニウム-カルベン錯体を利用することができる。
 本発明においては、金属カルベン錯体化合物の金属がルテニウムであることが好ましい。
Among the above catalysts, the compound whose metal is ruthenium is generally referred to as “ruthenium-carbene complex”, for example, Vougioukalakis, G., et al. C. et al. Chem. Rev. , 2010, 110, 1746-1787. The ruthenium-carbene complex described in 1) can be used. Further, for example, a ruthenium-carbene complex commercially available from Aldrich or Umicore can be used.
In the present invention, the metal of the metal carbene complex compound is preferably ruthenium.
 ルテニウム-カルベン錯体の具体例としては、ビス(トリフェニルホスフィン)ベンジリデンルテニウムジクロリド、ビス(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、ビス(トリシクロヘキシルホスフィン)-3-メチル-2-ブテニリデンルテニウムジクロリド、(1,3-ジイソプロピルイミダゾール-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、(1,3-ジシクロヘキシルイミダゾール-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、(1,3-ジメシチルイミダゾール-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、[1,3-ビス(2,6-ジイソプロピルフェニル)-4,5-ジヒドロイミダゾール-2-イリデン](トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、[1,3-ビス(2-メチルフェニル)-4,5-ジヒドロイミダゾール-2-イリデン](トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、[1,3-ジシクロヘキシル-4,5-ジヒドロイミダゾール-2-イリデン](トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、ビス(トリシクロヘキシルホスフィン)エトキシメチリデンルテニウムジクロリド、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)(トリシクロヘキシルホスフィン)エトキシメチリデンルテニウムジクロリド、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)[ビス(3-ブロモピリジン)]ベンジリデンルテニウムジクロリド、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)(2-イソプロポキシフェニルメチリデン)ルテニウムジクロリド、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)[(トリシクロヘキシルホスホラニル)メチリデン]ジクロロルテニウムテトラフルオロボラート、UmicoreM2、UmicoreM51、UmicoreM52、UmicoreM71SIMes、UmicoreM71SIPr、UmicoreM73SIMes、UmicoreM73SIPr等が挙げられ、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)(2-イソプロポキシフェニルメチリデン)ルテニウムジクロリド、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)[(トリシクロヘキシルホスホラニル)メチリデン]ジクロロルテニウムテトラフルオロボラート、UmicoreM2、UmicoreM51、UmicoreM52、UmicoreM71SIMes、UmicoreM71SIPr、UmicoreM73SIMes、UmicoreM73SIPrが特に好ましい。なお上記錯体のうち、「Umicore」で始まる名称は、Umicore社の製品の商品名である。
 なお、上記ルテニウム-カルベン錯体は、単独で用いてもよいし、2種類以上併用してもよい。さらに必要に応じてシリカゲルやアルミナ、ポリマー等の担体に担持して用いてもよい。
Specific examples of the ruthenium-carbene complex include bis (triphenylphosphine) benzylidene ruthenium dichloride, bis (tricyclohexylphosphine) benzylidene ruthenium dichloride, bis (tricyclohexylphosphine) -3-methyl-2-butenylidene ruthenium dichloride, ( 1,3-diisopropylimidazol-2-ylidene) (tricyclohexylphosphine) benzylideneruthenium dichloride, (1,3-dicyclohexylimidazole-2-ylidene) (tricyclohexylphosphine) benzylideneruthenium dichloride, (1,3-dimesitylimidazole) -2-ylidene) (tricyclohexylphosphine) benzylideneruthenium dichloride, (1,3-dimesityl-4,5-dihydroimidazole) 2-ylidene) (tricyclohexylphosphine) benzylideneruthenium dichloride, [1,3-bis (2,6-diisopropylphenyl) -4,5-dihydroimidazol-2-ylidene] (tricyclohexylphosphine) benzylideneruthenium dichloride, [1 , 3-Bis (2-methylphenyl) -4,5-dihydroimidazol-2-ylidene] (tricyclohexylphosphine) benzylideneruthenium dichloride, [1,3-dicyclohexyl-4,5-dihydroimidazol-2-ylidene] ( Tricyclohexylphosphine) benzylideneruthenium dichloride, bis (tricyclohexylphosphine) ethoxymethylideneruthenium dichloride, (1,3-dimesityl-4,5-dihydroimidazole-2-ylide) ) (Tricyclohexylphosphine) ethoxymethylidene ruthenium dichloride, (1,3-dimesityl-4,5-dihydroimidazol-2-ylidene) [bis (3-bromopyridine)] benzylidene ruthenium dichloride, (1,3-dimesityl- 4,5-dihydroimidazol-2-ylidene) (2-isopropoxyphenylmethylidene) ruthenium dichloride, (1,3-dimesityl-4,5-dihydroimidazol-2-ylidene) [(tricyclohexylphosphoranyl) methylidene ] Dichlororuthenium tetrafluoroborate, Umicore M2, Umicore M51, Umicore M52, Umicore M71 SIMes, Umicore M71 SIPr, Umicore M73 SIMes, Umicore M73 (1,3-dimesityl-4,5-dihydroimidazol-2-ylidene) (tricyclohexylphosphine) benzylidene ruthenium dichloride, (1,3-dimesityl-4,5-dihydroimidazol-2-ylidene) ) (2-Isopropoxyphenylmethylidene) ruthenium dichloride, (1,3-dimesityl-4,5-dihydroimidazol-2-ylidene) [(tricyclohexylphosphoranyl) methylidene] dichlororuthenium tetrafluoroborate, Umicore M2, Umicore M51, Umicore M52, Umicore M71 SIMes, Umicore M71 SIPr, Umicore M73 SIMes, and Umicore M73 SIPr are particularly preferable. Of the above complexes, the names beginning with “Umicore” are trade names of Umicore products.
The ruthenium-carbene complex may be used alone or in combination of two or more. Further, if necessary, it may be supported on a carrier such as silica gel, alumina or polymer.
 上記触媒のうち金属がモリブデン又はタングステンである化合物は一般的に「モリブデン-カルベン錯体」「タングステン-カルベン錯体」と称されるものであり、例えばGrela,K.(Ed)Olefin Metathesis:Theory and Practice,Wiley,2014.に記載されているモリブデン-カルベン錯体又はタングステン-カルベン錯体を利用することができる。また、例えばAldrich社やStrem社、Ximo社から市販されているモリブデン-カルベン錯体又はタングステン-カルベン錯体を利用することができる。
 本発明においては、金属カルベン錯体化合物の金属がモリブデンまたはタングステンであることが触媒の入手容易性の点で好ましい。
 なお、上記モリブデン-カルベン錯体又はタングステン-カルベン錯体は、単独で用いてもよいし、2種類以上併用してもよい。さらに必要に応じてシリカゲルやアルミナ、ポリマー等の担体に担持して用いてもよい。
Among the above catalysts, compounds in which the metal is molybdenum or tungsten are generally referred to as “molybdenum-carbene complex” or “tungsten-carbene complex”. (Ed) Olefin Metathesis: Theory and Practice, Wiley, 2014. The molybdenum-carbene complex or tungsten-carbene complex described in 1) can be used. Further, for example, a molybdenum-carbene complex or a tungsten-carbene complex commercially available from Aldrich, Strem, and Ximo can be used.
In the present invention, the metal of the metal carbene complex compound is preferably molybdenum or tungsten from the viewpoint of availability of the catalyst.
The molybdenum-carbene complex or the tungsten-carbene complex may be used alone or in combination of two or more. Further, if necessary, it may be supported on a carrier such as silica gel, alumina or polymer.
 金属触媒の金属がモリブデンまたはタングステンである場合、金属触媒の配位子[L]としては、イミド配位子(R-N=M)を有することが好ましい。ただし、Rとしては、アルキル基、アリール基等が例示できる。またさらに金属触媒の配位子[L]としては酸素原子が二座配位した配位子を有することが好ましい。ただし酸素原子が二座配位した配位子とは、酸素原子を2個以上有する配位子において該酸素原子のうちの2個で配位している配位子である場合、および、酸素原子を有する単座配位子が2個配位している場合(この場合に単座配位子は同一であっても異なっていてもよい)の双方の場合を含む。 When the metal of the metal catalyst is molybdenum or tungsten, the metal catalyst ligand [L] preferably has an imide ligand (R 1 -N = M). However, examples of R 1 include an alkyl group and an aryl group. Further, the ligand [L] of the metal catalyst preferably has a ligand in which an oxygen atom is bidentately coordinated. However, the ligand in which the oxygen atom is bidentate is a ligand having two or more oxygen atoms in a ligand having two or more oxygen atoms, and oxygen This includes both cases where two monodentate ligands having atoms are coordinated (in this case, the monodentate ligands may be the same or different).
 モリブデン-カルベン錯体の具体例を下記に示す。なお、Meとはメチル基を、i-Prとはイソプロピル基を、t-Buとはターシャリーブチル基を、Phとはフェニル基を、それぞれ意味する。 Specific examples of molybdenum-carbene complexes are shown below. Me represents a methyl group, i-Pr represents an isopropyl group, t-Bu represents a tertiary butyl group, and Ph represents a phenyl group.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 タングステン-カルベン錯体の具体例としては、下記化合物が挙げられる。 Specific examples of the tungsten-carbene complex include the following compounds.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
<オレフィン化合物(21)>
 炭素-炭素二重結合を含む有機基が導入された基材表面において、オレフィンメタセシス反応活性を有する金属-カルベン錯体化合物(10)の存在下、前記炭素-炭素二重結合をオレフィン化合物(21)とメタセシス反応させることにより、フッ素原子と炭素-炭素二重結合とを含む有機基が導入された基材を製造することができる。
<Olefin compound (21)>
In the presence of the metal-carbene complex compound (10) having an olefin metathesis reaction activity on the surface of the base material into which an organic group containing a carbon-carbon double bond is introduced, the carbon-carbon double bond is converted into the olefin compound (21). And a metathesis reaction can produce a base material into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 化合物(21)におけるX11~X13及びRは、前記定義と同様である。
 すなわち化合物(21)におけるX11~X13はそれぞれ独立して、水素原子;ハロゲン原子;炭素数1~12のアルキル基;炭素数1~12のアルコキシ基;炭素数5~20のアリール基;炭素数5~20のアリールオキシ基;炭素数1~12の(ペル)ハロゲン化アルキル基;炭素数1~12の(ペル)ハロゲン化アルコキシ基;炭素数5~20の(ペル)ハロゲン化アリール基;、及び炭素数5~20の(ペル)ハロゲン化アリールオキシ基;からなる群から選ばれる基であり、前記アルキル基、アルコキシ基、アリール基、アリールオキシ基、(ペル)ハロゲン化アルキル基、(ペル)ハロゲン化アルコキシ基、(ペル)ハロゲン化アリール基、及び(ペル)ハロゲン化アリールオキシ基からなる群から選ばれる基は、酸素原子、窒素原子、イオウ原子、リン原子、及びケイ素原子からなる群から選ばれる原子を1以上含む置換基を有していてもよい。X12及びX13は、水素原子またはハロゲン原子がひとつ取れた2価の基として互いに結合して環を形成してもよい。環としては、炭素原子のみからなる、または、炭素原子とヘテロ原子とからなる環が好ましい。環の大きさは3員環~10員環が例示できる。環の部分構造としては、下式の構造が例示できる。
X 11 to X 13 and R F in the compound (21) are as defined above.
