WO2016136896A1 - Refractory resin composition - Google Patents

Refractory resin composition Download PDF

Info

Publication number
WO2016136896A1
WO2016136896A1 PCT/JP2016/055672 JP2016055672W WO2016136896A1 WO 2016136896 A1 WO2016136896 A1 WO 2016136896A1 JP 2016055672 W JP2016055672 W JP 2016055672W WO 2016136896 A1 WO2016136896 A1 WO 2016136896A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
parts
weight
resins
Prior art date
Application number
PCT/JP2016/055672
Other languages
French (fr)
Japanese (ja)
Inventor
倫男 島本
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2016513153A priority Critical patent/JP6769867B2/en
Publication of WO2016136896A1 publication Critical patent/WO2016136896A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • Patent Document 1 is a refractory resin composition containing an epoxy resin, a phosphorus compound, neutralized thermally expandable graphite, and an inorganic filler, each content being 100 parts by weight of the epoxy resin.
  • the phosphorus compound is 50 to 150 parts by weight
  • the neutralized thermally expandable graphite is 15 to 40 parts by weight
  • the inorganic filler is 30 to 500 parts by weight.
  • a refractory resin composition is disclosed in which the total amount of expansive graphite and inorganic filler is 200 to 600 parts by weight.
  • Patent Document 2 discloses a refractory resin composition comprising 100 parts by weight of an epoxy resin, 10 to 300 parts by weight of neutralized thermally expandable graphite and 50 to 500 parts by weight of an inorganic filler. Yes.
  • Patent Documents 1 and 2 an epoxy resin is used as a binder of the refractory resin composition, and the refractory resin composition is molded into a thermally expandable sheet by a conventionally known molding method such as press molding.
  • a thermosetting resin other than an epoxy resin is used as a binder.
  • Patent Documents 1 and 2 it is described that the mechanical properties of the refractory resin composition are greatly reduced when the blending amount of the expanded graphite and the inorganic filler is increased. Moreover, it has not been studied that a large amount of expanded graphite and inorganic filler can be contained when a thermally expandable sheet made of a refractory resin composition is produced by coating.
  • thermosetting resin other than an epoxy resin or other liquid binder suitable for coating as a binder in a fireproof resin composition thereby expanding graphite and an inorganic filler.
  • a binder, a phosphorus compound, thermally expandable graphite, and an inorganic filler are included, and the binder includes a phenol resin, a melamine resin, a urea resin, an unsaturated polyester resin, an alkyd resin, a polyurethane resin, At least one thermosetting resin selected from silicone resins and thermosetting polyimides; at least one thermoplastic resin selected from acrylic resins, vinyl acetate resins, polyvinyl alcohol resins, and polyvinyl butyral resins; rubber A latex; or a combination thereof, and a fire resistance in which the phosphorus compound is 50 to 500 parts by weight per 100 parts by weight of the binder and the total amount of the thermally expandable graphite and the inorganic filler is 50 to 1000 parts by weight.
  • a resin composition is provided.
  • the fire resistance of the fire resistant resin composition is excellent, excellent fire resistance can be imparted by applying a sheet made of the fire resistant resin composition to a building or the like.
  • the fire resistant resin composition of the present invention contains a binder, a phosphorus compound, thermally expandable graphite, and an inorganic filler.
  • the binder is at least one thermosetting selected from phenol resin, melamine resin, urea resin (urea resin), unsaturated polyester resin, alkyd resin, polyurethane resin, silicone resin, and thermosetting polyimide. Resin.
  • a thermoplastic resin suitable for application of the refractory resin composition for example, an acrylic resin, a vinyl acetate resin (including ethylene vinyl acetate copolymer (EVA), polyvinyl acetate (PVAc), etc.) , At least one thermoplastic resin selected from polyvinyl alcohol resin and polyvinyl butyral resin.
  • a binder is rubber or latex.
  • the above thermosetting resins, thermoplastic resins, rubbers and latexes may be used alone or in combination.
  • the phosphorus compound, thermally expandable graphite, and inorganic filler are added to the binder used in the present invention.
  • the fire resistance performance of the fire resistant resin composition of the present invention is manifested by these three components exhibiting their respective properties.
  • the heat-expandable graphite forms an expanded heat insulating layer during heating to prevent heat transfer.
  • the inorganic filler increases the heat capacity.
  • a phosphorus compound expresses the shape retention ability of an expansion heat insulation layer and an inorganic filler.
  • the phosphorus compound is not particularly limited, and examples thereof include red phosphorus; phosphate ester; phosphate metal salt; ammonium polyphosphates; melamine polyphosphate; and a compound represented by the following general formula (1).
  • R 1 and R 3 are the same or different and each represents hydrogen, a linear or branched alkyl group having 1 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms.
  • R 2 is a hydroxyl group, a linear or branched alkyl group having 1 to 16 carbon atoms, a linear or branched alkoxyl group having 1 to 16 carbon atoms, an aryl group having 6 to 16 carbon atoms, or carbon Represents an aryloxy group of formula 6-16.
  • red phosphorus can be used as red phosphorus. From the viewpoint of safety such as moisture resistance and not spontaneous ignition during kneading, those in which the surface of red phosphorus particles is coated with a resin are preferable.
  • Phosphate esters include phosphoric aryl esters such as triphenyl phosphate, tricresyl phosphate (TCP), trixylenyl phosphate, cresyl diphenyl phosphate and xylenyl diphenyl phosphate; alkyl phosphate esters such as trimethyl phosphate Bisphenol A bis, resorcinol bisdiphenyl phosphate, resorcinol bis-diphenyl phosphate, resorcinol bis-dixylenyl phosphate, and other bisphenol aromatic condensed phosphates.
  • TCP tricresyl phosphate
  • alkyl phosphate esters such as trimethyl phosphate Bisphenol A bis, resorcinol bisdiphenyl phosphate, resorcinol bis-diphenyl phosphate, resorcinol bis-dixylenyl phosphate, and other bisphenol aromatic condensed
  • phosphate esters such as tricresyl phosphate (TCP) and cresyl diphenyl phosphate also function as phosphate plasticizers that adjust the melt viscosity of the matrix.
  • TCP tricresyl phosphate
  • cresyl diphenyl phosphate also function as phosphate plasticizers that adjust the melt viscosity of the matrix.
  • a preferred phosphate ester is tricresyl phosphate (TCP).
  • metal phosphate examples include sodium phosphate, potassium phosphate, and magnesium phosphate.
  • ammonium polyphosphates examples include ammonium polyphosphate and melamine-modified ammonium polyphosphate. From the viewpoint of handleability and the like, ammonium polyphosphate is preferable.
  • Commercially available products include “AP422” and “AP462” manufactured by Hoechst, “Sumisafe P” manufactured by Sumitomo Chemical Co., Ltd., and “Terrage C60” manufactured by Chisso.
  • Examples of the compound represented by the general formula (1) include methylphosphonic acid, dimethyl methylphosphonate, diethyl methylphosphonate, ethylphosphonic acid, propylphosphonic acid, butylphosphonic acid, 2-methylpropylphosphonic acid, t-butylphosphonic acid.
  • Acid 2,3-dimethyl-butylphosphonic acid, octylphosphonic acid, phenylphosphonic acid, dioctylphenylphosphonate, dimethylphosphinic acid, methylethylphosphinic acid, methylpropylphosphinic acid, diethylphosphinic acid, dioctylphosphinic acid, phenylphosphinic acid, Examples include diethylphenylphosphinic acid, diphenylphosphinic acid, bis (4-methoxyphenyl) phosphinic acid and the like.
  • the above phosphorus compounds may be used alone or in combination of two or more.
  • the phosphorus compound is selected from the group consisting of red phosphorus; phosphate ester; metal phosphate; ammonium polyphosphate; and melamine polyphosphate, a compound represented by the following general formula (1): At least one.
  • the phosphorus compound is at least one selected from the group consisting of a phosphate ester and ammonium polyphosphate.
  • the heat-expandable graphite used in the present invention is a conventionally known substance, and powders such as natural scaly graphite, pyrolytic graphite, and quiche graphite are mixed with an inorganic acid such as concentrated sulfuric acid, nitric acid, and selenic acid, and concentrated nitric acid, perchlorine. Crystals that have been treated with acids, perchlorates, permanganates, dichromates, hydrogen peroxide, and other strong oxidants to produce graphite intercalation compounds, while maintaining the layered structure of carbon A compound.
  • the particle size of the thermally expandable graphite used in the present invention is preferably 20 to 200 mesh. If the particle size is coarser than 200 mesh, the degree of expansion of graphite is large, and the desired fireproof heat insulating layer is obtained. If the particle size is smaller than 20 mesh, the dispersibility is good when kneaded with the resin.
  • Examples of the inorganic filler used in the present invention include silica, diatomaceous earth, alumina, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, ferrites, calcium hydroxide, magnesium hydroxide, Aluminum hydroxide, basic magnesium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, dawn night, hydrotalcite, calcium sulfate, barium sulfate, gypsum fiber, calcium silicate, talc, clay, mica, montmorillonite, bentonite , Activated clay, sepiolite, imogolite, sericite, glass fiber, glass beads, silica-based balun, aluminum nitride, boron nitride, silicon nitride, carbon black, graphite, carbon fiber, carbon balun, charcoal powder, various metals Candidates include potassium titanate, magnesium sulfate “MOS”, lead zirconate titanate, aluminum borate, molybden
  • the metal salt, oxide, or hydroxide of a metal belonging to Group II or Group III of the Periodic Table has a property of foaming during combustion to form a foamed fired product. Is particularly preferable. Specific examples include calcium carbonate and magnesium carbonate.
  • the inorganic filler functions as an aggregate, it is considered that it contributes to an improvement in residual strength and an increase in heat capacity.
  • the said inorganic filler may be used independently and 2 or more types may be used together.
  • the particle size of the inorganic filler is preferably 0.5 to 100 ⁇ m, more preferably 1 to 50 ⁇ m.
  • the dispersibility greatly affects the performance, so that the particle size is preferably small, but if it is 0.5 ⁇ m or more, the dispersibility is good.
  • the addition amount is large, the viscosity of the resin composition increases and moldability decreases as the high filling progresses, but the viscosity of the resin composition can be decreased by increasing the particle size.
  • the particle size of 100 micrometers or less is desirable at the point of the surface property of a molded object, and the mechanical physical property of a resin composition.
  • water-containing inorganic substances such as magnesium hydroxide and aluminum hydroxide are endothermic due to water generated by the dehydration reaction during heating, and the temperature rise is reduced and high heat resistance is obtained. And, an oxide remains as a heating residue, and this is particularly preferable in that the residue strength is improved by acting as an aggregate.
