WO2016136888A1 - フェライト系耐熱鋼とその製造方法 - Google Patents

フェライト系耐熱鋼とその製造方法 Download PDF

Info

Publication number
WO2016136888A1
WO2016136888A1 PCT/JP2016/055660 JP2016055660W WO2016136888A1 WO 2016136888 A1 WO2016136888 A1 WO 2016136888A1 JP 2016055660 W JP2016055660 W JP 2016055660W WO 2016136888 A1 WO2016136888 A1 WO 2016136888A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
resistant steel
heat treatment
ferritic heat
ferritic
Prior art date
Application number
PCT/JP2016/055660
Other languages
English (en)
French (fr)
Inventor
一弘 木村
浩太 澤田
秀昭 九島
泰志 谷内
敏夫 大場
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to JP2017502473A priority Critical patent/JP6562476B2/ja
Priority to US15/553,859 priority patent/US10519524B2/en
Priority to EP16755632.3A priority patent/EP3263732B1/en
Publication of WO2016136888A1 publication Critical patent/WO2016136888A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention rapidly cools the ferritic steel heated to a high temperature by water cooling or the like, transforms it into martensite, and then performs tempering heat treatment to improve the tensile strength, wear resistance, fatigue strength or creep strength. More particularly, the present invention relates to a ferritic heat resistant steel excellent in creep strength and fracture ductility and a method for producing the same.
  • Non-patent Document 1 In other words, in super-supercritical pressure power generation, which has excellent thermal efficiency among conventional power generations, the steam temperature is limited to about 630 ° C, and the thermal efficiency is 42 to 43% [Higher Heating Value (HHV)]. It has been said to be a fundamental limit.
  • recent progress in material technology has made it possible to achieve steam conditions of 700 ° C. or higher and a vapor pressure of 24.1 MPa or higher. Therefore, it is planned to develop advanced ultra super critical pressure power generation (A-USC) using these materials, and to ensure environmental security by ensuring energy security and reducing CO 2 emissions.
  • A-USC advanced ultra super critical pressure power generation
  • A-USC is a technology that can achieve a high thermal efficiency (HHV) of 46% at the steam temperature class of 700 ° C, 48% at the 750 ° C class, and 49% at the 800 ° C class.
  • HHV high thermal efficiency
  • this high-temperature heat-resistant material can be used for thermal power generation such as a conventional steam temperature of 600 ° C. and various energy supply facilities.
  • high-strength ferritic heat-resistant steel is known as a kind of such a high-temperature heat-resistant material.
  • fire STPA29 alloy steel pipe for power generation piping
  • fire STBA29 alloy steel pipe for power generation boiler
  • ASME American Society of Mechanical Engineers
  • high-strength ferritic heat resistant steel has excellent creep strength at high temperatures, but it is known that creep rupture ductility is greatly reduced under long-term use conditions. Therefore, there is a concern that the safety and reliability of high-temperature structural equipment may be impaired. Possible causes of the decrease in creep rupture ductility include the formation of voids due to coarse precipitates and non-metallic inclusions, the influence of impurity elements, and the like.
  • Non-Patent Documents 6-9 are known for improving the creep strength of high-strength ferritic heat-resisting steels, but creep rupture is an important characteristic to meet the replacement demand of aged thermal power generation As for ductility, it is silent. That is, Non-Patent Document 6 describes that the creep strength of high-strength ferritic heat-resistant steel is improved by performing a thermomechanical treatment. Although the creep strength is improved by finely dispersing and precipitating the second phase, which is a strengthening factor, by performing thermomechanical treatment in the austenite single phase temperature range, it is not clear whether the disclosed heat treatment conditions improve creep rupture ductility. .
  • Non-Patent Document 7 describes that the creep strength of a high-strength ferritic heat-resisting steel is improved by setting the heat treatment condition higher than the normalization temperature of the ASTM standard and lowering the tempering temperature. Although the normalizing heat treatment is performed at a higher temperature than normal and the tempering heat treatment is performed at a lower temperature than normal, the second phase, which is a strengthening factor, is finely dispersed and precipitated to improve the creep strength. It is not clear whether the heat treatment conditions improve creep rupture ductility.
  • Non-Patent Document 8 describes the results of examining the influence of composition distribution between partially transformed martensite and untransformed austenite on mechanical properties of Si—Mn steel. Although carbon moves from martensite to untransformed austenite and the high carbon austenite phase remains as retained austenite, the strength-ductility balance is improved. Does the disclosed heat treatment conditions improve creep rupture ductility? It is not clear.
  • a modified 9Cr-1Mo steel which is a high-strength ferritic heat-resistant steel, is subjected to tempering heat treatment without being cooled to room temperature after being partially transformed into martensite.
  • the strength of the precipitate which is a strengthening factor, is reduced and the size of the martensite block is increased, thereby improving the creep strength. Does the disclosed heat treatment conditions improve the creep rupture ductility? It is not clear.
  • Patent Documents 1 and 2 suggest that the creep strength of high-strength ferritic heat-resistant steel is improved by adding Ti and normalizing heat treatment at a higher temperature than usual. However, it is unclear whether the chemical composition and heat treatment conditions of the disclosed high strength ferritic heat resistant steel improve creep rupture ductility.
  • ferritic heat resistant steel when using high strength ferritic heat resistant steel for advanced ultra super critical pressure power generation equipment with high thermal efficiency, ferritic heat resistant steel has excellent creep strength at high temperature, but creep rupture under long-term use conditions There has been a problem that there is a concern that ductility is greatly reduced and the safety and reliability of high-temperature structural equipment are impaired.
  • the present invention solves the above-mentioned problems, and by using a ferritic heat resistant steel that can easily procure alloying elements as compared with stainless steel and nickel-base superalloy, it can be used for a consumer power plant such as a thermal power plant.
  • An object of the present invention is to provide a ferritic heat resistant steel capable of harmonizing the high thermal energy efficiency and the plant construction cost.
  • the ferritic heat resistant steel of the present invention has a chemical composition of mass%, C: 0.03 to 0.15 Si: 0 to 0.8 Mn: 0.1 to 0.8 Cr: 8.0 to 11.5 Mo: 0.2 to 1.5 V: 0.1 to 0.4 Nb: 0.02 to 0.12 N: 0.02 to 0.10
  • Remainder Ferritic heat-resistant steel containing iron and unavoidable impurities, having a microstructure of tempered martensite and within the elastic limit of the ferritic heat-resistant steel at the operating temperature of the steel material comprising the ferritic heat-resistant steel
  • the creep rupture elongation is 16% or more and the creep rupture drawing has a creep rupture ductility of 28% or more.
  • the creep rupture elongation is 18% or more, and the creep rupture drawing is preferably 28% or more, and the creep rupture elongation is 20% or more, and the creep rupture drawing is 40% or more. More preferably, the creep rupture elongation is 20% or more and the creep rupture drawing is particularly preferably 50% or more.
  • the operating temperature of the steel material made of the ferritic heat-resistant steel means, for example, a high temperature of 600 ° C. or more, and “the load within the elastic limit of the ferritic heat-resistant steel” has a yield ratio of 0 described later. It means a low stress area of .5 or less.
  • the ferritic heat resistant steel of the present invention has the above-mentioned chemical composition, has a tempered martensite microstructure, and is defined by the heat treatment conditions of the ferritic heat resistant steel of the ASME boiler pressure vessel standard or equivalent standard.
  • normalization and tempering heat treatment processes at least one of internal strain or internal stress introduced by martensitic transformation is relaxed It is characterized by having a structure having the former austenite crystal grains.
  • the ferritic heat resistant steel of the present invention is characterized in that it has the above-described chemical composition and is further subjected to heat treatment by the following heat treatment steps (a) to (e).
  • the ferritic heat resistant steel of the present invention has a novel fine structure and physical / mechanical properties that are not found in conventional ferritic heat resistant steels.
  • the above-described aspect of the present invention may be recognized as not being accurately defined. Accordingly, the ferritic heat resistant steel of the present invention, which is a novel substance, is preliminarily defined by the so-called product-by-process claims using the above-mentioned heat treatment conditions for convenience.
  • the ferritic heat resistant steel of the present invention preferably, in addition to the chemical composition elements described above, in mass%, W: 0.0 to 3.0 B: 0.002 to 0.010 Co: 0 to 2.0 Ta: 0.05 to 0.12 It is preferable to include at least one selected from the group consisting of elements.
  • the chemical composition is in mass%, C: 0.03 to 0.15 Si: 0 to 0.8 Mn: 0.1 to 0.8 Cr: 8.0 to 11.5 Mo: 0.2 to 1.5 W: 0.4 to 3.0 V: 0.1 to 0.4 Nb: 0.02 to 0.12 N: 0.02 to 0.10 B: 0.002 to 0.010 Remainder: Ferritic heat-resistant steel containing iron and inevitable impurities.
  • the method for producing a ferritic heat resistant steel of the present invention has the above chemical composition and a microstructure of tempered martensite, and has the above creep rupture ductility, or at least one of the above internal strain or internal stress.
  • a method for producing a ferritic heat-resistant steel having relaxed prior austenite grains (A) a solution heat treatment step of solution heat-treating the steel material comprising the ferritic heat resistant steel at an austenitizing temperature; (B) a normalizing step in which the steel material made of the ferritic heat-resistant steel is cooled to a two-phase state temperature of martensite and untransformed austenite by partially transforming from the austenitizing temperature to martensite, The two-phase state temperature is determined to be lower than the martensitic transformation start temperature (Ms) and higher than the martensitic transformation end temperature (Mf); (C) Relieving internal strain introduced by martensitic transformation or internal stress by heating from the two-phase state temperature of the martensite and untransformed auste
  • the method for producing a ferritic heat resistant steel according to the present invention is a method for producing the ferritic heat resistant steel, wherein the heat treatment temperature at the austenitizing temperature in the solution heat treatment step (a) is in the range of 1030 ° C. to 1120 ° C. It is characterized by holding for 0.5 to 24 hours.
  • the method for producing a ferritic heat resistant steel of the present invention is a method for producing the ferritic heat resistant steel, wherein the martensite and untransformed austenite in the normalizing step (b) have a two-phase temperature of about 240 ° C. To about 400 ° C.
  • the method for producing a ferritic heat resistant steel according to the present invention is a method for producing the ferritic heat resistant steel, wherein the cooling rate for cooling from the austenitizing temperature to the two-phase state temperature in the normalizing step (b) is martens. Cooling is fast enough to suppress the transformation to the ferrite phase until the site transformation start temperature (Ms), and gradually cooling from the martensite transformation start temperature (Ms) to the two-phase state temperature.
  • the method for producing a ferritic heat resistant steel according to the present invention is a method for producing the ferritic heat resistant steel, wherein the intermediate tempering heat treatment temperature in the step (c) of heating from the two-phase state temperature to the intermediate tempering heat treatment temperature. Is in the range of 550 ° C. to 600 ° C. and is held for 1 to 24 hours.
  • the method for producing a ferritic heat resistant steel according to the present invention is a method for producing the ferritic heat resistant steel, wherein the second final tempering heat treatment temperature in the final tempering heat treatment step of (e) is from 730 ° C. to 800 ° C. It is in the range of ° C. and is held for 1 to 24 hours.
  • the method of using the ferritic heat resistant steel of the present invention has the above chemical composition and the microstructure of tempered martensite, and has the above creep rupture ductility, or has at least one of the above internal strain or internal stress.
  • the ferritic heat-resisting steel of the present invention even when a load within the elastic limit of the ferritic heat-resisting steel at the operating temperature of the steel material made of ferritic heat-resisting steel acts, It has a microstructure that suppresses the phenomenon of creep deformation being promoted in the region.
  • a load within the elastic limit of the ferritic heat-resisting steel at the operating temperature of the steel material made of ferritic heat-resisting steel acts, It has a microstructure that suppresses the phenomenon of creep deformation being promoted in the region.
  • the operating time even when used for pressure piping for high-temperature steam in a thermal power plant, even when the operating time exceeds 100,000 hours, there is no significant decrease in creep rupture ductility in a long time range, and ferritic heat resistant steel
  • excellent creep rupture ductility is exhibited, and long-term operation of the thermal power plant can be secured stably.
  • this manufacturing method can improve the creep rupture ductility of the high-strength ferritic heat-resistant steel having a tempered martensite structure under long-term use conditions, and should ensure stable operation over a long period of time, such as a thermal power plant.
  • a ferritic heat resistant steel suitable for use can be obtained.
  • FIG. 1 is a continuous cooling transformation (CCT) curve of a specimen (fire STPA 29) according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the heat treatment conditions of an example of the present invention.
  • FIG. 3 is a graph showing the heat treatment conditions of the comparative material.
  • FIG. 4 is a graph showing a comparison in creep rupture time between an example of the present invention and a comparative material at 650 ° C. to 90 MPa.
  • FIG. 5 is a graph showing a comparison in creep rupture time between an example of the present invention and a comparative material at 700 ° C.-50 MPa.
  • FIG. 6 is a photograph showing a comparison between one example of the present invention and a creep rupture test piece of a comparative material at 650 ° C. to 90 MPa.
  • FIG. 7 is a photograph showing a comparison between one example of the present invention and a creep rupture test piece of a comparative material at 700 ° C.-50 MPa.
  • FIG. 8 is a graph showing a comparison of creep rupture elongation of the example of the present invention and the comparative material.
  • FIG. 9 is a graph showing a comparison between the creep rupture drawing of the example of the present invention and the comparative material.