That is, X 11 to X 13 in the compound (21) are each independently a hydrogen atom; a halogen atom; an alkyl group having 1 to 12 carbon atoms; an alkoxy group having 1 to 12 carbon atoms; an aryl group having 5 to 20 carbon atoms; An aryloxy group having 5 to 20 carbon atoms; a (per) halogenated alkyl group having 1 to 12 carbon atoms; a (per) halogenated alkoxy group having 1 to 12 carbon atoms; a (per) halogenated aryl group having 5 to 20 carbon atoms And a (per) halogenated aryloxy group having 5 to 20 carbon atoms; a group selected from the group consisting of the alkyl group, alkoxy group, aryl group, aryloxy group, and (per) halogenated alkyl group. , A (per) halogenated alkoxy group, a (per) halogenated aryl group, and a (per) halogenated aryloxy group are oxygen atoms Nitrogen atom, sulfur atom, phosphorus atom, and the atom selected from the group consisting of silicon atoms may have 1 or more containing substituent. X 12 and X 13 may be bonded to each other as a divalent group in which one hydrogen atom or halogen atom is removed to form a ring. As the ring, a ring consisting of only a carbon atom or a ring consisting of a carbon atom and a hetero atom is preferable. Examples of the ring size include a 3-membered ring to a 10-membered ring. Examples of the ring partial structure include the following structures.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記基のうち炭素原子を有する基は、後述するように炭素原子と炭素原子の間にエーテル性酸素原子を有していてもよい。 Among the above groups, the group having a carbon atom may have an etheric oxygen atom between the carbon atoms as described later.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、又はヨウ素原子が挙げられ、フッ素原子又は塩素原子が入手容易性の点から好ましい。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom or a chlorine atom is preferable from the viewpoint of availability.
 炭素数1~12のアルキル基としては、炭素数1~8の当該基が好ましく、具体的にはメチル基、エチル基、又はプロピル基が入手容易性の点から好ましい。アルキル基鎖は直鎖状でも分岐状でも環状でもよい。 As the alkyl group having 1 to 12 carbon atoms, the group having 1 to 8 carbon atoms is preferable, and specifically, a methyl group, an ethyl group, or a propyl group is preferable from the viewpoint of easy availability. The alkyl group chain may be linear, branched or cyclic.
 炭素数1~12のアルコキシ基としては、炭素数1~8の当該基が好ましく、具体的にはメトキシ基、エトキシ基、又はプロポキシ基が入手容易性の点から好ましい。アルコキシ基鎖は直鎖状でも分岐状でも環状でもよい。 As the alkoxy group having 1 to 12 carbon atoms, the group having 1 to 8 carbon atoms is preferable, and specifically, a methoxy group, an ethoxy group, or a propoxy group is preferable from the viewpoint of availability. The alkoxy group chain may be linear, branched or cyclic.
 炭素数5~20のアリール基としては、炭素数5~12の当該基が好ましく、具体的にはフェニル基が入手容易性の点から好ましい。 As the aryl group having 5 to 20 carbon atoms, the group having 5 to 12 carbon atoms is preferable, and specifically, a phenyl group is preferable from the viewpoint of availability.
 炭素数5~20のアリールオキシ基としては、炭素数5~12の当該基が好ましい。具体的にはフェニルオキシ基が入手容易性の点から好ましい。 As the aryloxy group having 5 to 20 carbon atoms, the group having 5 to 12 carbon atoms is preferable. Specifically, a phenyloxy group is preferable from the viewpoint of availability.
 炭素数1~12の(ペル)ハロゲン化アルキル基としては、炭素数1~8の当該基が好ましく、特に炭素数1~8の(ペル)フルオロアルキル基が好ましい。具体的にはトリフルオロメチル基、ペンタフルオロエチル基、又はヘプタフルオロプロピル基が入手容易性の点から好ましい。アルキル基鎖は直鎖状でも分岐状でも環状でもよい。 The (per) halogenated alkyl group having 1 to 12 carbon atoms is preferably the group having 1 to 8 carbon atoms, particularly preferably a (per) fluoroalkyl group having 1 to 8 carbon atoms. Specifically, a trifluoromethyl group, a pentafluoroethyl group, or a heptafluoropropyl group is preferable from the viewpoint of availability. The alkyl group chain may be linear, branched or cyclic.
 炭素数1~12の(ペル)ハロゲン化アルコキシ基としては、炭素数1~8の当該基が好ましく、特に炭素数1~8の(ペル)フルオロアルコキシ基が好ましい。具体的にはトリフルオロメトキシ基、ペンタフルオロエトキシ基、ヘプタフルオロプロポキシ基、ペルフルオロ(メトキシメトキシ)基、又はペルフルオロ(プロポキシプロポキシ)基が好ましく、特にトリフルオロメトキシ基又はペルフルオロ(プロポキシプロポキシ)基が入手容易性の点から好ましい。アルコキシ基鎖は直鎖状でも分岐状でも環状でもよい。 The (per) halogenated alkoxy group having 1 to 12 carbon atoms is preferably the group having 1 to 8 carbon atoms, particularly preferably a (per) fluoroalkoxy group having 1 to 8 carbon atoms. Specifically, a trifluoromethoxy group, a pentafluoroethoxy group, a heptafluoropropoxy group, a perfluoro (methoxymethoxy) group, or a perfluoro (propoxypropoxy) group is preferable, and in particular, a trifluoromethoxy group or a perfluoro (propoxypropoxy) group is available. It is preferable from the viewpoint of ease. The alkoxy group chain may be linear, branched or cyclic.
 炭素数5~20の(ペル)ハロゲン化アリール基としては、炭素数5~12の当該基が好ましく、特に炭素数5~12の(ペル)フルオロアリール基が好ましい。具体的にはモノフルオロフェニル基、又はペンタフルオロフェニル基が好ましく、特にペンタフルオロフェニル基が入手容易性の点から好ましい。 The (per) halogenated aryl group having 5 to 20 carbon atoms is preferably the group having 5 to 12 carbon atoms, and particularly preferably a (per) fluoroaryl group having 5 to 12 carbon atoms. Specifically, a monofluorophenyl group or a pentafluorophenyl group is preferable, and a pentafluorophenyl group is particularly preferable from the viewpoint of availability.
 炭素数5~20の(ペル)ハロゲン化アリールオキシ基としては、炭素数5~12の当該基が好ましく、特に炭素数5~12の(ペル)フルオロアリールオキシ基が好ましい。具体的にはモノフルオロフェニルオキシ基又はペンタフルオロフェニルオキシ基が好ましく、特にペンタフルオロフェニルオキシ基が入手容易性の点から好ましい。 The (per) halogenated aryloxy group having 5 to 20 carbon atoms is preferably the group having 5 to 12 carbon atoms, particularly preferably the (per) fluoroaryloxy group having 5 to 12 carbon atoms. Specifically, a monofluorophenyloxy group or a pentafluorophenyloxy group is preferable, and a pentafluorophenyloxy group is particularly preferable from the viewpoint of availability.
 酸素原子、窒素原子、イオウ原子、リン原子、及びケイ素原子からなる群から選ばれる原子を1以上含む置換基としては、ニトリル基、カルボキシル基、エステル基(アシルオキシ基又はアルコキシカルボニル基)が例示できる。なお該置換基を有する場合であっても、アルキル基、アルコキシ基、(ペル)ハロゲン化アルキル基及び(ペル)ハロゲン化アルコキシ基全体の炭素数は1~12であり、アリール基、アリールオキシ基、(ペル)ハロゲン化アリール基及び(ペル)ハロゲン化アリールオキシ基全体の炭素数は5~20である。 Examples of the substituent containing at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom include a nitrile group, a carboxyl group, and an ester group (acyloxy group or alkoxycarbonyl group). . Even when the substituent is present, the total number of carbon atoms of the alkyl group, alkoxy group, (per) halogenated alkyl group, and (per) halogenated alkoxy group is 1 to 12, and the aryl group, aryloxy group The total number of carbon atoms in the (per) halogenated aryl group and (per) halogenated aryloxy group is 5 to 20.
 また前記アルキル基、アルコキシ基、アリール基、アリールオキシ基、(ペル)ハロゲン化アルキル基、(ペル)ハロゲン化アルコキシ基、(ペル)ハロゲン化アリール基、又は(ペル)ハロゲン化アリールオキシ基は、炭素原子と炭素原子の間にエーテル性酸素原子を有していてもよい。すなわち、基(vi)としては、さらに酸素原子を1以上含む基(v)が好ましく、酸素原子はエーテル性酸素原子であることがより好ましい。つまり基(vi)としては下記基(vii)であることが好ましい。
基(vii):炭素原子と炭素原子の間にエーテル性酸素原子を有する基(v)。
The alkyl group, alkoxy group, aryl group, aryloxy group, (per) halogenated alkyl group, (per) halogenated alkoxy group, (per) halogenated aryl group, or (per) halogenated aryloxy group are: An etheric oxygen atom may be present between the carbon atoms. That is, the group (vi) is preferably a group (v) further containing one or more oxygen atoms, and the oxygen atom is more preferably an etheric oxygen atom. That is, the group (vi) is preferably the following group (vii).
Group (vii): Group (v) having an etheric oxygen atom between carbon atoms.
 X12とX13との組合せとして好ましくは、X12が基(i)、基(ii)、基(v)、又は基(vii)であり、X13が基(ii)、基(v)、又は基(vii)である組み合わせである。
 より好ましくはX12が水素原子、ハロゲン原子、炭素数1~12の(ペル)ハロゲン化アルキル基、炭素原子と炭素原子の間にエーテル性酸素原子を有する炭素数1~12の(ペル)ハロゲン化アルキル基、炭素数1~12の(ペル)ハロゲン化アルコキシ基、炭素原子と炭素原子の間にエーテル性酸素原子を有する炭素数2~12の(ペル)ハロゲン化アルコキシ基、炭素数5~20の(ペル)ハロゲン化アリール基、炭素原子と炭素原子の間にエーテル性酸素原子を有する炭素数5~20の(ペル)ハロゲン化アリール基、炭素数5~20の(ペル)ハロゲン化アリールオキシ基、又は炭素原子と炭素原子の間にエーテル性酸素原子を有する炭素数5~20の(ペル)ハロゲン化アリールオキシ基;X13がハロゲン原子、炭素数1~12のアルキル基、炭素原子と炭素原子の間にエーテル性酸素原子を有する炭素数2~12のアルキル基、炭素数1~12のアルコキシ基、炭素原子と炭素原子の間にエーテル性酸素原子を有する炭素数2~12のアルコキシ基、炭素数5~20のアリール基、炭素原子と炭素原子の間にエーテル性酸素原子を有する炭素数5~20のアリール基、炭素数1~12の(ペル)ハロゲン化アルキル基、炭素原子と炭素原子の間にエーテル性酸素原子を有する炭素数2~12の(ペル)ハロゲン化アルキル基、炭素数1~12の(ペル)ハロゲン化アルコキシ基、炭素原子と炭素原子の間にエーテル性酸素原子を有する炭素数1~12の(ペル)ハロゲン化アルコキシ基、炭素数5~20の(ペル)ハロゲン化アリール基、炭素原子と炭素原子の間にエーテル性酸素原子を有する炭素数5~20の(ペル)ハロゲン化アリール基、炭素数5~20の(ペル)ハロゲン化アリールオキシ基、又は炭素原子と炭素原子の間にエーテル性酸素原子を有する炭素数5~20の(ペル)ハロゲン化アリールオキシ基の組み合わせである。
As a combination of X 12 and X 13 , X 12 is preferably group (i), group (ii), group (v), or group (vii), and X 13 is group (ii) or group (v). Or a combination that is a group (vii).