  • the particle size of the hydrated inorganic material When the particle size of the hydrated inorganic material is small, it becomes bulky and it is difficult to achieve high filling. Therefore, a large particle size is preferable for high filling in order to enhance the dehydration effect. Specifically, it is known that when the particle size is 18 ⁇ m, the filling limit amount is improved by about 1.5 times compared to the particle size of 1.5 ⁇ m. Further, by combining a large particle size and a small particle size, higher packing can be achieved.
  • inorganic fillers include, for example, as aluminum hydroxide, “H-42M” (made by Showa Denko) having a particle size of 1 ⁇ m, “H-31” (made by Showa Denko) having a particle size of 18 ⁇ m; calcium carbonate Examples thereof include “Whiteon SB red” (manufactured by Shiraishi Calcium Co., Ltd.) having a particle diameter of 1.8 ⁇ m, “BF300” (manufactured by Shiraishi Calcium Co., Ltd.) having a particle diameter of 8 ⁇ m, and the like.
  • the phosphorus compound is 50 to 500 parts by weight per 100 parts by weight of the binder, and the total amount of the thermally expandable graphite and the inorganic filler is 50 to 1000 parts by weight.
  • the phosphorus compound is 50 parts by weight or more, the shape-retaining property (residual hardness) of the refractory resin composition and the sheet composed thereof is obtained, and when the phosphorus compound is 500 parts by weight or less, the refractory resin composition and The mechanical properties of the resulting sheet are maintained.
  • the phosphorus compound is 50 to 300 parts by weight per 100 parts by weight of the binder.
  • the total amount of the thermally expandable graphite and the inorganic filler is 50 parts by weight or more, the amount of residue (expansion ratio) after heating of the refractory resin composition and the sheet composed thereof is sufficient, and sufficient fire resistance performance is obtained.
  • the obtained amount is 1000 parts by weight or less, the mechanical properties of the refractory resin composition and the sheet comprising the same are maintained.
  • the total amount of the thermally expandable graphite and the inorganic filler is preferably 550 to 1000 parts by weight with respect to 100 parts by weight of the binder and the total amount of the thermally expandable graphite and the inorganic filler.
  • the heat-expandable graphite is usually 10 to 500 parts by weight, preferably 30 to 300 parts by weight, per 100 parts by weight of the binder.
  • the inorganic filler is usually 30 to 700 parts by weight, preferably 30 to 500 parts by weight, per 100 parts by weight of the binder.
  • thermally expandable graphite by combining thermally expandable graphite and a phosphorus compound, the dispersion of thermally expandable graphite at the time of combustion is suppressed and the shape is maintained. If there is too much thermally expandable graphite, the graphite expanded at the time of combustion However, it is preferable that the heat-expandable graphite and the phosphorous are not sufficiently obtained at the time of heating.
  • the range of thermally expandable graphite: phosphorus compound 1: 3 to 1: 100 is excellent. Even if the composition itself is flame retardant, if the shape retentivity is insufficient, the brittle residue collapses and penetrates the flame, so depending on whether the shape retentivity is sufficient, the fire resistant composition The application forms are greatly different. More preferably, the thermal expansive graphite: phosphorus compound is in the range of 1: 5 to 1:60, particularly preferably 1:10 to 1:40.
  • the fireproof resin composition of the present invention further includes antioxidants such as phenols, amines, and sulfurs, metal damage inhibitors, antistatic agents, stabilizers, and crosslinking agents as long as the physical properties thereof are not impaired.
  • antioxidants such as phenols, amines, and sulfurs
  • metal damage inhibitors such as phenols, amines, and sulfurs
  • antistatic agents such as phenols, amines, and sulfurs
  • antistatic agents such as sodium phenols, sodium amines, sodium amines, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium
  • the refractory resin composition of the present invention can be obtained by kneading each of the above components using a kneading apparatus such as a single screw extruder, a twin screw extruder, a Banbury mixer, a kneader mixer, or a roll.
  • the resin composition can be formed into a sheet by a conventionally known molding method such as coating, press molding, extrusion molding, or calendar molding.
  • the refractory resin composition of the present invention is applied to a base material such as aluminum, iron, or stainless steel, and then dried.
  • the present invention also includes a sheet manufactured from a fireproof resin composition and a method for manufacturing a fireproof sheet by coating. Moreover, this invention also includes the fireproof sheet by which the base material is laminated
  • the fiber sheet is impregnated with the refractory resin composition.
  • the lower substrate 3b is placed on a moving device such as a roller base 2 and moved in the direction of the arrow, and at the same time, the upper substrate 3a is placed above the lower substrate 3b.
  • the affixed fiber sheet 4 is unwound and placed.
  • the fireproof resin composition 1 is dropped toward the fiber sheet 4 and impregnated into the fiber sheet 4 to form the resin sheet 5.
  • the thermally expandable fireproof sheet 7 can be manufactured by forming the resin sheet 5 and the lower base material 3b, to which the upper base material 3a is attached, through a roll 6 and curing the sheet.
  • the upper and lower substrates may be the same material or different materials, but are usually woven or non-woven fabrics, and the fibers used for the woven or non-woven fabrics are not particularly limited.
  • the fiber is preferably a non-combustible material or a semi-incombustible material, such as glass fiber, ceramic fiber, cellulose fiber, polyester fiber, carbon fiber, graphite fiber, and thermosetting resin fiber.
  • the fiber sheet is a sheet formed by entwining fibers, and is preferably a non-combustible material or a semi-incombustible material.
  • the fiber include glass fiber, ceramic fiber, cellulose fiber, polyester fiber, carbon fiber, graphite fiber, and thermosetting resin fiber. Glass cloth formed from glass fibers is preferred.
  • the fire resistant resin composition of the present invention can be used for imparting fire resistance to building materials.
  • windows including sliding windows, open windows, raising / lowering windows, etc.
  • shojis including sliding windows, open windows, raising / lowering windows, etc.
  • doors ie doors
  • brans ie doors
  • bams etc .
  • fire-penetrating parts joints
  • the composition can be placed to reduce or prevent fire and smoke intrusion.
  • Example 1 Production of fire-resistant resin composition by pressing Phenol resin (DIC 5010), blending amounts shown in Table 1 (units of each component are parts by weight), tricresyl phosphate (Sanso Sizer, Shin Nippon Science Co., Ltd.), heat Expandable graphite (“GREPEG” manufactured by Tosoh Corporation), aluminum hydroxide (“H-31” manufactured by Showa Denko KK), and calcium carbonate (“Whiteon BF-300” manufactured by Bihoku Powder Chemical Co., Ltd.) are kneaded with a kneading roll. Thus, a fire resistant resin composition was obtained. The obtained fire-resistant resin composition was applied to a 0.5 mm-thick zinc iron plate and pressed and cured at 150 ° C.
  • Fire resistance evaluation (expansion magnification) A test piece (length 100 mm, width 100 mm, thickness 2.0 mm) prepared from the obtained molded body was supplied to an electric furnace and heated at 600 ° C. for 30 minutes, and then the thickness of the test piece was measured ( The thickness of the test piece after heating) / (thickness of the test piece before heating) was calculated as the expansion ratio. A case where the expansion ratio was 10 or more was judged good (Good), and a case where the expansion ratio was less than 10 was judged Poor.
  • the heated test piece whose expansion ratio was measured was supplied to a compression tester (“Finger Filling Tester” manufactured by Kato Tech Co., Ltd.), compressed at a speed of 0.1 cm / sec with a 0.25 cm 2 indenter, and fractured. Point stress was measured. A case where the residual hardness was 0.3 or more was evaluated as good, and a case where the residual hardness was less than 0.3 was determined as poor.
  • a sample was obtained by dissolving each component in a solution (50%) dissolved in acetone, volatilizing acetone and forming a sheet.
  • Urea resin and melamine resin were obtained by adding 5 PHR (parts by weight) of formaldehyde solution (Wako Pure Chemicals) to the formulation and press molding.
  • the resin used is as follows.
  • Example 16 Production of heat-expandable fire-resistant sheet by coating The same fire-resistant resin composition as in Examples 1 and 2 was formed from glass cloth from above with a base PET nonwoven fabric (Ecule 3301A manufactured by Toyobo Co., Ltd.) placed underneath. The thickness of the fiber sheet was adjusted by dropping on the fiber sheet and laminating the fiber sheet from the upper surface and passing through the roll gap.
  • a base PET nonwoven fabric Ecule 3301A manufactured by Toyobo Co., Ltd.
  • this laminated sheet was placed in an oven at 150 ° C. for 30 minutes and cured to obtain a 1.6 mm thick thermally expandable fireproof sheet.
  • the results were good both in expansion ratio and residual hardness.
  • this invention can also take the following structures.
  • [1] Contains a binder, a phosphorus compound, thermally expandable graphite, and an inorganic filler.
  • the binder includes a phenol resin, a melamine resin, a urea resin, an unsaturated polyester resin, an alkyd resin, a polyurethane resin, a silicone resin, and thermosetting.
  • the phosphorus compound is at least one selected from the group consisting of red phosphorus, phosphate ester, metal phosphate, ammonium polyphosphate, melamine polyphosphate, and a compound represented by the following general formula (1)
  • the fire resistant resin composition according to the above [1].
  • R 1 and R 3 are the same or different and each represents hydrogen, a linear or branched alkyl group having 1 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms.
  • R 2 is a hydroxyl group, a linear or branched alkyl group having 1 to 16 carbon atoms, a linear or branched alkoxyl group having 1 to 16 carbon atoms, an aryl group having 6 to 16 carbon atoms, or carbon Represents an aryloxy group of formula 6-16.
  • phosphate ester is at least one selected from the group consisting of an aryl phosphate ester, an alkyl phosphate ester, and a bisphenol aromatic condensed phosphate ester.
  • Fire resistant resin composition [5] The fire resistant resin composition according to any one of [1] to [4], wherein the phosphorus compound is 50 to 300 parts by weight per 100 parts by weight of the binder. [6] The fire-resistant resin composition according to any one of [1] to [5], wherein the thermally expandable graphite is 10 to 500 parts by weight per 100 parts by weight of the binder. [7] The fire-resistant resin composition according to any one of [1] to [5], wherein the thermally expandable graphite is 30 to 300 parts by weight per 100 parts by weight of the binder.
  • [12] The refractory resin composition according to any one of [1] to [11] above, wherein the residual hardness of the refractory resin composition after heating is 0.3 or more.
  • a fire-resistant sheet comprising a layer made of the fire-resistant resin composition according to any one of [1] to [12].
  • [14] The fire resistant sheet according to [13], wherein a base material is laminated on one side or both sides of the layer made of the fire resistant resin composition.
  • a method for producing a refractory sheet comprising a layer comprising the refractory resin composition comprising applying the refractory resin composition according to any one of [1] to [12] to a substrate and drying the substrate. .