  • FIG. 10 is a photograph showing a creep rupture test piece of a high-strength ferritic heat resistant steel (Fire STPA29) at 650 ° C. to 140 MPa, and the rupture time is 66.0 hours.
  • FIG. 1 is a photograph showing a comparison between one example of the present invention and a creep rupture test piece of a comparative material at 700 ° C.-50 MPa.
  • FIG. 8 is a graph showing a comparison of creep rupture elongation of the example of the present invention and the comparative material.
  • FIG. 9 is a graph showing a comparison between
  • FIG. 11 is a photograph showing a creep rupture test piece of a high-strength ferritic heat resistant steel (Fire STPA29) at 650 ° C.-70 MPa, and the rupture time is 50871.2 hours.
  • FIG. 12 is a graph showing the relationship between creep rupture elongation and creep rupture time of high-strength ferritic heat resistant steel (Fire STPA29) at various creep test temperatures.
  • FIG. 13 is a graph showing the relationship between the creep rupture drawing and the creep rupture time of high strength ferritic heat resistant steel (Fire STPA29) at various creep test temperatures.
  • FIG. 14 is a schematic diagram showing the difference in microstructure of ferritic heat resistant steel corresponding to the creep test conditions, (A) shows the internal structure of the prior austenite crystal grains, and (B) shows the correlation between stress and rupture time. The microstructure at the time of the fracture
  • rupture in is shown.
  • FIG. 15 is a graph showing the relationship between the creep rupture drawing of a high strength ferritic heat resistant steel (Fire STPA29) and the yield strength ratio of the test stress at various creep test temperatures.
  • FIG. 16 is a graph showing the relationship between the creep rupture drawing of the high-strength ferritic heat-resistant steel (Fire STBA29) and the proof stress ratio at various creep test temperatures.
  • FIG. 17 is a graph showing the relationship between the creep rupture drawing of a high-strength ferritic heat resistant steel (Fire SUS410J3TP) and the strength ratio of test stress at various creep test temperatures.
  • FIG. 18 is a graph showing the relationship between the creep rupture drawing of a high strength ferritic heat resistant steel (fire STBA24J1) and the yield ratio of test stress at various creep test temperatures.
  • FIG. 19 is a photograph showing a transmission electron microscopic structure of a creep-ruptured material of a high-strength ferritic heat-resistant steel (fire STBA28) at 600 ° C.-100 MPa.
  • composition and content of the heat-resistant steel forming the precipitation-strengthened ferritic heat-resistant steel of the present invention are limited as described above will be described below.
  • % representing the content is mass%.
  • Carbon (C) is an important austenite-forming element and has the effect of suppressing the ⁇ -ferrite phase. It is also an essential element for significantly enhancing the hardenability of steel and forming a martensitic phase matrix.
  • Carbides of MX type carbonitride M (C, N) may be used.
  • M is an alloy element such as V and Nb), M 7 C 3 type, and M 23 C 6 type Form.
  • fine carbonitrides for example, VN and NbC
  • a content of 0.06% or more is necessary.
  • the C content is preferably 0.03 to 0.15%, particularly preferably 0.06 to 0.12%.
  • Si is a deoxidizer for molten steel, and at the same time is an element effective for improving steam oxidation resistance at high temperatures. However, if it is excessive, the toughness of the steel is lowered, so the content is suitably 0.8% or less, preferably 0.5% or less. In recent years, vacuum carbon deoxidation and electroslag remelting methods have been applied, and it is no longer necessary to perform Si deoxidation. At that time, the content is 0.1% or less, and the amount of Si is reduced. it can. Therefore, the Si content is preferably 0 to 0.8%, more preferably 0 to 0.5%.
  • Mn is an element that is usually added to fix S as MnS and improve the hot workability of steel, and suppresses the formation of ⁇ -ferrite and BN, and M 23 C Since it is also effective as an element for promoting precipitation of 6- type carbide, the lower limit is set to 0.1% by mass. However, since the creep rupture strength is lowered as the amount of Mn increases, the upper limit is set to 0.8%. Therefore, the Mn content is suitably 0.1 to 0.8%.
  • Chromium (Cr) is an indispensable element for ensuring corrosion resistance and oxidation resistance at high temperatures, particularly steam oxidation resistance.
  • Cr a dense oxide film mainly composed of Cr oxide is formed on the steel surface, and this oxide film gives the steel high-temperature corrosion resistance and oxidation resistance (including steam oxidation resistance).
  • Cr also has the function of improving the creep strength by forming carbides. In order to obtain these effects, a content of 8.0% or more is necessary. However, if it exceeds 11.5%, a ⁇ -ferrite phase is likely to be formed, and the creep rupture strength and toughness are reduced.
  • a suitable Cr content is 8.0 to 11.5%.
  • W is one of the elements that increases the creep strength and is effective for maintaining at high temperatures.
  • the martensite phase matrix is strengthened, and an intermetallic compound mainly composed of Fe 7 W 6 type ⁇ phase, Fe 2 W type Laves phase, etc. is formed at high temperature, and this precipitates finely And improve the creep strength for a long time. Further, it partially dissolves in the Cr carbide and suppresses aggregation and coarsening of the M 23 C 6 type carbide. Solid addition strengthens when added in a small amount, and precipitation strengthening becomes significant when added over 1.0%. On the other hand, if it exceeds 3.0%, a ⁇ -ferrite phase is likely to be formed, resulting in a decrease in toughness.
  • W can also be abbreviate
  • Mo Molybdenum
  • W molybdenum
  • Mo contributes to solid solution strengthening when added in a small amount exceeding 0.2%, and precipitation strengthening when added over 1.0%, and increases the creep strength.
  • the precipitation strengthening of Mo is remarkable on the low temperature side of 600 ° C. or lower compared with W.
  • Mo can be omitted when it is sufficiently strengthened with another strengthening element (W).
  • Mo is stable at high temperatures in the form of M 23 C 6 type and M 7 C 3 type carbides, and is effective in ensuring long-term creep strength. If it exceeds 1.5%, a ⁇ -ferrite phase is likely to be formed and the toughness is lowered. Therefore, the content is suitably from 0 to 1.5%, particularly preferably from 0.2 to 1.5%. It is.
  • W and Mo are contained at the same time, the content is preferably 0.5 ⁇ W + 2Mo ⁇ 4.0%.
  • V Vanadium
  • V is an element effective for improving the strength (tensile strength, yield strength) at room temperature. Further, V is a solid solution strengthening element, and V fine carbonitride is generated in the martensitic lath. These fine carbonitrides control the recovery of dislocations during creep and increase high-temperature strength such as creep strength and creep rupture strength, so V is an important element as a precipitation strengthening element. Further, if V is an addition amount within a certain range (0.1 to 0.4%), it is effective in improving toughness by refining crystal grains. However, if added too much, the toughness is impaired, carbon is excessively fixed, the amount of precipitation of M 23 C 6 type carbide is reduced and the high-temperature strength is lowered, so the content is 0.1 to 0.4%.
  • Niobium (Nb) is an element effective for increasing normal temperature strength such as tensile strength and proof stress, and high-temperature strength such as creep strength and creep rupture strength, and at the same time produces fine NbC to form crystals It is an element that is very effective in making grains finer and improving toughness. Also, some of them have the effect of increasing the high-temperature strength by solid-solving during precipitation and precipitating MX type carbonitride compounded with the above-mentioned V carbonitride in the tempering process. A minimum of 0.02% is required.
  • the Nb content is suitably 0.02 to 0.12%, particularly preferably 0.04 to 0.10%.
  • N nitrogen (N): N, like C, is an important austenite-forming element and has the effect of suppressing the formation of a ⁇ -ferrite phase. It is also an element that enhances the hardenability of steel and forms a martensite phase. Furthermore, M (C, N) type carbonitride is formed. Such N is not particularly required to be added when the formation of the ⁇ -ferrite phase is sufficiently suppressed by C and the like and the creep strength at a high temperature exceeding 650 ° C. is regarded as important. On the other hand, it is preferably added in the case where the hardenability is sufficiently enhanced and emphasis is placed on suppressing the formation of the ⁇ -ferrite phase. Addition of a large amount leads to coarsening of the nitride, resulting in a significant decrease in toughness. Accordingly, the N content is suitably 0.02 to 0.10%.
  • B is contained in a very small amount, and mainly disperses and precipitates carbides such as M 23 C 6 type to suppress agglomeration and coarsening. Effective in improving creep strength at high temperature and long time. Moreover, when the cooling rate after heat processing is slow with a thick material etc., hardenability is improved and high temperature strength is improved. Such B can be contained mainly when high high-temperature strength is desired, and can be omitted. When it contains, the said effect becomes remarkable with a content rate of 0.002% or more. If the content exceeds 0.010%, the weldability is lowered and a second phase such as coarse BN is generated and the toughness is lowered, so the upper limit is made 0.010%. Accordingly, the B content is suitably 0.002 to 0.010%.
  • Co has the effect of improving the hardenability and is also effective in improving the creep strength, but is very expensive, and the material cost increases as the amount added increases. Co is not indispensable when the material cost is required to be reduced, and sufficient creep strength is obtained and the steel is sufficiently hardened.
  • Co is an austenite-forming element and is an element expected to have an effect of suppressing the formation of ⁇ ferrite phase. In order to obtain the effect, a content of 0.5% or more is necessary. Therefore, the Co content is set to 0 to 2.0%.
  • Nickel Ni has the effect of improving hardenability, but has an adverse effect on creep strength. The addition amount of Ni should be reduced to 0.4% or less.
  • Tantalum Ta is combined with N to form a nitride called MN and contribute to precipitation strengthening. Furthermore, it combines with C contained in the steel to form carbides and contributes to precipitation strengthening. Such precipitation is strongly presumed to have the effect of reducing the concentration of C in the matrix and inhibiting the formation of MC pairs. The excessive addition of these elements prevents MN from being sufficiently dissolved in the matrix by heat treatment, thereby preventing fine dispersion of MN and reducing the contribution of precipitation strengthening of MN.
  • the proper amount of Ta added is 0.01 to 0.5%, preferably 0.05 to 0.12% in the case of thermomechanical control.
  • Acid-soluble Al (sol. Al): Al is mainly added as a deoxidizer for molten steel. In steel, Al is present in an oxide and other forms, and the latter is analytically called acid-soluble Al (sol. Al). If the deoxidation effect is obtained, sol. Al is not particularly necessary. On the other hand, if it exceeds 0.020%, the creep strength is reduced. sol. The content of Al is suitably 0.020% or less.
  • Phosphorus P is contained as an inevitable impurity, but 0.020% or less is preferable because it is an element harmful to creep strength and fracture ductility.
  • S is also contained as an inevitable impurity, but is an element harmful to creep strength and fracture ductility, so 0.010% or less is preferable.
  • Ti is also contained as an unavoidable impurity, but forms a nitride having little effect on strength improvement and inhibits formation of M (C, N) type carbonitride effective for strength improvement. 0.01% or less is preferable.
  • Oxygen O is also contained as an unavoidable impurity, but when it becomes uneven as a coarse oxide, it adversely affects toughness and the like. In order to ensure toughness, it is preferable to suppress the content rate as much as possible. If the content is 0.010% or less, the influence on toughness is sufficiently small. Therefore, the O content is set to 0.010% or less.
  • the ferritic heat resistant steel of the present invention can be manufactured by normal manufacturing equipment and manufacturing processes used industrially. For example, it refines with furnaces, such as an electric furnace and a converter, and a component adjustment is performed by adding a deoxidizer and an alloy element. In particular, when strict component adjustment is required, the molten steel can be subjected to vacuum treatment before the alloy element is added.
  • the molten steel thus adjusted to a predetermined chemical composition is then cast into a slab, billet, or steel ingot by a continuous casting method or an ingot-making method, and then formed into a steel pipe, a steel plate or the like.
  • a seamless steel pipe it is possible to produce the pipe by, for example, extruding a billet or forging.
  • the slab can be hot-rolled to obtain a hot-rolled steel plate.
  • this hot-rolled steel sheet is cold-rolled, a cold-rolled steel sheet is obtained.
  • the solution heat treatment temperature will be described.
  • 0.02 to 0.12% of Nb is added for the purpose of precipitating MX type carbonitride and increasing the high temperature strength.
  • it is indispensable to completely dissolve Nb in the austenite matrix during solution heat treatment.
  • Nb when the quenching temperature is less than 1030 ° C., coarse carbonitrides precipitated during solidification remain even after the heat treatment, and cannot work completely effectively against the increase in creep rupture strength.
  • the intermediate normalizing step following the solution heat treatment step a part of the austenite phase is transformed from the austenitizing temperature to the martensite phase from the austenitizing temperature, and untransformed austenite and martensite are transformed. Cool to a temperature that results in a two-phase condition.
  • the feature of the heat resistant steel according to the present invention is that the two-phase state temperature of austenite and martensite is set lower than the martensite transformation start temperature (Ms) and higher than the martensite transformation end temperature (Mf). is there.
  • This two-phase temperature of martensite and untransformed austenite is a temperature at which a part of the test material undergoes martensitic transformation.
  • the martensite and martensite are subjected to the subsequent intermediate tempering heat treatment to cause martensite. It is important to relieve strain introduced by site transformation.
  • the heat treatment temperature for intermediate tempering will be described. If the heat treatment temperature of the intermediate tempering is less than 550 ° C., the effect of relaxing the strain introduced by the martensitic transformation is small. For this reason, the intermediate tempering heat treatment is performed in a temperature range of 550 to 600 ° C., and the heat treatment time is maintained for 1 to 24 hours or more.
  • the specimen is once cooled to a temperature equal to or lower than the martensite transformation end temperature (Mf) to transform the untransformed austenite phase into martensite.
  • a tempering heat treatment of the martensite phase is performed by a final tempering heat treatment at a second tempering temperature set higher than the use temperature of the steel material made of the ferritic heat resistant steel.