More preferably, X 12 is a hydrogen atom, a halogen atom, a (per) halogenated alkyl group having 1 to 12 carbon atoms, or a (per) halogen having 1 to 12 carbon atoms having an etheric oxygen atom between the carbon atoms. Alkyl group, (per) halogenated alkoxy group having 1 to 12 carbon atoms, (per) halogenated alkoxy group having 2 to 12 carbon atoms having an etheric oxygen atom between carbon atoms, carbon number 5 to 20 (per) halogenated aryl groups, 5 to 20 (per) halogenated aryl groups having an etheric oxygen atom between carbon atoms, (per) halogenated aryl having 5 to 20 carbon atoms oxy group, or a 5 to 20 carbon atoms having a carbon atom and an ether oxygen atom between carbon atoms (per) halogenated aryloxy group; X 13 is a halogen atom, a carbon number 1 12 alkyl groups, an alkyl group having 2 to 12 carbon atoms having an etheric oxygen atom between carbon atoms, an alkoxy group having 1 to 12 carbon atoms, and an etheric oxygen atom between carbon atoms. Having an alkoxy group having 2 to 12 carbon atoms, an aryl group having 5 to 20 carbon atoms, an aryl group having 5 to 20 carbon atoms having an etheric oxygen atom between the carbon atoms, ) Halogenated alkyl group, (per) halogenated alkyl group having 2 to 12 carbon atoms having an etheric oxygen atom between carbon atoms, (per) halogenated alkoxy group having 1 to 12 carbon atoms, carbon atom (Per) halogenated alkoxy group having 1 to 12 carbon atoms having an etheric oxygen atom between carbon atom and carbon atom, (per) halogenated aryl group having 5 to 20 carbon atoms, carbon atom and carbon atom A (per) halogenated aryl group having 5 to 20 carbon atoms having an etheric oxygen atom in between, a (per) halogenated aryloxy group having 5 to 20 carbon atoms, or an etheric oxygen atom between carbon atoms A (per) halogenated aryloxy group having 5 to 20 carbon atoms having
 化合物(21)におけるRはフッ素原子、炭素数1~12の(ペル)フルオロアルキル基、炭素数1~12の(ペル)フルオロアルコキシ基、エーテル性酸素原子を含む炭素数1~200の(ペル)フルオロアルキル基、及びエーテル性酸素原子を含む炭素数2~200の(ペル)フルオロアルコキシ基からなる群から選ばれる基である。
 化合物(21)としては、1,1-ジフルオロオレフィン又は1,2-ジフルオロオレフィンが好ましく、1,1-ジフルオロオレフィン又は炭素数3以上の1,2-ジフルオロオレフィンがより好ましく、特に1,1-ジフルオロオレフィンが好ましい。
 また化合物(21)としては、Rがエーテル性酸素原子を含む炭素数1~200の(ペル)フルオロアルキル基、及びエーテル性酸素原子を含む炭素数2~200の(ペル)フルオロアルコキシ基からなる群から選ばれる基であるオレフィンが好ましい。
R F in the compound (21) is a fluorine atom, a (per) fluoroalkyl group having 1 to 12 carbon atoms, a (per) fluoroalkoxy group having 1 to 12 carbon atoms, or 1 to 200 carbon atoms containing an etheric oxygen atom ( It is a group selected from the group consisting of a per) fluoroalkyl group and a (per) fluoroalkoxy group having 2 to 200 carbon atoms containing an etheric oxygen atom.
The compound (21) is preferably 1,1-difluoroolefin or 1,2-difluoroolefin, more preferably 1,1-difluoroolefin or 1,2-difluoroolefin having 3 or more carbon atoms, particularly 1,1-difluoroolefin. Difluoroolefin is preferred.
In addition, as the compound (21), R 2 F is derived from a (per) fluoroalkyl group having 1 to 200 carbon atoms containing an etheric oxygen atom, and a (per) fluoroalkoxy group having 2 to 200 carbon atoms containing an etheric oxygen atom. Olefin which is a group selected from the group consisting of
<製造方法>
 本発明は基材表面に炭素-炭素二重結合を含む有機基を導入し、さらに前記炭素-炭素二重結合をメタセシス反応させることによりフッ素原子と炭素-炭素二重結合とを含む有機基が導入された基材を製造する方法に関するものである。
<Manufacturing method>
In the present invention, an organic group containing a carbon-carbon double bond is introduced into the surface of the substrate, and the organic group containing a fluorine atom and a carbon-carbon double bond is further obtained by subjecting the carbon-carbon double bond to a metathesis reaction. The present invention relates to a method for producing an introduced substrate.
 基材に対して、公知の方法により表面に炭素-炭素二重結合を導入する。例えば基材がガラスである場合、炭素-炭素二重結合を含む有機基を有するシランカップリング剤等を塗布することで炭素-炭素二重結合を導入することができる。塗布方法としては、公知の手法を適宜用いることができる。該塗布方法としては、スピンコート法、ワイプコート法、スプレーコート法、スキージーコート法、ディップコート法、ダイコート法、インクジェット法、フローコート法、ロールコート法、キャスト法、ラングミュア・ブロジェット法、グラビアコート法等が挙げられる。 A carbon-carbon double bond is introduced into the surface of the substrate by a known method. For example, when the substrate is glass, a carbon-carbon double bond can be introduced by applying a silane coupling agent having an organic group containing a carbon-carbon double bond. As a coating method, a known method can be appropriately used. Examples of the coating method include spin coating method, wipe coating method, spray coating method, squeegee coating method, dip coating method, die coating method, ink jet method, flow coating method, roll coating method, casting method, Langmuir-Blodgett method, gravure Examples thereof include a coating method.
 基材が樹脂である場合には、多官能(メタ)アクリレート等を用いて熱硬化や光硬化の条件で炭素-炭素二重結合を導入することができる。光硬化は、活性エネルギー線を照射することによって行われる。活性エネルギー線としては、紫外線、電子線、X線、放射線、高周波線等が挙げられ、波長180~500nmの紫外線が経済的に好ましい。
 活性エネルギー線源としては、紫外線照射装置(キセノンランプ、低圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、カーボンアーク灯、タングステンランプ、紫外線LED等)、電子線照射装置、X線照射装置、高周波発生装置等が使用できる。硬化反応を完結させる目的で、活性エネルギー線の照射後に加熱してもよい。加熱温度は、50~120℃が好ましい。
When the substrate is a resin, a carbon-carbon double bond can be introduced under the conditions of heat curing or photocuring using polyfunctional (meth) acrylate or the like. Photocuring is performed by irradiating active energy rays. Examples of active energy rays include ultraviolet rays, electron beams, X-rays, radiation, high-frequency rays, etc., and ultraviolet rays having a wavelength of 180 to 500 nm are economically preferable.
Active energy ray sources include ultraviolet irradiation devices (xenon lamps, low-pressure mercury lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, carbon arc lamps, tungsten lamps, ultraviolet LEDs, etc.), electron beam irradiation devices, X-ray irradiation devices, and high frequencies. A generator or the like can be used. For the purpose of completing the curing reaction, heating may be performed after irradiation with active energy rays. The heating temperature is preferably 50 to 120 ° C.
 また前述した炭素-炭素二重結合を導入する反応を円滑に進行させるために、基材表面に適切な前処理を施してもかまわない。具体的には基材表面に溶媒をかけ流す方法や、溶媒をしみこませた布でふき取る方法、コロナ処理、UV-オゾン処理等が挙げられる。
 同様に、炭素-炭素二重結合を導入する反応後、表面層中の化合物であって他の化合物や基材と化学結合していない化合物は、必要に応じて除去してもよい。具体的な方法としては、たとえば、表面層に溶媒をかけ流す方法や、溶媒をしみ込ませた布でふき取る方法が挙げられる。
Further, in order to smoothly advance the reaction for introducing the carbon-carbon double bond described above, an appropriate pretreatment may be applied to the surface of the substrate. Specific examples include a method of pouring a solvent over the surface of the substrate, a method of wiping with a cloth soaked with a solvent, a corona treatment, a UV-ozone treatment, and the like.
Similarly, after the reaction for introducing a carbon-carbon double bond, compounds in the surface layer that are not chemically bonded to other compounds or the substrate may be removed as necessary. Specific methods include, for example, a method of pouring a solvent over the surface layer and a method of wiping with a cloth soaked with a solvent.
 表面に炭素-炭素二重結合が導入された基材に対してメタセシス反応をさせる化合物(21)としてフッ素原子を含むオレフィンを用いるが、当該化合物は内部オレフィン及び末端オレフィンのいずれも利用することができる。
 目的物収率向上の点で、原料となる化合物(21)は脱気及び脱水されたものを用いることが好ましい。脱気操作について、特に制限はないが、凍結脱気等を行うことがある。脱水操作について、特に制限はないが、通常モレキュラーシーブ等と接触させる。原料となる化合物(21)について、前記脱気及び脱水操作は通常金属-カルベン錯体化合物と接触させる前に行う。
 また原料となる化合物(21)は微量の不純物(例えばフッ化水素等)を含むことがあるので、目的物収率向上の点で精製してもよい。精製方法については特に制限はない。例えば文献(Armarego,W.L.F.et al.,Purification of Laboratory Chemicals(Sixth Edition),2009,Elsevier)記載の方法に従って行うことができる。
An olefin containing a fluorine atom is used as the compound (21) for causing a metathesis reaction to a substrate having a carbon-carbon double bond introduced on the surface, and the compound can utilize both an internal olefin and a terminal olefin. it can.
From the viewpoint of improving the yield of the target product, it is preferable to use a degassed and dehydrated compound (21) as a raw material. There is no particular limitation on the deaeration operation, but freeze deaeration and the like may be performed. Although there is no restriction | limiting in particular about dehydration operation, Usually, it is made to contact with a molecular sieve etc. For the compound (21) as a raw material, the degassing and dehydration operations are usually performed before contacting with the metal-carbene complex compound.
Moreover, since the compound (21) used as a raw material may contain a trace amount impurity (for example, hydrogen fluoride etc.), you may refine | purify from the point of the target-product yield improvement. There is no particular limitation on the purification method. For example, it can be carried out according to the method described in the literature (Armarego, WLF et al., Purification of Laboratory Chemicals (Sixth Edition), 2009, Elsevier).
 原料となる炭素-炭素二重結合が導入された基材(以後、単に「C=C基材」と称することがある。)及び化合物(21)を反応容器に投入する順序は問わず、反応容器に先にC=C基材を設置しておき、そこに化合物(21)を投入してもよいし、先に化合物(21)を投入した反応容器にC=C基材を浸漬させてもよい。さらには、C=C基材又は化合物(21)のいずれかを金属-カルベン錯体化合物(10)と接触させた後に、他方の化合物(21)又はC=C基材を接触させる場合もある。
 原料となるC=C基材表面の炭素-炭素二重結合部分(以下、「基材表面のオレフィン部分」と称することがある。)と化合物(21)とのモル比に特に限定はないが、通常C=C基材表面のオレフィン部分1モルに対して、化合物(21)を0.01~100モル程度用い、好ましくは0.1~10モル程度用いる。
Regardless of the order in which the base material into which the carbon-carbon double bond as a raw material is introduced (hereinafter, sometimes simply referred to as “C═C base material”) and the compound (21) are charged into the reaction vessel. A C = C base material may be placed in the container in advance, and the compound (21) may be added thereto, or the C = C base material may be immersed in a reaction container in which the compound (21) has been previously input. Also good. Furthermore, after contacting either the C═C substrate or the compound (21) with the metal-carbene complex compound (10), the other compound (21) or the C═C substrate may be contacted.