Abstract

A refractory resin composition which comprises a binder, a phosphorus compound, heat-expandable graphite, and an inorganic filler, wherein the binder comprises at least one thermosetting resin selected from among phenolic resins, melamine resins, urea resins, unsaturated polyester resins, alkyd resins, polyurethane resins, silicone resins, and thermosetting polyimides, at least one thermoplastic resin selected from among acrylic resins, vinyl acetate-based resins, polyvinyl alcohol resins, and polyvinyl butyral resins, a rubber, a latex, or a combination of these, the amount of the phosphorus compound being 50-500 parts by weight and the total amount of the heat-expandable graphite and the inorganic filler being 50-1,000 parts by weight, per 100 parts by weight of the binder.

Description

耐火性樹脂組成物Fireproof resin composition
(関連分野の相互参照)
 本願は、2015年2月25日に出願した特願2015-035482号明細書の優先権の利益を主張するものであり、当該明細書はその全体が参照により本明細書中に援用される。
(技術分野)
 本発明は、耐火性樹脂組成物に関する。
(Cross-reference of related fields)
This application claims the benefit of priority of Japanese Patent Application No. 2015-035482 filed on Feb. 25, 2015, which is hereby incorporated by reference in its entirety.
(Technical field)
The present invention relates to a refractory resin composition.
 建築材料の分野においては、従来から、耐火性が重要な意味を持っている。近年、樹脂材料の用途拡大に伴って、建築材料として耐火性能を付与された樹脂材料が広く用いられるようになってきている。 In the field of building materials, fire resistance has traditionally been important. In recent years, with the expansion of the use of resin materials, resin materials imparted with fire resistance as building materials have been widely used.
 特許文献1は、エポキシ樹脂、リン化合物、中和処理された熱膨張性黒鉛、及び、無機充填剤を含有する耐火性樹脂組成物であって、それぞれの含有量が、該エポキシ樹脂100重量部当たり、リン化合物が50~150重量部、中和処理された熱膨張性黒鉛が15~40重量部、及び無機充填剤が30~500重量部であり、前記リン化合物、中和処理された熱膨張性黒鉛及び無機充填剤の合計量が200~600重量部であることを特徴とする耐火性樹脂組成物について開示している。 Patent Document 1 is a refractory resin composition containing an epoxy resin, a phosphorus compound, neutralized thermally expandable graphite, and an inorganic filler, each content being 100 parts by weight of the epoxy resin. The phosphorus compound is 50 to 150 parts by weight, the neutralized thermally expandable graphite is 15 to 40 parts by weight, and the inorganic filler is 30 to 500 parts by weight. A refractory resin composition is disclosed in which the total amount of expansive graphite and inorganic filler is 200 to 600 parts by weight.
 特許文献2は、エポキシ樹脂100重量部、中和処理された熱膨張性黒鉛10~300重量部及び無機充填剤50~500重量部からなることを特徴とする耐火性樹脂組成物について開示している。 Patent Document 2 discloses a refractory resin composition comprising 100 parts by weight of an epoxy resin, 10 to 300 parts by weight of neutralized thermally expandable graphite and 50 to 500 parts by weight of an inorganic filler. Yes.
特開平11-116776JP-A-11-116776 特開第2000-143941号JP 2000-143941 A
 特許文献1及び2では、耐火性樹脂組成物のバインダーとしてエポキシ樹脂を用い、プレス成形等の従来公知の成形方法により耐火性樹脂組成物を熱膨張性シートに成形している。しかしながら、エポキシ樹脂以外の熱硬化性樹脂をバインダーとして用いた場合にも、十分な耐火性が得られるかどうかは知られていなかった。 In Patent Documents 1 and 2, an epoxy resin is used as a binder of the refractory resin composition, and the refractory resin composition is molded into a thermally expandable sheet by a conventionally known molding method such as press molding. However, it has not been known whether sufficient fire resistance can be obtained even when a thermosetting resin other than an epoxy resin is used as a binder.
 また、特許文献1及び2では、膨張黒鉛及び無機充填剤の配合量が多くなると、耐火性樹脂組成物の機械的物性の低下が大きくなることが記載されていた。また、塗工によって耐火性樹脂組成物からなる熱膨張性シートを製造したときに、膨張黒鉛及び無機充填剤を多量に含有できることについては検討されていなかった。 In Patent Documents 1 and 2, it is described that the mechanical properties of the refractory resin composition are greatly reduced when the blending amount of the expanded graphite and the inorganic filler is increased. Moreover, it has not been studied that a large amount of expanded graphite and inorganic filler can be contained when a thermally expandable sheet made of a refractory resin composition is produced by coating.
 本発明の目的は、優れた耐火性能と機械的物性とを発現する耐火性樹脂組成物及び該耐火性樹脂組成物からなるシートを提供することにある。本発明の別の目的は、塗工に適し、優れた耐火性能と機械的物性とを発現する耐火性樹脂組成物及び該耐火性樹脂組成物からなるシートを提供することにある。 An object of the present invention is to provide a fire resistant resin composition that exhibits excellent fire resistance and mechanical properties, and a sheet comprising the fire resistant resin composition. Another object of the present invention is to provide a fire resistant resin composition suitable for coating and exhibiting excellent fire resistance and mechanical properties, and a sheet comprising the fire resistant resin composition.
 本発明者は、上記の目的を達成すべく、耐火性樹脂組成物におけるバインダーとしてエポキシ樹脂以外の熱硬化性樹脂又は塗工に適したその他の液状バインダーを用いることで、膨張黒鉛及び無機充填剤を高い配合量で充填でき、そのため優れた耐火性が得られることを見出し、本発明を完成するに至った。 In order to achieve the above object, the present inventor uses a thermosetting resin other than an epoxy resin or other liquid binder suitable for coating as a binder in a fireproof resin composition, thereby expanding graphite and an inorganic filler. Has been found to be excellent in fire resistance, and the present invention has been completed.
 本発明の一態様によれば、バインダー、リン化合物、熱膨張性黒鉛、及び無機充填剤を含有し、該バインダーはフェノール樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン樹脂、シリコーン樹脂、及び熱硬化性ポリイミドから選択される少なくとも1種の熱硬化性樹脂;アクリル樹脂、酢酸ビニル系樹脂、ポリビニルアルコール樹脂、及びポリビニルブチラール樹脂から選択される少なくとも1種の熱可塑性樹脂;ゴム;ラテックス;又はそれらの組み合わせからなり、前記バインダー100重量部当たり、リン化合物が50~500重量部であり、熱膨張性黒鉛と無機充填剤との合計量が50~1000重量部である耐火性樹脂組成物が提供される。 According to one embodiment of the present invention, a binder, a phosphorus compound, thermally expandable graphite, and an inorganic filler are included, and the binder includes a phenol resin, a melamine resin, a urea resin, an unsaturated polyester resin, an alkyd resin, a polyurethane resin, At least one thermosetting resin selected from silicone resins and thermosetting polyimides; at least one thermoplastic resin selected from acrylic resins, vinyl acetate resins, polyvinyl alcohol resins, and polyvinyl butyral resins; rubber A latex; or a combination thereof, and a fire resistance in which the phosphorus compound is 50 to 500 parts by weight per 100 parts by weight of the binder and the total amount of the thermally expandable graphite and the inorganic filler is 50 to 1000 parts by weight. A resin composition is provided.
 本発明によれば、耐火性樹脂組成物の耐火性が優れているため、耐火性樹脂組成物からなるシートを建築物等に適用することにより、優れた耐火性を与えることが出来る。 According to the present invention, since the fire resistance of the fire resistant resin composition is excellent, excellent fire resistance can be imparted by applying a sheet made of the fire resistant resin composition to a building or the like.
耐火シートの製造方法の略図。Schematic of the manufacturing method of a fireproof sheet.
 本発明の耐火性樹脂組成物は、バインダー、リン化合物、熱膨張性黒鉛、及び無機充填剤を含有する。 The fire resistant resin composition of the present invention contains a binder, a phosphorus compound, thermally expandable graphite, and an inorganic filler.
 バインダーの一つの例としてはフェノール樹脂、メラミン樹脂、尿素樹脂(ユリア樹脂)、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン樹脂、シリコーン樹脂、及び熱硬化性ポリイミドから選択される少なくとも1種の熱硬化性樹脂が挙げられる。バインダーの別の例としては、耐火性樹脂組成物の塗工に適した熱可塑性樹脂、例えばアクリル樹脂、酢酸ビニル系樹脂(エチレン酢酸ビニルコポリマー(EVA)やポリ酢酸ビニル(PVAc)等を含む)、ポリビニルアルコール樹脂、及びポリビニルブチラール樹脂から選択される少なくとも1種の熱可塑性樹脂が挙げられる。バインダーのまた別の例としては、ゴム又はラテックスが挙げられる。上記の熱硬化性樹脂、熱可塑性樹脂、ゴム及びラテックスは単独で用いても組み合わせ用いてもよい。 One example of the binder is at least one thermosetting selected from phenol resin, melamine resin, urea resin (urea resin), unsaturated polyester resin, alkyd resin, polyurethane resin, silicone resin, and thermosetting polyimide. Resin. As another example of the binder, a thermoplastic resin suitable for application of the refractory resin composition, for example, an acrylic resin, a vinyl acetate resin (including ethylene vinyl acetate copolymer (EVA), polyvinyl acetate (PVAc), etc.) , At least one thermoplastic resin selected from polyvinyl alcohol resin and polyvinyl butyral resin. Another example of a binder is rubber or latex. The above thermosetting resins, thermoplastic resins, rubbers and latexes may be used alone or in combination.
 本発明で用いられるバインダーには、リン化合物、熱膨張性黒鉛、及び、無機充填剤が添加される。本発明の耐火性樹脂組成物の耐火性能は、これら3成分がそれぞれの性質を発揮することにより発現する。具体的には、加熱時に熱膨張性黒鉛が膨張断熱層を形成して熱の伝達を阻止する。無機充填剤は、その際に熱容量を増大させる。リン化合物は、膨張断熱層及び無機充填剤の形状保持能力を発現する。 The phosphorus compound, thermally expandable graphite, and inorganic filler are added to the binder used in the present invention. The fire resistance performance of the fire resistant resin composition of the present invention is manifested by these three components exhibiting their respective properties. Specifically, the heat-expandable graphite forms an expanded heat insulating layer during heating to prevent heat transfer. In this case, the inorganic filler increases the heat capacity. A phosphorus compound expresses the shape retention ability of an expansion heat insulation layer and an inorganic filler.
 上記リン化合物としては特に限定されないが、例えば、赤リン;リン酸エステル;リン酸金属塩;ポリリン酸アンモニウム類;ポリリン酸メラミン;下記一般式(1)で表される化合物等が挙げられる。 The phosphorus compound is not particularly limited, and examples thereof include red phosphorus; phosphate ester; phosphate metal salt; ammonium polyphosphates; melamine polyphosphate; and a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式中、R1 及びR3 は、同一又は異なって、水素、炭素数1~16の直鎖状若しくは分岐状のアルキル基、又は、炭素数6~16のアリール基を示す。R2 は、水酸基、炭素数1~16の直鎖状若しくは分岐状のアルキル基、炭素数1~16の直鎖状若しくは分岐状のアルコキシル基、炭素数6~16のアリール基、又は、炭素数6~16のアリールオキシ基を示す。 In the formula, R 1 and R 3 are the same or different and each represents hydrogen, a linear or branched alkyl group having 1 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms. R 2 is a hydroxyl group, a linear or branched alkyl group having 1 to 16 carbon atoms, a linear or branched alkoxyl group having 1 to 16 carbon atoms, an aryl group having 6 to 16 carbon atoms, or carbon Represents an aryloxy group of formula 6-16.