  • the heat treatment temperature for final tempering is a heat treatment temperature at which M 23 C 6 type carbides and intermetallic compounds can be precipitated mainly at grain boundaries and martensite lath boundaries, and MX type carbonitrides can be precipitated into martensite laths.
  • the temperature range is 730 to 800 ° C.
  • the final tempering heat treatment temperature is less than 730 ° C.
  • the precipitation of the above M 23 C 6 type carbide and MX type carbonitride cannot sufficiently reach the equilibrium value, and the volume fraction of the precipitate is relatively To drop.
  • the martensite phase cannot be tempered sufficiently at a temperature below 730 ° C. and is in an unstable state, the recovery of the metal structure and the softening phenomenon proceed rapidly during long-term use at high temperatures. In other words, the creep strength is greatly reduced.
  • the temperature range of the final tempering heat treatment is preferably 730 to 800 ° C.
  • the internal strain or internal stress introduced by the martensitic transformation is greatly relieved, and at least one concentration of the internal strain or internal stress near the prior austenite grain boundary is also relieved.
  • Table 1 shows the chemical composition of the materials used in one example of the present invention.
  • fire STPA 29 having the same chemical composition as that of the comparative material was used, and the effect of the heat treatment of the present invention on creep rupture ductility was examined by performing heat treatment under the heat treatment conditions of the present invention. Since the difference between this example and the comparative material is only the heat treatment conditions, and there is no difference in chemical components, non-metallic inclusions, etc., it is possible to verify only the effect of the heat treatment of the present invention.
  • FIG. 1 is a continuous cooling transformation (CCT) curve from 1070 ° C. corresponding to the normalizing heat treatment temperature of fire STPA29.
  • CCT continuous cooling transformation
  • Table 2 and FIG. 2 show the heat treatment conditions employed in this example.
  • the points of the present invention are as follows. (1) After partial transformation to martensite in the course of cooling from the normalizing temperature, after performing intermediate tempering heat treatment, cooling to a temperature below the martensitic transformation end temperature (Mf) (for example, room temperature) , Transforming the untransformed austenite part into martensite. (2) Decreasing the cooling rate in the temperature range where martensitic transformation starts during cooling from the normalizing temperature.
  • Mf martensitic transformation end temperature
  • the partial transformation temperature was set to two conditions of 320 ° C. and 350 ° C.
  • the intermediate tempering heat treatment was performed under two conditions of 570 ° C. and 590 ° C.
  • final tempering corresponding to ordinary tempering heat treatment was performed at 730 ° C. and 780 ° C.
  • Table 3 and FIGS. 4 to 8 show the results of the creep test of this example together with the results of the comparative material.
  • the average value and the minimum value of the creep rupture time of the comparative material are reevaluation results obtained when the allowable tensile stress is reviewed, and indicate the creep strength level of the steel type.
  • Table 4 and FIG. 3 show the heat treatment conditions of the high-strength ferritic heat-resistant steel employed in the comparative example.
  • the heat treatment conditions adopted in the comparative examples are based on the above-mentioned ASME boiler pressure vessel standard, and compared with the heat treatment conditions of the present invention, there is no intermediate tempering heat treatment, and during the cooling from the normalizing temperature to room temperature. The difference is that the cooling rate in the temperature range where martensitic transformation starts is a normal fast value. That is, there is a solution heat treatment step first, and a steel material made of the ferritic heat resistant steel is solution heat treated at the austenitizing temperature. Next, in the normalizing step, the steel material is cooled from the austenitizing temperature to room temperature. Finally, in the tempering heat treatment step, the steel material is tempered at a tempering temperature set higher than the use temperature of the steel material.
  • FIGS. 10 and 11 show photographs of creep rupture test pieces of fire STPA29 (alloy steel pipe for power generation piping), which is particularly excellent in creep strength among high strength ferritic heat resistant steels.
  • the test piece (FIG. 11) that had undergone creep rupture in 50871.2h for a long time almost no reduction in the cross section was observed even in the vicinity of the rupture portion, and the creep rupture drawing was small.
  • 12 and 13 show the creep rupture elongation and the creep rupture drawing of the fire STPA 29 with respect to the creep rupture time, respectively.
  • FIG. 14 is a schematic diagram showing the difference in microstructure of ferritic heat resistant steel corresponding to the creep test conditions, (A) shows the internal structure of the prior austenite crystal grains, and (B) shows the correlation between stress and rupture time.
  • rupture in is shown.
  • the internal structure of the prior austenite crystal grains has three layers: packet, block, and lath.
  • the former austenite crystal grains have a size of several tens of ⁇ m, and the grain boundaries are large-angle grain boundaries.
  • the packet is packed inside the old austenite crystal grains, the size is several ⁇ m, and the boundary is a large-angle grain boundary.
  • the blocks are arranged in parallel inside the packet and have an elongated plate shape of about 1 ⁇ m, and the boundary is a large-angle grain boundary.
  • the lath is a small-angle grain boundary of about 0.2 ⁇ m, and the block is a group of laths having the same crystal orientation. Carbides and nitrides are deposited inside and at the boundaries of the lath.
  • the internal structure of the prior austenite crystal grains has the same microstructure as before the start of the creep test in the case of high stress and short time fracture as the creep test conditions.
  • the lath of the martensitic structure is in a state where the lath of the martensite structure is gently restored compared to before the start of the creep test.
  • the appearance is completely different from the inside of the grain, and there is very little fine precipitates and dislocations, and the recovery is extremely advanced.
  • FIG. 15 is a diagram showing the creep rupture drawing of the fire STPA 29 with respect to the proof stress ratio (value obtained by dividing the test stress by the 0.2% proof stress). When the yield strength ratio exceeds 0.5, the creep rupture drawing shows a large value. However, when the yield strength ratio is reduced to 0.5 or less, the creep rupture drawing is greatly lowered at any test temperature.
  • FIG. 17 and FIG. 18 show the results of arranging the creep rupture restriction with respect to the strength ratio for fire STBA29, fire SUS410J3TP (stainless steel pipe for power generation piping) and fire STBA24J1 (alloy steel pipe for power generation boiler), respectively.
  • FIG. Any steel type shows a large creep rupture drawing when the yield ratio exceeds 0.5, but when the yield ratio is reduced to 0.5 or less, the creep rupture drawing is greatly reduced regardless of the test temperature. Therefore, the phenomenon that the creep rupture drawing is greatly reduced when the yield ratio is reduced to 0.5 or less is a common phenomenon recognized in any high-strength ferritic heat-resistant steel.
  • a proof stress ratio of 0.5 corresponds to the elastic limit at that temperature.
  • a specimen that creep ruptures at a low stress that is less than one-half of the 0.2% proof stress as shown in FIG. 19, the recovery phenomenon of the tempered martensite structure in a local region near the prior austenite grain boundary. The formation of a softened region with low creep strength is observed. The structure in which the recovery phenomenon of the tempered martensite structure progresses in a non-uniform manner in this way is not observed in a specimen that creep ruptures in a high stress region where the yield strength ratio exceeds 0.5.
  • creep deformation preferentially proceeds in the local recovery region near the prior austenite grain boundary and causes creep rupture, so the amount of creep deformation until creep rupture is small. It is considered that the creep rupture ductility is lowered.
  • High-strength ferritic heat-resistant steel is used as a martensite structure by tempering heat treatment after making it into a martensite phase by martensitic transformation from the austenite phase by normalizing heat treatment. At the time of martensitic transformation from the austenite phase, volume expansion is accompanied, so that strain is generated in the untransformed austenite region around the previously transformed martensite region. Therefore, the strain introduced by the martensitic transformation concentrates on the prior austenite grain boundaries and the like.
  • the present inventor has a microstructure in which the transformation strain introduced by martensitic transformation suppresses a phenomenon that promotes a recovery phenomenon in a local region such as in the vicinity of a prior austenite grain boundary, and heat treatment conditions for realizing the microstructure.
  • the present invention was conceived by realizing that it was important to find out. That is, in the examples of the present invention, after the intermediate tempering heat treatment was performed in a two-phase state in which a part of the test material was martensitic transformed, the strain introduced by the martensitic transformation was relaxed, and the remaining untransformed austenite A heat treatment condition for transforming the phase into martensite is applied to the specimen.
  • FIG. 4 is a diagram showing the creep rupture time obtained by conducting a creep test at a test temperature of 650 ° C. and a test stress of 90 MPa for the example and the comparative material.
  • the creep rupture time of the DTA and DTB in the examples is slightly shorter than the MJP of the comparative material, but is between the average value and the minimum value of the steel type, and within the range of the standard creep rupture time of the steel type. is there.
  • the creep rupture time of DTC and DTD in the examples is 96 to 98% of the creep rupture time of MJP as a comparative material, which is an average creep rupture time of the steel type.
  • FIG. 5 is a diagram showing the creep rupture time obtained by conducting a creep test on the example and the comparative material at a test temperature of 700 ° C. and a test stress of 50 MPa.
  • the creep rupture times of DTA to DTD of the examples are all slightly shorter than the MJP of the comparative material, but are within the range of the standard creep rupture time of the steel type.
  • FIG. 6 is a diagram showing photographs of test pieces that were subjected to creep rupture at a test temperature of 650 ° C. and a test stress of 90 MPa for the examples and comparative materials. Compared to MJP of the comparative material, all of DTA, DTB, DTC and DTD of the example have a large degree of cross-sectional reduction in the vicinity of the fracture portion, and it can be seen that the creep rupture ductility of the example is higher than that of the comparative material.
  • FIG. 7 is a diagram showing photographs of test pieces that were subjected to creep rupture at a test temperature of 700 ° C. and a test stress of 50 MPa for the examples and comparative materials. As compared with MJP of the comparative material, all of the examples have a large degree of cross-sectional reduction in the vicinity of the fracture portion, and it can be seen that the examples have higher creep rupture ductility than the comparative material.
  • FIG. 7 is a diagram showing photographs of test pieces that were subjected to creep rupture at a test temperature of 700 ° C. and a test stress of 50 MPa for the examples and comparative materials. As compared with MJP of the comparative material, all of the examples have a large degree of cross-sectional reduction in the vicinity of the fracture portion, and it can be seen that the examples have higher creep rupture ductility than the comparative material.
  • FIG. 7 is a diagram showing photographs of test pieces that were subjected to creep rupture at a test temperature of 700 ° C. and a test stress of 50 MPa
  • FIG. 8 is a diagram comparing the creep rupture elongation obtained at a test temperature of 650 ° C., a test stress of 90 MPa and a test temperature of 700 ° C., and a test stress of 50 MPa for the examples and comparative materials (DTT and MJT: test temperature of 700 ° C., For the test stress of 60 MPa, see Table 3). It can be seen that the examples show greater creep rupture elongation than the comparative material.
  • FIG. 9 is a diagram comparing the creep rupture drawing obtained at a test temperature of 650 ° C., a test stress of 90 MPa, a test temperature of 700 ° C., and a test stress of 50 MPa for the examples and comparative materials (DTT and MJT: test temperature of 700 ° C., For the test stress of 60 MP, see Table 3). It can be seen that the examples show a larger creep rupture draw than the comparative material.
  • the ferritic heat resistant steel of the present invention has creep rupture ductility with a creep rupture elongation of 16% or more and a creep rupture drawing of 28% or more.
  • the creep rupture elongation is preferably 18% or more, the creep rupture drawing is preferably 28% or more, the creep rupture elongation is 20% or more, and the creep rupture drawing is more preferably 40% or more. It is particularly preferable that the elongation at break is 20% or more and the creep rupture drawing is 50% or more.
  • JIS standard STBA26 ASME T9
  • Tue STBA27 Tue STBA28
  • Tue STBA29 may be used as 9Cr ferritic heat-resistant steel that is usually used as heat-resistant steel for boilers.
  • various ferritic heat resistant steels included in JIS standard fire SUS410J2TB, fire SUS410J3TB (ASME T122), and DIN standard DINX20CrMoV121 and DINX20CrMoWV121 may be used.
  • Table 5 lists the chemical compositions of these various ferritic heat resistant steels.
  • the high strength ferritic heat resistant steel having the microstructure of the present invention can be obtained by appropriately selecting the heat treatment conditions.
  • the creep rupture strength of a high-strength ferritic heat-resisting steel having a tempered martensite structure in which strain introduced by martensitic transformation is relaxed is impaired under long-term use conditions.
  • the creep rupture ductility is improved. As a result, it is suitable for use in applications that should ensure stable operation over a long period of time, such as thermal power plants.
  • the heat treatment method of the present invention that reduces the transformation strain introduced by martensitic transformation, not only the creep rupture ductility of high-strength ferritic heat-resistant steel utilizing the martensitic structure is improved, but also the martensitic structure It is expected to be effective in solving various problems such as reduced fracture toughness, occurrence of delayed fracture, acceleration of hydrogen embrittlement, fatigue strength limit, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 クリープ強度を損なうことなく、長時間域のクリープ破断延性の向上を実現したフェライト系耐熱鋼を提供する。 化学組成が、質量%で、C:0.03~0.15%、Si:0~0.8%、Mn:0.1~0.8%、Cr:8.0~11.5%、Mo:0.2~1.5%、(W:0.4~3.0%)、V:0.1~0.4%、Nb:0.02~0.12%、N:0.02~0.08%、残部:鉄及び不可避的不純物を含むフェライト系耐熱鋼であって、焼き戻しマルテンサイトの微細組織を有すると共に、オーステナイト相の一部がマルテンサイト変態した二相状態での中間焼き戻し熱処理により、マルテンサイト変態により導入された内部ひずみ又は内部応力が緩和され、前記フェライト系耐熱鋼よりなる鋼材の使用温度での弾性限度内の負荷が作用する場合においても、優れたクリープ破断延性を有する。