There is no particular limitation on the molar ratio of the C = C base material surface carbon-carbon double bond portion (hereinafter sometimes referred to as “the olefin portion on the base material surface”) and the compound (21) as the raw material. Usually, the compound (21) is used in an amount of about 0.01 to 100 mol, preferably about 0.1 to 10 mol, per 1 mol of the olefin moiety on the surface of the C═C substrate.
 金属-カルベン錯体化合物は試薬として投入しても、系内で発生させてもよい。
 試薬として投入する場合、市販の金属-カルベン錯体化合物をそのまま用いてもよく、あるいは市販試薬から公知の方法で合成した市販されていない金属-カルベン錯体化合物を用いてもよい。
 系内で発生させる場合、公知の方法で前駆体となる金属錯体から調製した金属-カルベン錯体化合物を本発明に用いることができる。
The metal-carbene complex compound may be added as a reagent or generated in the system.
When charging as a reagent, a commercially available metal-carbene complex compound may be used as it is, or a commercially available metal-carbene complex compound synthesized by a known method from a commercially available reagent may be used.
When it is generated in the system, a metal-carbene complex compound prepared from a metal complex as a precursor by a known method can be used in the present invention.
 用いる金属-カルベン錯体化合物の量としては、特に制限はないが、原料となるC=C基材表面のオレフィン部分1モルに対して、通常0.0001~1モル程度用い、好ましくは0.001~0.2モル程度用いる。 The amount of the metal-carbene complex compound to be used is not particularly limited, but is usually used in an amount of about 0.0001 to 1 mol, preferably 0.001 with respect to 1 mol of the olefin portion on the surface of the C = C base material used as a raw material. About 0.2 mol is used.
 用いる金属-カルベン錯体化合物は、通常固体のまま反応容器に投入するが、溶媒に溶解又は懸濁させて投入してもよい。この時用いる溶媒としては、反応に悪影響を及ぼさない範囲で特に制限はなく、有機溶媒、含フッ素有機溶媒、イオン液体、水等を単独又は混合して用いることができる。なお、これらの溶媒分子中、一部又はすべての水素原子が重水素原子で置換されていてもよい。
 また化合物(21)が液体である場合(加熱して液化する場合も含む)は、メタセシス反応には溶媒を用いないことが好ましい。この場合、化合物(21)に金属-カルベン錯体化合物が溶解することが好ましい
The metal-carbene complex compound to be used is usually charged into the reaction vessel as a solid, but may be charged after dissolving or suspending in a solvent. The solvent used at this time is not particularly limited as long as it does not adversely affect the reaction, and an organic solvent, a fluorine-containing organic solvent, an ionic liquid, water and the like can be used alone or in combination. In these solvent molecules, some or all of the hydrogen atoms may be substituted with deuterium atoms.
Moreover, when the compound (21) is liquid (including the case where it is liquefied by heating), it is preferable not to use a solvent for the metathesis reaction. In this case, the metal-carbene complex compound is preferably dissolved in the compound (21).
 有機溶媒としては、例えば、ベンゼン、トルエン、o-,m-,p-キシレン、メシチレン等の芳香族炭化水素系溶媒;ヘキサン、シクロヘキサン等の脂肪族炭化水素系溶媒;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、o-ジクロロベンゼン等のハロゲン系溶媒;テトラヒドロフラン、ジオキサン、ジエチルエーテル、グライム、ジグライム等のエーテル系溶媒等を使用することができる。含フッ素有機溶媒としては、例えば、ヘキサフルオロベンゼン、m-ビス(トリフルオロメチル)ベンゼン、p-ビス(トリフルオロメチル)ベンゼン、α,α,α-トリフルオロメチルベンゼン、ジクロロペンタフルオロプロパン等を使用することができる。イオン液体としては、例えば、各種ピリジニウム塩、各種イミダゾリウム塩等を用いることができる。上記溶媒の中でも、金属-カルベン錯体の溶解性等の点で、ベンゼン、トルエン、o-,m-,p-キシレン、メシチレン、ジクロロメタン、クロロホルム、クロロベンゼン、o-ジクロロベンゼン、ジエチルエーテル、ジオキサン、THF(テトラヒドロフラン)、ヘキサフルオロベンゼン、m-ビス(トリフルオロメチル)ベンゼン、p-ビス(トリフルオロメチル)ベンゼン、α,α,α-トリフルオロメチルベンゼン等、及びこれらの混合物が好ましい。
 なお、目的物収率向上の点で、前記溶媒は脱気及び脱水されたものを用いることが好ましい。脱気操作について、特に制限はないが、凍結脱気等を行うことがある。脱水操作について、特に制限はないが、通常モレキュラーシーブ等と接触させる。前記脱気及び脱水操作は通常金属-カルベン錯体化合物と接触させる前に行う。
Examples of the organic solvent include aromatic hydrocarbon solvents such as benzene, toluene, o-, m-, p-xylene and mesitylene; aliphatic hydrocarbon solvents such as hexane and cyclohexane; dichloromethane, chloroform, 1, 2 -Halogen solvents such as dichloroethane, chlorobenzene and o-dichlorobenzene; ether solvents such as tetrahydrofuran, dioxane, diethyl ether, glyme and diglyme can be used. Examples of the fluorine-containing organic solvent include hexafluorobenzene, m-bis (trifluoromethyl) benzene, p-bis (trifluoromethyl) benzene, α, α, α-trifluoromethylbenzene, dichloropentafluoropropane, and the like. Can be used. As the ionic liquid, for example, various pyridinium salts, various imidazolium salts and the like can be used. Among the above solvents, benzene, toluene, o-, m-, p-xylene, mesitylene, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, diethyl ether, dioxane, THF in terms of solubility of the metal-carbene complex, etc. (Tetrahydrofuran), hexafluorobenzene, m-bis (trifluoromethyl) benzene, p-bis (trifluoromethyl) benzene, α, α, α-trifluoromethylbenzene, and mixtures thereof are preferred.
In addition, it is preferable to use a degassed and dehydrated solvent for improving the yield of the target product. There is no particular limitation on the deaeration operation, but freeze deaeration and the like may be performed. Although there is no restriction | limiting in particular about dehydration operation, Usually, it is made to contact with a molecular sieve etc. The degassing and dehydration operations are usually performed before contacting with the metal-carbene complex compound.
 C=C基材及び化合物(21)と金属-カルベン錯体化合物を接触させる雰囲気としては、特に限定はないが、触媒の長寿命化の点で、不活性気体雰囲気下が好ましく、中でも窒素又はアルゴン雰囲気下が好ましい。ただし、化合物(21)が反応条件において気体となる場合、これらの気体雰囲気下で行うことができる。
 C=C基材及び化合物(21)と金属-カルベン錯体化合物を接触させる相としては、特に制限はないが、反応速度の点で、通常は液相が用いられる。原料となる化合物(21)が反応条件下で気体の場合、液相で実施するのが難しいため、気-液二相で実施することもできる。なお、液相で実施する場合には溶媒を用いることができる。このとき用いる溶媒としては、上記、金属-カルベン錯体化合物の溶解又は懸濁に用いた溶媒と同様のものを利用することができる。なお、原料となる化合物(21)が2種以上ある場合であって、それら化合物のうち少なくとも1種が反応条件下で液体の場合、無溶媒で実施できることがある。
The atmosphere in which the C = C base material and the compound (21) are contacted with the metal-carbene complex compound is not particularly limited, but is preferably an inert gas atmosphere from the viewpoint of extending the life of the catalyst. An atmosphere is preferred. However, when the compound (21) becomes a gas under the reaction conditions, it can be carried out under these gas atmospheres.
The phase for contacting the C = C base material and the compound (21) with the metal-carbene complex compound is not particularly limited, but a liquid phase is usually used in terms of reaction rate. When the raw material compound (21) is a gas under the reaction conditions, it is difficult to carry out in the liquid phase, and therefore it can also be carried out in the gas-liquid two-phase. In the case of carrying out in the liquid phase, a solvent can be used. As the solvent used at this time, the same solvents as those used for dissolving or suspending the metal-carbene complex compound can be used. In addition, when there are two or more compounds (21) as a raw material, and at least one of these compounds is liquid under the reaction conditions, it may be carried out without a solvent.
 C=C基材及び化合物(21)と金属-カルベン錯体化合物を接触させる容器としては、反応に悪影響を与えない範囲で特に制限はなく、例えば金属製容器又はガラス製容器等を用いることができる。なお、本発明にかかるクロスメタセシスは反応条件下、気体状態のオレフィンを扱うことがあるので、高気密が可能な耐圧容器が好ましい。 The container for bringing the C = C base material and the compound (21) into contact with the metal-carbene complex compound is not particularly limited as long as the reaction is not adversely affected. For example, a metal container or a glass container can be used. . In addition, since the cross metathesis concerning this invention may handle the olefin in a gaseous state on reaction conditions, the pressure-resistant container in which high airtightness is possible is preferable.
 C=C基材及び化合物(21)と金属-カルベン錯体化合物を接触させる温度としては、特に制限はないが、通常-100~200℃の範囲で実施することができ、反応速度の点で、0~150℃が好ましい。なお、低温では反応が開始せず、高温では錯体の速やかな分解が生じることがあるので適宜温度の下限と上限を設定する必要がある。通常、用いる溶媒の沸点以下の温度で実施される。
 C=C基材及び化合物(21)と金属-カルベン錯体化合物を接触させる時間としては、特に制限はないが、通常1分~48時間の範囲で実施される。
 C=C基材及び化合物(21)と金属-カルベン錯体化合物を接触させる圧力としては、特に制限はないが、加圧下でも、常圧下でもよいし、減圧下でもよい。通常0.001~10MPa程度、好ましくは0.01~1MPa程度である。
The temperature at which the C = C base material and the compound (21) are brought into contact with the metal-carbene complex compound is not particularly limited, but it can usually be carried out in the range of −100 to 200 ° C. 0 to 150 ° C. is preferred. Note that the reaction does not start at low temperatures, and the complex may be rapidly decomposed at high temperatures. Therefore, it is necessary to appropriately set the lower limit and the upper limit of the temperature. Usually, it is carried out at a temperature below the boiling point of the solvent used.
The time for contacting the C = C base material and the compound (21) with the metal-carbene complex compound is not particularly limited, but is usually in the range of 1 minute to 48 hours.