 赤リンとしては、市販の赤リンを用いることができる。耐湿性、混練時に自然発火しない等の安全性の点から、赤リン粒子の表面を樹脂でコーティングしたもの等が好ましい。 Commercially available red phosphorus can be used as red phosphorus. From the viewpoint of safety such as moisture resistance and not spontaneous ignition during kneading, those in which the surface of red phosphorus particles is coated with a resin are preferable.
 リン酸エステルとしては、リン酸トリフェニル、リン酸トリクレジル(TCP)、リン酸トリキシレニル、リン酸クレジルジフェニル、リン酸キシレニルジフェニル等のリン酸アリールエステル;リン酸トリメチル等のリン酸アルキルエステル;ビスフェノールAビス、レゾルシノールビスジフェニルホスフェート、レゾルシノールビス-ジフェニルホスフェート、レゾルシノールビス-ジキシレニルホスフェートならび等のビスフェノール系芳香族縮合リン酸エステル等が挙げられる。リン酸トリクレジル(TCP)及びリン酸クレジルジフェニル等の一部のリン酸エステルはマトリックスの溶融粘度を調整するリン酸系可塑剤としても機能する。好ましいリン酸エステルはリン酸トリクレジル(TCP)である。 Phosphate esters include phosphoric aryl esters such as triphenyl phosphate, tricresyl phosphate (TCP), trixylenyl phosphate, cresyl diphenyl phosphate and xylenyl diphenyl phosphate; alkyl phosphate esters such as trimethyl phosphate Bisphenol A bis, resorcinol bisdiphenyl phosphate, resorcinol bis-diphenyl phosphate, resorcinol bis-dixylenyl phosphate, and other bisphenol aromatic condensed phosphates. Some phosphate esters such as tricresyl phosphate (TCP) and cresyl diphenyl phosphate also function as phosphate plasticizers that adjust the melt viscosity of the matrix. A preferred phosphate ester is tricresyl phosphate (TCP).
 リン酸金属塩としては、リン酸ナトリウム、リン酸カリウム、リン酸マグネシウム等が挙げられる。 Examples of the metal phosphate include sodium phosphate, potassium phosphate, and magnesium phosphate.
 ポリリン酸アンモニウム類としては、例えば、ポリリン酸アンモニウム、メラミン変性ポリリン酸アンモニウム等が挙げられる。取扱性等の点から、ポリリン酸アンモニウムが好ましい。市販品としては、ヘキスト社製「AP422」、「AP462」、住友化学工業社製「スミセーフP」、チッソ社製「テラージュC60」が挙げられる。 Examples of ammonium polyphosphates include ammonium polyphosphate and melamine-modified ammonium polyphosphate. From the viewpoint of handleability and the like, ammonium polyphosphate is preferable. Commercially available products include “AP422” and “AP462” manufactured by Hoechst, “Sumisafe P” manufactured by Sumitomo Chemical Co., Ltd., and “Terrage C60” manufactured by Chisso.
 上記一般式(1)で表される化合物としては、例えば、メチルホスホン酸、メチルホスホン酸ジメチル、メチルホスホン酸ジエチル、エチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、2-メチルプロピルホスホン酸、t-ブチルホスホン酸、2,3-ジメチル-ブチルホスホン酸、オクチルホスホン酸、フェニルホスホン酸、ジオクチルフェニルホスホネート、ジメチルホスフィン酸、メチルエチルホスフィン酸、メチルプロピルホスフィン酸、ジエチルホスフィン酸、ジオクチルホスフィン酸、フェニルホスフィン酸、ジエチルフェニルホスフィン酸、ジフェニルホスフィン酸、ビス(4-メトキシフェニル)ホスフィン酸等が挙げられる。 Examples of the compound represented by the general formula (1) include methylphosphonic acid, dimethyl methylphosphonate, diethyl methylphosphonate, ethylphosphonic acid, propylphosphonic acid, butylphosphonic acid, 2-methylpropylphosphonic acid, t-butylphosphonic acid. Acid, 2,3-dimethyl-butylphosphonic acid, octylphosphonic acid, phenylphosphonic acid, dioctylphenylphosphonate, dimethylphosphinic acid, methylethylphosphinic acid, methylpropylphosphinic acid, diethylphosphinic acid, dioctylphosphinic acid, phenylphosphinic acid, Examples include diethylphenylphosphinic acid, diphenylphosphinic acid, bis (4-methoxyphenyl) phosphinic acid and the like.
 上記リン化合物は、単独で用いても、2種以上を併用してもよい。 The above phosphorus compounds may be used alone or in combination of two or more.
 一実施形態では、リン化合物は、赤リン;リン酸エステル;リン酸金属塩;ポリリン酸アンモニウム類;及びポリリン酸メラミン、下記一般式(1)で表される化合物;からなる群から選択される少なくとも一つである。 In one embodiment, the phosphorus compound is selected from the group consisting of red phosphorus; phosphate ester; metal phosphate; ammonium polyphosphate; and melamine polyphosphate, a compound represented by the following general formula (1): At least one.
 別の実施形態では、リン化合物は、リン酸エステルおよびポリリン酸アンモニウムからなる群から選択される少なくとも一つである。 In another embodiment, the phosphorus compound is at least one selected from the group consisting of a phosphate ester and ammonium polyphosphate.
 本発明で用いられる熱膨張性黒鉛は、従来公知の物質であり、天然鱗状グラファイト、熱分解グラファイト、キッシュグラファイト等の粉末を濃硫酸、硝酸、セレン酸等の無機酸と、濃硝酸、過塩素酸、過塩素酸塩、過マンガン酸塩、重クロム酸塩、過酸化水素等の強酸化剤とで処理してグラファイト層間化合物を生成させたもので、炭素の層状構造を維持したままの結晶化合物である。 The heat-expandable graphite used in the present invention is a conventionally known substance, and powders such as natural scaly graphite, pyrolytic graphite, and quiche graphite are mixed with an inorganic acid such as concentrated sulfuric acid, nitric acid, and selenic acid, and concentrated nitric acid, perchlorine. Crystals that have been treated with acids, perchlorates, permanganates, dichromates, hydrogen peroxide, and other strong oxidants to produce graphite intercalation compounds, while maintaining the layered structure of carbon A compound.
 本発明で用いられる熱膨張性黒鉛の粒度は、20~200メッシュのものが好ましい。粒度が200メッシュより粗いと、黒鉛の膨張度が大きく、望む耐火断熱層が得られ、粒度が20メッシュより小さいと、樹脂と混練する際、分散性が良好である。 The particle size of the thermally expandable graphite used in the present invention is preferably 20 to 200 mesh. If the particle size is coarser than 200 mesh, the degree of expansion of graphite is large, and the desired fireproof heat insulating layer is obtained. If the particle size is smaller than 20 mesh, the dispersibility is good when kneaded with the resin.
 本発明で用いる無機充填剤としては、例えば、シリカ、珪藻土、アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、フェライト類、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドーンナイト、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、石膏繊維、ケイ酸カルシウム、タルク、クレー、マイカ、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカ系バルン、窒化アルミニウム、窒化ホウ素、窒化ケイ素、カーボンブラック、グラファイト、炭素繊維、炭素バルン、木炭粉末、各種金属粉、チタン酸カリウム、硫酸マグネシウム「MOS」、チタン酸ジルコン酸鉛、アルミニウムボレート、硫化モリブデン、炭化ケイ素、ステンレス繊維、ホウ酸亜鉛、各種磁性粉、スラグ繊維、フライアッシュ、脱水汚泥等が候補に挙げられる。本発明では、周期律表II族又はIII族に属する金属の金属塩、酸化物、又は水酸化物が、燃焼時に発泡して発泡焼成物を形成する性質を有するため、形状保持性を高めるうえで特に好ましい。具体的には、炭酸カルシウム、炭酸マグネシウム等が挙げられる。 Examples of the inorganic filler used in the present invention include silica, diatomaceous earth, alumina, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, ferrites, calcium hydroxide, magnesium hydroxide, Aluminum hydroxide, basic magnesium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, dawn night, hydrotalcite, calcium sulfate, barium sulfate, gypsum fiber, calcium silicate, talc, clay, mica, montmorillonite, bentonite , Activated clay, sepiolite, imogolite, sericite, glass fiber, glass beads, silica-based balun, aluminum nitride, boron nitride, silicon nitride, carbon black, graphite, carbon fiber, carbon balun, charcoal powder, various metals Candidates include potassium titanate, magnesium sulfate “MOS”, lead zirconate titanate, aluminum borate, molybdenum sulfide, silicon carbide, stainless steel fiber, zinc borate, various magnetic powders, slag fiber, fly ash, dehydrated sludge, etc. It is done. In the present invention, the metal salt, oxide, or hydroxide of a metal belonging to Group II or Group III of the Periodic Table has a property of foaming during combustion to form a foamed fired product. Is particularly preferable. Specific examples include calcium carbonate and magnesium carbonate.
 一般的に、上記無機充填剤は、骨材的な働きをすることから、残渣強度の向上及び熱容量の増大に寄与すると考えられる。上記無機充填剤は、単独で用いられてもよく、2種以上が併用されてもよい。 Generally, since the inorganic filler functions as an aggregate, it is considered that it contributes to an improvement in residual strength and an increase in heat capacity. The said inorganic filler may be used independently and 2 or more types may be used together.
 無機充填剤の粒径としては、0.5~100μmが好ましく、より好ましくは1~50μmである。無機充填剤は、添加量が少ないときは、分散性が性能を大きく左右するため、粒径の小さいものが好ましいが、0.5μm以上であると、分散性が良好である。添加量が多いときは、高充填が進むにつれて、樹脂組成物の粘度が高くなり成形性が低下するが、粒径を大きくすることで樹脂組成物の粘度を低下させることができる点から、粒径の大きいものが好ましいが、100μm以下の粒径が成形体の表面性、樹脂組成物の力学的物性の点で望ましい。 The particle size of the inorganic filler is preferably 0.5 to 100 μm, more preferably 1 to 50 μm. When the amount of the inorganic filler added is small, the dispersibility greatly affects the performance, so that the particle size is preferably small, but if it is 0.5 μm or more, the dispersibility is good. When the addition amount is large, the viscosity of the resin composition increases and moldability decreases as the high filling progresses, but the viscosity of the resin composition can be decreased by increasing the particle size. Although a thing with a large diameter is preferable, the particle size of 100 micrometers or less is desirable at the point of the surface property of a molded object, and the mechanical physical property of a resin composition.
 上記無機充填剤の中でも、特に水酸化マグネシウム、水酸化アルミニウム等の含水無機物は、加熱時の脱水反応によって生成した水のために吸熱が起こり、温度上昇が低減されて高い耐熱性が得られる点、及び、加熱残渣として酸化物が残存し、これが骨材となって働くことで残渣強度が向上する点で特に好ましい。 Among the above inorganic fillers, in particular, water-containing inorganic substances such as magnesium hydroxide and aluminum hydroxide are endothermic due to water generated by the dehydration reaction during heating, and the temperature rise is reduced and high heat resistance is obtained. And, an oxide remains as a heating residue, and this is particularly preferable in that the residue strength is improved by acting as an aggregate.
 上記含水無機物の粒径は、小さくなると嵩が大きくなって高充填化が困難となるので、脱水効果を高めるために高充填するには粒径の大きなものが好ましい。具体的には、粒径が18μmでは、1.5μmの粒径に比べて充填限界量が約1.5倍程度向上することが知られている。さらに、粒径の大きいものと小さいものとを組合わせることによって、より高充填化が可能となる。 When the particle size of the hydrated inorganic material is small, it becomes bulky and it is difficult to achieve high filling. Therefore, a large particle size is preferable for high filling in order to enhance the dehydration effect. Specifically, it is known that when the particle size is 18 μm, the filling limit amount is improved by about 1.5 times compared to the particle size of 1.5 μm. Further, by combining a large particle size and a small particle size, higher packing can be achieved.
 上記無機充填剤の市販品では、例えば、水酸化アルミニウムとして、粒径1μmの「H-42M」(昭和電工社製)、粒径18μmの「H-31」(昭和電工社製);炭酸カルシウムとして、粒径1.8μmの「ホワイトンSB赤」(白石カルシウム社製)、粒径8μmの「BF300」(白石カルシウム社製)等が挙げられる。また、粒径の大きい無機充填剤と粒径の小さいものを組み合わせて使用することがより好ましく、組み合わせることによって、さらに高充填化が可能となる。 Commercially available inorganic fillers include, for example, as aluminum hydroxide, “H-42M” (made by Showa Denko) having a particle size of 1 μm, “H-31” (made by Showa Denko) having a particle size of 18 μm; calcium carbonate Examples thereof include “Whiteon SB red” (manufactured by Shiraishi Calcium Co., Ltd.) having a particle diameter of 1.8 μm, “BF300” (manufactured by Shiraishi Calcium Co., Ltd.) having a particle diameter of 8 μm, and the like. In addition, it is more preferable to use a combination of an inorganic filler having a large particle size and one having a small particle size, and the combination can further increase the filling.