Description

フェライト系耐熱鋼とその製造方法
 本発明は、高温に加熱されたフェライト鋼を水冷等により急冷して、マルテンサイト変態させた後、焼き戻し熱処理を行い、引張強度や耐摩耗性又は疲労強度やクリープ強度を向上させた高強度鋼とその製造方法に関し、特にクリープ強度と破断延性に優れたフェライト系耐熱鋼とその製造方法に関する。
 日本国ではエネルギー価格の上昇や京都議定書の発効を受けて、熱併給発電を行うコジェネレーション型のエネルギー供給システムを採用して、温室効果ガスを低減させることが行われている。他方で、発電のみを行う従来型火力発電では、蒸気温度と蒸気圧力を向上させることにより熱効率を高めた超々臨界圧(Ultra Super Critical)発電等の新技術が開発されてきたが、さらなる熱効率を高めるための新技術の開発が行われている(非特許文献1)。即ち、従来型発電の中では優れた熱効率である超々臨界圧発電では、蒸気温度は630℃程度が限界で、熱効率も42~43%[送電端高位発熱量(HHV:Higher Heating Value)]が原理的限界と言われてきた。しかしながら、近年の材料技術の進歩により700℃以上、蒸気圧力24.1MPa以上の蒸気条件を達成できる可能性が見えてきた。そこで、これらの材料を活用した先進超々臨界圧発電(A-USC)を開発し、エネルギーセキュリティの確保及びCO排出量の削減による環境適合を図ることが計画されている。
A-USCは、蒸気温度700℃級で46%、750℃級で48%、800℃級で49%の高い熱効率(送電端HHV)の達成が可能な技術であり、2020年以降増大する経年火力発電のリプレース需要に対応するため、早急に技術開発を進める必要がある。この一環として、高温耐熱材料の開発が行われている(非特許文献2、3)。
なお、この高温耐熱材料は、用途として上述のA-USCに加えて、従来の蒸気温度600℃級のような火力発電用や各種のエネルギー供給設備に用いることができる。
 このような高温耐熱材料の一種として、例えば高強度フェライト耐熱鋼が知られている。そして、例えば非特許文献4では、高強度フェライト耐熱鋼の材料規格として、火STPA29(発電配管用合金鋼鋼管)および火STBA29(発電ボイラー用合金鋼鋼管)が掲げられている。また、このような材料規格の対応規格として、例えば非特許文献5が知られている。しかし、米国機械学会(ASME)ボイラ圧力容器規格においては、火STPA29および火STBA29の相当材であるGrade P92およびGrade T92は、クリープ破断延性の低下の程度が大きいため、現在の状況では本体規格への取入れが見合わされている。高温高圧の条件下で使用される構造部材の信頼性および安全性を維持するためには、クリープ破断延性の低下を抑制することが必要である。さらに、風力や太陽光発電等の再生可能エネルギーの普及に伴い、火力発電プラントには急激かつ頻繁な負荷変動運転が求められる。そのような負荷変動運転に伴う温度の変化は、熱膨張の繰返しにより高温構造部材の寿命を短くするが、クリープ破断延性を向上させることにより、熱膨張の繰返しによる寿命低下を抑制することもできる。
 即ち、高強度フェライト耐熱鋼は高温で優れたクリープ強度を有するが、長時間使用条件ではクリープ破断延性が大きく低下することが知られている。そのため、高温構造機器の安全性および信頼性を損なうことが懸念されている。クリープ破断延性が低下する原因としては、粗大な析出物や非金属介在物によるボイドの形成、不純物元素の影響等が考えられている。
 高強度フェライト耐熱鋼のクリープ強度を向上させる点に関しては、以下のような非特許文献6-9が知られているが、経年火力発電のリプレース需要に対応するための重要な特性であるクリープ破断延性に関しては、沈黙している。
 即ち、非特許文献6では、加工熱処理を行うことにより、高強度フェライト耐熱鋼のクリープ強度を向上させることが記載してある。オーステナイト単相温度域で加工熱処理を行うことにより強化因子である第二相を微細分散析出させることによりクリープ強度を向上させるものだが、開示された熱処理の条件がクリープ破断延性を向上させるか明らかでない。
 非特許文献7では、熱処理条件としてASTM標準の焼ならし温度よりも高くすると共に焼戻し温度を低くすることにより、高強度フェライト耐熱鋼のクリープ強度を向上させることが記載してある。通常よりも高い温度で焼ならし熱処理を行い、通常よりも低い温度で焼もどし熱処理を行うことにより、強化因子である第二相を微細分散析出させてクリープ強度を向上させるものだが、開示された熱処理の条件がクリープ破断延性を向上させるか明らかでない。
 非特許文献8では、Si-Mn鋼について、部分変態したマルテンサイトと未変態オーステナイトの間の組成分配が機械的性質に及ぼす影響を検討した結果が記載してある。マルテンサイトから未変態オーステナイトに炭素が移動して、高炭素オーステナイト相が残留オーステナイトとして残存することにより、強度-延性バランスを向上させるものだが、開示された熱処理の条件がクリープ破断延性を向上させるか明らかでない。
 非特許文献9では、高強度フェライト耐熱鋼である改良9Cr-1Mo鋼について、マルテンサイトに部分変態させた後、室温まで冷却せずに、焼もどし熱処理を行うものである。本文献では強化因子である析出物のサイズを小さくし、マルテンサイトブロックのサイズを大きくすることにより、クリープ強度を向上させるものであるが、開示された熱処理の条件がクリープ破断延性を向上させるか明らかでない。
 他方、特許文献1、2では、Ti添加と通常よりも高温の焼ならし熱処理により、高強度フェライト耐熱鋼のクリープ強度を向上させることが提案されている。しかし、開示された高強度フェライト耐熱鋼の化学組成や熱処理の条件がクリープ破断延性を向上させるか明らかでない。
米国特許第8246767号 米国特許第8317944号
次世代電力供給システムに係る技術に関する施策・事業評価報告書、産業構造審議会 産業技術分科会 評価小委員会 (第34回)配布資料、平成23年3月 火力発電材料の飛躍、NIMS NOW、第9巻7号、2009 高効率火力発電用耐熱材料の最近の動向、電気製鋼、第83巻1号、2012 発電用火力設備の技術基準の解釈(経済産業省 20130708商局第6号)、別表第一、備考21(発電配管用合金鋼鋼管) ASME-SA335;SPECIFICATION FOR SEAMLESS FERRITIC ALLOY STEEL PIPE FOR HIGH TEMPERATURE;American Society of Mechanical Engineers (2013) R. L. Klueh, et al.,Scripta Materialia, 53 (2005), pp.275-280. Y. F. Yin, et al.,Energy Materials, Vol. 3, No. 4 (2008), pp.232-242. E. De Moor, et al.,ISIJ International, Vol. 51, No. 1 (2011), pp.137-144. M. Tamura, et al.,Materials Transactions, Vol. 52, No. 4 (2011), pp.691-698.
 上述したように、高強度フェライト系耐熱鋼を高い熱効率を有する先進超々臨界圧発電設備等に用いる場合に、フェライト系耐熱鋼は高温で優れたクリープ強度を有するものの、長時間使用条件ではクリープ破断延性が大きく低下して、高温構造機器の安全性および信頼性を損なう懸念があるという課題があった。
 本発明は、上述した課題を解決するもので、ステンレス鋼やニッケル基超合金と比較すると合金元素の調達が容易なフェライト系耐熱鋼を用いることで、火力発電プラントのような民生用発電プラントの熱エネルギー効率の高さとプラント建設コストを調和できるフェライト系耐熱鋼を提供することを目的とする。
 本発明のフェライト系耐熱鋼は、化学組成が、質量%で、
 C:0.03~0.15
 Si:0~0.8
 Mn:0.1~0.8
 Cr:8.0~11.5
 Mo:0.2~1.5
 V:0.1~0.4
 Nb:0.02~0.12
 N:0.02~0.10
 残部:鉄および不可避的不純物を含むフェライト系耐熱鋼であって、焼き戻しマルテンサイトの微細組織を有すると共に、前記フェライト系耐熱鋼よりなる鋼材の使用温度での当該フェライト系耐熱鋼の弾性限度内の負荷が作用する場合において、クリープ破断延びが16%以上で、クリープ破断絞りが28%以上のクリープ破断延性を有することを特徴とする。
 クリープ破断延びが18%以上で、クリープ破断絞りが28%以上のクリープ破断延性を有することが好ましく、クリープ破断延びが20%以上で、クリープ破断絞りが40%以上のクリープ破断延性を有することがより好ましく、クリープ破断延びが20%以上で、クリープ破断絞りが50%以上のクリープ破断延性を有することが特に好ましい。
 ここで、「前記フェライト系耐熱鋼よりなる鋼材の使用温度」は、例えば、600℃以上の高温を意味し、「当該フェライト系耐熱鋼の弾性限度内の負荷」は、後述する耐力比が0.5以下の低応力域を意味する。
 本発明のフェライト系耐熱鋼は、前述の化学組成を有し、焼き戻しマルテンサイトの微細組織を有すると共に、ASMEボイラ圧力容器規格又はこれに相当する規格のフェライト系耐熱鋼の熱処理条件に定められた溶体化熱処理工程、焼ならし工程および焼もどし熱処理工程で熱処理されたフェライト系耐熱鋼の旧オーステナイト結晶粒と比較して、マルテンサイト変態により導入された内部ひずみ又は内部応力の少なくとも一方が緩和されている旧オーステナイト結晶粒を有する組織であることを特徴とする。
 本発明のフェライト系耐熱鋼は、前述の化学組成を有すると共に、さらに以下の熱処理工程(a)~(e)による熱処理を受けて製造されることを特徴する。
                記
(a) 当該フェライト系耐熱鋼よりなる鋼材をオーステナイト化温度で溶体化熱処理する溶体化熱処理工程、
(b) 前記フェライト系耐熱鋼よりなる鋼材を前記オーステナイト化温度から一部がマルテンサイトに変態することにより、マルテンサイトと未変態オーステナイトの二相状態温度まで冷却する焼ならし工程、ここで当該二相状態温度はマルテンサイト変態開始温度(Ms)よりも低く、マルテンサイト変態終了温度(Mf)よりも高く定められていること、
(c) 当該マルテンサイトと未変態オーステナイトの二相状態温度から中間焼もどし熱処理温度まで加熱して一定時間保持することにより、マルテンサイト変態により導入された内部ひずみ、あるいは内部応力を緩和する工程、ここで当該中間焼もどしの熱処理温度はマルテンサイト変態開始温度(Ms)よりも高く第2の最終焼もどし熱処理温度よりも低く定められていること、
(d) 一旦、マルテンサイト変態終了温度(Mf)以下の温度まで冷却することにより、残りの未変態オーステナイト相をマルテンサイトに変態させる工程、
(e) 前記フェライト系耐熱鋼よりなる鋼材の使用温度よりも高く定められた前記第2の最終焼もどし熱処理温度での最終焼もどし熱処理を行なうこと。
 ここで、本発明のフェライト系耐熱鋼は、従来のフェライト系耐熱鋼にはない新規な微細組織と物理的・機械的性質を有するものであるが、その微細組織と物理的・機械的性質を、上記の本発明の態様では正確に定義していないと認定される場合もありえる。そこで、予備的に、いわゆるプロダクト・バイ・プロセスクレームにより、便宜的に上述の熱処理条件を用いて新規な物質である本発明のフェライト系耐熱鋼を規定したものである。
 本発明のフェライト系耐熱鋼において、好ましくは、前述の化学組成元素に加えて、質量%で、
 W:0.0~3.0
 B:0.002~0.010
 Co:0~2.0
 Ta:0.05~0.12
からなる群の元素から選ばれた少なくとも1つ以上含むとよい。
 本発明のフェライト系耐熱鋼は、前述の化学組成に代えて、化学組成が、質量%で、
 C:0.03~0.15
 Si:0~0.8
 Mn:0.1~0.8
 Cr:8.0~11.5
 Mo:0.2~1.5
 W:0.4~3.0
 V:0.1~0.4
 Nb:0.02~0.12
 N:0.02~0.10
 B:0.002~0.010
 残部:鉄および不可避的不純物を含むフェライト系耐熱鋼であることを特徴とする。
 本発明のフェライト系耐熱鋼の製造方法は、上記の化学組成と焼き戻しマルテンサイトの微細組織を有すると共に、上記のクリープ破断延性を有するか、又は、上記の内部ひずみ又は内部応力の少なくとも一方が緩和されている旧オーステナイト結晶粒を有するフェライト系耐熱鋼の製造方法であって、
(a) 当該フェライト系耐熱鋼よりなる鋼材をオーステナイト化温度で溶体化熱処理する溶体化熱処理工程、
(b) 前記フェライト系耐熱鋼よりなる鋼材を前記オーステナイト化温度から一部がマルテンサイトに変態することにより、マルテンサイトと未変態オーステナイトの二相状態温度まで冷却する焼ならし工程、ここで当該二相状態温度はマルテンサイト変態開始温度(Ms)よりも低く、マルテンサイト変態終了温度(Mf)よりも高く定められていること、
(c) 当該マルテンサイトと未変態オーステナイトの二相状態温度から中間焼もどし熱処理温度まで加熱して一定時間保持することにより、マルテンサイト変態により導入された内部ひずみ、あるいは内部応力を緩和する工程、ここで当該中間焼もどし熱処理温度はマルテンサイト変態開始温度(Ms)よりも高く最終焼もどし熱処理温度よりも低く定められていること、
(d) 一旦、マルテンサイト変態終了温度(Mf)以下の温度まで冷却することにより、残りの未変態オーステナイト相をマルテンサイトに変態させる工程、
及び、(e) 前記フェライト系耐熱鋼よりなる鋼材の使用温度よりも高く定められた第2の最終焼もどし熱処理温度での最終焼もどし熱処理を行なう工程を有することを特徴とする。
 本発明のフェライト系耐熱鋼の製造方法は、前記フェライト系耐熱鋼の製造方法であって、前記(a)の溶体化熱処理工程における前記オーステナイト化温度での熱処理温度が1030℃から1120℃の範囲であり0.5時間から24時間保持するものであることを特徴とする。
 本発明のフェライト系耐熱鋼の製造方法は、前記フェライト系耐熱鋼の製造方法であって、前記(b)の焼ならし工程における前記マルテンサイトと未変態オーステナイトの二相状態温度が約240℃から約400℃の範囲であることを特徴とする。
 本発明のフェライト系耐熱鋼の製造方法は、前記フェライト系耐熱鋼の製造方法であって、前記(b)の焼ならし工程におけるオーステナイト化温度から二相状態温度まで冷却する冷却速度が、マルテンサイト変態開始温度(Ms)まではフェライト相への変態を抑制できる程度に速く冷却し、マルテンサイト変態開始温度(Ms)から二相状態温度までは徐冷することを特徴とする。
 本発明のフェライト系耐熱鋼の製造方法は、前記フェライト系耐熱鋼の製造方法であって、前記(c)の二相状態温度から中間焼もどし熱処理温度まで加熱する工程における当該中間焼もどし熱処理温度が、550℃から600℃の範囲であり1時間から24時間保持するものであることを特徴とする。
 本発明のフェライト系耐熱鋼の製造方法は、前記フェライト系耐熱鋼の製造方法であって、前記(e)の最終焼もどし熱処理工程における当該第2の最終焼もどし熱処理温度が、730℃から800℃の範囲であり1時間から24時間保持するものであることを特徴とする。
 本発明のフェライト系耐熱鋼の使用方法は、上記の化学組成と焼き戻しマルテンサイトの微細組織を有すると共に、上記のクリープ破断延性を有するか、又は、上記の内部ひずみ又は内部応力の少なくとも一方が緩和されている旧オーステナイト結晶粒を有するフェライト系耐熱鋼の使用方法であって、蒸気温度が600℃級以上の火力発電所の発電設備に使用されることを特徴とする。