The pressure at which the C = C base material and the compound (21) are brought into contact with the metal-carbene complex compound is not particularly limited, but it may be under pressure, under normal pressure, or under reduced pressure. Usually, it is about 0.001 to 10 MPa, preferably about 0.01 to 1 MPa.
 C=C基材及び化合物(21)と金属-カルベン錯体化合物を接触させる際に、反応に悪影響を及ぼさない範囲で無機塩や有機化合物、金属錯体等を共存させてもよい。また、C=C基材が破損せず、反応に悪影響を及ぼさない範囲で、C=C基材及び化合物(21)と金属-カルベン錯体化合物の混合物を攪拌してもよい。このとき、攪拌の方法としては、メカニカルスターラーやマグネティックスターラー等を用いることができる。 When bringing the C = C base material and the compound (21) into contact with the metal-carbene complex compound, an inorganic salt, an organic compound, a metal complex or the like may coexist within a range that does not adversely affect the reaction. Further, the C = C base material and the mixture of the compound (21) and the metal-carbene complex compound may be stirred as long as the C = C base material is not damaged and does not adversely affect the reaction. At this time, a mechanical stirrer, a magnetic stirrer, or the like can be used as a stirring method.
 C=C基材及び化合物(21)と金属-カルベン錯体化合物を接触させた後、目的である基材表面のオレフィン部分は通常複数のオレフィンの混合物として得られる。
 反応後、表面層中の化合物であって他の化合物や基材と化学結合していない化合物は、必要に応じて除去してもよい。具体的な方法としては、たとえば、表面層に溶媒をかけ流す方法や、溶媒をしみ込ませた布でふき取る方法が挙げられる。
After contacting the C═C substrate and the compound (21) with the metal-carbene complex compound, the target olefin portion on the substrate surface is usually obtained as a mixture of a plurality of olefins.
After the reaction, compounds in the surface layer that are not chemically bonded to other compounds or the substrate may be removed as necessary. Specific methods include, for example, a method of pouring a solvent over the surface layer and a method of wiping with a cloth soaked with a solvent.
 本反応で得られた基材表面は通常の有機化合物と同様の公知の方法で同定することができる。例えば、H-、19F-、13C-NMRやGC-MS等が挙げられ、必要に応じてこれらを単独又は複数組み合わせて用いることができる。 The surface of the substrate obtained by this reaction can be identified by a known method similar to a normal organic compound. For example, 1 H-, 19 F-, 13 C-NMR, GC-MS and the like can be mentioned, and these can be used alone or in combination.
 以下実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されない。
<実施例1>
クロスメタセシスによるフッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材の製造
 60×60mmのガラス基材を希塩酸、イオン交換水の順に洗浄して清浄なガラス基材を得た(基材A1)。次に、アリルトリクロロシランのジメチルアセトアミド溶液をスピンコート法によって基材A1に塗布した。これをデシケータ内で乾燥させ、メタノールで表面を洗浄することで、表面に炭素-炭素二重結合を導入したガラス基材(基材B1)を得た。ガラスシャーレに、下記に示すGrubbs第二世代触媒(0.01mmol)、C17-CH=CH(1mmol)及び塩化メチレン10mLを計り入れ、得られた溶液に基材B1を沈めた。室温で24時間放置後、基材を取りだし、メタノールで洗浄することで、フッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材(基材C1)を得た。基材A1、B1及びC1を用いて水の接触角測定を行った結果を表1に示す。また一連の反応を以下に示す。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
<Example 1>
Manufacture of a glass substrate into which an organic group containing fluorine atoms and carbon-carbon double bonds has been introduced by cross-metathesis. A clean glass substrate is obtained by washing a 60 × 60 mm glass substrate in the order of dilute hydrochloric acid and ion-exchanged water. Obtained (base material A1). Next, a dimethylacetamide solution of allyltrichlorosilane was applied to the substrate A1 by spin coating. This was dried in a desiccator and the surface was washed with methanol to obtain a glass substrate (substrate B1) having a carbon-carbon double bond introduced on the surface. A Grubbs second generation catalyst (0.01 mmol), C 8 F 17 —CH═CH 2 (1 mmol) and 10 mL of methylene chloride shown below were weighed into a glass petri dish, and the substrate B1 was submerged in the resulting solution. After leaving at room temperature for 24 hours, the substrate was taken out and washed with methanol to obtain a glass substrate (substrate C1) into which an organic group containing fluorine atoms and carbon-carbon double bonds was introduced. Table 1 shows the results of measuring the contact angle of water using the base materials A1, B1 and C1. A series of reactions are shown below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
<実施例2>
開環クロスメタセシスによるフッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材の製造
 60×60mmのガラス基材を希塩酸、イオン交換水の順に洗浄して清浄なガラス基材を得る(基材A2)。次に、5-[(2-トリメトキシシリル)エチル]ビシクロ[2.2.1]-2-ヘプテンのジメチルアセトアミド溶液をスピンコート法によって基材A2に塗布する。これをデシケータ内で乾燥させ、メタノールで表面を洗浄することで、表面に炭素-炭素二重結合を導入したガラス基材(基材B2)を得る。ガラスシャーレに、実施例1と同様のGrubbs第二世代触媒(0.01mmol)、C17-CH=CH(1mmol)及び塩化メチレン10mLを計り入れ、得られた溶液に基材B2を沈める。室温で24時間放置後、基材を取りだし、メタノールで洗浄することで、フッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材(基材C2)を得る。一連の反応を以下に示す。
<Example 2>
Manufacture of glass substrate introduced with organic group containing fluorine atom and carbon-carbon double bond by ring-opening cross metathesis Clean glass substrate by washing 60 × 60mm glass substrate in order of dilute hydrochloric acid and ion-exchanged water A material is obtained (base material A2). Next, a dimethylacetamide solution of 5-[(2-trimethoxysilyl) ethyl] bicyclo [2.2.1] -2-heptene is applied to the substrate A2 by spin coating. This is dried in a desiccator and the surface is washed with methanol to obtain a glass substrate (substrate B2) having a carbon-carbon double bond introduced on the surface. Grubbs second generation catalyst (0.01 mmol), C 8 F 17 —CH═CH 2 (1 mmol) and 10 mL of methylene chloride as in Example 1 were weighed into a glass petri dish, and the base material B2 was added to the resulting solution. Sink. After leaving at room temperature for 24 hours, the substrate is taken out and washed with methanol to obtain a glass substrate (substrate C2) into which an organic group containing fluorine atoms and carbon-carbon double bonds has been introduced. A series of reactions is shown below.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
<実施例3>
開環メタセシス重合によるフッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材の製造
 60×60mmのガラス基材を希塩酸、イオン交換水の順に洗浄して清浄なガラス基材を得る(基材A3)。次に、5-[(2-トリメトキシシリル)エチル]ビシクロ[2.2.1]-2-ヘプテンのジメチルアセトアミド溶液をスピンコート法によって基材A3に塗布する。これをデシケータ内で乾燥させ、メタノールで表面を洗浄することで、表面に炭素-炭素二重結合を導入したガラス基材(基材B3)を得る。ガラスシャーレに、実施例1と同様のGrubbs第二世代触媒(0.01mmol)、5,5,6,6-テトラフルオロビシクロ[2.2.1]-2-ヘプテン(1mmol)及び塩化メチレン10mLを計り入れ、得られた溶液に基材B3を沈める。室温で24時間放置後、基材を取りだし、メタノールで洗浄することで、フッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材(基材C3)を得る。一連の反応を以下に示す。なお、式中nは繰り返し単位を表す正の整数である。
<Example 3>
Production of glass substrate into which organic group containing fluorine atom and carbon-carbon double bond is introduced by ring-opening metathesis polymerization. Clean glass substrate by washing 60 × 60mm glass substrate in order of dilute hydrochloric acid and ion-exchanged water. A material is obtained (base material A3). Next, a dimethylacetamide solution of 5-[(2-trimethoxysilyl) ethyl] bicyclo [2.2.1] -2-heptene is applied to the substrate A3 by spin coating. This is dried in a desiccator and the surface is washed with methanol to obtain a glass substrate (substrate B3) having a carbon-carbon double bond introduced on the surface. In a glass petri dish, the same Grubbs second generation catalyst (0.01 mmol) as in Example 1, 5,5,6,6-tetrafluorobicyclo [2.2.1] -2-heptene (1 mmol) and 10 mL of methylene chloride. And submerge the substrate B3 in the resulting solution. After leaving at room temperature for 24 hours, the substrate is taken out and washed with methanol to obtain a glass substrate (substrate C3) into which an organic group containing fluorine atoms and carbon-carbon double bonds has been introduced. A series of reactions is shown below. In the formula, n is a positive integer representing a repeating unit.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
<実施例4>
鎖状ジエンメタセシス重合によるフッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材の製造
 60×60mmのガラス基材を希塩酸、イオン交換水の順に洗浄して清浄なガラス基材を得る(基材A4)。次に、アリルトリクロロシランのジメチルアセトアミド溶液をスピンコート法によって基材A4に塗布する。これをデシケータ内で乾燥させ、メタノールで表面を洗浄することで、表面に炭素-炭素二重結合を導入したガラス基材(基材B4)を得る。耐圧気密容器に、実施例1と同様のGrubbs第二世代触媒(0.01mmol)及び塩化メチレン10mLを計り入れ、得られた溶液に基材B4を沈め、耐圧気密容器内をヘキサフルオロブタジエンで置換する。室温で24時間放置後、基材を取りだし、メタノールで洗浄することで、フッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材(基材C4)を得る。一連の反応を以下に示す。なお、式中nは繰り返し単位を表す正の整数である。
<Example 4>