 本発明においては、前記バインダー100重量部当たり、リン化合物が50~500重量部であり、熱膨張性黒鉛と無機充填剤との合計量が50~1000重量部である。 In the present invention, the phosphorus compound is 50 to 500 parts by weight per 100 parts by weight of the binder, and the total amount of the thermally expandable graphite and the inorganic filler is 50 to 1000 parts by weight.
 リン化合物が50重量部以上であると、耐火性樹脂組成物及びそれからなるシートの形状保持性(残渣硬さ)が得られ、リン化合物が500重量部以下であると耐火性樹脂組成物及びそれからなるシートの機械的物性が維持される。好ましくはリン化合物は、バインダー100重量部当たり、50~300重量部である。 When the phosphorus compound is 50 parts by weight or more, the shape-retaining property (residual hardness) of the refractory resin composition and the sheet composed thereof is obtained, and when the phosphorus compound is 500 parts by weight or less, the refractory resin composition and The mechanical properties of the resulting sheet are maintained. Preferably, the phosphorus compound is 50 to 300 parts by weight per 100 parts by weight of the binder.
 熱膨張性黒鉛と無機充填剤との合計量が50重量部以上であると、耐火性樹脂組成物及びそれからなるシートの加熱後の残渣量(膨張倍率)が十分であり、十分な耐火性能が得られ、1000重量部以下であると、耐火性樹脂組成物及びそれからなるシートの機械的物性が維持される。 When the total amount of the thermally expandable graphite and the inorganic filler is 50 parts by weight or more, the amount of residue (expansion ratio) after heating of the refractory resin composition and the sheet composed thereof is sufficient, and sufficient fire resistance performance is obtained. When the obtained amount is 1000 parts by weight or less, the mechanical properties of the refractory resin composition and the sheet comprising the same are maintained.
 一つの実施形態において、熱膨張性黒鉛と無機充填剤との合計量は好ましくはバインダー100重量部当たり、熱膨張性黒鉛と無機充填剤との合計量が550~1000重量部である。熱膨張性黒鉛はバインダー100重量部当たり、通常10~500重量部、好ましくは30~300重量部である。無機充填剤はバインダー100重量部当たり、通常30~700重量部、好ましくは30~500重量部である。 In one embodiment, the total amount of the thermally expandable graphite and the inorganic filler is preferably 550 to 1000 parts by weight with respect to 100 parts by weight of the binder and the total amount of the thermally expandable graphite and the inorganic filler. The heat-expandable graphite is usually 10 to 500 parts by weight, preferably 30 to 300 parts by weight, per 100 parts by weight of the binder. The inorganic filler is usually 30 to 700 parts by weight, preferably 30 to 500 parts by weight, per 100 parts by weight of the binder.
 本発明においては、熱膨張性黒鉛とリン化合物を組み合わせることにより、燃焼時の熱膨張性黒鉛の飛散を抑え、形状保持を図るもので、熱膨張性黒鉛が多すぎると、燃焼時に膨張した黒鉛が飛散し、加熱時に充分な膨張断熱層が得られず、逆にリン化合物が多すぎても、断熱層が充分でなく、望む効果が得られなくなるため、好ましくは、熱膨張性黒鉛とリン化合物の重量比は熱膨張性黒鉛:リン化合物=9:1~1:100である。 In the present invention, by combining thermally expandable graphite and a phosphorus compound, the dispersion of thermally expandable graphite at the time of combustion is suppressed and the shape is maintained. If there is too much thermally expandable graphite, the graphite expanded at the time of combustion However, it is preferable that the heat-expandable graphite and the phosphorous are not sufficiently obtained at the time of heating. The weight ratio of the compounds is thermally expandable graphite: phosphorus compound = 9: 1 to 1: 100.
 また、燃焼時の形状保持性という点からは、熱膨張性黒鉛:リン化合物=1:3~1:100の範囲が優れている。組成物自身が難燃性であっても形状保持性が不充分であると、脆くなった残渣が崩れ落ち、火炎を貫通させてしまうため、形状保持性が充分か否かにより、耐火性組成物の用途形態が大きく異なる。より好ましくは、熱膨張性黒鉛:リン化合物=1:5~1:60、特に好ましくは1:10~1:40の範囲である。 Also, from the viewpoint of shape retention during combustion, the range of thermally expandable graphite: phosphorus compound = 1: 3 to 1: 100 is excellent. Even if the composition itself is flame retardant, if the shape retentivity is insufficient, the brittle residue collapses and penetrates the flame, so depending on whether the shape retentivity is sufficient, the fire resistant composition The application forms are greatly different. More preferably, the thermal expansive graphite: phosphorus compound is in the range of 1: 5 to 1:60, particularly preferably 1:10 to 1:40.
 本発明の耐火性樹脂組成物にはさらに、その物性を損なわない範囲で、更に、フェノール系、アミン系、イオウ系等の酸化防止剤、金属害防止剤、帯電防止剤、安定剤、架橋剤、滑剤、軟化剤、顔料等が添加されてもよい。 The fireproof resin composition of the present invention further includes antioxidants such as phenols, amines, and sulfurs, metal damage inhibitors, antistatic agents, stabilizers, and crosslinking agents as long as the physical properties thereof are not impaired. , Lubricants, softeners, pigments and the like may be added.
 本発明の耐火性樹脂組成物は、上記各成分を単軸押出機、二軸押出機、バンバリーミキサー、ニーダーミキサー、ロール等の混練装置を用いて混練することにより得ることができ、得られた樹脂組成物は塗工(coating)、プレス成形、押出し成形、カレンダー成形等の従来公知の成形方法により、シートに成形することができる。塗工では、アルミニウム、鉄又はステンレス等の基材に本発明の耐火性樹脂組成物を塗布した後、乾燥させる。 The refractory resin composition of the present invention can be obtained by kneading each of the above components using a kneading apparatus such as a single screw extruder, a twin screw extruder, a Banbury mixer, a kneader mixer, or a roll. The resin composition can be formed into a sheet by a conventionally known molding method such as coating, press molding, extrusion molding, or calendar molding. In coating, the refractory resin composition of the present invention is applied to a base material such as aluminum, iron, or stainless steel, and then dried.
 本発明は、耐火性樹脂組成物から製造されたシート及び塗工による耐火性シートの製造方法も包含する。また、本発明は、耐火性樹脂組成物からなる層の片面または両面に基材が積層されている耐火性シートも包含する。 The present invention also includes a sheet manufactured from a fireproof resin composition and a method for manufacturing a fireproof sheet by coating. Moreover, this invention also includes the fireproof sheet by which the base material is laminated | stacked on the single side | surface or both surfaces of the layer which consists of a fireproof resin composition.
 耐火性シートを塗工により製造する場合、耐火性樹脂組成物を繊維シートに含浸させる。例えば、図1に示すように、ローラー台2等の移動装置の上に下側基材3bを載せて矢印の方向に移動させ、同時に、下側基材3bの上方で、上側基材3aが貼付された繊維シート4を巻き出し、配置させる。次に、耐火性樹脂組成物1を繊維シート4に向かって滴下し、繊維シート4に含浸させて、樹脂シート5を形成する。次に、上側基材3aが貼付された樹脂シート5及び下側基材3bを、ロール6に通しシート化し、硬化することにより、熱膨張性の耐火シート7を製造することができる。 When manufacturing a refractory sheet by coating, the fiber sheet is impregnated with the refractory resin composition. For example, as shown in FIG. 1, the lower substrate 3b is placed on a moving device such as a roller base 2 and moved in the direction of the arrow, and at the same time, the upper substrate 3a is placed above the lower substrate 3b. The affixed fiber sheet 4 is unwound and placed. Next, the fireproof resin composition 1 is dropped toward the fiber sheet 4 and impregnated into the fiber sheet 4 to form the resin sheet 5. Next, the thermally expandable fireproof sheet 7 can be manufactured by forming the resin sheet 5 and the lower base material 3b, to which the upper base material 3a is attached, through a roll 6 and curing the sheet.
 上側及び下側の基材は、同一材料であっても異なる材料であってもよいが、通常、織布又は不織布であり、上記織布又は不織布に使用される繊維としては、特に限定はされない。繊維は、不燃性料又は準不燃材料のものが好ましく、例えば、ガラス繊維、セラミック繊維、セルロース繊維、ポリエステル繊維、炭素繊維、グラファイト繊維、熱硬化性樹脂繊維等が好ましい。 The upper and lower substrates may be the same material or different materials, but are usually woven or non-woven fabrics, and the fibers used for the woven or non-woven fabrics are not particularly limited. . The fiber is preferably a non-combustible material or a semi-incombustible material, such as glass fiber, ceramic fiber, cellulose fiber, polyester fiber, carbon fiber, graphite fiber, and thermosetting resin fiber.
 繊維シートは、繊維を絡ませてシート形状にしたもので、不燃性料又は準不燃材料のものが好ましい。繊維としては、例えば、ガラス繊維、セラミック繊維、セルロース繊維、ポリエステル繊維、炭素繊維、グラファイト繊維、熱硬化性樹脂繊維等が挙げられる。ガラス繊維から形成されたガラスクロスが好ましい。 The fiber sheet is a sheet formed by entwining fibers, and is preferably a non-combustible material or a semi-incombustible material. Examples of the fiber include glass fiber, ceramic fiber, cellulose fiber, polyester fiber, carbon fiber, graphite fiber, and thermosetting resin fiber. Glass cloth formed from glass fibers is preferred.
 本発明の耐火性樹脂組成物は、建築材料に耐火性能を与えるために使用することができる。例えば、窓(引き違い窓、開き窓、上げ下げ窓等を含む)、障子、扉(すなわちドア)、ふすま、及び欄間等の開口部;防火区画の貫通部;目地;鉄骨コンクリート等に耐火性樹脂組成物を配置して、火災や煙の侵入を低減又は防止することができる。 The fire resistant resin composition of the present invention can be used for imparting fire resistance to building materials. For example, windows (including sliding windows, open windows, raising / lowering windows, etc.), shojis, doors (ie doors), brans, and bams, etc .; fire-penetrating parts; joints; The composition can be placed to reduce or prevent fire and smoke intrusion.
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
実施例1
 プレスによる耐火性樹脂組成物の製造
 表1に示した配合量(各成分の単位は重量部)のフェノール樹脂(DIC社製 5010)、リン酸トリクレジル(新日本理科株式社製 サンソサイザー)、熱膨張性黒鉛(東ソー社製「GREPEG」)、水酸化アルミニウム(昭和電工社製「H-31」)、及び、炭酸カルシウム(備北粉化社製「ホワイトンBF-300」)を混練ロールで混練して、耐火性樹脂組成物を得た。得られた耐火性樹脂組成物を、0.5mm厚の亜鉛鉄板に塗布し、150℃で15分間プレスして硬化させ、耐火性評価に用いる所定厚みのシート状試料を得た。
1.耐火性評価
(膨張倍率)
 得られた成形体から作製した試験片(長さ100mm、幅100mm、厚さ2.0mm)を電気炉に供給し、600℃で30分間加熱した後、試験片の厚さを測定し、(加熱後の試験片の厚さ)/(加熱前の試験片の厚さ)を膨張倍率として算出した。膨張倍率が10以上の場合を良(Good)、10未満の場合を不良(Poor)とした。
(残渣硬さ)
 膨張倍率を測定した加熱後の試験片を圧縮試験機(カトーテック社製、「フィンガーフイリングテスター」)に供給し、0.25cm2の圧子で0.1cm/秒の速度で圧縮し、破断点応力を測定した。残渣硬さが0.3以上の場合を良(Good)、0.3未満の場合を不良(Poor)とした。
Example 1
Production of fire-resistant resin composition by pressing Phenol resin (DIC 5010), blending amounts shown in Table 1 (units of each component are parts by weight), tricresyl phosphate (Sanso Sizer, Shin Nippon Science Co., Ltd.), heat Expandable graphite (“GREPEG” manufactured by Tosoh Corporation), aluminum hydroxide (“H-31” manufactured by Showa Denko KK), and calcium carbonate (“Whiteon BF-300” manufactured by Bihoku Powder Chemical Co., Ltd.) are kneaded with a kneading roll. Thus, a fire resistant resin composition was obtained. The obtained fire-resistant resin composition was applied to a 0.5 mm-thick zinc iron plate and pressed and cured at 150 ° C. for 15 minutes to obtain a sheet-like sample having a predetermined thickness used for fire resistance evaluation.