 本発明のフェライト系耐熱鋼によれば、フェライト系耐熱鋼よりなる鋼材の使用温度での当該フェライト系耐熱鋼の弾性限度内の負荷が作用する場合でも、旧オーステナイト粒界近傍等の局所的な領域でクリープ変形が促進される現象が抑制されるようなミクロ組織を有する。そこで、例えば火力発電プラントの高温蒸気用の圧力配管に用いる場合に、稼働時間が10万時間を超すような場合についても、長時間域におけるクリープ破断延性の大幅な低下がなく、フェライト系耐熱鋼の弾性限度を超える負荷が作用する場合と同様に優れたクリープ破断延性を示し、火力発電プラントの長期間稼動が安定して確保できる。
 また、本発明のフェライト系耐熱鋼の製造方法によれば、マルテンサイト変態により導入され、とくに旧オーステナイト粒界近傍等に集中して発生する変態ひずみを緩和させることができる。したがって、この製造方法により、焼もどしマルテンサイト組織を有する高強度フェライト系耐熱鋼の長時間使用条件下におけるクリープ破断延性を改善でき、例えば火力発電プラントのような長期間安定した運転を確保すべき用途に用いるのに好適なフェライト系耐熱鋼が得られる。
図1は、本発明の実施形態に係る供試材(火STPA29)の連続冷却変態(CCT)曲線である。 図2は、本発明の一実施例の熱処理条件を示すグラフである。 図3は、比較材の熱処理条件を示すグラフである。 図4は、650℃-90MPaにおける、本発明の一実施例と比較材のクリープ破断時間の比較を示すグラフである。 図5は、700℃-50MPaにおける、本発明の一実施例と比較材のクリープ破断時間の比較を示すグラフである。 図6は650℃-90MPaにおける、本発明の一実施例と比較材のクリープ破断試験片の比較を示す写真である。 図7は、700℃-50MPaにおける、本発明の一実施例と比較材のクリープ破断試験片の比較を示す写真である。 図8は、本発明の実施例と比較材のクリープ破断伸びの比較を示すグラフである。 図9は、本発明の実施例と比較材のクリープ破断絞りの比較を示すグラフである。 図10は、650℃-140MPaにおける、高強度フェライト耐熱鋼(火STPA29)のクリープ破断試験片を示す写真で、破断時間は66.0時間である。 図11は、650℃-70MPaにおける、高強度フェライト耐熱鋼(火STPA29)のクリープ破断試験片を示す写真で、破断時間は50871.2時間である。 図12は、各種のクリープ試験温度における、高強度フェライト耐熱鋼(火STPA29)のクリープ破断伸びとクリープ破断時間の関係を示すグラフである。 図13は、各種のクリープ試験温度における、高強度フェライト耐熱鋼(火STPA29)のクリープ破断絞りとクリープ破断時間の関係を示すグラフである。 図14は、クリープ試験条件に対応したフェライト系耐熱鋼のミクロ組織の違いを示す模式図で、(A)は旧オーステナイト結晶粒の内部構造を示し、(B)は応力と破断時間との相関における破断時のミクロ組織を示している。 図15は、各種のクリープ試験温度における、高強度フェライト耐熱鋼(火STPA29)のクリープ破断絞りと試験応力の耐力比との関係を示すグラフである。 図16は、各種のクリープ試験温度における、高強度フェライト耐熱鋼(火STBA29)のクリープ破断絞りと試験応力の耐力比との関係を示すグラフである。 図17は、各種のクリープ試験温度における、高強度フェライト耐熱鋼(火SUS410J3TP)のクリープ破断絞りと試験応力の耐力比との関係を示すグラフである。 図18は、各種のクリープ試験温度における、強度フェライト耐熱鋼(火STBA24J1)のクリープ破断絞りと試験応力の耐力比との関係を示すグラフである。 図19は、600℃-100MPaにおける、高強度フェライト耐熱鋼(火STBA28)のクリープ破断材の透過電顕組織を示す写真である。
 以下に、本発明の析出強化型フェライト系耐熱鋼を形成する耐熱鋼の組成及びその含有量について、上記のように限定した理由を下記に記す。なお、以下の説明において、含有量を表す%は、質量%である。
 炭素(C):Cは、重要なオーステナイト生成元素であり、δ-フェライト相の抑制効果を有する。また、鋼の焼き入れ性を著しく高め、マルテンサイト相母相を形成するのに必要不可欠な元素でもある。MX型(炭窒化物M(C、N)という形態をとることもある。なお、MはV、Nb等の合金元素である。)、M型、及びM23型の炭化物を形成する。鋼が630℃を超える高温下で焼き戻し熱処理されると、微細なこれら炭窒化物(たとえばVN、NbC)の析出が進行し、長時間クリープ強度を維持する働きをする。この効果を得るには、含有率0.06%以上が必要である。一方、0.12%を超えると、炭化物の凝集と粗大化が起こり、長時間クリープ強度を逆に低下させてしまう。他方で、効果重視だと製造上の材料組成の選択範囲が過度に狭くなる弊害を生ずるため、Cの含有率の下限値は0.03%でもよく、またその上限値は0.15%でもよい。このため、Cの含有率は、0.03~0.15%がよく、特に好ましくは0.06~0.12%が適当である。
 珪素(Si):Siは、溶鋼の脱酸剤であると同時に、高温における耐水蒸気酸化性を向上させるのに有効な元素でもある。だが、過剰となる場合には、鋼の靱性を低下させるので、含有率は0.8%以下、好ましくは0.5%以下が適当である。なお、近年、真空カーボン脱酸法やエレクトロスラグ再溶解法が適用され、必ずしもSi脱酸を行なう必要がなくなって来ており、そのときの含有量は0.1%以下でありSi量は低減できる。したがって、Siの含有率は、好ましくは0~0.8%、さらに好ましくは0~0.5%とする。
 マンガン(Mn):Mnは、通常、SをMnSとして固定し、鋼の熱間加工性を向上させるために添加される元素であり、またδ-フェライトおよびBNの生成を抑制し、M23型炭化物の析出を促進する元素としても有効であるため、下限値を0.1質量%とする。だが、Mn量増加と共にクリープ破断強度を低下させるので、上限値を0.8%とする。そこで、Mnの含有率は、0.1~0.8%が適当である。
 クロム(Cr):Crは、高温における耐食性、耐酸化性、特に耐水蒸気酸化性を確保する上で必要不可欠な元素である。Crの含有により、鋼表面には、Cr酸化物を主体とする緻密な酸化皮膜が形成され、この酸化皮膜が、鋼に高温における耐食性、耐酸化性(耐水蒸気酸化性を含む)を与える。
 また、Crは、炭化物を形成してクリープ強度を向上させる働きも持っている。これらの効果を得るためには、含有率8.0%以上は必要である。ただし、11.5%を超えると、δ-フェライト相が生成しやすくなり、クリープ破断強度や靱性の低下が起こる。Crの含有率は、8.0~11.5%が適当である。
 タングステン(W):Wは、クリープ強度を高め、高温での維持に有効な元素の一つである。固溶状態にあってはマルテンサイト相母相を強化し、高温下でFe型のμ相、FeW型のLaves相等を主体とする金属間化合物を形成し、これが微細に析出して長時間クリープ強度を向上させる。また、Cr炭化物中にも一部固溶し、M23型炭化物の凝集、粗大化を抑制する。
 微量添加では固溶強化、1.0%を超える添加では析出強化が顕著となる。一方、3.0%を超えると、δ-フェライト相が生成しやすくなり、靱性の低下が起こる。なお、他の強化元素(Mo)で十分強化されている場合には、Wは省略することも可能である。したがって、Wの含有率は、0~3.0%が適当であり、特に好ましくは0.4~3.0%である。
 モリブデン(Mo):Moは、Wと同様に、0.2%を超える微量添加では固溶強化、1.0%を超える添加では析出強化に寄与し、クリープ強度を高める。Moの析出強化は、Wに比べ600℃以下の低温側で顕著である。他の強化元素(W)で十分強化されている場合には、Moは省略することも可能である。また、Moは、M23型及びM型炭化物という形態では、高温で安定であり、長時間クリープ強度の確保にも有効となる。1.5%を超えると、δ-フェライト相が生成しやすくなり、靱性が低下するため、含有率は、0~1.5%が適当であり、特に好ましくは0.2~1.5%である。なお、W及びMoを同時含有する場合には、含有率は、好ましくは、0.5≦W+2Mo≦4.0%とする。
 バナジウム(V):Vは常温における強度(引張強さ,耐力)の向上に有効な元素である。さらに、Vは固溶強化元素として、又、Vの微細な炭窒化物をマルテンサイトラス内に生成させる。これら微細な炭窒化物は、クリープ中の転位の回復を制御してクリープ強度やクリープ破断強度など高温強度を増加させるため、Vは析出強化元素として重要な元素である。更に、Vはある程度の添加範囲(0.1~0.4%)の添加量であれば、結晶粒を微細化させて、靱性向上にも有効である。しかし、あまりにも多量に添加すると、靱性を害するとともに、炭素を過度に固定し、M23型炭化物の析出量を減じて逆に高温強度を低下させるので、その含有量は0.1~0.4%とした。
 ニオブ(Nb):Nbは、Vと同様に引張強さや耐力などの常温強度、並びにクリープ強度やクリープ破断強度などの高温強度の増大に有効な元素であると同時に微細なNbCを生成して結晶粒を微細化させ、靱性向上に非常に有効な元素である。また、一部は焼入れの際、固溶して焼戻し過程で上記のV炭窒化物と複合したMX型炭窒化物を析出し、高温強度を高める作用があり、この作用を発揮させるためには最低0.02%必要である。他方で、0.12%を超えるとVと同様炭素を過度に固定してM23型炭化物の析出量を減少し、高温強度の低下を招く。そこで、Nbの含有率は、0.02~0.12%が適当であり、特に好ましくは0.04~0.10%である。
 窒素(N):Nは、Cと同様に、重要なオーステナイト生成元素であり、δ-フェライト相の生成を抑制する効果を有する。また、鋼の焼き入れ性を高め、マルテンサイト相を形成する元素でもある。さらには、M(C、N)型炭窒化物を形成する。
 このようなNは、C等によりδ-フェライト相の生成が十分抑制され、かつ、650℃を超える高温におけるクリープ強度を重視する場合には、添加は特に必要でない。一方、焼き入れ性を十分高め、δ-フェライト相の生成抑制を重視する場合には、好ましく添加される。多量の添加は、窒化物の粗大化につながり、靱性の低下が著しくなる。しがって、Nの含有率は、0.02~0.10%が適当である。
 ボロン(B):Bは、微量の含有で、主にM23型等の炭化物を微細に分散析出させ、凝集粗大化を抑制する。高温長時間クリープ強度の向上に効果がある。また、厚肉材などで熱処理後の冷却速度が遅い場合には、焼き入れ性を高め、高温強度を向上させる。
 このようなBは、主として高い高温強度が望まれる場合に含有することができ、省略することも可能である。含有する場合には、上記効果は、含有率0.002%以上で顕著となる。含有率が0.010%を超えると、溶接性を低下させるとともに、粗大なBN等の第二相を生成し、靱性低下を引き起こすので、上限は0.010%とする。したがって、Bの含有率は、0.002~0.010%が適当である。
 コバルトCo:Coは、焼き入れ性を向上させる効果を持ち、且つ、クリープ強度の向上の点でも効果を持つが、非常に高価であり、添加量が多くなれば材料コストが上昇する。材料コストを低くすることが求められ、且つ、十分なクリープ強度が得られ、且つ、鋼の焼き入れ性が十分に得られる条件で製造される場合には、Coは必須ではない。
 他方で、Coはオーステナイト生成元素であり、δフェライト相の生成を抑制する効果が期待される元素である。その効果を得るためには、含有率0.5%以上が必要である。したがって、Co含有率は0~2.0%とした。
 ニッケルNi:Niは、焼き入れ性を向上させる効果を持つが、クリープ強度に対して悪影響を及ぼす。Niの添加量は、0.4%以下に低減すべきである。
 タンタルTa:Taは、Nと結びついて、MNといわれる窒化物を形成して析出強化に寄与する。更に、鋼中に含まれるCと結合し炭化物を形成して、析出強化に寄与する。このような析出により母相中のCの濃度が低減され、MCペアの形成を阻害する効果があると強く推定されている。これらの元素の過剰な添加は、熱処理によりMNを母相に十分に溶かすことができないので、MNの微細分散析出を阻止して、MNの析出強化寄与を減殺する。Taの適正添加量は、加工熱処理組織制御の場合には、0.01~0.5%であり、好ましくは、0.05~0.12%である。
 酸可溶Al(sol.Al):Alは、主に溶鋼の脱酸剤として添加される。鋼中では、Alは、酸化物とこれ以外の形態で存在し、後者は、分析上、酸可溶Al(sol.Al)と呼ばれている。上記脱酸効果が得られれば、sol.Alは、特に必要ない。一方、0.020%を超えると、クリープ強度の低下を招く。sol.Alの含有率は、0.020%以下が適当である。
 リンP:Pは不可避的不純物として含有されるが、クリープ強度と破断延性に対して有害な元素であるから、0.020%以下が好ましい。
 硫黄S:Sも不可避的不純物として含有されるが、クリープ強度と破断延性に対して有害な元素であるから、0.010%以下が好ましい。
 Ti:Tiも不可避的不純物として含有されるが、強度向上に対して効果の少ない窒化物を形成し、強度向上に有効なM(C、N)型炭窒化物の形成を阻害するため、0.01%以下が好ましい。
 酸素O:Oも不可避的不純物として含有されるが、粗大な酸化物となって偏在すると、靱性等に悪影響を及ぼす。靱性を確保する上では、極力含有率を抑えるのが好ましい。含有率0.010%以下であれば靱性への影響は十分小さい。そこで、Oの含有率は、0.010%以下とする。
 また、この発明のフェライト系耐熱鋼については、工業的に用いられている通常の製造設備及び製造プロセスにより製造することができる。
 たとえば、電気炉、転炉等の炉で精錬し、脱酸剤及び合金元素を添加して成分調整を行う。特に厳密な成分調整が必要な場合には、合金元素を添加する前に、溶鋼に真空処理を行うことができる。
 こうして所定の化学組成に調整された溶鋼を、次いで、連続鋳造法又は造塊法によりスラブ、ビレット又は鋼塊に鋳造した後、鋼管、鋼板等に成形する。
 継ぎ目無し鋼管を製造する場合には、たとえばビレットを押出し、又は鍛造によって製管することができる。鋼板の場合には、スラブを熱間圧延し、熱延鋼板とすることができる。この熱延鋼板を冷間圧延すると冷延鋼板が得られる。熱間加工後に冷間圧延等の冷間加工を行う場合には、通常の冷間加工に先立って、焼き鈍し及び酸洗処理を行うのが好ましい。
 次に、溶体化熱処理温度について説明する。本発明に係わるフェライト系耐熱鋼はMX型炭窒化物を析出させ高温強度を高める効果からNbを0.02~0.12%添加している。この効果を発揮させるためには、溶体化熱処理時にNbを完全にオーステナイト母相に固溶させることが不可欠である。しかしながら、Nbは、焼入温度を1030℃未満にした場合、凝固時に析出した粗大な炭窒化物が熱処理後も残存し、クリープ破断強度の増加に対し、完全に有効には働き得ない。この粗大な炭窒化物を一旦固溶させ、微細な炭窒化物として高密度に析出させるためには、Nb炭窒化物の固溶がより進行する1030℃以上のオーステナイト化温度からの焼入れが必要になる。一方、1120℃を越えると本発明に係わる耐熱鋼の場合、δ-フェライトが生成しやすい温度域に入り、かつ結晶粒径の大幅な粗大化を生じ靭性を低下させるため、溶体化熱処理温度範囲は1030~1120℃が好ましい。
 続いて、溶体化熱処理工程に続く中間の焼ならし工程では、フェライト系耐熱鋼よりなる鋼材をオーステナイト化温度からオーステナイト相の一部がマルテンサイト相に変態して、未変態オーステナイトとマルテンサイトの二相状態になる温度まで冷却する。このオーステナイトとマルテンサイトの二相状態温度はマルテンサイト変態開始温度(Ms)よりも低く、マルテンサイト変態終了温度(Mf)よりも高く定められている点が、本発明に係わる耐熱鋼の特徴である。このマルテンサイトと未変態オーステナイトの二相状態温度は、供試材の一部がマルテンサイト変態するような温度であり、オーステナイトとマルテンサイトの二相状態で、後続の中間焼もどし熱処理によって、マルテンサイト変態により導入されたひずみを緩和させる点が肝要である。