Manufacture of glass substrate into which organic group containing fluorine atom and carbon-carbon double bond is introduced by chain diene metathesis polymerization Clean glass by washing 60 × 60mm glass substrate in order of dilute hydrochloric acid and ion-exchanged water A base material is obtained (base material A4). Next, a dimethylacetamide solution of allyltrichlorosilane is applied to the substrate A4 by spin coating. This is dried in a desiccator, and the surface is washed with methanol to obtain a glass substrate (substrate B4) having a carbon-carbon double bond introduced on the surface. Grubbs second generation catalyst (0.01 mmol) similar to Example 1 and 10 mL of methylene chloride are weighed into a pressure-tight airtight container, and the substrate B4 is submerged in the resulting solution, and the inside of the pressure-tight airtight container is replaced with hexafluorobutadiene. To do. After leaving at room temperature for 24 hours, the substrate is taken out and washed with methanol to obtain a glass substrate (substrate C4) into which an organic group containing fluorine atoms and carbon-carbon double bonds has been introduced. A series of reactions is shown below. In the formula, n is a positive integer representing a repeating unit.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
<実施例5>
モリブデン触媒クロスメタセシスによるフッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材の製造
 実施例1のGrubbs第二世代触媒を下式で示される公知のモリブデン触媒D~Gに変更して、同様に反応を行い、実施例1と同じフッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材(C1)を得る。
<Example 5>
Production of Glass Substrates Introduced Organic Groups Containing Fluorine Atoms and Carbon-Carbon Double Bonds by Molybdenum Catalyst Cross-Metathesis Examples of known molybdenum catalysts DG represented by the following formulas as Grubbs second generation catalyst of Example 1 The glass substrate (C1) in which an organic group containing the same fluorine atom and carbon-carbon double bond as in Example 1 was introduced was obtained by changing to
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
<実施例9>
タングステン触媒クロスメタセシスによるフッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材の製造
 実施例1のGrubbs第二世代触媒を下式で示される公知のタングステン触媒Hに変更して、同様に反応を行い、実施例1と同じフッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材(C1)を得る。
<Example 9>
Production of glass substrate into which organic group containing fluorine atom and carbon-carbon double bond is introduced by tungsten catalyst cross metathesis. Grubbs second generation catalyst in Example 1 is changed to known tungsten catalyst H represented by the following formula Then, the same reaction is performed to obtain a glass substrate (C1) into which an organic group containing the same fluorine atom and carbon-carbon double bond as in Example 1 is introduced.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
<実施例10>
クロスメタセシスによるフッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材の製造
 耐圧容器内に実施例1と同様の方法で得たガラス基材B1、実施例1と同様のGrubbs第二世代触媒(0.01mmol)及び塩化メチレン10mLを計り入れる。耐圧容器内をテトラフルオロエチレン(1mmol)で置換したあと、室温で24時間放置後、基材を取りだし、メタノールで洗浄することで、フッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材(基材C10)を得る。また一連の反応を以下に示す。
<Example 10>
Production of glass base material into which organic group containing fluorine atom and carbon-carbon double bond is introduced by cross-metathesis Glass base material B1 obtained in the same manner as Example 1 in a pressure-resistant container, same as Example 1 Of Grubbs second generation catalyst (0.01 mmol) and 10 mL of methylene chloride. After replacing the inside of the pressure vessel with tetrafluoroethylene (1 mmol), after leaving it to stand at room temperature for 24 hours, the base material is taken out and washed with methanol to introduce organic groups containing fluorine atoms and carbon-carbon double bonds. A glass substrate (substrate C10) is obtained. A series of reactions are shown below.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
<実施例11~14>
クロスメタセシスによるフッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材の製造
 実施例10のテトラフルオロエチレンを、下表に示す化合物(21)にそれぞれ変更して反応を実施する。生成物として表4中に示すフッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材(基材C11~C14)を得る。
<Examples 11 to 14>
Production of Glass Substrate Introduced Organic Group Containing Fluorine Atom and Carbon-Carbon Double Bond by Cross-Metathesis Reaction was carried out by changing the tetrafluoroethylene of Example 10 to the compound (21) shown in the following table. carry out. As a product, glass substrates (substrates C11 to C14) into which organic groups containing fluorine atoms and carbon-carbon double bonds shown in Table 4 are introduced are obtained.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
<実施例15~18>
モリブデン触媒クロスメタセシスによるフッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材の製造
 実施例10のGrubbs第二世代触媒をモリブデン触媒D~Gに変更して、同様に反応を行い、実施例10と同じフッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材(C15~C18)を得る。
<Examples 15 to 18>
Production of glass base material into which organic group containing fluorine atom and carbon-carbon double bond is introduced by molybdenum catalyst cross metathesis. The Grubbs second generation catalyst of Example 10 was changed to molybdenum catalysts D to G, and similarly Reaction is performed to obtain glass substrates (C15 to C18) into which organic groups containing the same fluorine atom and carbon-carbon double bond as in Example 10 are introduced.
<実施例19>
タングステン触媒クロスメタセシスによるフッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材の製造
 実施例10のGrubbs第二世代触媒をタングステン触媒Hに変更して、同様に反応を行い、実施例10と同じフッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材(C19)を得る。
<Example 19>
Production of a glass substrate into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced by tungsten catalyst cross-metathesis. The Grubbs second generation catalyst of Example 10 is changed to tungsten catalyst H, and the reaction is similarly performed. The glass substrate (C19) having the same fluorine atom and carbon-carbon double bond as in Example 10 introduced therein is obtained.
<実施例20>
開環メタセシス重合によるフッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材の製造
 実施例3と同様の方法で得たガラス基材B3、実施例1と同様のGrubbs第二世代触媒(0.01mmol)、ペルフルオロ-2,2-ジメチル-1,3-ジオキソール(1mmol)、及び塩化メチレン10mLを計り入れて、所期の開環メタセシス重合を進行させる。基材を取りだし、メタノールで洗浄することで、フッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材(基材C20)を得る。また一連の反応を以下に示す。式中nは繰り返し単位を示す正の整数である。
<Example 20>
Production of glass substrate into which organic group containing fluorine atom and carbon-carbon double bond is introduced by ring-opening metathesis polymerization Glass substrate B3 obtained by the same method as Example 3, Grubbs similar to Example 1 A second generation catalyst (0.01 mmol), perfluoro-2,2-dimethyl-1,3-dioxole (1 mmol), and 10 mL of methylene chloride are metered in to proceed with the desired ring-opening metathesis polymerization. The substrate is taken out and washed with methanol to obtain a glass substrate (substrate C20) into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced. A series of reactions are shown below. In the formula, n is a positive integer indicating a repeating unit.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
<実施例21>
クロスメタセシスによるフッ素原子と炭素-炭素二重結合とを含む有機基が導入された金基材の製造
 エタノールとイオン交換水で洗浄した清浄なシリコンウェハーに、はじめに、減圧下、金を蒸着することで金基材を得て、次に、4-メルカプトー1-ブタノールのエタノール溶液で処理することで、ヒドロキシ基末端を有する金基材を得る(A21)。アリルトリクロロシランのジメチルアセトアミド溶液をスピンコート法によって基材A21に塗布する。これをデシケータ内で乾燥させ、メタノールで表面を洗浄することで、表面に炭素-炭素二重結合を導入した金基材(基材B21)を得る。ガラスシャーレに、実施例1と同様のGrubbs第二世代触媒(0.01mmol)、C17-CH=CH(1mmol)及び塩化メチレン10mLを計り入れ、得られた溶液に基材B1を沈める。室温で24時間放置後、基材を取りだし、メタノールで洗浄することで、フッ素原子と炭素-炭素二重結合とを含む有機基が導入されたガラス基材(基材C21)を得る。一連の反応を以下に示す。
<Example 21>
Production of gold base material into which organic groups including fluorine atoms and carbon-carbon double bonds are introduced by cross-metathesis Gold base material is first deposited on a clean silicon wafer washed with ethanol and ion-exchanged water under reduced pressure. Next, by treatment with an ethanol solution of 4-mercapto-1-butanol, a gold substrate having a hydroxyl group terminal is obtained (A21). A dimethylacetamide solution of allyltrichlorosilane is applied to the substrate A21 by spin coating. This is dried in a desiccator and the surface is washed with methanol to obtain a gold base material (base material B21) having a carbon-carbon double bond introduced on the surface. In a glass petri dish, the same Grubbs second generation catalyst (0.01 mmol) as in Example 1, C 8 F 17 —CH═CH 2 (1 mmol) and 10 mL of methylene chloride were weighed, and base material B1 was added to the resulting solution. Sink. After leaving at room temperature for 24 hours, the substrate is taken out and washed with methanol to obtain a glass substrate (substrate C21) into which organic groups containing fluorine atoms and carbon-carbon double bonds are introduced. A series of reactions is shown below.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2015年3月3日出願の日本特許出願(特願2015-041642)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on March 3, 2015 (Japanese Patent Application No. 2015-041642), the contents of which are incorporated herein by reference.
 本発明によれば、含フッ素オレフィンを用いたメタセシス反応によって簡便かつ効率的にフッ素原子と炭素-炭素二重結合とを含む有機基が導入された基材を製造することができる。 According to the present invention, a base material into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced can be easily and efficiently produced by a metathesis reaction using a fluorine-containing olefin.