1. Fire resistance evaluation (expansion magnification)
A test piece (length 100 mm, width 100 mm, thickness 2.0 mm) prepared from the obtained molded body was supplied to an electric furnace and heated at 600 ° C. for 30 minutes, and then the thickness of the test piece was measured ( The thickness of the test piece after heating) / (thickness of the test piece before heating) was calculated as the expansion ratio. A case where the expansion ratio was 10 or more was judged good (Good), and a case where the expansion ratio was less than 10 was judged Poor.
(Residue hardness)
The heated test piece whose expansion ratio was measured was supplied to a compression tester (“Finger Filling Tester” manufactured by Kato Tech Co., Ltd.), compressed at a speed of 0.1 cm / sec with a 0.25 cm 2 indenter, and fractured. Point stress was measured. A case where the residual hardness was 0.3 or more was evaluated as good, and a case where the residual hardness was less than 0.3 was determined as poor.
 実施例2~15、比較例1~4
 表1に示した配合成分、配合割合で各成分をロールを用いて、溶融混練を行い、樹脂組成物を得た。得られた樹脂組成物を実施例1と同様にして試験片を作製し、耐火性の評価を行った。結果を表1に示した。
Examples 2 to 15 and Comparative Examples 1 to 4
Each component was melt kneaded using a roll at the blending components and blending ratios shown in Table 1 to obtain a resin composition. A test piece was produced from the obtained resin composition in the same manner as in Example 1, and fire resistance was evaluated. The results are shown in Table 1.
 ポリイミド樹脂に関しては、アセトンに溶解したもの(50%)に各成分を溶解、アセトンを揮発させ、シート化することにより、サンプルを得た。 Regarding the polyimide resin, a sample was obtained by dissolving each component in a solution (50%) dissolved in acetone, volatilizing acetone and forming a sheet.
 不飽和ポリエステル樹脂に関しては、各成分を溶解後、日本油脂製パークミルD40を1PHR(重量部)加え、上記条件で150℃でプレスする成型することにより、サンプルを得た。 Regarding the unsaturated polyester resin, after dissolving each component, 1 PHR (part by weight) of Park Mill D40 made from NOF was added, and a sample was obtained by molding at 150 ° C. under the above conditions.
 尿素樹脂、メラミン樹脂は配合物にホルムアルデヒド液(和光純薬)を5PHR(重量部)加え、プレス成型することにより、サンプルを得た。 Urea resin and melamine resin were obtained by adding 5 PHR (parts by weight) of formaldehyde solution (Wako Pure Chemicals) to the formulation and press molding.
 用いた樹脂は以下の通りである。 The resin used is as follows.
 アクリル樹脂 DIC社製 アクリディック ACRYDIC A181
 ポリビニルアルコール樹脂 日本酢ビポバール社製VP-20
 ポリビニルブチラール樹脂 積水化学社製BH-S
 アルキド樹脂 DIC社製ベッコゾール1334-EL
 ポリウレタン樹脂 荒川化学工業社製ユリアーノKL-422
 シリコーン樹脂 信越シリコーン社製KR-220LP
 ポリイミド樹脂 株式会社プリンテック社製TECHMIGHT E2020S
 不飽和ポリエステル樹脂 昭和電工株式会社製リゴラック
 尿素樹脂 DIC社製ベッカミンP138
 メラミン樹脂 DIC社製スーパーベッカミンJ-820-60
Acrylic resin DIC Corporation ACRYDIC ARYDIC A181
Polyvinyl alcohol resin VP-20 manufactured by Nippon Vinegar Bipovar
Polyvinyl butyral resin Sekisui Chemical BH-S
Alkyd resin Beccosol 1334-EL manufactured by DIC
Polyurethane resin Juliano KL-422 by Arakawa Chemical Industries
Silicone resin Shin-Etsu Silicone KR-220LP
Polyimide resin TECHMIGHT E2020S manufactured by Printec Co., Ltd.
Unsaturated Polyester Resin Showa Denko Rigolac Urea Resin DIC Becamine P138
Melamine resin DIC Super Becamine J-820-60
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例16
 塗工による熱膨張性耐火シートの製造
 基材PET不織布(東洋紡社製エクーレ 3301A)を下に敷いた状態で、実施例1,2と同じ耐火性樹脂組成物を上方から、ガラスクロスから形成された繊維シートの上に滴下し、さらに、同繊維シートを上面より、積層させ、ロール間隙に通すことにより、厚み調整を行った。
Example 16
Production of heat-expandable fire-resistant sheet by coating The same fire-resistant resin composition as in Examples 1 and 2 was formed from glass cloth from above with a base PET nonwoven fabric (Ecule 3301A manufactured by Toyobo Co., Ltd.) placed underneath. The thickness of the fiber sheet was adjusted by dropping on the fiber sheet and laminating the fiber sheet from the upper surface and passing through the roll gap.
 次に、この積層シートを150℃のオーブン内に30分投入し、硬化させることで、厚さ1.6mmの熱膨張性耐火シートを得た。結果は実施例1,2と同様、膨張倍率及び残渣硬さとも良好であった。 Next, this laminated sheet was placed in an oven at 150 ° C. for 30 minutes and cured to obtain a 1.6 mm thick thermally expandable fireproof sheet. As in Examples 1 and 2, the results were good both in expansion ratio and residual hardness.
 なお、本発明は以下の構成を取ることも可能である。
[1]バインダー、リン化合物、熱膨張性黒鉛、及び無機充填剤を含有し、該バインダーはフェノール樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン樹脂、シリコーン樹脂、及び熱硬化性ポリイミドから選択される少なくとも1種の熱硬化性樹脂;アクリル樹脂、酢酸ビニル系樹脂、ポリビニルアルコール樹脂、及びポリビニルブチラール樹脂から選択される少なくとも1種の熱可塑性樹脂;ゴム;ラテックス;又はそれらの組み合わせからなり、前記バインダー100重量部当たり、リン化合物が50~500重量部であり、熱膨張性黒鉛と無機充填剤との合計量が50~1000重量部である耐火性樹脂組成物。
[2]リン化合物が赤リン;リン酸エステル;リン酸金属塩;ポリリン酸アンモニウム;ポリリン酸メラミン、および下記一般式(1)で表される化合物からなる群から選択される少なくとも一つである上記[1]に記載の耐火性樹脂組成物。
In addition, this invention can also take the following structures.
[1] Contains a binder, a phosphorus compound, thermally expandable graphite, and an inorganic filler. The binder includes a phenol resin, a melamine resin, a urea resin, an unsaturated polyester resin, an alkyd resin, a polyurethane resin, a silicone resin, and thermosetting. At least one thermosetting resin selected from curable polyimide; at least one thermoplastic resin selected from acrylic resin, vinyl acetate resin, polyvinyl alcohol resin, and polyvinyl butyral resin; rubber; latex; A refractory resin composition comprising a combination, wherein the phosphorus compound is 50 to 500 parts by weight per 100 parts by weight of the binder, and the total amount of thermally expandable graphite and inorganic filler is 50 to 1000 parts by weight.
[2] The phosphorus compound is at least one selected from the group consisting of red phosphorus, phosphate ester, metal phosphate, ammonium polyphosphate, melamine polyphosphate, and a compound represented by the following general formula (1) The fire resistant resin composition according to the above [1].
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式中、R1 及びR3 は、同一又は異なって、水素、炭素数1~16の直鎖状若しくは分岐状のアルキル基、又は、炭素数6~16のアリール基を示す。R2 は、水酸基、炭素数1~16の直鎖状若しくは分岐状のアルキル基、炭素数1~16の直鎖状若しくは分岐状のアルコキシル基、炭素数6~16のアリール基、又は、炭素数6~16のアリールオキシ基を示す。
[3]リン化合物は、リン酸エステルおよびポリリン酸アンモニウムからなる群から選択される少なくとも一つである上記[1]に記載の耐火性樹脂組成物。
[4]前記リン酸エステルはリン酸アリールエステル、リン酸アルキルエステル、およびビスフェノール系芳香族縮合リン酸エステルからなる群から選択される少なくとも一つである上記[2]または[3]に記載の耐火性樹脂組成物。
[5]リン化合物はバインダー100重量部当たり、50~300重量部である上記[1]~[4]のいずれかに記載の耐火性樹脂組成物。
[6]熱膨張性黒鉛はバインダー100重量部当たり、10~500重量部である上記[1]~[5]のいずれかに記載の耐火性樹脂組成物。
[7]熱膨張性黒鉛はバインダー100重量部当たり、30~300重量部である上記[1]~[5]のいずれかに記載の耐火性樹脂組成物。
In the formula, R 1 and R 3 are the same or different and each represents hydrogen, a linear or branched alkyl group having 1 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms. R 2 is a hydroxyl group, a linear or branched alkyl group having 1 to 16 carbon atoms, a linear or branched alkoxyl group having 1 to 16 carbon atoms, an aryl group having 6 to 16 carbon atoms, or carbon Represents an aryloxy group of formula 6-16.
[3] The fire resistant resin composition according to [1], wherein the phosphorus compound is at least one selected from the group consisting of a phosphate ester and ammonium polyphosphate.
[4] The above-mentioned [2] or [3], wherein the phosphate ester is at least one selected from the group consisting of an aryl phosphate ester, an alkyl phosphate ester, and a bisphenol aromatic condensed phosphate ester. Fire resistant resin composition.
[5] The fire resistant resin composition according to any one of [1] to [4], wherein the phosphorus compound is 50 to 300 parts by weight per 100 parts by weight of the binder.
[6] The fire-resistant resin composition according to any one of [1] to [5], wherein the thermally expandable graphite is 10 to 500 parts by weight per 100 parts by weight of the binder.
[7] The fire-resistant resin composition according to any one of [1] to [5], wherein the thermally expandable graphite is 30 to 300 parts by weight per 100 parts by weight of the binder.
[8]無機充填剤はバインダー100重量部当たり、30~700重量部である[1]~[7]のいずれかに記載の耐火性樹脂組成物。
[9]無機充填剤はバインダー100重量部当たり、30~500重量部である。[1]~[7]のいずれかに記載の耐火性樹脂組成物。
[10]無機充填剤が水酸化アルミニウム、炭酸カルシウムまたはそれらの混合物である上記[1]~[9]のいずれかに記載の耐火性樹脂組成物。
[11]耐火性樹脂組成物の膨張倍率が10倍以上である上記[1]~[10]のいずれかに記載の耐火性樹脂組成物。
[12]加熱後の耐火性樹脂組成物の残渣硬さが0.3以上である上記[1]~[11]のいずれかにに記載の耐火性樹脂組成物。
[13]上記[1]~[12]のいずれかに記載の耐火性樹脂組成物からなる層を備えた耐火性シート。
[14]前記耐火性樹脂組成物からなる層の片面または両面に基材が積層されている[13]に記載の耐火性シート。
[15][1]~[12]のいずれかに記載の耐火性樹脂組成物を基材に塗布し、乾燥させることを含む耐火性樹脂組成物からなる層を備えた耐火性シートの製造方法。
[8] The refractory resin composition according to any one of [1] to [7], wherein the inorganic filler is 30 to 700 parts by weight per 100 parts by weight of the binder.
[9] The inorganic filler is 30 to 500 parts by weight per 100 parts by weight of the binder. [1] The fire resistant resin composition according to any one of [7].
[10] The fire resistant resin composition according to any one of the above [1] to [9], wherein the inorganic filler is aluminum hydroxide, calcium carbonate or a mixture thereof.
[11] The refractory resin composition according to any one of the above [1] to [10], wherein the expansion ratio of the refractory resin composition is 10 times or more.
[12] The refractory resin composition according to any one of [1] to [11] above, wherein the residual hardness of the refractory resin composition after heating is 0.3 or more.
[13] A fire-resistant sheet comprising a layer made of the fire-resistant resin composition according to any one of [1] to [12].
[14] The fire resistant sheet according to [13], wherein a base material is laminated on one side or both sides of the layer made of the fire resistant resin composition.
[15] A method for producing a refractory sheet comprising a layer comprising the refractory resin composition, comprising applying the refractory resin composition according to any one of [1] to [12] to a substrate and drying the substrate. .