 次に中間焼もどしの熱処理温度について説明する。中間焼もどしの熱処理温度が550℃未満であると、マルテンサイト変態により導入されたひずみを緩和する効果が小さく、600℃を越えると、未変態オーステナイト相がフェライト相に変態してしまう危険性があるため、中間焼もどしの熱処理は550~600℃の温度範囲とし、熱処理時間を1時間から24時間、あるいはそれ以上の時間保持するものとした。
 その後、供試材を一旦、マルテンサイト変態終了温度(Mf)以下の温度まで冷却して、未変態オーステナイト相をマルテンサイトに変態させる。
 次に、フェライト系耐熱鋼よりなる鋼材の使用温度よりも高く定められた第2の焼もどし温度での最終焼もどし熱処理により、マルテンサイト相の焼き戻し熱処理を行なう。
 最終焼もどしの熱処理温度は、M23型炭化物および金属間化合物を主に結晶粒界及びマルテンサイトラス境界に析出させ、かつMX型炭窒化物をマルテンサイトラス内へ析出させることができる熱処理温度範囲である730~800℃の温度範囲とする。
 最終焼もどし熱処理温度が730℃未満であると、上記のM23型炭化物およびMX型炭窒化物の析出が十分に平衡値まで到達することができず、析出物の体積率が相対的に低下する。しかも、730℃未満の温度ではマルテンサイト相を十分に焼き戻しすることができず、不安定な状態にあるため、高温で長時間の使用中に金属組織の回復、軟化現象が急速に進行し、クリープ強度が大きく低下する要因となる。
 一方、最終焼もどし熱処理温度がオーステナイトへの変態温度であるAC点(約820℃)に近い800℃を超えると、マルテンサイト相の著しい回復、軟化やオーステナイト相への変態が生じてしまい、クリープ強度が大きく低下するため、最終焼もどし熱処理の温度範囲は730~800℃が好ましい。
 上述の熱処理を施すことにより、マルテンサイト変態により導入された内部ひずみ又は内部応力が、大幅に緩和されるとともに、旧オーステナイト粒界近傍等への内部ひずみ又は内部応力の少なくとも一方の集中も緩和される。そこで、フェライト系耐熱鋼よりなる鋼材の使用温度での当該フェライト系耐熱鋼の弾性限度内の負荷が作用する場合でも、旧オーステナイト粒界近傍等の局所的な領域でクリープ変形が促進される現象が抑制されるため、長時間域においても当該フェライト系耐熱鋼の弾性限度を超える負荷が作用する場合と同様に、優れたクリープ破断延性を有する。
 <実施例1>
 表1は、本発明の一実施例に用いた材料の化学組成を示すものである。本実施例では比較材と同じ化学組成である火STPA29を用い、本発明の熱処理条件での熱処理を施すことにより、本発明の熱処理がクリープ破断延性に及ぼす効果を調べた。本実施例と比較材の違いは熱処理条件だけであり、化学成分や非金属介在物等には違いはないため、本発明の熱処理の効果のみを検証することが可能である。
Figure JPOXMLDOC01-appb-T000001
 図1は、火STPA29の焼ならし熱処理温度に相当する1070℃からの連続冷却変態(CCT)曲線である。図1のCCT曲線から、本供試材である火STPA29は、焼ならし温度からの冷却中に約400℃でマルテンサイト変態を開始して、240~260℃でマルテンサイト変態が完了することがわかる。そこで、マルテンサイト変態が開始して完了するまでの温度域の途中まで焼ならし温度から冷却し、供試材の一部をマルテンサイトに変態させた後、未変態オーステナイト相のフェライト変態が生じない程度の高温度域まで加熱して、マルテンサイト変態により導入されたひずみを緩和させた後、残りの未変態オーステナイト相をマルテンサイト変態させる熱処理条件を設定した。
 表2および図2は、本実施例で採用した熱処理条件を示している。本発明のポイントは以下のとおりである。
(1)焼ならし温度からの冷却途中でマルテンサイトに部分変態させた後、中間焼もどし熱処理を行った後、マルテンサイト変態終了温度(Mf)以下の温度(例えば、室温)まで冷却して、未変態オーステナイト部分をマルテンサイトに変態させること。
(2)焼ならし温度からの冷却途中の、マルテンサイト変態が開始する温度域の冷却速度を小さくすること。
Figure JPOXMLDOC01-appb-T000002
 本実施例では、部分変態温度を320℃と350℃の2条件とし、中間焼もどし熱処理を570℃と590℃の2条件で行った。さらに、通常の焼もどし熱処理に相当する最終焼もどしを730℃と780℃で行った。表3および図4~図8は、本実施例のクリープ試験結果を比較材の結果と併せて示したものである。なお、比較材のクリープ破断時間の平均値および最小値は、許容引張応力の見直しに際して得られた再評価結果であり、当該鋼種のクリープ強度レベルを示すものである。
Figure JPOXMLDOC01-appb-T000003
<比較例1>
 表4および図3は、比較例で採用した高強度フェライト耐熱鋼の熱処理条件を示したものである。比較例で採用した熱処理条件は、前述のASMEボイラ圧力容器規格に準拠したもので、本発明の熱処理条件と比較すると、中間焼もどし熱処理がない点と、焼ならし温度から室温への冷却途中での、マルテンサイト変態が開始する温度域の冷却速度が通常の早い値となっている点が相異する。
 すなわち、最初に溶体化熱処理工程があり、当該フェライト耐熱鋼よりなる鋼材をオーステナイト化温度で溶体化熱処理する。次に、焼ならし工程で、当該鋼材をオーステナイト化温度から室温まで冷却する。最後に、焼もどし熱処理工程で、当該鋼材の使用温度よりも高く定められた焼もどし温度で焼き戻す。
Figure JPOXMLDOC01-appb-T000004
 図10および図11は、高強度フェライト耐熱鋼の中でもとくにクリープ強度に優れている火STPA29(発電配管用合金鋼鋼管)のクリープ破断試験片の写真を示すものである。短時間の66.0時間クリープ破断した試験片(図10)は、破断部の断面減少が大きく、大きなクリープ破断絞りを示している。一方、長時間の50871.2hでクリープ破断した試験片(図11)は、破断部近傍においても断面減少がほとんど認められず、クリープ破断絞りは小さくなっている。
 図12および図13は、火STPA29のクリープ破断伸びとクリープ破断絞りをクリープ破断時間に対して整理してそれぞれ示すものである。クリープ破断伸び(図12)およびクリープ破断絞り(図13)ともに短時間域では大きな値を示すが、長時間域では大きく低下しており、クリープ破断延性の低下の程度は、クリープ破断伸びに比べてクリープ破断絞りで顕著に認められる。
 図14は、クリープ試験条件に対応したフェライト系耐熱鋼のミクロ組織の違いを示す模式図で、(A)は旧オーステナイト結晶粒の内部構造を示し、(B)は応力と破断時間との相関における破断時のミクロ組織を示している。
 旧オーステナイト結晶粒の内部構造は、パケット、ブロック、ラスという3階層となっている。旧オーステナイト結晶粒は、その大きさが数十μmで、その粒界は大角粒界になっている。パケットは、旧オーステナイト結晶粒の内部に詰まっているもので、その大きさが数μmで、その境界は大角粒界になっている。ブロックは、パケットの内部に平行に並んだもので、約1μm程度の細長い板状をしており、その境界は大角粒界になっている。ラスは、約0.2μm程度の小角粒界で、ブロックは結晶方位が同じラスの集団となっている。ラスの内部や境界には炭化物や窒化物が析出している。
 比較材について、クリープ試験条件として高応力・短時間の破断では、旧オーステナイト結晶粒の内部構造はクリープ試験を開始する前と同様なミクロ組織を有している。これに対して、クリープ試験条件として低応力・長時間の破断では、クリープ試験を開始する前と比較すると、旧オーステナイト結晶粒の内部構造は、マルテンサイト組織のラスが穏やかに回復した状態にあるが、旧オーステナイト結晶粒の粒界付近は粒内と全く様相が異なり、微細析出物や転位が非常に少ない、回復が極端に進んだ組織となっている。
<比較例2>
<高強度フェライト耐熱鋼の長時間域におけるクリープ破断延性低下のメカニズム解明>
 本発明者らは、高強度フェライト耐熱鋼の長時間域におけるクリープ破断延性低下のメカニズム解明を目的として検討を行った結果、クリープ試験応力がクリープ試験温度における0.2%耐力の2分の1以下でクリープ破断延性が大きく低下することを見出した。図15は、火STPA29のクリープ破断絞りを耐力比(試験応力を0.2%耐力で除した値)に対して整理して示した図である。耐力比が0.5を超える範囲ではクリープ破断絞りは大きな値を示すが、耐力比が0.5以下に低下するといずれの試験温度でもクリープ破断絞りは大きく低下する。
 図16、図17および図18は、火STBA29、火SUS410J3TP(発電配管用ステンレス鋼管)および火STBA24J1(発電ボイラー用合金鋼鋼管)について、クリープ破断絞りを耐力比に対して整理した結果を、それぞれ示す図である。いずれの鋼種でも、耐力比が0.5を超える範囲では大きなクリープ破断絞りを示すが、耐力比が0.5以下に低下すると、試験温度によらずクリープ破断絞りは大きく低下している。したがって、耐力比が0.5以下に低下するとクリープ破断絞りが大きく低下する現象は、いずれの高強度フェライト系耐熱鋼でも認められる共通の現象である。
 耐力比の0.5(0.2%耐力の2分の1)は、その温度における弾性限に相当することが知られている。0.2%耐力の2分の1以下の低応力でクリープ破断した試験片では、図19に示すように、旧オーステナイト結晶粒界近傍の局所的な領域で、焼もどしマルテンサイト組織の回復現象が進行し、軟化したクリープ強度の低い領域の形成が認められる。このように焼もどしマルテンサイト組織の回復現象が不均一に進行した組織は、耐力比が0.5を超える高応力域でクリープ破断した試験片では観察されない。耐力比が0.5以下の低応力域では、旧オーステナイト結晶粒界近傍の局所的な回復領域で優先的にクリープ変形が進行し、クリープ破断を引き起こすため、クリープ破断までのクリープ変形量が少なく、クリープ破断延性が低下すると考えられる。
 <焼もどしマルテンサイト組織の回復現象が旧オーステナイト結晶粒界近傍で促進される原因>
 そこで、耐力比が0.5以下の低応力域において、焼もどしマルテンサイト組織の回復現象が旧オーステナイト結晶粒界近傍で促進される原因について検討した。
 高強度フェライト系耐熱鋼は、焼ならし熱処理によりオーステナイト相からのマルテンサイト変態によりマルテンサイト相とした後、焼もどし熱処理により焼もどしマルテンサイト組織として、使用に供される。オーステナイト相からのマルテンサイト変態時には体積膨張を伴うため、先に変態したマルテンサイト領域の周囲の未変態オーステナイト領域には、ひずみが発生する。そのため、旧オーステナイト結晶粒界等には、マルテンサイト変態によって導入されたひずみが集中する。
 そこで、本発明者は、マルテンサイト変態によって導入された変態ひずみが、旧オーステナイト結晶粒界近傍等の局所領域で回復現象を促進する現象を抑制するようなミクロ組織と、これを実現する熱処理条件を見出すことが肝要であることに気付いて、本発明を発案した。
 即ち、本発明の実施例では、供試材の一部がマルテンサイト変態した二相状態で中間焼もどし熱処理を行い、マルテンサイト変態により導入されたひずみを緩和させた後、残りの未変態オーステナイト相をマルテンサイト変態させる熱処理条件を供試材に適用している。その結果、上記のような中間焼きもどし熱処理を行っていない、従来の溶体化熱処理工程、焼ならし工程および焼もどし熱処理工程で熱処理されたフェライト系耐熱鋼と比較して、マルテンサイト変態により導入されるひずみを低減させたミクロ組織を得ることができる。
<クリープ破断時間>
 図4は、実施例と比較材について、試験温度650℃、試験応力90MPaでクリープ試験を行って求めたクリープ破断時間を示す図である。実施例のDTAとDTBのクリープ破断時間は、比較材のMJPに比べてわずかに短いが、当該鋼種の平均値と最小値の間であり、当該鋼種の標準的なクリープ破断時間の範囲内である。実施例のDTCとDTDのクリープ破断時間は,比較材であるMJPのクリープ破断時間の96~98%であり、当該鋼種の平均的なクリープ破断時間である。
 図5は、実施例と比較材について、試験温度700℃、試験応力50MPaでクリープ試験を行って求めたクリープ破断時間を示す図である。実施例のDTA~DTDのクリープ破断時間は、いずれも比較材のMJPに比べてわずかに短いが、当該鋼種の標準的なクリープ破断時間の範囲内である。
<クリープ破断延性>
 図6は、実施例と比較材について、試験温度650℃、試験応力90MPaでクリープ破断した試験片の写真を示す図である。比較材のMJPに比べて、実施例のDTA、DTB、DTCおよびDTDは、いずれも破断部近傍の断面減少の程度が大きく、実施例のほうが比較材よりもクリープ破断延性が高いことがわかる。
 図7は、実施例と比較材について、試験温度700℃、試験応力50MPaでクリープ破断した試験片の写真を示す図である。比較材のMJPに比べて、実施例はいずれも破断部近傍の断面減少の程度が大きく、実施例のほうが比較材よりもクリープ破断延性が高いことがわかる。
 図8は、実施例と比較材について、試験温度650℃、試験応力90MPaおよび試験温度700℃、試験応力50MPaで求めたクリープ破断伸びを比較して示す図(DTTおよびMJT:試験温度700℃、試験応力60MPaについては表3参照)である。実施例は、比較材よりも大きなクリープ破断伸びを示すことがわかる。
 図9は、実施例と比較材について、試験温度650℃、試験応力90MPaおよび試験温度700℃、試験応力50MPaで求めたクリープ破断絞りを比較して示す図(DTTおよびMJT:試験温度700℃、試験応力60MPについては表3参照)である。実施例は、比較材よりも大きなクリープ破断絞りを示すことがわかる。
 表3、図8および図9から明らかなように、本発明のフェライト系耐熱鋼は、クリープ破断延びが16%以上で、且つ、クリープ破断絞りが28%以上のクリープ破断延性を有する。クリープ破断延びが18%以上で、且つ、クリープ破断絞りが28%以上であることが好ましく、クリープ破断延びが20%以上で、且つ、クリープ破断絞りが40%以上であることがより好ましく、クリープ破断延びが20%以上で、且つ、クリープ破断絞りが50%以上であることが特に好ましい。
 以上の結果から、本発明の熱処理条件を適用することにより、クリープ破断強度を損なうことなく、高強度フェライト系耐熱鋼の長時間域のクリープ破断延性を向上させることができることが実証された。
 なお、本発明の実施例と比較材として火STPA29の場合を説明したが、本発明の化学組成はこれに限定されるものではない。例えば、ボイラ用耐熱鋼として通常使用される9Crフェライト耐熱鋼として、JIS規格のSTBA26(ASME T9)、火STBA27、火STBA28(ASME T91)、火STBA29(ASME T92)でもよく、また12Crフェライト耐熱鋼として、JIS規格の火SUS410J2TB、火SUS410J3TB(ASME T122)、DIN規格のDINX20CrMoV121、DINX20CrMoWV121に含まれる各種のフェライト耐熱鋼でもよい。表5にこれら各種のフェライト耐熱鋼の化学組成を掲げる。
Figure JPOXMLDOC01-appb-T000005
 本発明の高強度フェライト系耐熱鋼によれば、その熱処理条件を適切に選定することで、本発明のミクロ組織を有する高強度フェライト系耐熱鋼が得られる。本発明の高強度フェライト系耐熱鋼によれば、マルテンサイト変態により導入されるひずみを緩和させた焼き戻しマルテンサイト組織を有する高強度フェライト系耐熱鋼の長時間使用条件下におけるクリープ破断強度を損なうことなく、クリープ破断延性を改善している。その結果として、例えば火力発電プラントのような長期間安定した運転を確保すべき用途に用いるのに好適である。また、マルテンサイト変態によって導入される変態ひずみを低減させる本発明の熱処理方法を用いることにより、マルテンサイト組織を利用した高強度フェライト系耐熱鋼のクリープ破断延性を向上させるだけでなく、マルテンサイト組織を有する高強度鋼における、破壊靱性の低下、遅れ破壊の発生、水素脆化の促進、疲労強度の限界等の各種の課題の解決にも、効果があると期待される。
 