Claims (11)

  1.  炭素-炭素二重結合を含む有機基が導入された基材表面において、オレフィンメタセシス反応活性を有する金属-カルベン錯体化合物(10)の存在下、前記炭素-炭素二重結合を下記式(21)で表されるオレフィン化合物とメタセシス反応させることにより、フッ素原子と炭素-炭素二重結合とを含む有機基が導入された基材を製造する方法。
    Figure JPOXMLDOC01-appb-C000001
     ただし、式中の記号は以下の意味を表す。
     Rはフッ素原子、炭素数1~12の(ペル)フルオロアルキル基、炭素数1~12の(ペル)フルオロアルコキシ基、エーテル性酸素原子を含む炭素数1~200の(ペル)フルオロアルキル基、及びエーテル性酸素原子を含む炭素数2~200の(ペル)フルオロアルコキシ基からなる群から選ばれる基である。
     X11~X13はそれぞれ独立して、下記基(i)、基(ii)、基(v)及び基(vi)からなる群から選ばれる基である。X12及びX13は互いに結合して環を形成してもよい。
    基(i):水素原子。
    基(ii):ハロゲン原子。
    基(v):炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数5~20のアリール基、炭素数5~20のアリールオキシ基、炭素数1~12の(ペル)ハロゲン化アルキル基、炭素数1~12の(ペル)ハロゲン化アルコキシ基、炭素数5~20の(ペル)ハロゲン化アリール基、及び炭素数5~20の(ペル)ハロゲン化アリールオキシ基からなる群から選ばれる基。
    基(vi):さらに、酸素原子、窒素原子、イオウ原子、リン原子、及びケイ素原子からなる群から選ばれる原子を1以上含む前記基(v)。
    In the presence of a metal-carbene complex compound (10) having an olefin metathesis reaction activity on the surface of a base material into which an organic group containing a carbon-carbon double bond has been introduced, the carbon-carbon double bond is represented by the following formula (21): A process for producing a base material into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced by a metathesis reaction with an olefin compound represented by the formula:
    Figure JPOXMLDOC01-appb-C000001
    However, the symbol in a formula represents the following meaning.
    R F is a fluorine atom, a (per) fluoroalkyl group having 1 to 12 carbon atoms, a (per) fluoroalkoxy group having 1 to 12 carbon atoms, or a (per) fluoroalkyl group having 1 to 200 carbon atoms containing an etheric oxygen atom. And a group selected from the group consisting of (per) fluoroalkoxy groups having 2 to 200 carbon atoms and containing an etheric oxygen atom.
    X 11 to X 13 are each independently a group selected from the group consisting of the following group (i), group (ii), group (v) and group (vi). X 12 and X 13 may combine with each other to form a ring.
    Group (i): a hydrogen atom.
    Group (ii): a halogen atom.
    Group (v): an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryl group having 5 to 20 carbon atoms, an aryloxy group having 5 to 20 carbon atoms, ) A halogenated alkyl group, a (per) halogenated alkoxy group having 1 to 12 carbon atoms, a (per) halogenated aryl group having 5 to 20 carbon atoms, and a (per) halogenated aryloxy group having 5 to 20 carbon atoms A group selected from the group consisting of
    Group (vi): The group (v) further containing one or more atoms selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom.
  2.  前記基材がガラス又は樹脂である請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the base material is glass or resin.
  3.  前記基材表面に炭素-炭素二重結合導入剤を反応させて基材表面に炭素-炭素二重結合を導入する請求項1または2に記載の製造方法。 The method according to claim 1 or 2, wherein a carbon-carbon double bond introducing agent is reacted with the surface of the base material to introduce a carbon-carbon double bond into the surface of the base material.
  4.  前記炭素-炭素二重結合導入剤が、分子内に炭素-炭素二重結合を有するシランカップリング剤である請求項3に記載の製造方法。 The process according to claim 3, wherein the carbon-carbon double bond introducing agent is a silane coupling agent having a carbon-carbon double bond in the molecule.
  5.  前記基材が樹脂フィルムであり、かつ、前記炭素-炭素二重結合導入剤が、多官能(メタ)アクリレートである請求項3または4に記載の製造方法。 The production method according to claim 3 or 4, wherein the base material is a resin film, and the carbon-carbon double bond introducing agent is a polyfunctional (meth) acrylate.
  6.  前記金属-カルベン錯体化合物(10)の金属がルテニウムである請求項1~5のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the metal of the metal-carbene complex compound (10) is ruthenium.
  7.  前記金属-カルベン錯体化合物(10)の金属がモリブデンまたはタングステンであり、かつ、前記金属-カルベン錯体化合物(10)が配位子[L]として、イミド配位子、および、酸素原子が二座配位した配位子を有する請求項1~5のいずれか一項に記載の製造方法。 The metal of the metal-carbene complex compound (10) is molybdenum or tungsten, the metal-carbene complex compound (10) is a ligand [L], an imide ligand, and an oxygen atom is bidentate. The production method according to any one of claims 1 to 5, which has a coordinated ligand.
  8.  前記式(21)で表わされるオレフィン化合物が、1,1-ジフルオロオレフィンである請求項1~7のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 7, wherein the olefin compound represented by the formula (21) is 1,1-difluoroolefin.
  9.  前記式(21)で表わされるオレフィン化合物のRがエーテル性酸素原子を含む炭素数1~200の(ペル)フルオロアルキル基、及びエーテル性酸素原子を含む炭素数2~200の(ペル)フルオロアルコキシ基からなる群から選ばれる基である請求項1~8のいずれか一項に記載の製造方法。 In the olefin compound represented by the formula (21), R F is a (per) fluoroalkyl group having 1 to 200 carbon atoms containing an etheric oxygen atom, and (per) fluoro having 2 to 200 carbon atoms containing an etheric oxygen atom. The production method according to any one of claims 1 to 8, which is a group selected from the group consisting of alkoxy groups.
  10.  前記メタセシス反応の温度が0~150℃である、請求項1~9のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 9, wherein a temperature of the metathesis reaction is 0 to 150 ° C.
  11.  前記メタセシス反応に溶媒を用いない請求項1~10のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 10, wherein no solvent is used in the metathesis reaction.
PCT/JP2016/056122 2015-03-03 2016-02-29 Method for manufacturing substrate into which organic group including fluorine atom and carbon-carbon double bond is introduced WO2016140201A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017503651A JP6593433B2 (en) 2015-03-03 2016-02-29 Method for producing a base material into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015041642 2015-03-03
JP2015-041642 2015-03-03