Claims (4)

  1.  バインダー、リン化合物、熱膨張性黒鉛、及び無機充填剤を含有し、
     該バインダーはフェノール樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン樹脂、シリコーン樹脂、及び熱硬化性ポリイミドから選択される少なくとも1種の熱硬化性樹脂;アクリル樹脂、酢酸ビニル系樹脂、ポリビニルアルコール樹脂、及びポリビニルブチラール樹脂から選択される少なくとも1種の熱可塑性樹脂;ゴム;ラテックス;又はそれらの組み合わせからなり、
     前記バインダー100重量部当たり、リン化合物が50~500重量部であり、熱膨張性黒鉛と無機充填剤との合計量が50~1000重量部である耐火性樹脂組成物。
    Contains a binder, phosphorus compound, thermally expandable graphite, and inorganic filler,
    The binder is at least one thermosetting resin selected from phenol resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, polyurethane resin, silicone resin, and thermosetting polyimide; acrylic resin, vinyl acetate type At least one thermoplastic resin selected from a resin, a polyvinyl alcohol resin, and a polyvinyl butyral resin; rubber; latex; or a combination thereof;
    A refractory resin composition comprising 50 to 500 parts by weight of a phosphorus compound per 100 parts by weight of the binder and a total amount of thermally expandable graphite and inorganic filler of 50 to 1000 parts by weight.
  2. 請求項1に記載の耐火性樹脂組成物からなる層を備えた耐火性シート。 A fire-resistant sheet comprising a layer made of the fire-resistant resin composition according to claim 1.
  3. 前記耐火性樹脂組成物からなる層の片面または両面に基材が積層されている請求項2に記載の耐火性シート。 The fireproof sheet according to claim 2, wherein a base material is laminated on one side or both sides of the layer made of the fireproof resin composition.
  4. 請求項1に記載の耐火性樹脂組成物を基材に塗布し、乾燥させることを含む耐火性樹脂組成物からなる層を備えた耐火性シートの製造方法。 The manufacturing method of a fireproof sheet provided with the layer which consists of applying the fireproof resin composition of Claim 1 to a base material, and making it dry.
PCT/JP2016/055672 2015-02-25 2016-02-25 Refractory resin composition WO2016136896A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016513153A JP6769867B2 (en) 2015-02-25 2016-02-25 Refractory resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015035482 2015-02-25
JP2015-035482 2015-02-25