Claims (14)

  1.  化学組成が、質量%で、
     C:0.03~0.15
     Si:0~0.8
     Mn:0.1~0.8
     Cr:8.0~11.5
     Mo:0.2~1.5
     V:0.1~0.4
     Nb:0.02~0.12
     N:0.02~0.10
     残部:鉄および不可避的不純物を含むフェライト系耐熱鋼であって、
     焼き戻しマルテンサイトの微細組織を有すると共に、
     前記フェライト系耐熱鋼よりなる鋼材の使用温度での当該フェライト系耐熱鋼の弾性限度内の負荷が作用する場合において、クリープ破断延びが16%以上で、クリープ破断絞りが28%以上のクリープ破断延性を有することを特徴とするフェライト系耐熱鋼。
  2.  請求項1に記載のフェライト系耐熱鋼において、クリープ破断延びが20%以上で、クリープ破断絞りが50%以上のクリープ破断延性を有することを特徴とするフェライト系耐熱鋼。
  3.  化学組成が、質量%で、
     C:0.03~0.15
     Si:0~0.8
     Mn:0.1~0.8
     Cr:8.0~11.5
     Mo:0.2~1.5
     V:0.1~0.4
     Nb:0.02~0.12
     N:0.02~0.10
     残部:鉄および不可避的不純物を含むフェライト系耐熱鋼であって、
     焼き戻しマルテンサイトの微細組織を有すると共に、ASMEボイラ圧力容器規格又はこれに相当する規格のフェライト系耐熱鋼の熱処理条件に定められた溶体化熱処理工程、焼ならし工程および焼もどし熱処理工程で熱処理されたフェライト系耐熱鋼の旧オーステナイト結晶粒と比較して、マルテンサイト変態により導入された内部ひずみ又は内部応力の少なくとも一方が緩和されている旧オーステナイト結晶粒を有する組織であることを特徴とするフェライト系耐熱鋼。
  4.  化学組成が、質量%で、
     C:0.03~0.15
     Si:0~0.8
     Mn:0.1~0.8
     Cr:8.0~11.5
     Mo:0.2~1.5
     V:0.1~0.4
     Nb:0.02~0.12
     N:0.02~0.10
     残部:鉄および不可避的不純物を含むフェライト系耐熱鋼であって、以下の熱処理工程(a)~(e)による熱処理を受けて製造されることを特徴するフェライト系耐熱鋼。
                 記
    (a) 当該フェライト系耐熱鋼よりなる鋼材をオーステナイト化温度で溶体化熱処理する溶体化熱処理工程、
    (b) 前記フェライト系耐熱鋼よりなる鋼材を前記オーステナイト化温度から一部がマルテンサイト変態することにより、マルテンサイトと未変態オーステナイト二相状態となる温度まで冷却する焼ならし工程、ここで当該二相状態温度はマルテンサイト変態開始温度(Ms)よりも低く、マルテンサイト変態終了温度(Mf)よりも高く定められていること、
    (c) 当該二相状態温度から中間焼もどし熱処理温度まで加熱する工程、ここで当該中間焼もどし熱処理温度はマルテンサイト変態開始温度(Ms)よりも高く第2の最終焼もどし熱処理温度よりも低く定められていること、
    (d) 一旦、マルテンサイト変態終了温度(Mf)以下の温度まで冷却することにより、残りの未変態オーステナイト相をマルテンサイト変態させる工程、
    (e) 前記フェライト系耐熱鋼よりなる鋼材の使用温度よりも高く定められた前記第2の最終焼もどし熱処理温度での最終焼もどし熱処理を行なうこと。
  5.  請求項1乃至4のいずれか1項に記載のフェライト系耐熱鋼において、さらに、質量%で、
     W:0.0~3.0
     B:0.002~0.010
     からなる群の元素から選ばれた少なくとも1つ以上含むことを特徴とするフェライト系耐熱鋼。
  6.  請求項5に記載のフェライト系耐熱鋼において、さらに、質量%で、
     Co:0.0~2.0
     Ta:0.05~0.12
     からなる群の元素から選ばれた少なくとも1つ以上含むことを特徴とするフェライト系耐熱鋼。
  7.  請求項1乃至4のいずれか1項に記載のフェライト系耐熱鋼において、当該請求項に記載された化学組成に代えて、質量%で、
     C:0.03~0.15
     Si:0~0.8
     Mn:0.1~0.8
     Cr:8.0~11.5
     Mo:0.2~1.5
     W:0.4~3.0
     V:0.1~0.4
     Nb:0.02~0.12
     N:0.02~0.10
     残部:鉄および不可避的不純物を含むことを特徴とするフェライト系耐熱鋼。
  8.   請求項1乃至7のいずれか1項に記載のフェライト系耐熱鋼の製造方法であって、
    (a) 当該フェライト系耐熱鋼よりなる鋼材をオーステナイト化温度で溶体化熱処理する溶体化熱処理工程、
    (b) 前記フェライト系耐熱鋼よりなる鋼材を前記オーステナイト化温度から一部がマルテンサイト変態することにより、マルテンサイトと未変態オーステナイトの二相状態となる温度まで冷却する焼ならし工程、ここで当該二相状態温度はマルテンサイト変態開始温度(Ms)よりも低く、マルテンサイト変態終了温度(Mf)よりも高く定められていること、
    (c) 当該二相状態温度から中間焼もどし熱処理まで加熱する工程、ここで当該中間焼もどし熱処理温度はマルテンサイト変態開始温度(Ms)よりも高く第2の最終焼もどし熱処理温度よりも低く定められていること、
    (d) 一旦、マルテンサイト変態終了温度(Mf)以下の温度まで冷却することにより、残りの未変態オーステナイト相をマルテンサイト変態させる工程、
    及び、(e) 前記フェライト系耐熱鋼よりなる鋼材の使用温度よりも高く定められた前記第2の最終焼もどし熱処理温度での最終焼もどし熱処理を行なう工程を有することを特徴とするフェライト系耐熱鋼の製造方法。
  9.  請求項8に記載のフェライト系耐熱鋼の製造方法であって、
     前記(a)の溶体化熱処理工程における前記オーステナイト化温度での熱処理温度は1030℃から1120℃の範囲であり0.5時間以上保持するものであることを特徴とするフェライト系耐熱鋼の製造方法。
  10.  請求項8又は9に記載のフェライト系耐熱鋼の製造方法であって、前記(b)の焼ならし工程における前記二相状態温度は240℃から400℃の範囲であることを特徴とするフェライト系耐熱鋼の製造方法。
  11.  請求項8乃至10のいずれか1項に記載のフェライト系耐熱鋼の製造方法であって、前記(b)の焼ならし工程における前記オーステナイト化温度から一部がマルテンサイト変態することにより、マルテンサイトと未変態オーステナイトの二相状態温度まで冷却する冷却速度は、マルテンサイト変態開始温度(Ms)まではフェライト相への変態を抑制できる程度に速く冷却し、マルテンサイト変態開始温度(Ms)から二相状態温度までは徐冷することを特徴とするフェライト系耐熱鋼の製造方法。
  12.  請求項8乃至11のいずれか1項に記載のフェライト系耐熱鋼の製造方法であって、前記(c)の二相状態温度から中間焼もどし熱処理まで加熱する工程における当該中間焼もどし熱処理温度は550℃から600℃の範囲であり1時間以上保持するものであることを特徴とするフェライト系耐熱鋼の製造方法。
  13.  請求項8乃至12のいずれか1項に記載のフェライト系耐熱鋼の製造方法であって、前記(e)の第2の最終焼もどし熱処理温度は730℃から800℃の範囲であり0.5時間から24時間保持するものであることを特徴とするフェライト系耐熱鋼の製造方法。
  14.  請求項1乃至7のいずれか1項に記載のフェライト系耐熱鋼の使用方法であって、
     蒸気温度が600℃級を超える火力発電所の発電設備に使用されることを特徴とするフェライト系耐熱鋼の使用方法。
PCT/JP2016/055660 2015-02-27 2016-02-25 フェライト系耐熱鋼とその製造方法 WO2016136888A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017502473A JP6562476B2 (ja) 2015-02-27 2016-02-25 フェライト系耐熱鋼とその製造方法
US15/553,859 US10519524B2 (en) 2015-02-27 2016-02-25 Ferritic heat-resistant steel and method for producing the same
EP16755632.3A EP3263732B1 (en) 2015-02-27 2016-02-25 Ferrite-based heat-resistant steel and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015039185 2015-02-27
JP2015-039185 2015-02-27