Publications (1)

Publication Number Publication Date
WO2016140201A1 true WO2016140201A1 (en) 2016-09-09

Family

ID=56848229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056122 WO2016140201A1 (en) 2015-03-03 2016-02-29 Method for manufacturing substrate into which organic group including fluorine atom and carbon-carbon double bond is introduced

Country Status (2)

Country Link
JP (1) JP6593433B2 (en)
WO (1) WO2016140201A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159641A1 (en) * 2017-03-02 2018-09-07 Agc株式会社 Production method for fluorine-containing silane compound, and fluorine-containing silane compound
CN110294704A (en) * 2018-03-24 2019-10-01 复旦大学 A method of it prepares containing single fluoroalkyl vinyl hydrocarbon compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363386A (en) * 1990-09-28 1992-12-16 Ppg Ind Inc Article having water repellent surface and its manufacture
JP2002517372A (en) * 1998-06-10 2002-06-18 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Water repellent surface treatment
JP2003064348A (en) * 2001-08-28 2003-03-05 Sony Corp Antifouling surface treating agent and composition for antifouling surface treatment
WO2006046699A1 (en) * 2004-10-28 2006-05-04 Asahi Glass Company, Limited Process for production of substrates having water-repellent hydrophilic films on the surface

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3192680B2 (en) * 1991-04-26 2001-07-30 旭硝子株式会社 Method of coating substrate
AU2001271430B2 (en) * 2000-06-23 2006-09-07 California Institute Of Technology Synthesis of functionalized and unfunctionalized olefins via cross and ring-closing metathesis
WO2016129600A1 (en) * 2015-02-09 2016-08-18 旭硝子株式会社 Method for producing fluorine-containing polymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363386A (en) * 1990-09-28 1992-12-16 Ppg Ind Inc Article having water repellent surface and its manufacture
JP2002517372A (en) * 1998-06-10 2002-06-18 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Water repellent surface treatment
JP2003064348A (en) * 2001-08-28 2003-03-05 Sony Corp Antifouling surface treating agent and composition for antifouling surface treatment
WO2006046699A1 (en) * 2004-10-28 2006-05-04 Asahi Glass Company, Limited Process for production of substrates having water-repellent hydrophilic films on the surface

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159641A1 (en) * 2017-03-02 2018-09-07 Agc株式会社 Production method for fluorine-containing silane compound, and fluorine-containing silane compound
JPWO2018159641A1 (en) * 2017-03-02 2019-12-19 Agc株式会社 Method for producing fluorine-containing silane compound and fluorine-containing silane compound
JP7405613B2 (en) 2017-03-02 2023-12-26 Agc株式会社 Method for producing fluorine-containing silane compound and fluorine-containing silane compound
CN110294704A (en) * 2018-03-24 2019-10-01 复旦大学 A method of it prepares containing single fluoroalkyl vinyl hydrocarbon compound

Also Published As

Publication number Publication date
JPWO2016140201A1 (en) 2018-01-25
JP6593433B2 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
EP3042889B1 (en) Method for producing fluorine-containing olefin
JP6593433B2 (en) Method for producing a base material into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced
JP7331992B2 (en) Fluorine-containing silane compound
JP6673107B2 (en) Method for producing substrate into which organic group containing fluorine atom is introduced
EP3239125B1 (en) Method for producing olefin
JP6583289B2 (en) Method for producing chlorine-containing fluorine-containing olefin
JP6593351B2 (en) Method for producing fluoropolymer
KR20220020939A (en) Process for the preparation of alkanes
EP3266758B1 (en) Production method for fluorine-containing olefin compound
JP6669085B2 (en) Method for producing fluoropolymer
JP2016160231A (en) Method for producing fluorine-containing olefin
JP6384363B2 (en) Method for producing fluorine-containing olefin
CN109293575A (en) A kind of chiral monomer and preparation method thereof
JP5840709B2 (en) Process for producing aryl, heteroaryl or alkenyl substituted unsaturated hydrocarbons
JP2018024600A (en) Method for producing fluorine-containing olefin
JP6413848B2 (en) Method for producing fluorine-containing symmetric olefin
WO2016129608A1 (en) Method for producing fluorine-containing polymer
WO2016129607A1 (en) Method for manufacturing fluorine-containing cyclo olefin
JP2016160230A (en) Method for producing fluorine-containing olefin
JPWO2016129602A1 (en) Method for producing fluorine-containing diene
JP5293651B2 (en) Method for producing julolidine derivative
CN116940545A (en) Method for producing fluorine-containing compound, and fluorine-containing compound
JP2016145174A (en) Method for producing fluorine-containing diene
JP2016160235A (en) Method for producing octa-fluoro-pentene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503651

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758894

Country of ref document: EP

Kind code of ref document: A1