Publications (1)

Publication Number Publication Date
WO2016136896A1 true WO2016136896A1 (en) 2016-09-01

Family

ID=56789040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055672 WO2016136896A1 (en) 2015-02-25 2016-02-25 Refractory resin composition

Country Status (2)

Country Link
JP (1) JP6769867B2 (en)
WO (1) WO2016136896A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167541A (en) * 2016-10-24 2019-10-03 積水化学工業株式会社 Thermally-expandable refractory sheet
KR20200094949A (en) * 2019-01-31 2020-08-10 에이치디씨현대이피 주식회사 A flame-retardant coating composition, a structure having the same, and a preparing method thereof
CN111704470A (en) * 2020-06-12 2020-09-25 浙江琰大新材料有限公司 Aluminum silicate plastic refractory
KR20210079115A (en) * 2019-12-19 2021-06-29 에이치디씨현대이피 주식회사 coating composition, expanded polystyrene having good flame retardancy and water resistant, and manufacturing method of the coating composition
WO2022097740A1 (en) * 2020-11-06 2022-05-12 積水化学工業株式会社 Thermoexpandable refractory material composition, thermoexpandable refractory material, and method for producing thermoexpandable refractory material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08113662A (en) * 1994-08-25 1996-05-07 Sekisui Chem Co Ltd Highly flame-retardant resin foam
JPH10195251A (en) * 1997-01-16 1998-07-28 Sekisui Chem Co Ltd Fireproof rubber composition
JP2000159903A (en) * 1997-12-22 2000-06-13 Sekisui Chem Co Ltd Fireproof resin sheet and laminate thereof
JP2000226548A (en) * 1998-11-30 2000-08-15 Sekisui Chem Co Ltd Heat-resistant coating
JP2002114914A (en) * 2000-10-05 2002-04-16 Sekisui Chem Co Ltd Fireproof resin composition and sheet shape of molded product therefrom
JP2007146169A (en) * 2006-12-26 2007-06-14 Sekisui Chem Co Ltd Sheet consists of fire-resistant resin composition
JP2007326908A (en) * 2006-06-06 2007-12-20 Shin Etsu Chem Co Ltd Vinyl chloride-based resin composition and molded body of the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3673482B2 (en) * 2000-04-24 2005-07-20 積水化学工業株式会社 Refractory sheet and refractory steel structure and wall refractory structure using the same
JP5829827B2 (en) * 2011-03-31 2015-12-09 積水化学工業株式会社 Reaction curing type heat-expandable resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08113662A (en) * 1994-08-25 1996-05-07 Sekisui Chem Co Ltd Highly flame-retardant resin foam
JPH10195251A (en) * 1997-01-16 1998-07-28 Sekisui Chem Co Ltd Fireproof rubber composition
JP2000159903A (en) * 1997-12-22 2000-06-13 Sekisui Chem Co Ltd Fireproof resin sheet and laminate thereof
JP2000226548A (en) * 1998-11-30 2000-08-15 Sekisui Chem Co Ltd Heat-resistant coating
JP2002114914A (en) * 2000-10-05 2002-04-16 Sekisui Chem Co Ltd Fireproof resin composition and sheet shape of molded product therefrom
JP2007326908A (en) * 2006-06-06 2007-12-20 Shin Etsu Chem Co Ltd Vinyl chloride-based resin composition and molded body of the same
JP2007146169A (en) * 2006-12-26 2007-06-14 Sekisui Chem Co Ltd Sheet consists of fire-resistant resin composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167541A (en) * 2016-10-24 2019-10-03 積水化学工業株式会社 Thermally-expandable refractory sheet
JP7000377B2 (en) 2016-10-24 2022-01-19 積水化学工業株式会社 Thermally expandable fire resistant sheet
KR20200094949A (en) * 2019-01-31 2020-08-10 에이치디씨현대이피 주식회사 A flame-retardant coating composition, a structure having the same, and a preparing method thereof
KR102216615B1 (en) * 2019-01-31 2021-02-17 에이치디씨현대이피 주식회사 A flame-retardant coating composition, a structure having the same, and a preparing method thereof
KR20210079115A (en) * 2019-12-19 2021-06-29 에이치디씨현대이피 주식회사 coating composition, expanded polystyrene having good flame retardancy and water resistant, and manufacturing method of the coating composition
KR102359909B1 (en) * 2019-12-19 2022-02-08 에이치디씨현대이피 주식회사 coating composition, expanded polystyrene having good flame retardancy and water resistant, and manufacturing method of the coating composition
CN111704470A (en) * 2020-06-12 2020-09-25 浙江琰大新材料有限公司 Aluminum silicate plastic refractory
WO2022097740A1 (en) * 2020-11-06 2022-05-12 積水化学工業株式会社 Thermoexpandable refractory material composition, thermoexpandable refractory material, and method for producing thermoexpandable refractory material
CN116438264A (en) * 2020-11-06 2023-07-14 积水化学工业株式会社 Heat-expandable refractory composition, heat-expandable refractory, and method for producing heat-expandable refractory

Also Published As

Publication number Publication date
JPWO2016136896A1 (en) 2017-11-30
JP6769867B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
JP6139018B2 (en) Fireproof resin composition
WO2016136896A1 (en) Refractory resin composition
TWI619802B (en) Thermally expandable resin composition
JP6225287B1 (en) Fireproof resin composition
JP7367093B2 (en) thermally expandable fireproof sheet
JP7127960B2 (en) Fire resistant resin composition
JP2019112938A (en) Fireproof material and its wound body
JP6654910B2 (en) Fireproof multilayer sheet
JP2020125395A (en) Thermoplastic resin sheet
JP2019131765A (en) Epoxy resin composition
JP7084114B2 (en) Fire resistant sheet
JP7168433B2 (en) Fireproof sheet and its roll
JPH10195251A (en) Fireproof rubber composition
JP2022091778A (en) Refractory sheet
JP2023087387A (en) Refractory material and method for producing refractory material

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016513153

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755640

Country of ref document: EP

Kind code of ref document: A1