Publications (1)

Publication Number Publication Date
WO2016136888A1 true WO2016136888A1 (ja) 2016-09-01

Family

ID=56789605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055660 WO2016136888A1 (ja) 2015-02-27 2016-02-25 フェライト系耐熱鋼とその製造方法

Country Status (4)

Country Link
US (1) US10519524B2 (ja)
EP (1) EP3263732B1 (ja)
JP (1) JP6562476B2 (ja)
WO (1) WO2016136888A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109295396A (zh) * 2018-10-26 2019-02-01 上海电气电站设备有限公司 一种汽轮机锻件用耐热钢
WO2019044554A1 (ja) * 2017-08-30 2019-03-07 三菱日立パワーシステムズ株式会社 亀裂評価基準策定方法、内部探傷検査による亀裂評価方法及び保守管理方法
WO2019044555A1 (ja) * 2017-08-30 2019-03-07 三菱日立パワーシステムズ株式会社 余寿命評価方法及び保守管理方法
JP2020082121A (ja) * 2018-11-22 2020-06-04 日立造船株式会社 極厚板の突合せ溶接方法および極厚板の突合せ溶接設備
JP2021110039A (ja) * 2019-12-30 2021-08-02 武▲漢▼大学 超臨界高温蒸気におけるマルテンサイト耐熱鋼の酸化膜の厚さの計算方法
WO2023286204A1 (ja) * 2021-07-14 2023-01-19 日本製鉄株式会社 フェライト系耐熱鋼
CN115747654A (zh) * 2022-11-23 2023-03-07 成都先进金属材料产业技术研究院股份有限公司 一种抗高温氧化铁素体不锈钢及其制造方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180104513A (ko) * 2017-03-13 2018-09-21 엘지전자 주식회사 공기 조화기
TWM582476U (zh) * 2018-11-20 2019-08-21 建迪企業股份有限公司 一種可自動收折之電動車
US11703185B2 (en) 2021-03-22 2023-07-18 Ezng Solutions, Llc Apparatus, systems, and methods for storing and transporting compressed fluids
CN116676470B (zh) * 2023-08-03 2023-12-01 成都先进金属材料产业技术研究院股份有限公司 一种耐热钢无缝钢管及其热处理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103345A (ja) * 1985-07-09 1987-05-13 Toshio Fujita 高温用蒸気タ−ビンロ−タとその製造方法
JPH02267217A (ja) * 1989-04-05 1990-11-01 Nippon Steel Corp 高Cr系耐熱鋼の強化熱処理法
JPH0610041A (ja) * 1992-06-25 1994-01-18 Sumitomo Metal Ind Ltd クリープ破断強度と延性に優れた高Crフェライト鋼の製造方法
JPH1088291A (ja) * 1996-09-10 1998-04-07 Mitsubishi Heavy Ind Ltd 高強度・高靱性耐熱鋳鋼
JPH11350076A (ja) * 1998-06-03 1999-12-21 Mitsubishi Heavy Ind Ltd 析出強化型フェライト系耐熱鋼
JP2009235466A (ja) * 2008-03-26 2009-10-15 Technical Research & Development Institute Ministry Of Defence フェライト系耐熱鋼の製造方法
JP2010156011A (ja) * 2008-12-26 2010-07-15 Mitsubishi Heavy Ind Ltd 耐熱鋳鋼および蒸気タービン主要弁
JP2012140667A (ja) * 2010-12-28 2012-07-26 Toshiba Corp 耐熱鋳鋼、耐熱鋳鋼の製造方法、蒸気タービンの鋳造部品および蒸気タービンの鋳造部品の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607459A (en) * 1968-10-09 1971-09-21 Phillips Petroleum Co Quench hardening of metals with improved quenching medium additive
JPS5837159A (ja) * 1981-08-26 1983-03-04 Hitachi Ltd マルテンサイト系耐熱鋼
JPH0696741B2 (ja) * 1984-10-17 1994-11-30 三菱重工業株式会社 高温圧力容器用高クロム鋳鋼の熱処理方法
JPH0959747A (ja) * 1995-08-25 1997-03-04 Hitachi Ltd 高強度耐熱鋳鋼,蒸気タービンケーシング,蒸気タービン発電プラント及び蒸気タービン
US8246767B1 (en) 2005-09-15 2012-08-21 The United States Of America, As Represented By The United States Department Of Energy Heat treated 9 Cr-1 Mo steel material for high temperature application
JP4542491B2 (ja) * 2005-09-29 2010-09-15 株式会社日立製作所 高強度耐熱鋳鋼とその製造方法及びそれを用いた用途
JP5668472B2 (ja) 2010-12-28 2015-02-12 Tdk株式会社 配線基板の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103345A (ja) * 1985-07-09 1987-05-13 Toshio Fujita 高温用蒸気タ−ビンロ−タとその製造方法
JPH02267217A (ja) * 1989-04-05 1990-11-01 Nippon Steel Corp 高Cr系耐熱鋼の強化熱処理法
JPH0610041A (ja) * 1992-06-25 1994-01-18 Sumitomo Metal Ind Ltd クリープ破断強度と延性に優れた高Crフェライト鋼の製造方法
JPH1088291A (ja) * 1996-09-10 1998-04-07 Mitsubishi Heavy Ind Ltd 高強度・高靱性耐熱鋳鋼
JPH11350076A (ja) * 1998-06-03 1999-12-21 Mitsubishi Heavy Ind Ltd 析出強化型フェライト系耐熱鋼
JP2009235466A (ja) * 2008-03-26 2009-10-15 Technical Research & Development Institute Ministry Of Defence フェライト系耐熱鋼の製造方法
JP2010156011A (ja) * 2008-12-26 2010-07-15 Mitsubishi Heavy Ind Ltd 耐熱鋳鋼および蒸気タービン主要弁
JP2012140667A (ja) * 2010-12-28 2012-07-26 Toshiba Corp 耐熱鋳鋼、耐熱鋳鋼の製造方法、蒸気タービンの鋳造部品および蒸気タービンの鋳造部品の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3263732A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044554A1 (ja) * 2017-08-30 2019-03-07 三菱日立パワーシステムズ株式会社 亀裂評価基準策定方法、内部探傷検査による亀裂評価方法及び保守管理方法
WO2019044555A1 (ja) * 2017-08-30 2019-03-07 三菱日立パワーシステムズ株式会社 余寿命評価方法及び保守管理方法
JP2019045218A (ja) * 2017-08-30 2019-03-22 三菱日立パワーシステムズ株式会社 余寿命評価方法及び保守管理方法
JP2019045217A (ja) * 2017-08-30 2019-03-22 三菱日立パワーシステムズ株式会社 亀裂評価基準策定方法、内部探傷検査による亀裂評価方法及び保守管理方法
CN111033211A (zh) * 2017-08-30 2020-04-17 三菱日立电力***株式会社 剩余寿命评价方法及保养管理方法
CN109295396A (zh) * 2018-10-26 2019-02-01 上海电气电站设备有限公司 一种汽轮机锻件用耐热钢
JP2020082121A (ja) * 2018-11-22 2020-06-04 日立造船株式会社 極厚板の突合せ溶接方法および極厚板の突合せ溶接設備
JP7097282B2 (ja) 2018-11-22 2022-07-07 日立造船株式会社 極厚板の突合せ溶接方法および極厚板の突合せ溶接設備
JP2021110039A (ja) * 2019-12-30 2021-08-02 武▲漢▼大学 超臨界高温蒸気におけるマルテンサイト耐熱鋼の酸化膜の厚さの計算方法
JP7161656B2 (ja) 2019-12-30 2022-10-27 武▲漢▼大学 超臨界高温蒸気におけるマルテンサイト耐熱鋼の酸化膜の厚さの計算方法
WO2023286204A1 (ja) * 2021-07-14 2023-01-19 日本製鉄株式会社 フェライト系耐熱鋼
CN115747654A (zh) * 2022-11-23 2023-03-07 成都先进金属材料产业技术研究院股份有限公司 一种抗高温氧化铁素体不锈钢及其制造方法和应用

Also Published As

Publication number Publication date
JPWO2016136888A1 (ja) 2017-12-21
US20180051352A1 (en) 2018-02-22
JP6562476B2 (ja) 2019-08-21
EP3263732A1 (en) 2018-01-03
US10519524B2 (en) 2019-12-31
EP3263732A4 (en) 2018-07-11
EP3263732B1 (en) 2022-04-13

Similar Documents

Publication Publication Date Title
JP6562476B2 (ja) フェライト系耐熱鋼とその製造方法
US10378073B2 (en) High-toughness hot-rolling high-strength steel with yield strength of 800 MPa, and preparation method thereof
US8617462B2 (en) Steel for oil well pipe excellent in sulfide stress cracking resistance
US10597760B2 (en) High-strength steel material for oil well and oil well pipes
JP6048626B1 (ja) 厚肉高靭性高強度鋼板およびその製造方法
WO2011061812A1 (ja) 高靱性耐摩耗鋼およびその製造方法
JP5659758B2 (ja) 優れた生産性と溶接性を兼ね備えた、PWHT後の落重特性に優れたTMCP−Temper型高強度厚鋼板の製造方法
JP2019535889A (ja) 低温靭性に優れた高強度高マンガン鋼及びその製造方法
JP2016509129A (ja) 高強度鋼板及びその製造方法
JP6880194B2 (ja) 高温焼戻し熱処理及び溶接後熱処理抵抗性に優れた圧力容器用鋼材及びその製造方法
JP5076423B2 (ja) Ni含有鋼板の製造方法
CN109423573B (zh) 一种耐高温氧腐蚀不锈钢、套管及其制造方法
CN113166901B (zh) 蠕变强度优异的铬钼钢板及其制备方法
JPS6267113A (ja) 耐クリ−プ破断特性に優れた耐熱鋼の製造法
JP2010138465A (ja) クリープ強度に優れる耐熱鋼およびその製造方法
JPS61104022A (ja) 高温構造用鋼の製造方法
CN114258435B (zh) 具有优异的蠕变强度和高温延性的铬钢板及其制造方法
KR102455547B1 (ko) 고강도 및 고연성을 갖는 크롬-몰리브덴 강 및 이의 제조 방법
RU2801655C1 (ru) Сталь для цепей горнодобывающего оборудования и способ её изготовления
JP5835079B2 (ja) フェライト系耐熱鋼の製造方法
JP3969279B2 (ja) マルテンサイト系鉄基耐熱合金およびその製造方法
JPH079027B2 (ja) 高温用低合金鋼の成形加工方法
JP2007162114A (ja) マルテンサイト系鉄基耐熱合金
KR20140017112A (ko) 비열처리형 고강도 열연강판 및 그 제조 방법

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016755632

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755632

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017502473

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15553859

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE